src/cpu/sparc/vm/cppInterpreter_sparc.cpp

Tue, 03 Aug 2010 08:13:38 -0400

author
bobv
date
Tue, 03 Aug 2010 08:13:38 -0400
changeset 2036
126ea7725993
parent 1907
c18cbe5936b8
child 2314
f95d63e2154a
permissions
-rw-r--r--

6953477: Increase portability and flexibility of building Hotspot
Summary: A collection of portability improvements including shared code support for PPC, ARM platforms, software floating point, cross compilation support and improvements in error crash detail.
Reviewed-by: phh, never, coleenp, dholmes

     1 /*
     2  * Copyright (c) 2007, 2009, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_cppInterpreter_sparc.cpp.incl"
    28 #ifdef CC_INTERP
    30 // Routine exists to make tracebacks look decent in debugger
    31 // while "shadow" interpreter frames are on stack. It is also
    32 // used to distinguish interpreter frames.
    34 extern "C" void RecursiveInterpreterActivation(interpreterState istate) {
    35   ShouldNotReachHere();
    36 }
    38 bool CppInterpreter::contains(address pc) {
    39   return ( _code->contains(pc) ||
    40          ( pc == (CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset)));
    41 }
    43 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
    44 #define __ _masm->
    46 Label frame_manager_entry;
    47 Label fast_accessor_slow_entry_path;  // fast accessor methods need to be able to jmp to unsynchronized
    48                                       // c++ interpreter entry point this holds that entry point label.
    50 static address unctrap_frame_manager_entry  = NULL;
    52 static address interpreter_return_address  = NULL;
    53 static address deopt_frame_manager_return_atos  = NULL;
    54 static address deopt_frame_manager_return_btos  = NULL;
    55 static address deopt_frame_manager_return_itos  = NULL;
    56 static address deopt_frame_manager_return_ltos  = NULL;
    57 static address deopt_frame_manager_return_ftos  = NULL;
    58 static address deopt_frame_manager_return_dtos  = NULL;
    59 static address deopt_frame_manager_return_vtos  = NULL;
    61 const Register prevState = G1_scratch;
    63 void InterpreterGenerator::save_native_result(void) {
    64   // result potentially in O0/O1: save it across calls
    65   __ stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
    66 #ifdef _LP64
    67   __ stx(O0, STATE(_native_lresult));
    68 #else
    69   __ std(O0, STATE(_native_lresult));
    70 #endif
    71 }
    73 void InterpreterGenerator::restore_native_result(void) {
    75   // Restore any method result value
    76   __ ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
    77 #ifdef _LP64
    78   __ ldx(STATE(_native_lresult), O0);
    79 #else
    80   __ ldd(STATE(_native_lresult), O0);
    81 #endif
    82 }
    84 // A result handler converts/unboxes a native call result into
    85 // a java interpreter/compiler result. The current frame is an
    86 // interpreter frame. The activation frame unwind code must be
    87 // consistent with that of TemplateTable::_return(...). In the
    88 // case of native methods, the caller's SP was not modified.
    89 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
    90   address entry = __ pc();
    91   Register Itos_i  = Otos_i ->after_save();
    92   Register Itos_l  = Otos_l ->after_save();
    93   Register Itos_l1 = Otos_l1->after_save();
    94   Register Itos_l2 = Otos_l2->after_save();
    95   switch (type) {
    96     case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
    97     case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
    98     case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
    99     case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
   100     case T_LONG   :
   101 #ifndef _LP64
   102                     __ mov(O1, Itos_l2);  // move other half of long
   103 #endif              // ifdef or no ifdef, fall through to the T_INT case
   104     case T_INT    : __ mov(O0, Itos_i);                         break;
   105     case T_VOID   : /* nothing to do */                         break;
   106     case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
   107     case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
   108     case T_OBJECT :
   109       __ ld_ptr(STATE(_oop_temp), Itos_i);
   110       __ verify_oop(Itos_i);
   111       break;
   112     default       : ShouldNotReachHere();
   113   }
   114   __ ret();                           // return from interpreter activation
   115   __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
   116   NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
   117   return entry;
   118 }
   120 // tosca based result to c++ interpreter stack based result.
   121 // Result goes to address in L1_scratch
   123 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
   124   // A result is in the native abi result register from a native method call.
   125   // We need to return this result to the interpreter by pushing the result on the interpreter's
   126   // stack. This is relatively simple the destination is in L1_scratch
   127   // i.e. L1_scratch is the first free element on the stack. If we "push" a return value we must
   128   // adjust L1_scratch
   129   address entry = __ pc();
   130   switch (type) {
   131     case T_BOOLEAN:
   132       // !0 => true; 0 => false
   133       __ subcc(G0, O0, G0);
   134       __ addc(G0, 0, O0);
   135       __ st(O0, L1_scratch, 0);
   136       __ sub(L1_scratch, wordSize, L1_scratch);
   137       break;
   139     // cannot use and3, 0xFFFF too big as immediate value!
   140     case T_CHAR   :
   141       __ sll(O0, 16, O0);
   142       __ srl(O0, 16, O0);
   143       __ st(O0, L1_scratch, 0);
   144       __ sub(L1_scratch, wordSize, L1_scratch);
   145       break;
   147     case T_BYTE   :
   148       __ sll(O0, 24, O0);
   149       __ sra(O0, 24, O0);
   150       __ st(O0, L1_scratch, 0);
   151       __ sub(L1_scratch, wordSize, L1_scratch);
   152       break;
   154     case T_SHORT  :
   155       __ sll(O0, 16, O0);
   156       __ sra(O0, 16, O0);
   157       __ st(O0, L1_scratch, 0);
   158       __ sub(L1_scratch, wordSize, L1_scratch);
   159       break;
   160     case T_LONG   :
   161 #ifndef _LP64
   162 #if defined(COMPILER2)
   163   // All return values are where we want them, except for Longs.  C2 returns
   164   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
   165   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
   166   // build even if we are returning from interpreted we just do a little
   167   // stupid shuffing.
   168   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
   169   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
   170   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
   171       __ stx(G1, L1_scratch, -wordSize);
   172 #else
   173       // native result is in O0, O1
   174       __ st(O1, L1_scratch, 0);                      // Low order
   175       __ st(O0, L1_scratch, -wordSize);              // High order
   176 #endif /* COMPILER2 */
   177 #else
   178       __ stx(O0, L1_scratch, -wordSize);
   179 #endif
   180       __ sub(L1_scratch, 2*wordSize, L1_scratch);
   181       break;
   183     case T_INT    :
   184       __ st(O0, L1_scratch, 0);
   185       __ sub(L1_scratch, wordSize, L1_scratch);
   186       break;
   188     case T_VOID   : /* nothing to do */
   189       break;
   191     case T_FLOAT  :
   192       __ stf(FloatRegisterImpl::S, F0, L1_scratch, 0);
   193       __ sub(L1_scratch, wordSize, L1_scratch);
   194       break;
   196     case T_DOUBLE :
   197       // Every stack slot is aligned on 64 bit, However is this
   198       // the correct stack slot on 64bit?? QQQ
   199       __ stf(FloatRegisterImpl::D, F0, L1_scratch, -wordSize);
   200       __ sub(L1_scratch, 2*wordSize, L1_scratch);
   201       break;
   202     case T_OBJECT :
   203       __ verify_oop(O0);
   204       __ st_ptr(O0, L1_scratch, 0);
   205       __ sub(L1_scratch, wordSize, L1_scratch);
   206       break;
   207     default       : ShouldNotReachHere();
   208   }
   209   __ retl();                          // return from interpreter activation
   210   __ delayed()->nop();                // schedule this better
   211   NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
   212   return entry;
   213 }
   215 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
   216   // A result is in the java expression stack of the interpreted method that has just
   217   // returned. Place this result on the java expression stack of the caller.
   218   //
   219   // The current interpreter activation in Lstate is for the method just returning its
   220   // result. So we know that the result of this method is on the top of the current
   221   // execution stack (which is pre-pushed) and will be return to the top of the caller
   222   // stack. The top of the callers stack is the bottom of the locals of the current
   223   // activation.
   224   // Because of the way activation are managed by the frame manager the value of esp is
   225   // below both the stack top of the current activation and naturally the stack top
   226   // of the calling activation. This enable this routine to leave the return address
   227   // to the frame manager on the stack and do a vanilla return.
   228   //
   229   // On entry: O0 - points to source (callee stack top)
   230   //           O1 - points to destination (caller stack top [i.e. free location])
   231   // destroys O2, O3
   232   //
   234   address entry = __ pc();
   235   switch (type) {
   236     case T_VOID:  break;
   237       break;
   238     case T_FLOAT  :
   239     case T_BOOLEAN:
   240     case T_CHAR   :
   241     case T_BYTE   :
   242     case T_SHORT  :
   243     case T_INT    :
   244       // 1 word result
   245       __ ld(O0, 0, O2);
   246       __ st(O2, O1, 0);
   247       __ sub(O1, wordSize, O1);
   248       break;
   249     case T_DOUBLE  :
   250     case T_LONG    :
   251       // return top two words on current expression stack to caller's expression stack
   252       // The caller's expression stack is adjacent to the current frame manager's intepretState
   253       // except we allocated one extra word for this intepretState so we won't overwrite it
   254       // when we return a two word result.
   255 #ifdef _LP64
   256       __ ld_ptr(O0, 0, O2);
   257       __ st_ptr(O2, O1, -wordSize);
   258 #else
   259       __ ld(O0, 0, O2);
   260       __ ld(O0, wordSize, O3);
   261       __ st(O3, O1, 0);
   262       __ st(O2, O1, -wordSize);
   263 #endif
   264       __ sub(O1, 2*wordSize, O1);
   265       break;
   266     case T_OBJECT :
   267       __ ld_ptr(O0, 0, O2);
   268       __ verify_oop(O2);                                               // verify it
   269       __ st_ptr(O2, O1, 0);
   270       __ sub(O1, wordSize, O1);
   271       break;
   272     default       : ShouldNotReachHere();
   273   }
   274   __ retl();
   275   __ delayed()->nop(); // QQ schedule this better
   276   return entry;
   277 }
   279 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
   280   // A result is in the java expression stack of the interpreted method that has just
   281   // returned. Place this result in the native abi that the caller expects.
   282   // We are in a new frame registers we set must be in caller (i.e. callstub) frame.
   283   //
   284   // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
   285   // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
   286   // and so rather than return result onto caller's java expression stack we return the
   287   // result in the expected location based on the native abi.
