src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Tue, 03 Aug 2010 08:13:38 -0400

author
bobv
date
Tue, 03 Aug 2010 08:13:38 -0400
changeset 2036
126ea7725993
parent 1934
e9ff18c4ace7
child 2138
d5d065957597
permissions
-rw-r--r--

6953477: Increase portability and flexibility of building Hotspot
Summary: A collection of portability improvements including shared code support for PPC, ARM platforms, software floating point, cross compilation support and improvements in error crash detail.
Reviewed-by: phh, never, coleenp, dholmes

     1 /*
     2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRAssembler_sparc.cpp.incl"
    28 #define __ _masm->
    31 //------------------------------------------------------------
    34 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
    35   if (opr->is_constant()) {
    36     LIR_Const* constant = opr->as_constant_ptr();
    37     switch (constant->type()) {
    38       case T_INT: {
    39         jint value = constant->as_jint();
    40         return Assembler::is_simm13(value);
    41       }
    43       default:
    44         return false;
    45     }
    46   }
    47   return false;
    48 }
    51 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
    52   switch (op->code()) {
    53     case lir_null_check:
    54     return true;
    57     case lir_add:
    58     case lir_ushr:
    59     case lir_shr:
    60     case lir_shl:
    61       // integer shifts and adds are always one instruction
    62       return op->result_opr()->is_single_cpu();
    65     case lir_move: {
    66       LIR_Op1* op1 = op->as_Op1();
    67       LIR_Opr src = op1->in_opr();
    68       LIR_Opr dst = op1->result_opr();
    70       if (src == dst) {
    71         NEEDS_CLEANUP;
    72         // this works around a problem where moves with the same src and dst
    73         // end up in the delay slot and then the assembler swallows the mov
    74         // since it has no effect and then it complains because the delay slot
    75         // is empty.  returning false stops the optimizer from putting this in
    76         // the delay slot
    77         return false;
    78       }
    80       // don't put moves involving oops into the delay slot since the VerifyOops code
    81       // will make it much larger than a single instruction.
    82       if (VerifyOops) {
    83         return false;
    84       }
    86       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
    87           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
    88         return false;
    89       }
    91       if (dst->is_register()) {
    92         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
    93           return !PatchALot;
    94         } else if (src->is_single_stack()) {
    95           return true;
    96         }
    97       }
    99       if (src->is_register()) {
   100         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
   101           return !PatchALot;
   102         } else if (dst->is_single_stack()) {
   103           return true;
   104         }
   105       }
   107       if (dst->is_register() &&
   108           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
   109            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
   110         return true;
   111       }
   113       return false;
   114     }
   116     default:
   117       return false;
   118   }
   119   ShouldNotReachHere();
   120 }
   123 LIR_Opr LIR_Assembler::receiverOpr() {
   124   return FrameMap::O0_oop_opr;
   125 }
   128 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
   129   return FrameMap::I0_oop_opr;
   130 }
   133 LIR_Opr LIR_Assembler::osrBufferPointer() {
   134   return FrameMap::I0_opr;
   135 }
   138 int LIR_Assembler::initial_frame_size_in_bytes() {
   139   return in_bytes(frame_map()->framesize_in_bytes());
   140 }
   143 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
   144 // we fetch the class of the receiver (O0) and compare it with the cached class.
   145 // If they do not match we jump to slow case.
   146 int LIR_Assembler::check_icache() {
   147   int offset = __ offset();
   148   __ inline_cache_check(O0, G5_inline_cache_reg);
   149   return offset;
   150 }
   153 void LIR_Assembler::osr_entry() {
   154   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
   155   //
   156   //   1. Create a new compiled activation.
   157   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
   158   //      at the osr_bci; it is not initialized.
   159   //   3. Jump to the continuation address in compiled code to resume execution.
   161   // OSR entry point
   162   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   163   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   164   ValueStack* entry_state = osr_entry->end()->state();
   165   int number_of_locks = entry_state->locks_size();
   167   // Create a frame for the compiled activation.
   168   __ build_frame(initial_frame_size_in_bytes());
   170   // OSR buffer is
   171   //
   172   // locals[nlocals-1..0]
   173   // monitors[number_of_locks-1..0]
   174   //
   175   // locals is a direct copy of the interpreter frame so in the osr buffer
   176   // so first slot in the local array is the last local from the interpreter
   177   // and last slot is local[0] (receiver) from the interpreter
   178   //
   179   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   180   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   181   // in the interpreter frame (the method lock if a sync method)
   183   // Initialize monitors in the compiled activation.
   184   //   I0: pointer to osr buffer
   185   //
   186   // All other registers are dead at this point and the locals will be
   187   // copied into place by code emitted in the IR.
   189   Register OSR_buf = osrBufferPointer()->as_register();
   190   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   191     int monitor_offset = BytesPerWord * method()->max_locals() +
   192       (2 * BytesPerWord) * (number_of_locks - 1);
   193     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   194     // the OSR buffer using 2 word entries: first the lock and then
   195     // the oop.
   196     for (int i = 0; i < number_of_locks; i++) {
   197       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   198 #ifdef ASSERT
   199       // verify the interpreter's monitor has a non-null object
   200       {
   201         Label L;
   202         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   203         __ cmp(G0, O7);
   204         __ br(Assembler::notEqual, false, Assembler::pt, L);
   205         __ delayed()->nop();
   206         __ stop("locked object is NULL");
   207         __ bind(L);
   208       }
   209 #endif // ASSERT
   210       // Copy the lock field into the compiled activation.
   211       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
   212       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
   213       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   214       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
   215     }
   216   }
   217 }
   220 // Optimized Library calls
   221 // This is the fast version of java.lang.String.compare; it has not
   222 // OSR-entry and therefore, we generate a slow version for OSR's
   223 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
   224   Register str0 = left->as_register();
   225   Register str1 = right->as_register();
   227   Label Ldone;
   229   Register result = dst->as_register();
   230   {
   231     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
   232     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
   233     // Also, get string0.count-string1.count in o7 and get the condition code set
   234     // Note: some instructions have been hoisted for better instruction scheduling
   236     Register tmp0 = L0;
   237     Register tmp1 = L1;
   238     Register tmp2 = L2;
   240     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
   241     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   242     int  count_offset = java_lang_String:: count_offset_in_bytes();
   244     __ ld_ptr(str0, value_offset, tmp0);
   245     __ ld(str0, offset_offset, tmp2);
   246     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   247     __ ld(str0, count_offset, str0);
   248     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   250     // str1 may be null
   251     add_debug_info_for_null_check_here(info);
   253     __ ld_ptr(str1, value_offset, tmp1);
   254     __ add(tmp0, tmp2, tmp0);
   256     __ ld(str1, offset_offset, tmp2);
   257     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   258     __ ld(str1, count_offset, str1);
   259     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   260     __ subcc(str0, str1, O7);
   261     __ add(tmp1, tmp2, tmp1);
   262   }
   264   {
   265     // Compute the minimum of the string lengths, scale it and store it in limit
   266     Register count0 = I0;
   267     Register count1 = I1;
   268     Register limit  = L3;
   270     Label Lskip;
   271     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
   272     __ br(Assembler::greater, true, Assembler::pt, Lskip);
   273     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
   274     __ bind(Lskip);
   276     // If either string is empty (or both of them) the result is the difference in lengths
   277     __ cmp(limit, 0);
   278     __ br(Assembler::equal, true, Assembler::pn, Ldone);
   279     __ delayed()->mov(O7, result);  // result is difference in lengths
   280   }
   282   {
   283     // Neither string is empty
   284     Label Lloop;
   286     Register base0 = L0;
   287     Register base1 = L1;
   288     Register chr0  = I0;
   289     Register chr1  = I1;
   290     Register limit = L3;
   292     // Shift base0 and base1 to the end of the arrays, negate limit
   293     __ add(base0, limit, base0);
   294     __ add(base1, limit, base1);
   295     __ neg(limit);  // limit = -min{string0.count, strin1.count}
   297     __ lduh(base0, limit, chr0);
   298     __ bind(Lloop);
   299     __ lduh(base1, limit, chr1);
   300     __ subcc(chr0, chr1, chr0);
   301     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
   302     assert(chr0 == result, "result must be pre-placed");
   303     __ delayed()->inccc(limit, sizeof(jchar));
   304     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
   305     __ delayed()->lduh(base0, limit, chr0);
   306   }
   308   // If strings are equal up to min length, return the length difference.
   309   __ mov(O7, result);
   311   // Otherwise, return the difference between the first mismatched chars.