   288   // On entry: O0 - source (stack top)
   289   // On exit result in expected output register
   290   // QQQ schedule this better
   292   address entry = __ pc();
   293   switch (type) {
   294     case T_VOID:  break;
   295       break;
   296     case T_FLOAT  :
   297       __ ldf(FloatRegisterImpl::S, O0, 0, F0);
   298       break;
   299     case T_BOOLEAN:
   300     case T_CHAR   :
   301     case T_BYTE   :
   302     case T_SHORT  :
   303     case T_INT    :
   304       // 1 word result
   305       __ ld(O0, 0, O0->after_save());
   306       break;
   307     case T_DOUBLE  :
   308       __ ldf(FloatRegisterImpl::D, O0, 0, F0);
   309       break;
   310     case T_LONG    :
   311       // return top two words on current expression stack to caller's expression stack
   312       // The caller's expression stack is adjacent to the current frame manager's interpretState
   313       // except we allocated one extra word for this intepretState so we won't overwrite it
   314       // when we return a two word result.
   315 #ifdef _LP64
   316       __ ld_ptr(O0, 0, O0->after_save());
   317 #else
   318       __ ld(O0, wordSize, O1->after_save());
   319       __ ld(O0, 0, O0->after_save());
   320 #endif
   321 #if defined(COMPILER2) && !defined(_LP64)
   322       // C2 expects long results in G1 we can't tell if we're returning to interpreted
   323       // or compiled so just be safe use G1 and O0/O1
   325       // Shift bits into high (msb) of G1
   326       __ sllx(Otos_l1->after_save(), 32, G1);
   327       // Zero extend low bits
   328       __ srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
   329       __ or3 (Otos_l2->after_save(), G1, G1);
   330 #endif /* COMPILER2 */
   331       break;
   332     case T_OBJECT :
   333       __ ld_ptr(O0, 0, O0->after_save());
   334       __ verify_oop(O0->after_save());                                               // verify it
   335       break;
   336     default       : ShouldNotReachHere();
   337   }
   338   __ retl();
   339   __ delayed()->nop();
   340   return entry;
   341 }
   343 address CppInterpreter::return_entry(TosState state, int length) {
   344   // make it look good in the debugger
   345   return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset;
   346 }
   348 address CppInterpreter::deopt_entry(TosState state, int length) {
   349   address ret = NULL;
   350   if (length != 0) {
   351     switch (state) {
   352       case atos: ret = deopt_frame_manager_return_atos; break;
   353       case btos: ret = deopt_frame_manager_return_btos; break;
   354       case ctos:
   355       case stos:
   356       case itos: ret = deopt_frame_manager_return_itos; break;
   357       case ltos: ret = deopt_frame_manager_return_ltos; break;
   358       case ftos: ret = deopt_frame_manager_return_ftos; break;
   359       case dtos: ret = deopt_frame_manager_return_dtos; break;
   360       case vtos: ret = deopt_frame_manager_return_vtos; break;
   361     }
   362   } else {
   363     ret = unctrap_frame_manager_entry;  // re-execute the bytecode ( e.g. uncommon trap)
   364   }
   365   assert(ret != NULL, "Not initialized");
   366   return ret;
   367 }
   369 //
   370 // Helpers for commoning out cases in the various type of method entries.
   371 //
   373 // increment invocation count & check for overflow
   374 //
   375 // Note: checking for negative value instead of overflow
   376 //       so we have a 'sticky' overflow test
   377 //
   378 // Lmethod: method
   379 // ??: invocation counter
   380 //
   381 void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
   382   // Update standard invocation counters
   383   __ increment_invocation_counter(O0, G3_scratch);
   384   if (ProfileInterpreter) {  // %%% Merge this into methodDataOop
   385     __ ld_ptr(STATE(_method), G3_scratch);
   386     Address interpreter_invocation_counter(G3_scratch, 0, in_bytes(methodOopDesc::interpreter_invocation_counter_offset()));
   387     __ ld(interpreter_invocation_counter, G3_scratch);
   388     __ inc(G3_scratch);
   389     __ st(G3_scratch, interpreter_invocation_counter);
   390   }
   392   Address invocation_limit(G3_scratch, (address)&InvocationCounter::InterpreterInvocationLimit);
   393   __ sethi(invocation_limit);
   394   __ ld(invocation_limit, G3_scratch);
   395   __ cmp(O0, G3_scratch);
   396   __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
   397   __ delayed()->nop();
   399 }
   401 address InterpreterGenerator::generate_empty_entry(void) {
   403   // A method that does nothing but return...
   405   address entry = __ pc();
   406   Label slow_path;
   408   __ verify_oop(G5_method);
   410   // do nothing for empty methods (do not even increment invocation counter)
   411   if ( UseFastEmptyMethods) {
   412     // If we need a safepoint check, generate full interpreter entry.
   413     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
   414     __ load_contents(sync_state, G3_scratch);
   415     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   416     __ br(Assembler::notEqual, false, Assembler::pn, frame_manager_entry);
   417     __ delayed()->nop();
   419     // Code: _return
   420     __ retl();
   421     __ delayed()->mov(O5_savedSP, SP);
   422     return entry;
   423   }
   424   return NULL;
   425 }
   427 // Call an accessor method (assuming it is resolved, otherwise drop into
   428 // vanilla (slow path) entry
   430 // Generates code to elide accessor methods
   431 // Uses G3_scratch and G1_scratch as scratch
   432 address InterpreterGenerator::generate_accessor_entry(void) {
   434   // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
   435   // parameter size = 1
   436   // Note: We can only use this code if the getfield has been resolved
   437   //       and if we don't have a null-pointer exception => check for
   438   //       these conditions first and use slow path if necessary.
   439   address entry = __ pc();
   440   Label slow_path;
   442   if ( UseFastAccessorMethods) {
   443     // Check if we need to reach a safepoint and generate full interpreter
   444     // frame if so.
   445     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
   446     __ load_contents(sync_state, G3_scratch);
   447     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   448     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   449     __ delayed()->nop();
   451     // Check if local 0 != NULL
   452     __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
   453     __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
   454     __ brx(Assembler::zero, false, Assembler::pn, slow_path);
   455     __ delayed()->nop();
   458     // read first instruction word and extract bytecode @ 1 and index @ 2
   459     // get first 4 bytes of the bytecodes (big endian!)
   460     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::const_offset())), G1_scratch);
   461     __ ld(Address(G1_scratch, 0, in_bytes(constMethodOopDesc::codes_offset())), G1_scratch);
   463     // move index @ 2 far left then to the right most two bytes.
   464     __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
   465     __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
   466                       ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
   468     // get constant pool cache
   469     __ ld_ptr(G5_method, in_bytes(methodOopDesc::constants_offset()), G3_scratch);
   470     __ ld_ptr(G3_scratch, constantPoolOopDesc::cache_offset_in_bytes(), G3_scratch);
   472     // get specific constant pool cache entry
   473     __ add(G3_scratch, G1_scratch, G3_scratch);
   475     // Check the constant Pool cache entry to see if it has been resolved.
   476     // If not, need the slow path.
   477     ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
   478     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::indices_offset()), G1_scratch);
   479     __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
   480     __ and3(G1_scratch, 0xFF, G1_scratch);
   481     __ cmp(G1_scratch, Bytecodes::_getfield);
   482     __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
   483     __ delayed()->nop();
   485     // Get the type and return field offset from the constant pool cache
   486     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()), G1_scratch);
   487     __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()), G3_scratch);
   489     Label xreturn_path;
   490     // Need to differentiate between igetfield, agetfield, bgetfield etc.
   491     // because they are different sizes.
   492     // Get the type from the constant pool cache
   493     __ srl(G1_scratch, ConstantPoolCacheEntry::tosBits, G1_scratch);
   494     // Make sure we don't need to mask G1_scratch for tosBits after the above shift
   495     ConstantPoolCacheEntry::verify_tosBits();
   496     __ cmp(G1_scratch, atos );
   497     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   498     __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
   499     __ cmp(G1_scratch, itos);
   500     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   501     __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
   502     __ cmp(G1_scratch, stos);
   503     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   504     __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
   505     __ cmp(G1_scratch, ctos);
   506     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   507     __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
   508 #ifdef ASSERT
   509     __ cmp(G1_scratch, btos);
   510     __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
   511     __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
   512     __ should_not_reach_here();
   513 #endif
   514     __ ldsb(Otos_i, G3_scratch, Otos_i);
   515     __ bind(xreturn_path);
   517     // _ireturn/_areturn
   518     __ retl();                      // return from leaf routine
   519     __ delayed()->mov(O5_savedSP, SP);
   521     // Generate regular method entry
   522     __ bind(slow_path);
   523     __ ba(false, fast_accessor_slow_entry_path);
   524     __ delayed()->nop();
   525     return entry;
   526   }
   527   return NULL;
   528 }
   530 //
   531 // Interpreter stub for calling a native method. (C++ interpreter)
   532 // This sets up a somewhat different looking stack for calling the native method
   533 // than the typical interpreter frame setup.
   534 //
   536 address InterpreterGenerator::generate_native_entry(bool synchronized) {
   537   address entry = __ pc();
   539   // the following temporary registers are used during frame creation
   540   const Register Gtmp1 = G3_scratch ;
   541   const Register Gtmp2 = G1_scratch;
   542   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
   544   bool inc_counter  = UseCompiler || CountCompiledCalls;
   546   // make sure registers are different!
   547   assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
   549   const Address access_flags      (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset()));
   551   Label Lentry;
   552   __ bind(Lentry);
   554   __ verify_oop(G5_method);
   556   const Register Glocals_size = G3;
   557   assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
   559   // make sure method is native & not abstract
   560   // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
   561 #ifdef ASSERT
   562   __ ld(access_flags, Gtmp1);
   563   {
   564     Label L;
   565     __ btst(JVM_ACC_NATIVE, Gtmp1);
   566     __ br(Assembler::notZero, false, Assembler::pt, L);
   567     __ delayed()->nop();
   568     __ stop("tried to execute non-native method as native");
   569     __ bind(L);
   570   }
   571   { Label L;
   572     __ btst(JVM_ACC_ABSTRACT, Gtmp1);
   573     __ br(Assembler::zero, false, Assembler::pt, L);
   574     __ delayed()->nop();
   575     __ stop("tried to execute abstract method as non-abstract");
   576     __ bind(L);
   577   }
   578 #endif // ASSERT
   580   __ lduh(size_of_parameters, Gtmp1);
   581   __ sll(Gtmp1, LogBytesPerWord, Gtmp2);       // parameter size in bytes
   582   __ add(Gargs, Gtmp2, Gargs);                 // points to first local + BytesPerWord
   583   // NEW
   584   __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
   585   // generate the code to allocate the interpreter stack frame
   586   // NEW FRAME ALLOCATED HERE
   587   // save callers original sp
   588   // __ mov(SP, I5_savedSP->after_restore());
   590   generate_compute_interpreter_state(Lstate, G0, true);
   592   // At this point Lstate points to new interpreter state
   593   //
   595   const Address do_not_unlock_if_synchronized(G2_thread, 0,
   596       in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   597   // Since at this point in the method invocation the exception handler
   598   // would try to exit the monitor of synchronized methods which hasn't
   599   // been entered yet, we set the thread local variable
   600   // _do_not_unlock_if_synchronized to true. If any exception was thrown by
   601   // runtime, exception handling i.e. unlock_if_synchronized_method will
   602   // check this thread local flag.
   603   // This flag has two effects, one is to force an unwind in the topmost
   604   // interpreter frame and not perform an unlock while doing so.
   606   __ movbool(true, G3_scratch);
   607   __ stbool(G3_scratch, do_not_unlock_if_synchronized);
   610   // increment invocation counter and check for overflow
   611   //
   612   // Note: checking for negative value instead of overflow
   613   //       so we have a 'sticky' overflow test (may be of
   614   //       importance as soon as we have true MT/MP)
   615   Label invocation_counter_overflow;
   616   if (inc_counter) {
   617     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
   618   }
   619   Label Lcontinue;
   620   __ bind(Lcontinue);
   622   bang_stack_shadow_pages(true);
   623   // reset the _do_not_unlock_if_synchronized flag
   624   __ stbool(G0, do_not_unlock_if_synchronized);
   626   // check for synchronized methods
   627   // Must happen AFTER invocation_counter check, so method is not locked
   628   // if counter overflows.
   630   if (synchronized) {
   631     lock_method();
   632     // Don't see how G2_thread is preserved here...
   633     // __ verify_thread(); QQQ destroys L0,L1 can't use
   634   } else {
   635 #ifdef ASSERT
   636     { Label ok;
   637       __ ld_ptr(STATE(_method), G5_method);
   638       __ ld(access_flags, O0);
   639       __ btst(JVM_ACC_SYNCHRONIZED, O0);
   640       __ br( Assembler::zero, false, Assembler::pt, ok);
   641       __ delayed()->nop();
   642       __ stop("method needs synchronization");
   643       __ bind(ok);
   644     }
   645 #endif // ASSERT
   646   }
   648   // start execution
   650 //   __ verify_thread(); kills L1,L2 can't  use at the moment
   652   // jvmti/jvmpi support
   653   __ notify_method_entry();
   655   // native call
   657   // (note that O0 is never an oop--at most it is a handle)
   658   // It is important not to smash any handles created by this call,
   659   // until any oop handle in O0 is dereferenced.
   661   // (note that the space for outgoing params is preallocated)
   663   // get signature handler
   665   Label pending_exception_present;
   667   { Label L;
   668     __ ld_ptr(STATE(_method), G5_method);
   669     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
   670     __ tst(G3_scratch);
   671     __ brx(Assembler::notZero, false, Assembler::pt, L);
   672     __ delayed()->nop();
   673     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), G5_method, false);
   674     __ ld_ptr(STATE(_method), G5_method);
   676     Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
   677     __ ld_ptr(exception_addr, G3_scratch);
   678     __ br_notnull(G3_scratch, false, Assembler::pn, pending_exception_present);
   679     __ delayed()->nop();
   680     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
   681     __ bind(L);
   682   }
   684   // Push a new frame so that the args will really be stored in
   685   // Copy a few locals across so the new frame has the variables
   686   // we need but these values will be dead at the jni call and
   687   // therefore not gc volatile like the values in the current
   688   // frame (Lstate in particular)
   690   // Flush the state pointer to the register save area
   691   // Which is the only register we need for a stack walk.
   692   __ st_ptr(Lstate, SP, (Lstate->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
   694   __ mov(Lstate, O1);         // Need to pass the state pointer across the frame
   696   // Calculate current frame size
   697   __ sub(SP, FP, O3);         // Calculate negative of current frame size
   698   __ save(SP, O3, SP);        // Allocate an identical sized frame
   700   __ mov(I1, Lstate);          // In the "natural" register.
   702   // Note I7 has leftover trash. Slow signature handler will fill it in
   703   // should we get there. Normal jni call will set reasonable last_Java_pc
   704   // below (and fix I7 so the stack trace doesn't have a meaningless frame
   705   // in it).
   708   // call signature handler
   709   __ ld_ptr(STATE(_method), Lmethod);
   710   __ ld_ptr(STATE(_locals), Llocals);
   712   __ callr(G3_scratch, 0);
   713   __ delayed()->nop();
   714   __ ld_ptr(STATE(_thread), G2_thread);        // restore thread (shouldn't be needed)
   716   { Label not_static;
   718     __ ld_ptr(STATE(_method), G5_method);
   719     __ ld(access_flags, O0);
   720     __ btst(JVM_ACC_STATIC, O0);
   721     __ br( Assembler::zero, false, Assembler::pt, not_static);
   722     __ delayed()->
   723       // get native function entry point(O0 is a good temp until the very end)
   724        ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::native_function_offset())), O0);
   725     // for static methods insert the mirror argument
   726     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
   728     __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc:: constants_offset())), O1);
   729     __ ld_ptr(Address(O1, 0, constantPoolOopDesc::pool_holder_offset_in_bytes()), O1);
   730     __ ld_ptr(O1, mirror_offset, O1);
   731     // where the mirror handle body is allocated:
   732 #ifdef ASSERT
   733     if (!PrintSignatureHandlers)  // do not dirty the output with this
   734     { Label L;
   735       __ tst(O1);
   736       __ brx(Assembler::notZero, false, Assembler::pt, L);
   737       __ delayed()->nop();
   738       __ stop("mirror is missing");
   739       __ bind(L);
   740     }
   741 #endif // ASSERT
   742     __ st_ptr(O1, STATE(_oop_temp));
   743     __ add(STATE(_oop_temp), O1);            // this is really an LEA not an add
   744     __ bind(not_static);
   745   }
   747   // At this point, arguments have been copied off of stack into
   748   // their JNI positions, which are O1..O5 and SP[68..].
   749   // Oops are boxed in-place on the stack, with handles copied to arguments.
   750   // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
   752 #ifdef ASSERT
   753   { Label L;
   754     __ tst(O0);
   755     __ brx(Assembler::notZero, false, Assembler::pt, L);
   756     __ delayed()->nop();
   757     __ stop("native entry point is missing");
   758     __ bind(L);
   759   }
   760 #endif // ASSERT
   762   //
   763   // setup the java frame anchor
   764   //
   765   // The scavenge function only needs to know that the PC of this frame is
   766   // in the interpreter method entry code, it doesn't need to know the exact
   767   // PC and hence we can use O7 which points to the return address from the
   768   // previous call in the code stream (signature handler function)
   769   //
   770   // The other trick is we set last_Java_sp to FP instead of the usual SP because
   771   // we have pushed the extra frame in order to protect the volatile register(s)
   772   // in that frame when we return from the jni call
   773   //
   776   __ set_last_Java_frame(FP, O7);
   777   __ mov(O7, I7);  // make dummy interpreter frame look like one above,
   778                    // not meaningless information that'll confuse me.
   780   // flush the windows now. We don't care about the current (protection) frame
   781   // only the outer frames
   783   __ flush_windows();
   785   // mark windows as flushed
   786   Address flags(G2_thread,
   787                 0,
   788                 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
   789   __ set(JavaFrameAnchor::flushed, G3_scratch);
   790   __ st(G3_scratch, flags);
   792   // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
   794   Address thread_state(G2_thread, 0, in_bytes(JavaThread::thread_state_offset()));
   795 #ifdef ASSERT
   796   { Label L;
   797     __ ld(thread_state, G3_scratch);
   798     __ cmp(G3_scratch, _thread_in_Java);
   799     __ br(Assembler::equal, false, Assembler::pt, L);
   800     __ delayed()->nop();
   801     __ stop("Wrong thread state in native stub");
   802     __ bind(L);
   803   }
   804 #endif // ASSERT
   805   __ set(_thread_in_native, G3_scratch);
   806   __ st(G3_scratch, thread_state);
   808   // Call the jni method, using the delay slot to set the JNIEnv* argument.
   809   __ callr(O0, 0);
   810   __ delayed()->
   811      add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
   812   __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
   814   // must we block?
   816   // Block, if necessary, before resuming in _thread_in_Java state.
   817   // In order for GC to work, don't clear the last_Java_sp until after blocking.
   818   { Label no_block;
   819     Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
   821     // Switch thread to "native transition" state before reading the synchronization state.
   822     // This additional state is necessary because reading and testing the synchronization
   823     // state is not atomic w.r.t. GC, as this scenario demonstrates:
   824     //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
   825     //     VM thread changes sync state to synchronizing and suspends threads for GC.
   826     //     Thread A is resumed to finish this native method, but doesn't block here since it
   827     //     didn't see any synchronization is progress, and escapes.
   828     __ set(_thread_in_native_trans, G3_scratch);
   829     __ st(G3_scratch, thread_state);
   830     if(os::is_MP()) {
   831       // Write serialization page so VM thread can do a pseudo remote membar.
   832       // We use the current thread pointer to calculate a thread specific
   833       // offset to write to within the page. This minimizes bus traffic
   834       // due to cache line collision.
   835       __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
   836     }
   837     __ load_contents(sync_state, G3_scratch);
   838     __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
   841     Label L;
   842     Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
   843     __ br(Assembler::notEqual, false, Assembler::pn, L);
   844     __ delayed()->
   845       ld(suspend_state, G3_scratch);
   846     __ cmp(G3_scratch, 0);
   847     __ br(Assembler::equal, false, Assembler::pt, no_block);
   848     __ delayed()->nop();
   849     __ bind(L);
   851     // Block.  Save any potential method result value before the operation and
   852     // use a leaf call to leave the last_Java_frame setup undisturbed.
   853     save_native_result();
   854     __ call_VM_leaf(noreg,
   855                     CAST_FROM_FN_PTR(address, JavaThread::check_safepoint_and_suspend_for_native_trans),
   856                     G2_thread);
   857     __ ld_ptr(STATE(_thread), G2_thread);  // restore thread
   858     // Restore any method result value
   859     restore_native_result();
   860     __ bind(no_block);
   861   }
   863   // Clear the frame anchor now
   865   __ reset_last_Java_frame();
   867   // Move the result handler address
   868   __ mov(Lscratch, G3_scratch);
   869   // return possible result to the outer frame
   870 #ifndef __LP64
   871   __ mov(O0, I0);
   872   __ restore(O1, G0, O1);
   873 #else
   874   __ restore(O0, G0, O0);
   875 #endif /* __LP64 */
   877   // Move result handler to expected register
   878   __ mov(G3_scratch, Lscratch);
   881   // thread state is thread_in_native_trans. Any safepoint blocking has
   882   // happened in the trampoline we are ready to switch to thread_in_Java.
   884   __ set(_thread_in_Java, G3_scratch);
   885   __ st(G3_scratch, thread_state);
   887   // If we have an oop result store it where it will be safe for any further gc
   888   // until we return now that we've released the handle it might be protected by
   890   {
   891     Label no_oop, store_result;
   893     __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
   894     __ cmp(G3_scratch, Lscratch);
   895     __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
   896     __ delayed()->nop();
   897     __ addcc(G0, O0, O0);
   898     __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
   899     __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
   900     __ mov(G0, O0);
   902     __ bind(store_result);
   903     // Store it where gc will look for it and result handler expects it.
   904     __ st_ptr(O0, STATE(_oop_temp));
   906     __ bind(no_oop);
   908   }
   910   // reset handle block
   911   __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch);
   912   __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
   915   // handle exceptions (exception handling will handle unlocking!)