   312   __ bind(Ldone);
   313 }
   316 // --------------------------------------------------------------------------------------------
   318 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
   319   if (!GenerateSynchronizationCode) return;
   321   Register obj_reg = obj_opr->as_register();
   322   Register lock_reg = lock_opr->as_register();
   324   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
   325   Register reg = mon_addr.base();
   326   int offset = mon_addr.disp();
   327   // compute pointer to BasicLock
   328   if (mon_addr.is_simm13()) {
   329     __ add(reg, offset, lock_reg);
   330   }
   331   else {
   332     __ set(offset, lock_reg);
   333     __ add(reg, lock_reg, lock_reg);
   334   }
   335   // unlock object
   336   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
   337   // _slow_case_stubs->append(slow_case);
   338   // temporary fix: must be created after exceptionhandler, therefore as call stub
   339   _slow_case_stubs->append(slow_case);
   340   if (UseFastLocking) {
   341     // try inlined fast unlocking first, revert to slow locking if it fails
   342     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   343     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   344     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   345   } else {
   346     // always do slow unlocking
   347     // note: the slow unlocking code could be inlined here, however if we use
   348     //       slow unlocking, speed doesn't matter anyway and this solution is
   349     //       simpler and requires less duplicated code - additionally, the
   350     //       slow unlocking code is the same in either case which simplifies
   351     //       debugging
   352     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
   353     __ delayed()->nop();
   354   }
   355   // done
   356   __ bind(*slow_case->continuation());
   357 }
   360 int LIR_Assembler::emit_exception_handler() {
   361   // if the last instruction is a call (typically to do a throw which
   362   // is coming at the end after block reordering) the return address
   363   // must still point into the code area in order to avoid assertion
   364   // failures when searching for the corresponding bci => add a nop
   365   // (was bug 5/14/1999 - gri)
   366   __ nop();
   368   // generate code for exception handler
   369   ciMethod* method = compilation()->method();
   371   address handler_base = __ start_a_stub(exception_handler_size);
   373   if (handler_base == NULL) {
   374     // not enough space left for the handler
   375     bailout("exception handler overflow");
   376     return -1;
   377   }
   379   int offset = code_offset();
   381   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
   382   __ delayed()->nop();
   383   debug_only(__ stop("should have gone to the caller");)
   384   assert(code_offset() - offset <= exception_handler_size, "overflow");
   385   __ end_a_stub();
   387   return offset;
   388 }
   391 // Emit the code to remove the frame from the stack in the exception
   392 // unwind path.
   393 int LIR_Assembler::emit_unwind_handler() {
   394 #ifndef PRODUCT
   395   if (CommentedAssembly) {
   396     _masm->block_comment("Unwind handler");
   397   }
   398 #endif
   400   int offset = code_offset();
   402   // Fetch the exception from TLS and clear out exception related thread state
   403   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
   404   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
   405   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
   407   __ bind(_unwind_handler_entry);
   408   __ verify_not_null_oop(O0);
   409   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   410     __ mov(O0, I0);  // Preserve the exception
   411   }
   413   // Preform needed unlocking
   414   MonitorExitStub* stub = NULL;
   415   if (method()->is_synchronized()) {
   416     monitor_address(0, FrameMap::I1_opr);
   417     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
   418     __ unlock_object(I3, I2, I1, *stub->entry());
   419     __ bind(*stub->continuation());
   420   }
   422   if (compilation()->env()->dtrace_method_probes()) {
   423     jobject2reg(method()->constant_encoding(), O0);
   424     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
   425     __ delayed()->nop();
   426   }
   428   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   429     __ mov(I0, O0);  // Restore the exception
   430   }
   432   // dispatch to the unwind logic
   433   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
   434   __ delayed()->nop();
   436   // Emit the slow path assembly
   437   if (stub != NULL) {
   438     stub->emit_code(this);
   439   }
   441   return offset;
   442 }
   445 int LIR_Assembler::emit_deopt_handler() {
   446   // if the last instruction is a call (typically to do a throw which
   447   // is coming at the end after block reordering) the return address
   448   // must still point into the code area in order to avoid assertion
   449   // failures when searching for the corresponding bci => add a nop
   450   // (was bug 5/14/1999 - gri)
   451   __ nop();
   453   // generate code for deopt handler
   454   ciMethod* method = compilation()->method();
   455   address handler_base = __ start_a_stub(deopt_handler_size);
   456   if (handler_base == NULL) {
   457     // not enough space left for the handler
   458     bailout("deopt handler overflow");
   459     return -1;
   460   }
   462   int offset = code_offset();
   463   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
   464   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
   465   __ delayed()->nop();
   466   assert(code_offset() - offset <= deopt_handler_size, "overflow");
   467   debug_only(__ stop("should have gone to the caller");)
   468   __ end_a_stub();
   470   return offset;
   471 }
   474 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
   475   if (o == NULL) {
   476     __ set(NULL_WORD, reg);
   477   } else {
   478     int oop_index = __ oop_recorder()->find_index(o);