   916   { Label L;
   917     Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
   919     __ ld_ptr(exception_addr, Gtemp);
   920     __ tst(Gtemp);
   921     __ brx(Assembler::equal, false, Assembler::pt, L);
   922     __ delayed()->nop();
   923     __ bind(pending_exception_present);
   924     // With c++ interpreter we just leave it pending caller will do the correct thing. However...
   925     // Like x86 we ignore the result of the native call and leave the method locked. This
   926     // seems wrong to leave things locked.
   928     __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
   929     __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
   931     __ bind(L);
   932   }
   934   // jvmdi/jvmpi support (preserves thread register)
   935   __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
   937   if (synchronized) {
   938     // save and restore any potential method result value around the unlocking operation
   939     save_native_result();
   941     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
   942     // Get the initial monitor we allocated
   943     __ sub(Lstate, entry_size, O1);                        // initial monitor
   944     __ unlock_object(O1);
   945     restore_native_result();
   946   }
   948 #if defined(COMPILER2) && !defined(_LP64)
   950   // C2 expects long results in G1 we can't tell if we're returning to interpreted
   951   // or compiled so just be safe.
   953   __ sllx(O0, 32, G1);          // Shift bits into high G1
   954   __ srl (O1, 0, O1);           // Zero extend O1
   955   __ or3 (O1, G1, G1);          // OR 64 bits into G1
   957 #endif /* COMPILER2 && !_LP64 */
   959 #ifdef ASSERT
   960   {
   961     Label ok;
   962     __ cmp(I5_savedSP, FP);
   963     __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
   964     __ delayed()->nop();
   965     __ stop("bad I5_savedSP value");
   966     __ should_not_reach_here();
   967     __ bind(ok);
   968   }
   969 #endif
   970   // Calls result handler which POPS FRAME
   971   if (TraceJumps) {
   972     // Move target to register that is recordable
   973     __ mov(Lscratch, G3_scratch);
   974     __ JMP(G3_scratch, 0);
   975   } else {
   976     __ jmp(Lscratch, 0);
   977   }
   978   __ delayed()->nop();
   980   if (inc_counter) {
   981     // handle invocation counter overflow
   982     __ bind(invocation_counter_overflow);
   983     generate_counter_overflow(Lcontinue);
   984   }
   987   return entry;
   988 }
   990 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
   991                                                               const Register prev_state,
   992                                                               bool native) {
   994   // On entry
   995   // G5_method - caller's method
   996   // Gargs - points to initial parameters (i.e. locals[0])
   997   // G2_thread - valid? (C1 only??)
   998   // "prev_state" - contains any previous frame manager state which we must save a link
   999   //
  1000   // On return
  1001   // "state" is a pointer to the newly allocated  state object. We must allocate and initialize
  1002   // a new interpretState object and the method expression stack.
  1004   assert_different_registers(state, prev_state);
  1005   assert_different_registers(prev_state, G3_scratch);
  1006   const Register Gtmp = G3_scratch;
  1007   const Address constants         (G5_method, 0, in_bytes(methodOopDesc::constants_offset()));
  1008   const Address access_flags      (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset()));
  1009   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
  1010   const Address max_stack         (G5_method, 0, in_bytes(methodOopDesc::max_stack_offset()));
  1011   const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
  1013   // slop factor is two extra slots on the expression stack so that
  1014   // we always have room to store a result when returning from a call without parameters
  1015   // that returns a result.
  1017   const int slop_factor = 2*wordSize;
  1019   const int fixed_size = ((sizeof(BytecodeInterpreter) + slop_factor) >> LogBytesPerWord) + // what is the slop factor?
  1020                          //6815692//methodOopDesc::extra_stack_words() +  // extra push slots for MH adapters
  1021                          frame::memory_parameter_word_sp_offset +  // register save area + param window
  1022                          (native ?  frame::interpreter_frame_extra_outgoing_argument_words : 0); // JNI, class
  1024   // XXX G5_method valid
  1026   // Now compute new frame size
  1028   if (native) {
  1029     __ lduh( size_of_parameters, Gtmp );
  1030     __ calc_mem_param_words(Gtmp, Gtmp);     // space for native call parameters passed on the stack in words
  1031   } else {
  1032     __ lduh(max_stack, Gtmp);                // Full size expression stack
  1034   __ add(Gtmp, fixed_size, Gtmp);           // plus the fixed portion
  1036   __ neg(Gtmp);                               // negative space for stack/parameters in words
  1037   __ and3(Gtmp, -WordsPerLong, Gtmp);        // make multiple of 2 (SP must be 2-word aligned)
  1038   __ sll(Gtmp, LogBytesPerWord, Gtmp);       // negative space for frame in bytes
  1040   // Need to do stack size check here before we fault on large frames
  1042   Label stack_ok;
  1044   const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
  1045                                                                               (StackRedPages+StackYellowPages);
  1048   __ ld_ptr(G2_thread, in_bytes(Thread::stack_base_offset()), O0);
  1049   __ ld_ptr(G2_thread, in_bytes(Thread::stack_size_offset()), O1);
  1050   // compute stack bottom
  1051   __ sub(O0, O1, O0);
  1053   // Avoid touching the guard pages
  1054   // Also a fudge for frame size of BytecodeInterpreter::run
  1055   // It varies from 1k->4k depending on build type
  1056   const int fudge = 6 * K;
  1058   __ set(fudge + (max_pages * os::vm_page_size()), O1);
  1060   __ add(O0, O1, O0);
  1061   __ sub(O0, Gtmp, O0);
  1062   __ cmp(SP, O0);
  1063   __ brx(Assembler::greaterUnsigned, false, Assembler::pt, stack_ok);
  1064   __ delayed()->nop();
  1066      // throw exception return address becomes throwing pc
  1068   __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
  1069   __ stop("never reached");
  1071   __ bind(stack_ok);
  1073   __ save(SP, Gtmp, SP);                      // setup new frame and register window
  1075   // New window I7 call_stub or previous activation
  1076   // O6 - register save area, BytecodeInterpreter just below it, args/locals just above that
  1077   //
  1078   __ sub(FP, sizeof(BytecodeInterpreter), state);        // Point to new Interpreter state
  1079   __ add(state, STACK_BIAS, state );         // Account for 64bit bias
  1081 #define XXX_STATE(field_name) state, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
  1083   // Initialize a new Interpreter state
  1084   // orig_sp - caller's original sp
  1085   // G2_thread - thread
  1086   // Gargs - &locals[0] (unbiased?)
  1087   // G5_method - method
  1088   // SP (biased) - accounts for full size java stack, BytecodeInterpreter object, register save area, and register parameter save window
  1091   __ set(0xdead0004, O1);
  1094   __ st_ptr(Gargs, XXX_STATE(_locals));
  1095   __ st_ptr(G0, XXX_STATE(_oop_temp));
  1097   __ st_ptr(state, XXX_STATE(_self_link));                // point to self
  1098   __ st_ptr(prev_state->after_save(), XXX_STATE(_prev_link)); // Chain interpreter states
  1099   __ st_ptr(G2_thread, XXX_STATE(_thread));               // Store javathread
  1101   if (native) {
  1102     __ st_ptr(G0, XXX_STATE(_bcp));
  1103   } else {
  1104     __ ld_ptr(G5_method, in_bytes(methodOopDesc::const_offset()), O2); // get constMethodOop
  1105     __ add(O2, in_bytes(constMethodOopDesc::codes_offset()), O2);        // get bcp
  1106     __ st_ptr(O2, XXX_STATE(_bcp));
  1109   __ st_ptr(G0, XXX_STATE(_mdx));
  1110   __ st_ptr(G5_method, XXX_STATE(_method));
  1112   __ set((int) BytecodeInterpreter::method_entry, O1);
  1113   __ st(O1, XXX_STATE(_msg));
  1115   __ ld_ptr(constants, O3);
  1116   __ ld_ptr(O3, constantPoolOopDesc::cache_offset_in_bytes(), O2);
  1117   __ st_ptr(O2, XXX_STATE(_constants));
  1119   __ st_ptr(G0, XXX_STATE(_result._to_call._callee));
  1121   // Monitor base is just start of BytecodeInterpreter object;
  1122   __ mov(state, O2);
  1123   __ st_ptr(O2, XXX_STATE(_monitor_base));
  1125   // Do we need a monitor for synchonized method?
  1127     __ ld(access_flags, O1);
  1128     Label done;
  1129     Label got_obj;
  1130     __ btst(JVM_ACC_SYNCHRONIZED, O1);
  1131     __ br( Assembler::zero, false, Assembler::pt, done);
  1133     const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
  1134     __ delayed()->btst(JVM_ACC_STATIC, O1);
  1135     __ ld_ptr(XXX_STATE(_locals), O1);
  1136     __ br( Assembler::zero, true, Assembler::pt, got_obj);
  1137     __ delayed()->ld_ptr(O1, 0, O1);                  // get receiver for not-static case
  1138     __ ld_ptr(constants, O1);
  1139     __ ld_ptr( O1, constantPoolOopDesc::pool_holder_offset_in_bytes(), O1);
  1140     // lock the mirror, not the klassOop
  1141     __ ld_ptr( O1, mirror_offset, O1);
  1143     __ bind(got_obj);
  1145   #ifdef ASSERT
  1146     __ tst(O1);
  1147     __ breakpoint_trap(Assembler::zero);
  1148   #endif // ASSERT
  1150     const int entry_size            = frame::interpreter_frame_monitor_size() * wordSize;
  1151     __ sub(SP, entry_size, SP);                         // account for initial monitor
  1152     __ sub(O2, entry_size, O2);                        // initial monitor
  1153     __ st_ptr(O1, O2, BasicObjectLock::obj_offset_in_bytes()); // and allocate it for interpreter use
  1154     __ bind(done);
  1157   // Remember initial frame bottom
  1159   __ st_ptr(SP, XXX_STATE(_frame_bottom));
  1161   __ st_ptr(O2, XXX_STATE(_stack_base));
  1163   __ sub(O2, wordSize, O2);                    // prepush
  1164   __ st_ptr(O2, XXX_STATE(_stack));                // PREPUSH
  1166   __ lduh(max_stack, O3);                      // Full size expression stack
  1167   guarantee(!EnableMethodHandles, "no support yet for java.dyn.MethodHandle"); //6815692
  1168   //6815692//if (EnableMethodHandles)
  1169   //6815692//  __ inc(O3, methodOopDesc::extra_stack_entries());
  1170   __ sll(O3, LogBytesPerWord, O3);
  1171   __ sub(O2, O3, O3);
  1172 //  __ sub(O3, wordSize, O3);                    // so prepush doesn't look out of bounds
  1173   __ st_ptr(O3, XXX_STATE(_stack_limit));
  1175   if (!native) {
  1176     //
  1177     // Code to initialize locals
  1178     //
  1179     Register init_value = noreg;    // will be G0 if we must clear locals
  1180     // Now zero locals
  1181     if (true /* zerolocals */ || ClearInterpreterLocals) {
  1182       // explicitly initialize locals
  1183       init_value = G0;
  1184     } else {
  1185     #ifdef ASSERT
  1186       // initialize locals to a garbage pattern for better debugging
  1187       init_value = O3;
  1188       __ set( 0x0F0F0F0F, init_value );
  1189     #endif // ASSERT
  1191     if (init_value != noreg) {
  1192       Label clear_loop;
  1194       // NOTE: If you change the frame layout, this code will need to
  1195       // be updated!