   479     RelocationHolder rspec = oop_Relocation::spec(oop_index);
   480     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
   481   }
   482 }
   485 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
   486   // Allocate a new index in oop table to hold the oop once it's been patched
   487   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
   488   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
   490   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
   491   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   492   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   493   // NULL will be dynamically patched later and the patched value may be large.  We must
   494   // therefore generate the sethi/add as a placeholders
   495   __ patchable_set(addrlit, reg);
   497   patching_epilog(patch, lir_patch_normal, reg, info);
   498 }
   501 void LIR_Assembler::emit_op3(LIR_Op3* op) {
   502   Register Rdividend = op->in_opr1()->as_register();
   503   Register Rdivisor  = noreg;
   504   Register Rscratch  = op->in_opr3()->as_register();
   505   Register Rresult   = op->result_opr()->as_register();
   506   int divisor = -1;
   508   if (op->in_opr2()->is_register()) {
   509     Rdivisor = op->in_opr2()->as_register();
   510   } else {
   511     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
   512     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   513   }
   515   assert(Rdividend != Rscratch, "");
   516   assert(Rdivisor  != Rscratch, "");
   517   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
   519   if (Rdivisor == noreg && is_power_of_2(divisor)) {
   520     // convert division by a power of two into some shifts and logical operations
   521     if (op->code() == lir_idiv) {
   522       if (divisor == 2) {
   523         __ srl(Rdividend, 31, Rscratch);
   524       } else {
   525         __ sra(Rdividend, 31, Rscratch);
   526         __ and3(Rscratch, divisor - 1, Rscratch);
   527       }
   528       __ add(Rdividend, Rscratch, Rscratch);
   529       __ sra(Rscratch, log2_intptr(divisor), Rresult);
   530       return;
   531     } else {
   532       if (divisor == 2) {
   533         __ srl(Rdividend, 31, Rscratch);
   534       } else {
   535         __ sra(Rdividend, 31, Rscratch);
   536         __ and3(Rscratch, divisor - 1,Rscratch);
   537       }
   538       __ add(Rdividend, Rscratch, Rscratch);
   539       __ andn(Rscratch, divisor - 1,Rscratch);
   540       __ sub(Rdividend, Rscratch, Rresult);
   541       return;
   542     }
   543   }
   545   __ sra(Rdividend, 31, Rscratch);
   546   __ wry(Rscratch);
   547   if (!VM_Version::v9_instructions_work()) {
   548     // v9 doesn't require these nops
   549     __ nop();
   550     __ nop();
   551     __ nop();
   552     __ nop();
   553   }
   555   add_debug_info_for_div0_here(op->info());
   557   if (Rdivisor != noreg) {
   558     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   559   } else {
   560     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   561     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   562   }
   564   Label skip;
   565   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
   566   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
   567   __ bind(skip);
   569   if (op->code() == lir_irem) {
   570     if (Rdivisor != noreg) {
   571       __ smul(Rscratch, Rdivisor, Rscratch);
   572     } else {
   573       __ smul(Rscratch, divisor, Rscratch);
   574     }
   575     __ sub(Rdividend, Rscratch, Rresult);
   576   }
   577 }
   580 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
   581 #ifdef ASSERT
   582   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
   583   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
   584   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
   585 #endif
   586   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
   588   if (op->cond() == lir_cond_always) {
   589     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
   590   } else if (op->code() == lir_cond_float_branch) {
   591     assert(op->ublock() != NULL, "must have unordered successor");
   592     bool is_unordered = (op->ublock() == op->block());
   593     Assembler::Condition acond;
   594     switch (op->cond()) {
   595       case lir_cond_equal:         acond = Assembler::f_equal;    break;
   596       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
   597       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
   598       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
   599       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
   600       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
   601       default :                         ShouldNotReachHere();
   602     };
   604     if (!VM_Version::v9_instructions_work()) {
   605       __ nop();
   606     }
   607     __ fb( acond, false, Assembler::pn, *(op->label()));
   608   } else {
   609     assert (op->code() == lir_branch, "just checking");
   611     Assembler::Condition acond;
   612     switch (op->cond()) {
   613       case lir_cond_equal:        acond = Assembler::equal;                break;
   614       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
   615       case lir_cond_less:         acond = Assembler::less;                 break;
   616       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
   617       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
   618       case lir_cond_greater:      acond = Assembler::greater;              break;
   619       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
   620       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
   621       default:                         ShouldNotReachHere();
   622     };
   624     // sparc has different condition codes for testing 32-bit
   625     // vs. 64-bit values.  We could always test xcc is we could
   626     // guarantee that 32-bit loads always sign extended but that isn't
   627     // true and since sign extension isn't free, it would impose a
   628     // slight cost.
   629 #ifdef _LP64
   630     if  (op->type() == T_INT) {
   631       __ br(acond, false, Assembler::pn, *(op->label()));
   632     } else
   633 #endif
   634       __ brx(acond, false, Assembler::pn, *(op->label()));
   635   }
   636   // The peephole pass fills the delay slot
   637 }
   640 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
   641   Bytecodes::Code code = op->bytecode();
   642   LIR_Opr dst = op->result_opr();
   644   switch(code) {
   645     case Bytecodes::_i2l: {
   646       Register rlo  = dst->as_register_lo();
   647       Register rhi  = dst->as_register_hi();
   648       Register rval = op->in_opr()->as_register();
   649 #ifdef _LP64
   650       __ sra(rval, 0, rlo);
   651 #else
   652       __ mov(rval, rlo);
   653       __ sra(rval, BitsPerInt-1, rhi);
   654 #endif
   655       break;
   656     }
   657     case Bytecodes::_i2d:
   658     case Bytecodes::_i2f: {
   659       bool is_double = (code == Bytecodes::_i2d);
   660       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   661       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   662       FloatRegister rsrc = op->in_opr()->as_float_reg();
   663       if (rsrc != rdst) {
   664         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
   665       }
   666       __ fitof(w, rdst, rdst);
   667       break;
   668     }
   669     case Bytecodes::_f2i:{
   670       FloatRegister rsrc = op->in_opr()->as_float_reg();
   671       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
   672       Label L;
   673       // result must be 0 if value is NaN; test by comparing value to itself
   674       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
   675       if (!VM_Version::v9_instructions_work()) {
   676         __ nop();
   677       }
   678       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
   679       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
   680       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
   681       // move integer result from float register to int register
   682       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
   683       __ bind (L);
   684       break;
   685     }
   686     case Bytecodes::_l2i: {
   687       Register rlo  = op->in_opr()->as_register_lo();
   688       Register rhi  = op->in_opr()->as_register_hi();
   689       Register rdst = dst->as_register();
   690 #ifdef _LP64
   691       __ sra(rlo, 0, rdst);
   692 #else
   693       __ mov(rlo, rdst);
   694 #endif
   695       break;
   696     }
   697     case Bytecodes::_d2f:
   698     case Bytecodes::_f2d: {
   699       bool is_double = (code == Bytecodes::_f2d);
   700       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
   701       LIR_Opr val = op->in_opr();
   702       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
   703       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   704       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
   705       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   706       __ ftof(vw, dw, rval, rdst);
   707       break;
   708     }
   709     case Bytecodes::_i2s:
   710     case Bytecodes::_i2b: {
   711       Register rval = op->in_opr()->as_register();
   712       Register rdst = dst->as_register();
   713       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
   714       __ sll (rval, shift, rdst);
   715       __ sra (rdst, shift, rdst);
   716       break;
   717     }
   718     case Bytecodes::_i2c: {
   719       Register rval = op->in_opr()->as_register();
   720       Register rdst = dst->as_register();
   721       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
   722       __ sll (rval, shift, rdst);
   723       __ srl (rdst, shift, rdst);
   724       break;
   725     }
   727     default: ShouldNotReachHere();
   728   }
   729 }
   732 void LIR_Assembler::align_call(LIR_Code) {
   733   // do nothing since all instructions are word aligned on sparc
   734 }
   737 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
   738   __ call(op->addr(), rtype);
   739   // The peephole pass fills the delay slot, add_call_info is done in
   740   // LIR_Assembler::emit_delay.
   741 }
   744 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
   745   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
   746   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
   747   __ relocate(rspec);
   748   __ call(op->addr(), relocInfo::none);
   749   // The peephole pass fills the delay slot, add_call_info is done in
   750   // LIR_Assembler::emit_delay.
   751 }
   754 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
   755   add_debug_info_for_null_check_here(op->info());
   756   __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
   757   if (__ is_simm13(op->vtable_offset())) {
   758     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
   759   } else {
   760     // This will generate 2 instructions
   761     __ set(op->vtable_offset(), G5_method);
   762     // ld_ptr, set_hi, set
   763     __ ld_ptr(G3_scratch, G5_method, G5_method);
   764   }
   765   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
   766   __ callr(G3_scratch, G0);
   767   // the peephole pass fills the delay slot
   768 }
   771 // load with 32-bit displacement
   772 int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
   773   int load_offset = code_offset();
   774   if (Assembler::is_simm13(disp)) {
   775     if (info != NULL) add_debug_info_for_null_check_here(info);
   776     switch(ld_type) {
   777       case T_BOOLEAN: // fall through
   778       case T_BYTE  : __ ldsb(s, disp, d); break;
   779       case T_CHAR  : __ lduh(s, disp, d); break;
   780       case T_SHORT : __ ldsh(s, disp, d); break;
   781       case T_INT   : __ ld(s, disp, d); break;
   782       case T_ADDRESS:// fall through
   783       case T_ARRAY : // fall through
   784       case T_OBJECT: __ ld_ptr(s, disp, d); break;
   785       default      : ShouldNotReachHere();
   786     }
   787   } else {
   788     __ set(disp, O7);
   789     if (info != NULL) add_debug_info_for_null_check_here(info);