  1196       __ lduh( size_of_locals, O2 );
  1197       __ lduh( size_of_parameters, O1 );
  1198       __ sll( O2, LogBytesPerWord, O2);
  1199       __ sll( O1, LogBytesPerWord, O1 );
  1200       __ ld_ptr(XXX_STATE(_locals), L2_scratch);
  1201       __ sub( L2_scratch, O2, O2 );
  1202       __ sub( L2_scratch, O1, O1 );
  1204       __ bind( clear_loop );
  1205       __ inc( O2, wordSize );
  1207       __ cmp( O2, O1 );
  1208       __ br( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
  1209       __ delayed()->st_ptr( init_value, O2, 0 );
  1213 // Find preallocated  monitor and lock method (C++ interpreter)
  1214 //
  1215 void InterpreterGenerator::lock_method(void) {
  1216 // Lock the current method.
  1217 // Destroys registers L2_scratch, L3_scratch, O0
  1218 //
  1219 // Find everything relative to Lstate
  1221 #ifdef ASSERT
  1222   __ ld_ptr(STATE(_method), L2_scratch);
  1223   __ ld(L2_scratch, in_bytes(methodOopDesc::access_flags_offset()), O0);
  1225  { Label ok;
  1226    __ btst(JVM_ACC_SYNCHRONIZED, O0);
  1227    __ br( Assembler::notZero, false, Assembler::pt, ok);
  1228    __ delayed()->nop();
  1229    __ stop("method doesn't need synchronization");
  1230    __ bind(ok);
  1232 #endif // ASSERT
  1234   // monitor is already allocated at stack base
  1235   // and the lockee is already present
  1236   __ ld_ptr(STATE(_stack_base), L2_scratch);
  1237   __ ld_ptr(L2_scratch, BasicObjectLock::obj_offset_in_bytes(), O0);   // get object
  1238   __ lock_object(L2_scratch, O0);
  1242 //  Generate code for handling resuming a deopted method
  1243 void CppInterpreterGenerator::generate_deopt_handling() {
  1245   Label return_from_deopt_common;
  1247   // deopt needs to jump to here to enter the interpreter (return a result)
  1248   deopt_frame_manager_return_atos  = __ pc();
  1250   // O0/O1 live
  1251   __ ba(false, return_from_deopt_common);
  1252   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_OBJECT), L3_scratch);    // Result stub address array index
  1255   // deopt needs to jump to here to enter the interpreter (return a result)
  1256   deopt_frame_manager_return_btos  = __ pc();
  1258   // O0/O1 live
  1259   __ ba(false, return_from_deopt_common);
  1260   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_BOOLEAN), L3_scratch);    // Result stub address array index
  1262   // deopt needs to jump to here to enter the interpreter (return a result)
  1263   deopt_frame_manager_return_itos  = __ pc();
  1265   // O0/O1 live
  1266   __ ba(false, return_from_deopt_common);
  1267   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_INT), L3_scratch);    // Result stub address array index
  1269   // deopt needs to jump to here to enter the interpreter (return a result)
  1271   deopt_frame_manager_return_ltos  = __ pc();
  1272 #if !defined(_LP64) && defined(COMPILER2)
  1273   // All return values are where we want them, except for Longs.  C2 returns
  1274   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
  1275   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
  1276   // build even if we are returning from interpreted we just do a little
  1277   // stupid shuffing.
  1278   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
  1279   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
  1280   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
  1282   __ srl (G1, 0,O1);
  1283   __ srlx(G1,32,O0);
  1284 #endif /* !_LP64 && COMPILER2 */
  1285   // O0/O1 live
  1286   __ ba(false, return_from_deopt_common);
  1287   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_LONG), L3_scratch);    // Result stub address array index
  1289   // deopt needs to jump to here to enter the interpreter (return a result)
  1291   deopt_frame_manager_return_ftos  = __ pc();
  1292   // O0/O1 live
  1293   __ ba(false, return_from_deopt_common);
  1294   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_FLOAT), L3_scratch);    // Result stub address array index
  1296   // deopt needs to jump to here to enter the interpreter (return a result)
  1297   deopt_frame_manager_return_dtos  = __ pc();
  1299   // O0/O1 live
  1300   __ ba(false, return_from_deopt_common);
  1301   __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_DOUBLE), L3_scratch);    // Result stub address array index
  1303   // deopt needs to jump to here to enter the interpreter (return a result)
  1304   deopt_frame_manager_return_vtos  = __ pc();
  1306   // O0/O1 live
  1307   __ set(AbstractInterpreter::BasicType_as_index(T_VOID), L3_scratch);
  1309   // Deopt return common
  1310   // an index is present that lets us move any possible result being
  1311   // return to the interpreter's stack
  1312   //
  1313   __ bind(return_from_deopt_common);
  1315   // Result if any is in native abi result (O0..O1/F0..F1). The java expression
  1316   // stack is in the state that the  calling convention left it.
  1317   // Copy the result from native abi result and place it on java expression stack.
  1319   // Current interpreter state is present in Lstate
  1321   // Get current pre-pushed top of interpreter stack
  1322   // Any result (if any) is in native abi
  1323   // result type index is in L3_scratch
  1325   __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
  1327   __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
  1328   __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
  1329   __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
  1330   __ jmpl(Lscratch, G0, O7);                                         // and convert it
  1331   __ delayed()->nop();
  1333   // L1_scratch points to top of stack (prepushed)
  1334   __ st_ptr(L1_scratch, STATE(_stack));
  1337 // Generate the code to handle a more_monitors message from the c++ interpreter
  1338 void CppInterpreterGenerator::generate_more_monitors() {
  1340   Label entry, loop;
  1341   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  1342   // 1. compute new pointers                                // esp: old expression stack top
  1343   __ delayed()->ld_ptr(STATE(_stack_base), L4_scratch);            // current expression stack bottom
  1344   __ sub(L4_scratch, entry_size, L4_scratch);
  1345   __ st_ptr(L4_scratch, STATE(_stack_base));
  1347   __ sub(SP, entry_size, SP);                  // Grow stack
  1348   __ st_ptr(SP, STATE(_frame_bottom));
  1350   __ ld_ptr(STATE(_stack_limit), L2_scratch);
  1351   __ sub(L2_scratch, entry_size, L2_scratch);
  1352   __ st_ptr(L2_scratch, STATE(_stack_limit));
  1354   __ ld_ptr(STATE(_stack), L1_scratch);                // Get current stack top
  1355   __ sub(L1_scratch, entry_size, L1_scratch);
  1356   __ st_ptr(L1_scratch, STATE(_stack));
  1357   __ ba(false, entry);
  1358   __ delayed()->add(L1_scratch, wordSize, L1_scratch);        // first real entry (undo prepush)
  1360   // 2. move expression stack
  1362   __ bind(loop);
  1363   __ st_ptr(L3_scratch, Address(L1_scratch, 0));
  1364   __ add(L1_scratch, wordSize, L1_scratch);
  1365   __ bind(entry);
  1366   __ cmp(L1_scratch, L4_scratch);
  1367   __ br(Assembler::notEqual, false, Assembler::pt, loop);
  1368   __ delayed()->ld_ptr(L1_scratch, entry_size, L3_scratch);
  1370   // now zero the slot so we can find it.
  1371   __ st_ptr(G0, L4_scratch, BasicObjectLock::obj_offset_in_bytes());
  1375 // Initial entry to C++ interpreter from the call_stub.
  1376 // This entry point is called the frame manager since it handles the generation
  1377 // of interpreter activation frames via requests directly from the vm (via call_stub)
  1378 // and via requests from the interpreter. The requests from the call_stub happen
  1379 // directly thru the entry point. Requests from the interpreter happen via returning
  1380 // from the interpreter and examining the message the interpreter has returned to
  1381 // the frame manager. The frame manager can take the following requests:
  1383 // NO_REQUEST - error, should never happen.
  1384 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
  1385 //                 allocate a new monitor.
  1386 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
  1387 //               happens during entry during the entry via the call stub.
  1388 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
  1389 //
  1390 // Arguments:
  1391 //
  1392 // ebx: methodOop
  1393 // ecx: receiver - unused (retrieved from stack as needed)
  1394 // esi: previous frame manager state (NULL from the call_stub/c1/c2)
  1395 //
  1396 //
  1397 // Stack layout at entry
  1398 //
  1399 // [ return address     ] <--- esp
  1400 // [ parameter n        ]
  1401 //   ...
  1402 // [ parameter 1        ]
  1403 // [ expression stack   ]
  1404 //
  1405 //
  1406 // We are free to blow any registers we like because the call_stub which brought us here
  1407 // initially has preserved the callee save registers already.
  1408 //
  1409 //
  1411 static address interpreter_frame_manager = NULL;
  1413 #ifdef ASSERT
  1414   #define VALIDATE_STATE(scratch, marker)                         \
  1415   {                                                               \
  1416     Label skip;                                                   \
  1417     __ ld_ptr(STATE(_self_link), scratch);                        \
  1418     __ cmp(Lstate, scratch);                                      \
  1419     __ brx(Assembler::equal, false, Assembler::pt, skip);         \
  1420     __ delayed()->nop();                                          \
  1421     __ breakpoint_trap();                                         \
  1422     __ emit_long(marker);                                         \
  1423     __ bind(skip);                                                \
  1425 #else
  1426   #define VALIDATE_STATE(scratch, marker)
  1427 #endif /* ASSERT */
  1429 void CppInterpreterGenerator::adjust_callers_stack(Register args) {
  1430 //
  1431 // Adjust caller's stack so that all the locals can be contiguous with
  1432 // the parameters.
  1433 // Worries about stack overflow make this a pain.
  1434 //
  1435 // Destroys args, G3_scratch, G3_scratch
  1436 // In/Out O5_savedSP (sender's original SP)
  1437 //
  1438 //  assert_different_registers(state, prev_state);
  1439   const Register Gtmp = G3_scratch;
  1440   const Register tmp = O2;
  1441   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
  1442   const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
  1444   __ lduh(size_of_parameters, tmp);
  1445   __ sll(tmp, LogBytesPerWord, Gtmp);       // parameter size in bytes
  1446   __ add(args, Gtmp, Gargs);                // points to first local + BytesPerWord
  1447   // NEW
  1448   __ add(Gargs, -wordSize, Gargs);             // points to first local[0]
  1449   // determine extra space for non-argument locals & adjust caller's SP
  1450   // Gtmp1: parameter size in words
  1451   __ lduh(size_of_locals, Gtmp);
  1452   __ compute_extra_locals_size_in_bytes(tmp, Gtmp, Gtmp);
  1454 #if 1
  1455   // c2i adapters place the final interpreter argument in the register save area for O0/I0
  1456   // the call_stub will place the final interpreter argument at
  1457   // frame::memory_parameter_word_sp_offset. This is mostly not noticable for either asm
  1458   // or c++ interpreter. However with the c++ interpreter when we do a recursive call
  1459   // and try to make it look good in the debugger we will store the argument to
  1460   // RecursiveInterpreterActivation in the register argument save area. Without allocating
  1461   // extra space for the compiler this will overwrite locals in the local array of the
  1462   // interpreter.