   790     load_offset = code_offset();
   791     switch(ld_type) {
   792       case T_BOOLEAN: // fall through
   793       case T_BYTE  : __ ldsb(s, O7, d); break;
   794       case T_CHAR  : __ lduh(s, O7, d); break;
   795       case T_SHORT : __ ldsh(s, O7, d); break;
   796       case T_INT   : __ ld(s, O7, d); break;
   797       case T_ADDRESS:// fall through
   798       case T_ARRAY : // fall through
   799       case T_OBJECT: __ ld_ptr(s, O7, d); break;
   800       default      : ShouldNotReachHere();
   801     }
   802   }
   803   if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
   804   return load_offset;
   805 }
   808 // store with 32-bit displacement
   809 void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
   810   if (Assembler::is_simm13(offset)) {
   811     if (info != NULL)  add_debug_info_for_null_check_here(info);
   812     switch (type) {
   813       case T_BOOLEAN: // fall through
   814       case T_BYTE  : __ stb(value, base, offset); break;
   815       case T_CHAR  : __ sth(value, base, offset); break;
   816       case T_SHORT : __ sth(value, base, offset); break;
   817       case T_INT   : __ stw(value, base, offset); break;
   818       case T_ADDRESS:// fall through
   819       case T_ARRAY : // fall through
   820       case T_OBJECT: __ st_ptr(value, base, offset); break;
   821       default      : ShouldNotReachHere();
   822     }
   823   } else {
   824     __ set(offset, O7);
   825     if (info != NULL) add_debug_info_for_null_check_here(info);
   826     switch (type) {
   827       case T_BOOLEAN: // fall through
   828       case T_BYTE  : __ stb(value, base, O7); break;
   829       case T_CHAR  : __ sth(value, base, O7); break;
   830       case T_SHORT : __ sth(value, base, O7); break;
   831       case T_INT   : __ stw(value, base, O7); break;
   832       case T_ADDRESS:// fall through
   833       case T_ARRAY : //fall through
   834       case T_OBJECT: __ st_ptr(value, base, O7); break;
   835       default      : ShouldNotReachHere();
   836     }
   837   }
   838   // Note: Do the store before verification as the code might be patched!
   839   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
   840 }
   843 // load float with 32-bit displacement
   844 void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
   845   FloatRegisterImpl::Width w;
   846   switch(ld_type) {
   847     case T_FLOAT : w = FloatRegisterImpl::S; break;
   848     case T_DOUBLE: w = FloatRegisterImpl::D; break;
   849     default      : ShouldNotReachHere();
   850   }
   852   if (Assembler::is_simm13(disp)) {
   853     if (info != NULL) add_debug_info_for_null_check_here(info);
   854     if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
   855       __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
   856       __ ldf(FloatRegisterImpl::S, s, disp               , d);
   857     } else {
   858       __ ldf(w, s, disp, d);
   859     }
   860   } else {
   861     __ set(disp, O7);
   862     if (info != NULL) add_debug_info_for_null_check_here(info);
   863     __ ldf(w, s, O7, d);
   864   }
   865 }
   868 // store float with 32-bit displacement
   869 void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
   870   FloatRegisterImpl::Width w;
   871   switch(type) {
   872     case T_FLOAT : w = FloatRegisterImpl::S; break;
   873     case T_DOUBLE: w = FloatRegisterImpl::D; break;
   874     default      : ShouldNotReachHere();
   875   }
   877   if (Assembler::is_simm13(offset)) {
   878     if (info != NULL) add_debug_info_for_null_check_here(info);
   879     if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
   880       __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
   881       __ stf(FloatRegisterImpl::S, value             , base, offset);
   882     } else {
   883       __ stf(w, value, base, offset);
   884     }
   885   } else {
   886     __ set(offset, O7);
   887     if (info != NULL) add_debug_info_for_null_check_here(info);
   888     __ stf(w, value, O7, base);
   889   }
   890 }
   893 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
   894   int store_offset;
   895   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   896     assert(!unaligned, "can't handle this");
   897     // for offsets larger than a simm13 we setup the offset in O7
   898     __ set(offset, O7);
   899     store_offset = store(from_reg, base, O7, type);
   900   } else {
   901     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
   902     store_offset = code_offset();
   903     switch (type) {
   904       case T_BOOLEAN: // fall through
   905       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
   906       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
   907       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
   908       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
   909       case T_LONG  :
   910 #ifdef _LP64
   911         if (unaligned || PatchALot) {
   912           __ srax(from_reg->as_register_lo(), 32, O7);
   913           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   914           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
   915         } else {
   916           __ stx(from_reg->as_register_lo(), base, offset);
   917         }
   918 #else
   919         assert(Assembler::is_simm13(offset + 4), "must be");
   920         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   921         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
   922 #endif
   923         break;
   924       case T_ADDRESS:// fall through
   925       case T_ARRAY : // fall through
   926       case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
   927       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
   928       case T_DOUBLE:
   929         {
   930           FloatRegister reg = from_reg->as_double_reg();
   931           // split unaligned stores
   932           if (unaligned || PatchALot) {
   933             assert(Assembler::is_simm13(offset + 4), "must be");
   934             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
   935             __ stf(FloatRegisterImpl::S, reg,              base, offset);
   936           } else {
   937             __ stf(FloatRegisterImpl::D, reg, base, offset);
   938           }
   939           break;
   940         }
   941       default      : ShouldNotReachHere();
   942     }
   943   }
   944   return store_offset;
   945 }
   948 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
   949   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
   950   int store_offset = code_offset();
   951   switch (type) {
   952     case T_BOOLEAN: // fall through
   953     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
   954     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
   955     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
   956     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
   957     case T_LONG  :
   958 #ifdef _LP64
   959       __ stx(from_reg->as_register_lo(), base, disp);
   960 #else
   961       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
   962       __ std(from_reg->as_register_hi(), base, disp);
   963 #endif
   964       break;
   965     case T_ADDRESS:// fall through
   966     case T_ARRAY : // fall through
   967     case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
   968     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
   969     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
   970     default      : ShouldNotReachHere();
   971   }
   972   return store_offset;
   973 }
   976 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
   977   int load_offset;
   978   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   979     assert(base != O7, "destroying register");
   980     assert(!unaligned, "can't handle this");
   981     // for offsets larger than a simm13 we setup the offset in O7
   982     __ set(offset, O7);
   983     load_offset = load(base, O7, to_reg, type);
   984   } else {
   985     load_offset = code_offset();
   986     switch(type) {
   987       case T_BOOLEAN: // fall through
   988       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
   989       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
   990       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
   991       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
   992       case T_LONG  :
   993         if (!unaligned) {
   994 #ifdef _LP64
   995           __ ldx(base, offset, to_reg->as_register_lo());
   996 #else
   997           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
   998                  "must be sequential");
   999           __ ldd(base, offset, to_reg->as_register_hi());
  1000 #endif
  1001         } else {
  1002 #ifdef _LP64
  1003           assert(base != to_reg->as_register_lo(), "can't handle this");
  1004           assert(O7 != to_reg->as_register_lo(), "can't handle this");
  1005           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
  1006           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
  1007           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
  1008           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
  1009 #else
  1010           if (base == to_reg->as_register_lo()) {
  1011             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
  1012             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
  1013           } else {
  1014             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
  1015             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
  1017 #endif
  1019         break;
  1020       case T_ADDRESS:// fall through
  1021       case T_ARRAY : // fall through
  1022       case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
  1023       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
  1024       case T_DOUBLE:
  1026           FloatRegister reg = to_reg->as_double_reg();
  1027           // split unaligned loads
  1028           if (unaligned || PatchALot) {
  1029             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
  1030             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
  1031           } else {
  1032             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
  1034           break;
  1036       default      : ShouldNotReachHere();
  1038     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
  1040   return load_offset;
  1044 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
  1045   int load_offset = code_offset();
  1046   switch(type) {
  1047     case T_BOOLEAN: // fall through
  1048     case T_BYTE  : __ ldsb(base, disp, to_reg->as_register()); break;
  1049     case T_CHAR  : __ lduh(base, disp, to_reg->as_register()); break;
  1050     case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
  1051     case T_INT   : __ ld(base, disp, to_reg->as_register()); break;
  1052     case T_ADDRESS:// fall through
  1053     case T_ARRAY : // fall through
  1054     case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
  1055     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
  1056     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
  1057     case T_LONG  :
  1058 #ifdef _LP64
  1059       __ ldx(base, disp, to_reg->as_register_lo());
  1060 #else
  1061       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
  1062              "must be sequential");
  1063       __ ldd(base, disp, to_reg->as_register_hi());
  1064 #endif
  1065       break;
  1066     default      : ShouldNotReachHere();
  1068   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
  1069   return load_offset;
  1073 // load/store with an Address
  1074 void LIR_Assembler::load(const Address& a, Register d,  BasicType ld_type, CodeEmitInfo *info, int offset) {
  1075   load(a.base(), a.disp() + offset, d, ld_type, info);
  1079 void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
  1080   store(value, dest.base(), dest.disp() + offset, type, info);
  1084 // loadf/storef with an Address
  1085 void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
  1086   load(a.base(), a.disp() + offset, d, ld_type, info);
  1090 void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
  1091   store(value, dest.base(), dest.disp() + offset, type, info);