  1463   // QQQ still needed with frameless adapters???
  1465   const int c2i_adjust_words = frame::memory_parameter_word_sp_offset - frame::callee_register_argument_save_area_sp_offset;
  1467   __ add(Gtmp, c2i_adjust_words*wordSize, Gtmp);
  1468 #endif // 1
  1471   __ sub(SP, Gtmp, SP);                      // just caller's frame for the additional space we need.
  1474 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
  1476   // G5_method: methodOop
  1477   // G2_thread: thread (unused)
  1478   // Gargs:   bottom of args (sender_sp)
  1479   // O5: sender's sp
  1481   // A single frame manager is plenty as we don't specialize for synchronized. We could and
  1482   // the code is pretty much ready. Would need to change the test below and for good measure
  1483   // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
  1484   // routines. Not clear this is worth it yet.
  1486   if (interpreter_frame_manager) {
  1487     return interpreter_frame_manager;
  1490   __ bind(frame_manager_entry);
  1492   // the following temporary registers are used during frame creation
  1493   const Register Gtmp1 = G3_scratch;
  1494   // const Register Lmirror = L1;     // native mirror (native calls only)
  1496   const Address constants         (G5_method, 0, in_bytes(methodOopDesc::constants_offset()));
  1497   const Address access_flags      (G5_method, 0, in_bytes(methodOopDesc::access_flags_offset()));
  1498   const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
  1499   const Address max_stack         (G5_method, 0, in_bytes(methodOopDesc::max_stack_offset()));
  1500   const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
  1502   address entry_point = __ pc();
  1503   __ mov(G0, prevState);                                                 // no current activation
  1506   Label re_dispatch;
  1508   __ bind(re_dispatch);
  1510   // Interpreter needs to have locals completely contiguous. In order to do that
  1511   // We must adjust the caller's stack pointer for any locals beyond just the
  1512   // parameters
  1513   adjust_callers_stack(Gargs);
  1515   // O5_savedSP still contains sender's sp
  1517   // NEW FRAME
  1519   generate_compute_interpreter_state(Lstate, prevState, false);
  1521   // At this point a new interpreter frame and state object are created and initialized
  1522   // Lstate has the pointer to the new activation
  1523   // Any stack banging or limit check should already be done.
  1525   Label call_interpreter;
  1527   __ bind(call_interpreter);
  1530 #if 1
  1531   __ set(0xdead002, Lmirror);
  1532   __ set(0xdead002, L2_scratch);
  1533   __ set(0xdead003, L3_scratch);
  1534   __ set(0xdead004, L4_scratch);
  1535   __ set(0xdead005, Lscratch);
  1536   __ set(0xdead006, Lscratch2);
  1537   __ set(0xdead007, L7_scratch);
  1539   __ set(0xdeaf002, O2);
  1540   __ set(0xdeaf003, O3);
  1541   __ set(0xdeaf004, O4);
  1542   __ set(0xdeaf005, O5);
  1543 #endif
  1545   // Call interpreter (stack bang complete) enter here if message is
  1546   // set and we know stack size is valid
  1548   Label call_interpreter_2;
  1550   __ bind(call_interpreter_2);
  1552 #ifdef ASSERT
  1554     Label skip;
  1555     __ ld_ptr(STATE(_frame_bottom), G3_scratch);
  1556     __ cmp(G3_scratch, SP);
  1557     __ brx(Assembler::equal, false, Assembler::pt, skip);
  1558     __ delayed()->nop();
  1559     __ stop("SP not restored to frame bottom");
  1560     __ bind(skip);
  1562 #endif
  1564   VALIDATE_STATE(G3_scratch, 4);
  1565   __ set_last_Java_frame(SP, noreg);
  1566   __ mov(Lstate, O0);                 // (arg) pointer to current state
  1568   __ call(CAST_FROM_FN_PTR(address,
  1569                            JvmtiExport::can_post_interpreter_events() ?
  1570                                                                   BytecodeInterpreter::runWithChecks
  1571                                                                 : BytecodeInterpreter::run),
  1572          relocInfo::runtime_call_type);
  1574   __ delayed()->nop();
  1576   __ ld_ptr(STATE(_thread), G2_thread);
  1577   __ reset_last_Java_frame();
  1579   // examine msg from interpreter to determine next action
  1580   __ ld_ptr(STATE(_thread), G2_thread);                                  // restore G2_thread
  1582   __ ld(STATE(_msg), L1_scratch);                                       // Get new message
  1584   Label call_method;
  1585   Label return_from_interpreted_method;
  1586   Label throw_exception;
  1587   Label do_OSR;
  1588   Label bad_msg;
  1589   Label resume_interpreter;
  1591   __ cmp(L1_scratch, (int)BytecodeInterpreter::call_method);
  1592   __ br(Assembler::equal, false, Assembler::pt, call_method);
  1593   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::return_from_method);
  1594   __ br(Assembler::equal, false, Assembler::pt, return_from_interpreted_method);
  1595   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::throwing_exception);
  1596   __ br(Assembler::equal, false, Assembler::pt, throw_exception);
  1597   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::do_osr);
  1598   __ br(Assembler::equal, false, Assembler::pt, do_OSR);
  1599   __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::more_monitors);
  1600   __ br(Assembler::notEqual, false, Assembler::pt, bad_msg);
  1602   // Allocate more monitor space, shuffle expression stack....
  1604   generate_more_monitors();
  1606   // new monitor slot allocated, resume the interpreter.
  1608   __ set((int)BytecodeInterpreter::got_monitors, L1_scratch);
  1609   VALIDATE_STATE(G3_scratch, 5);
  1610   __ ba(false, call_interpreter);
  1611   __ delayed()->st(L1_scratch, STATE(_msg));
  1613   // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
  1614   unctrap_frame_manager_entry  = __ pc();
  1616   // QQQ what message do we send
  1618   __ ba(false, call_interpreter);
  1619   __ delayed()->ld_ptr(STATE(_frame_bottom), SP);                  // restore to full stack frame
  1621   //=============================================================================
  1622   // Returning from a compiled method into a deopted method. The bytecode at the
  1623   // bcp has completed. The result of the bytecode is in the native abi (the tosca
  1624   // for the template based interpreter). Any stack space that was used by the
  1625   // bytecode that has completed has been removed (e.g. parameters for an invoke)
  1626   // so all that we have to do is place any pending result on the expression stack
  1627   // and resume execution on the next bytecode.
  1629   generate_deopt_handling();
  1631   // ready to resume the interpreter
  1633   __ set((int)BytecodeInterpreter::deopt_resume, L1_scratch);
  1634   __ ba(false, call_interpreter);
  1635   __ delayed()->st(L1_scratch, STATE(_msg));
  1637   // Current frame has caught an exception we need to dispatch to the
  1638   // handler. We can get here because a native interpreter frame caught
  1639   // an exception in which case there is no handler and we must rethrow
  1640   // If it is a vanilla interpreted frame the we simply drop into the
  1641   // interpreter and let it do the lookup.
  1643   Interpreter::_rethrow_exception_entry = __ pc();
  1645   Label return_with_exception;
  1646   Label unwind_and_forward;
  1648   // O0: exception
  1649   // O7: throwing pc
  1651   // We want exception in the thread no matter what we ultimately decide about frame type.
  1653   Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
  1654   __ verify_thread();
  1655   __ st_ptr(O0, exception_addr);
  1657   // get the methodOop
  1658   __ ld_ptr(STATE(_method), G5_method);
  1660   // if this current frame vanilla or native?
  1662   __ ld(access_flags, Gtmp1);
  1663   __ btst(JVM_ACC_NATIVE, Gtmp1);
  1664   __ br(Assembler::zero, false, Assembler::pt, return_with_exception);  // vanilla interpreted frame handle directly
  1665   __ delayed()->nop();
  1667   // We drop thru to unwind a native interpreted frame with a pending exception
  1668   // We jump here for the initial interpreter frame with exception pending
  1669   // We unwind the current acivation and forward it to our caller.
  1671   __ bind(unwind_and_forward);
  1673   // Unwind frame and jump to forward exception. unwinding will place throwing pc in O7
  1674   // as expected by forward_exception.
  1676   __ restore(FP, G0, SP);                  // unwind interpreter state frame
  1677   __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  1678   __ delayed()->mov(I5_savedSP->after_restore(), SP);
  1680   // Return point from a call which returns a result in the native abi
  1681   // (c1/c2/jni-native). This result must be processed onto the java
  1682   // expression stack.
  1683   //
  1684   // A pending exception may be present in which case there is no result present
  1686   address return_from_native_method = __ pc();
  1688   VALIDATE_STATE(G3_scratch, 6);
  1690   // Result if any is in native abi result (O0..O1/F0..F1). The java expression
  1691   // stack is in the state that the  calling convention left it.
  1692   // Copy the result from native abi result and place it on java expression stack.
  1694   // Current interpreter state is present in Lstate
  1696   // Exception pending?
  1698   __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
  1699   __ ld_ptr(exception_addr, Lscratch);                                         // get any pending exception
  1700   __ tst(Lscratch);                                                            // exception pending?
  1701   __ brx(Assembler::notZero, false, Assembler::pt, return_with_exception);
  1702   __ delayed()->nop();
  1704   // Process the native abi result to java expression stack
  1706   __ ld_ptr(STATE(_result._to_call._callee), L4_scratch);                        // called method
  1707   __ ld_ptr(STATE(_stack), L1_scratch);                                          // get top of java expr stack
  1708   __ lduh(L4_scratch, in_bytes(methodOopDesc::size_of_parameters_offset()), L2_scratch); // get parameter size
  1709   __ sll(L2_scratch, LogBytesPerWord, L2_scratch     );                           // parameter size in bytes
  1710   __ add(L1_scratch, L2_scratch, L1_scratch);                                      // stack destination for result
  1711   __ ld(L4_scratch, in_bytes(methodOopDesc::result_index_offset()), L3_scratch); // called method result type index
  1713   // tosca is really just native abi
  1714   __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
  1715   __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
  1716   __ ld_ptr(L4_scratch, L3_scratch, Lscratch);                                       // get typed result converter address
  1717   __ jmpl(Lscratch, G0, O7);                                                   // and convert it
  1718   __ delayed()->nop();
  1720   // L1_scratch points to top of stack (prepushed)
  1722   __ ba(false, resume_interpreter);
  1723   __ delayed()->mov(L1_scratch, O1);
  1725   // An exception is being caught on return to a vanilla interpreter frame.
  1726   // Empty the stack and resume interpreter
  1728   __ bind(return_with_exception);
  1730   __ ld_ptr(STATE(_frame_bottom), SP);                             // restore to full stack frame
  1731   __ ld_ptr(STATE(_stack_base), O1);                               // empty java expression stack
  1732   __ ba(false, resume_interpreter);
  1733   __ delayed()->sub(O1, wordSize, O1);                             // account for prepush
  1735   // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
  1736   // interpreter call, or native) and unwind this interpreter activation.
  1737   // All monitors should be unlocked.
  1739   __ bind(return_from_interpreted_method);
  1741   VALIDATE_STATE(G3_scratch, 7);
  1743   Label return_to_initial_caller;
  1745   // Interpreted result is on the top of the completed activation expression stack.
  1746   // We must return it to the top of the callers stack if caller was interpreted
  1747   // otherwise we convert to native abi result and return to call_stub/c1/c2
  1748   // The caller's expression stack was truncated by the call however the current activation
  1749   // has enough stuff on the stack that we have usable space there no matter what. The
  1750   // other thing that makes it easy is that the top of the caller's stack is stored in STATE(_locals)
  1751   // for the current activation
  1753   __ ld_ptr(STATE(_prev_link), L1_scratch);
  1754   __ ld_ptr(STATE(_method), L2_scratch);                               // get method just executed
  1755   __ ld(L2_scratch, in_bytes(methodOopDesc::result_index_offset()), L2_scratch);
  1756   __ tst(L1_scratch);
  1757   __ brx(Assembler::zero, false, Assembler::pt, return_to_initial_caller);
  1758   __ delayed()->sll(L2_scratch, LogBytesPerWord, L2_scratch);
  1760   // Copy result to callers java stack
  1762   __ set((intptr_t)CppInterpreter::_stack_to_stack, L4_scratch);
  1763   __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                          // get typed result converter address
  1764   __ ld_ptr(STATE(_stack), O0);                                       // current top (prepushed)
  1765   __ ld_ptr(STATE(_locals), O1);                                      // stack destination
  1767   // O0 - will be source, O1 - will be destination (preserved)
  1768   __ jmpl(Lscratch, G0, O7);                                          // and convert it
  1769   __ delayed()->add(O0, wordSize, O0);                                // get source (top of current expr stack)
  1771   // O1 == &locals[0]
  1773   // Result is now on caller's stack. Just unwind current activation and resume
  1775   Label unwind_recursive_activation;
  1778   __ bind(unwind_recursive_activation);
  1780   // O1 == &locals[0] (really callers stacktop) for activation now returning
  1781   // returning to interpreter method from "recursive" interpreter call
  1782   // result converter left O1 pointing to top of the( prepushed) java stack for method we are returning
  1783   // to. Now all we must do is unwind the state from the completed call
  1785   // Must restore stack
  1786   VALIDATE_STATE(G3_scratch, 8);
  1788   // Return to interpreter method after a method call (interpreted/native/c1/c2) has completed.
  1789   // Result if any is already on the caller's stack. All we must do now is remove the now dead
  1790   // frame and tell interpreter to resume.
  1793   __ mov(O1, I1);                                                     // pass back new stack top across activation
  1794   // POP FRAME HERE ==================================
  1795   __ restore(FP, G0, SP);                                             // unwind interpreter state frame
  1796   __ ld_ptr(STATE(_frame_bottom), SP);                                // restore to full stack frame
  1799   // Resume the interpreter. The current frame contains the current interpreter
  1800   // state object.
  1801   //
  1802   // O1 == new java stack pointer
  1804   __ bind(resume_interpreter);
  1805   VALIDATE_STATE(G3_scratch, 10);
  1807   // A frame we have already used before so no need to bang stack so use call_interpreter_2 entry
  1809   __ set((int)BytecodeInterpreter::method_resume, L1_scratch);
  1810   __ st(L1_scratch, STATE(_msg));
  1811   __ ba(false, call_interpreter_2);
  1812   __ delayed()->st_ptr(O1, STATE(_stack));
  1815   // Fast accessor methods share this entry point.
  1816   // This works because frame manager is in the same codelet
  1817   // This can either be an entry via call_stub/c1/c2 or a recursive interpreter call
  1818   // we need to do a little register fixup here once we distinguish the two of them
  1819   if (UseFastAccessorMethods && !synchronized) {
  1820   // Call stub_return address still in O7
  1821     __ bind(fast_accessor_slow_entry_path);
  1822     __ set((intptr_t)return_from_native_method - 8, Gtmp1);
  1823     __ cmp(Gtmp1, O7);                                                // returning to interpreter?
  1824     __ brx(Assembler::equal, true, Assembler::pt, re_dispatch);       // yep
  1825     __ delayed()->nop();
  1826     __ ba(false, re_dispatch);
  1827     __ delayed()->mov(G0, prevState);                                   // initial entry
  1831   // interpreter returning to native code (call_stub/c1/c2)
  1832   // convert result and unwind initial activation
  1833   // L2_scratch - scaled result type index
  1835   __ bind(return_to_initial_caller);
  1837   __ set((intptr_t)CppInterpreter::_stack_to_native_abi, L4_scratch);
  1838   __ ld_ptr(L4_scratch, L2_scratch, Lscratch);                           // get typed result converter address
  1839   __ ld_ptr(STATE(_stack), O0);                                        // current top (prepushed)
  1840   __ jmpl(Lscratch, G0, O7);                                           // and convert it
  1841   __ delayed()->add(O0, wordSize, O0);                                 // get source (top of current expr stack)
  1843   Label unwind_initial_activation;
  1844   __ bind(unwind_initial_activation);
  1846   // RETURN TO CALL_STUB/C1/C2 code (result if any in I0..I1/(F0/..F1)
  1847   // we can return here with an exception that wasn't handled by interpreted code
  1848   // how does c1/c2 see it on return?
  1850   // compute resulting sp before/after args popped depending upon calling convention
  1851   // __ ld_ptr(STATE(_saved_sp), Gtmp1);
  1852   //
  1853   // POP FRAME HERE ==================================
  1854   __ restore(FP, G0, SP);
  1855   __ retl();
  1856   __ delayed()->mov(I5_savedSP->after_restore(), SP);
  1858   // OSR request, unwind the current frame and transfer to the OSR entry
  1859   // and enter OSR nmethod
  1861   __ bind(do_OSR);
  1862   Label remove_initial_frame;
  1863   __ ld_ptr(STATE(_prev_link), L1_scratch);
  1864   __ ld_ptr(STATE(_result._osr._osr_buf), G1_scratch);
  1866   // We are going to pop this frame. Is there another interpreter frame underneath
  1867   // it or is it callstub/compiled?
  1869   __ tst(L1_scratch);
  1870   __ brx(Assembler::zero, false, Assembler::pt, remove_initial_frame);
  1871   __ delayed()->ld_ptr(STATE(_result._osr._osr_entry), G3_scratch);
  1873   // Frame underneath is an interpreter frame simply unwind
  1874   // POP FRAME HERE ==================================
  1875   __ restore(FP, G0, SP);                                             // unwind interpreter state frame
  1876   __ mov(I5_savedSP->after_restore(), SP);
  1878   // Since we are now calling native need to change our "return address" from the
  1879   // dummy RecursiveInterpreterActivation to a return from native
  1881   __ set((intptr_t)return_from_native_method - 8, O7);
  1883   __ jmpl(G3_scratch, G0, G0);
  1884   __ delayed()->mov(G1_scratch, O0);
  1886   __ bind(remove_initial_frame);
  1888   // POP FRAME HERE ==================================
  1889   __ restore(FP, G0, SP);
  1890   __ mov(I5_savedSP->after_restore(), SP);
  1891   __ jmpl(G3_scratch, G0, G0);
  1892   __ delayed()->mov(G1_scratch, O0);
  1894   // Call a new method. All we do is (temporarily) trim the expression stack
  1895   // push a return address to bring us back to here and leap to the new entry.
  1896   // At this point we have a topmost frame that was allocated by the frame manager
  1897   // which contains the current method interpreted state. We trim this frame
  1898   // of excess java expression stack entries and then recurse.
  1900   __ bind(call_method);
  1902   // stack points to next free location and not top element on expression stack
  1903   // method expects sp to be pointing to topmost element
  1905   __ ld_ptr(STATE(_thread), G2_thread);
  1906   __ ld_ptr(STATE(_result._to_call._callee), G5_method);
  1909   // SP already takes in to account the 2 extra words we use for slop
  1910   // when we call a "static long no_params()" method. So if
  1911   // we trim back sp by the amount of unused java expression stack
  1912   // there will be automagically the 2 extra words we need.
  1913   // We also have to worry about keeping SP aligned.
  1915   __ ld_ptr(STATE(_stack), Gargs);
  1916   __ ld_ptr(STATE(_stack_limit), L1_scratch);
  1918   // compute the unused java stack size
  1919   __ sub(Gargs, L1_scratch, L2_scratch);                       // compute unused space
  1921   // Round down the unused space to that stack is always 16-byte aligned
  1922   // by making the unused space a multiple of the size of two longs.
  1924   __ and3(L2_scratch, -2*BytesPerLong, L2_scratch);
  1926   // Now trim the stack
  1927   __ add(SP, L2_scratch, SP);
  1930   // Now point to the final argument (account for prepush)
  1931   __ add(Gargs, wordSize, Gargs);
  1932 #ifdef ASSERT
  1933   // Make sure we have space for the window
  1934   __ sub(Gargs, SP, L1_scratch);
  1935   __ cmp(L1_scratch, 16*wordSize);
  1937     Label skip;
  1938     __ brx(Assembler::greaterEqual, false, Assembler::pt, skip);
  1939     __ delayed()->nop();
  1940     __ stop("killed stack");
  1941     __ bind(skip);
  1943 #endif // ASSERT
  1945   // Create a new frame where we can store values that make it look like the interpreter
  1946   // really recursed.
  1948   // prepare to recurse or call specialized entry
  1950   // First link the registers we need
  1952   // make the pc look good in debugger
  1953   __ set(CAST_FROM_FN_PTR(intptr_t, RecursiveInterpreterActivation), O7);
  1954   // argument too
  1955   __ mov(Lstate, I0);
  1957   // Record our sending SP
  1958   __ mov(SP, O5_savedSP);
  1960   __ ld_ptr(STATE(_result._to_call._callee_entry_point), L2_scratch);
  1961   __ set((intptr_t) entry_point, L1_scratch);
  1962   __ cmp(L1_scratch, L2_scratch);
  1963   __ brx(Assembler::equal, false, Assembler::pt, re_dispatch);
  1964   __ delayed()->mov(Lstate, prevState);                                // link activations
  1966   // method uses specialized entry, push a return so we look like call stub setup
  1967   // this path will handle fact that result is returned in registers and not
  1968   // on the java stack.
  1970   __ set((intptr_t)return_from_native_method - 8, O7);
  1971   __ jmpl(L2_scratch, G0, G0);                               // Do specialized entry
  1972   __ delayed()->nop();
  1974   //
  1975   // Bad Message from interpreter
  1976   //
  1977   __ bind(bad_msg);
  1978   __ stop("Bad message from interpreter");
  1980   // Interpreted method "returned" with an exception pass it on...
  1981   // Pass result, unwind activation and continue/return to interpreter/call_stub
  1982   // We handle result (if any) differently based on return to interpreter or call_stub
  1984   __ bind(throw_exception);
  1985   __ ld_ptr(STATE(_prev_link), L1_scratch);
  1986   __ tst(L1_scratch);
  1987   __ brx(Assembler::zero, false, Assembler::pt, unwind_and_forward);
  1988   __ delayed()->nop();
  1990   __ ld_ptr(STATE(_locals), O1);                                   // get result of popping callee's args
  1991   __ ba(false, unwind_recursive_activation);
  1992   __ delayed()->nop();
  1994   interpreter_frame_manager = entry_point;
  1995   return entry_point;
  1998 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
  1999  : CppInterpreterGenerator(code) {
  2000    generate_all(); // down here so it can be "virtual"
  2004 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
  2006   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
  2007   // expression stack, the callee will have callee_extra_locals (so we can account for
  2008   // frame extension) and monitor_size for monitors. Basically we need to calculate
  2009   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
  2010   //
  2011   //
  2012   // The big complicating thing here is that we must ensure that the stack stays properly
  2013   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
  2014   // needs to be aligned for). We are given that the sp (fp) is already aligned by
  2015   // the caller so we must ensure that it is properly aligned for our callee.
  2016   //
  2017   // Ths c++ interpreter always makes sure that we have a enough extra space on the
  2018   // stack at all times to deal with the "stack long no_params()" method issue. This
  2019   // is "slop_factor" here.
  2020   const int slop_factor = 2;
  2022   const int fixed_size = sizeof(BytecodeInterpreter)/wordSize +           // interpreter state object
  2023                          frame::memory_parameter_word_sp_offset;   // register save area + param window
  2024   const int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
  2025   return (round_to(max_stack +
  2026                    extra_stack +
  2027                    slop_factor +
  2028                    fixed_size +
  2029                    monitor_size +
  2030                    (callee_extra_locals * Interpreter::stackElementWords()), WordsPerLong));
  2034 int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
  2036   // See call_stub code
  2037   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
  2038                                  WordsPerLong);    // 7 + register save area
  2040   // Save space for one monitor to get into the interpreted method in case
  2041   // the method is synchronized
  2042   int monitor_size    = method->is_synchronized() ?
  2043                                 1*frame::interpreter_frame_monitor_size() : 0;
  2044   return size_activation_helper(method->max_locals(), method->max_stack(),
  2045                                  monitor_size) + call_stub_size;
  2048 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
  2049                                            frame* caller,
  2050                                            frame* current,
  2051                                            methodOop method,
  2052                                            intptr_t* locals,
  2053                                            intptr_t* stack,
  2054                                            intptr_t* stack_base,
  2055                                            intptr_t* monitor_base,
  2056                                            intptr_t* frame_bottom,
  2057                                            bool is_top_frame
  2060   // What about any vtable?
  2061   //
  2062   to_fill->_thread = JavaThread::current();
  2063   // This gets filled in later but make it something recognizable for now
  2064   to_fill->_bcp = method->code_base();
  2065   to_fill->_locals = locals;
  2066   to_fill->_constants = method->constants()->cache();
  2067   to_fill->_method = method;
  2068   to_fill->_mdx = NULL;
  2069   to_fill->_stack = stack;
  2070   if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
  2071     to_fill->_msg = deopt_resume2;
  2072   } else {
  2073     to_fill->_msg = method_resume;
  2075   to_fill->_result._to_call._bcp_advance = 0;
  2076   to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
  2077   to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
  2078   to_fill->_prev_link = NULL;
  2080   // Fill in the registers for the frame
  2082   // Need to install _sender_sp. Actually not too hard in C++!
  2083   // When the skeletal frames are layed out we fill in a value
  2084   // for _sender_sp. That value is only correct for the oldest
  2085   // skeletal frame constructed (because there is only a single
  2086   // entry for "caller_adjustment". While the skeletal frames
  2087   // exist that is good enough. We correct that calculation
  2088   // here and get all the frames correct.
  2090   // to_fill->_sender_sp = locals - (method->size_of_parameters() - 1);
  2092   *current->register_addr(Lstate) = (intptr_t) to_fill;
  2093   // skeletal already places a useful value here and this doesn't account
  2094   // for alignment so don't bother.
  2095   // *current->register_addr(I5_savedSP) =     (intptr_t) locals - (method->size_of_parameters() - 1);
  2097   if (caller->is_interpreted_frame()) {
  2098     interpreterState prev  = caller->get_interpreterState();
  2099     to_fill->_prev_link = prev;
  2100     // Make the prev callee look proper
  2101     prev->_result._to_call._callee = method;
  2102     if (*prev->_bcp == Bytecodes::_invokeinterface) {
  2103       prev->_result._to_call._bcp_advance = 5;
  2104     } else {
  2105       prev->_result._to_call._bcp_advance = 3;
  2108   to_fill->_oop_temp = NULL;
  2109   to_fill->_stack_base = stack_base;
  2110   // Need +1 here because stack_base points to the word just above the first expr stack entry
  2111   // and stack_limit is supposed to point to the word just below the last expr stack entry.
  2112   // See generate_compute_interpreter_state.
  2113   int extra_stack = 0; //6815692//methodOopDesc::extra_stack_entries();
  2114   to_fill->_stack_limit = stack_base - (method->max_stack() + 1 + extra_stack);
  2115   to_fill->_monitor_base = (BasicObjectLock*) monitor_base;
  2117   // sparc specific
  2118   to_fill->_frame_bottom = frame_bottom;
  2119   to_fill->_self_link = to_fill;
  2120 #ifdef ASSERT
  2121   to_fill->_native_fresult = 123456.789;
  2122   to_fill->_native_lresult = CONST64(0xdeadcafedeafcafe);
  2123 #endif
  2126 void BytecodeInterpreter::pd_layout_interpreterState(interpreterState istate, address last_Java_pc, intptr_t* last_Java_fp) {
  2127   istate->_last_Java_pc = (intptr_t*) last_Java_pc;
  2131 int AbstractInterpreter::layout_activation(methodOop method,
  2132                                            int tempcount, // Number of slots on java expression stack in use
  2133                                            int popframe_extra_args,
  2134                                            int moncount,  // Number of active monitors
  2135                                            int callee_param_size,
  2136                                            int callee_locals_size,
  2137                                            frame* caller,
  2138                                            frame* interpreter_frame,
  2139                                            bool is_top_frame) {
  2141   assert(popframe_extra_args == 0, "NEED TO FIX");
  2142   // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
  2143   // does as far as allocating an interpreter frame.
  2144   // If interpreter_frame!=NULL, set up the method, locals, and monitors.
  2145   // The frame interpreter_frame, if not NULL, is guaranteed to be the right size,
  2146   // as determined by a previous call to this method.
  2147   // It is also guaranteed to be walkable even though it is in a skeletal state
  2148   // NOTE: return size is in words not bytes
  2149   // NOTE: tempcount is the current size of the java expression stack. For top most
  2150   //       frames we will allocate a full sized expression stack and not the curback
  2151   //       version that non-top frames have.
  2153   // Calculate the amount our frame will be adjust by the callee. For top frame
  2154   // this is zero.
  2156   // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
  2157   // calculates the extra locals based on itself. Not what the callee does
  2158   // to it. So it ignores last_frame_adjust value. Seems suspicious as far
  2159   // as getting sender_sp correct.
  2161   int extra_locals_size = callee_locals_size - callee_param_size;
  2162   int monitor_size = (sizeof(BasicObjectLock) * moncount) / wordSize;
  2163   int full_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
  2164   int short_frame_words = size_activation_helper(extra_locals_size, method->max_stack(), monitor_size);
  2165   int frame_words = is_top_frame ? full_frame_words : short_frame_words;
  2168   /*
  2169     if we actually have a frame to layout we must now fill in all the pieces. This means both
  2170     the interpreterState and the registers.
  2171   */
  2172   if (interpreter_frame != NULL) {
  2174     // MUCHO HACK
  2176     intptr_t* frame_bottom = interpreter_frame->sp() - (full_frame_words - frame_words);
  2177     // 'interpreter_frame->sp()' is unbiased while 'frame_bottom' must be a biased value in 64bit mode.
  2178     assert(((intptr_t)frame_bottom & 0xf) == 0, "SP biased in layout_activation");
  2179     frame_bottom = (intptr_t*)((intptr_t)frame_bottom - STACK_BIAS);
  2181     /* Now fillin the interpreterState object */
  2183     interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() -  sizeof(BytecodeInterpreter));
  2186     intptr_t* locals;
  2188     // Calculate the postion of locals[0]. This is painful because of
  2189     // stack alignment (same as ia64). The problem is that we can
  2190     // not compute the location of locals from fp(). fp() will account
  2191     // for the extra locals but it also accounts for aligning the stack
  2192     // and we can't determine if the locals[0] was misaligned but max_locals
  2193     // was enough to have the
  2194     // calculate postion of locals. fp already accounts for extra locals.
  2195     // +2 for the static long no_params() issue.
  2197     if (caller->is_interpreted_frame()) {
  2198       // locals must agree with the caller because it will be used to set the
  2199       // caller's tos when we return.
  2200       interpreterState prev  = caller->get_interpreterState();
  2201       // stack() is prepushed.
  2202       locals = prev->stack() + method->size_of_parameters();
  2203     } else {
  2204       // Lay out locals block in the caller adjacent to the register window save area.
  2205       //
  2206       // Compiled frames do not allocate a varargs area which is why this if
  2207       // statement is needed.
  2208       //
  2209       intptr_t* fp = interpreter_frame->fp();
  2210       int local_words = method->max_locals() * Interpreter::stackElementWords();
  2212       if (caller->is_compiled_frame()) {
  2213         locals = fp + frame::register_save_words + local_words - 1;
  2214       } else {
  2215         locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
  2219     // END MUCHO HACK
  2221     intptr_t* monitor_base = (intptr_t*) cur_state;
  2222     intptr_t* stack_base =  monitor_base - monitor_size;
  2223     /* +1 because stack is always prepushed */
  2224     intptr_t* stack = stack_base - (tempcount + 1);
  2227     BytecodeInterpreter::layout_interpreterState(cur_state,
  2228                                           caller,
  2229                                           interpreter_frame,
  2230                                           method,
  2231                                           locals,
  2232                                           stack,
  2233                                           stack_base,
  2234                                           monitor_base,
  2235                                           frame_bottom,
  2236                                           is_top_frame);
  2238     BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
  2241   return frame_words;
  2244 #endif // CC_INTERP

mercurial