  1095 // load/store with an Address
  1096 void LIR_Assembler::load(LIR_Address* a, Register d,  BasicType ld_type, CodeEmitInfo *info) {
  1097   load(as_Address(a), d, ld_type, info);
  1101 void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
  1102   store(value, as_Address(dest), type, info);
  1106 // loadf/storef with an Address
  1107 void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
  1108   load(as_Address(a), d, ld_type, info);
  1112 void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
  1113   store(value, as_Address(dest), type, info);
  1117 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
  1118   LIR_Const* c = src->as_constant_ptr();
  1119   switch (c->type()) {
  1120     case T_INT:
  1121     case T_FLOAT:
  1122     case T_ADDRESS: {
  1123       Register src_reg = O7;
  1124       int value = c->as_jint_bits();
  1125       if (value == 0) {
  1126         src_reg = G0;
  1127       } else {
  1128         __ set(value, O7);
  1130       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1131       __ stw(src_reg, addr.base(), addr.disp());
  1132       break;
  1134     case T_OBJECT: {
  1135       Register src_reg = O7;
  1136       jobject2reg(c->as_jobject(), src_reg);
  1137       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1138       __ st_ptr(src_reg, addr.base(), addr.disp());
  1139       break;
  1141     case T_LONG:
  1142     case T_DOUBLE: {
  1143       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1145       Register tmp = O7;
  1146       int value_lo = c->as_jint_lo_bits();
  1147       if (value_lo == 0) {
  1148         tmp = G0;
  1149       } else {
  1150         __ set(value_lo, O7);
  1152       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
  1153       int value_hi = c->as_jint_hi_bits();
  1154       if (value_hi == 0) {
  1155         tmp = G0;
  1156       } else {
  1157         __ set(value_hi, O7);
  1159       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
  1160       break;
  1162     default:
  1163       Unimplemented();
  1168 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
  1169   LIR_Const* c = src->as_constant_ptr();
  1170   LIR_Address* addr     = dest->as_address_ptr();
  1171   Register base = addr->base()->as_pointer_register();
  1173   if (info != NULL) {
  1174     add_debug_info_for_null_check_here(info);
  1176   switch (c->type()) {
  1177     case T_INT:
  1178     case T_FLOAT:
  1179     case T_ADDRESS: {
  1180       LIR_Opr tmp = FrameMap::O7_opr;
  1181       int value = c->as_jint_bits();
  1182       if (value == 0) {
  1183         tmp = FrameMap::G0_opr;
  1184       } else if (Assembler::is_simm13(value)) {
  1185         __ set(value, O7);
  1187       if (addr->index()->is_valid()) {
  1188         assert(addr->disp() == 0, "must be zero");
  1189         store(tmp, base, addr->index()->as_pointer_register(), type);
  1190       } else {
  1191         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1192         store(tmp, base, addr->disp(), type);
  1194       break;
  1196     case T_LONG:
  1197     case T_DOUBLE: {
  1198       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
  1199       assert(Assembler::is_simm13(addr->disp()) &&
  1200              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
  1202       Register tmp = O7;
  1203       int value_lo = c->as_jint_lo_bits();
  1204       if (value_lo == 0) {
  1205         tmp = G0;
  1206       } else {
  1207         __ set(value_lo, O7);
  1209       store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
  1210       int value_hi = c->as_jint_hi_bits();
  1211       if (value_hi == 0) {
  1212         tmp = G0;
  1213       } else {
  1214         __ set(value_hi, O7);
  1216       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
  1217       break;
  1219     case T_OBJECT: {
  1220       jobject obj = c->as_jobject();
  1221       LIR_Opr tmp;
  1222       if (obj == NULL) {
  1223         tmp = FrameMap::G0_opr;
  1224       } else {
  1225         tmp = FrameMap::O7_opr;
  1226         jobject2reg(c->as_jobject(), O7);
  1228       // handle either reg+reg or reg+disp address
  1229       if (addr->index()->is_valid()) {
  1230         assert(addr->disp() == 0, "must be zero");
  1231         store(tmp, base, addr->index()->as_pointer_register(), type);
  1232       } else {
  1233         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1234         store(tmp, base, addr->disp(), type);
  1237       break;
  1239     default:
  1240       Unimplemented();
  1245 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
  1246   LIR_Const* c = src->as_constant_ptr();
  1247   LIR_Opr to_reg = dest;
  1249   switch (c->type()) {
  1250     case T_INT:
  1251     case T_ADDRESS:
  1253         jint con = c->as_jint();
  1254         if (to_reg->is_single_cpu()) {
  1255           assert(patch_code == lir_patch_none, "no patching handled here");
  1256           __ set(con, to_reg->as_register());
  1257         } else {
  1258           ShouldNotReachHere();
  1259           assert(to_reg->is_single_fpu(), "wrong register kind");
  1261           __ set(con, O7);
  1262           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
  1263           __ st(O7, temp_slot);
  1264           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
  1267       break;
  1269     case T_LONG:
  1271         jlong con = c->as_jlong();
  1273         if (to_reg->is_double_cpu()) {
  1274 #ifdef _LP64
  1275           __ set(con,  to_reg->as_register_lo());
  1276 #else
  1277           __ set(low(con),  to_reg->as_register_lo());
  1278           __ set(high(con), to_reg->as_register_hi());
  1279 #endif
  1280 #ifdef _LP64
  1281         } else if (to_reg->is_single_cpu()) {
  1282           __ set(con, to_reg->as_register());
  1283 #endif
  1284         } else {
  1285           ShouldNotReachHere();
  1286           assert(to_reg->is_double_fpu(), "wrong register kind");
  1287           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
  1288           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
  1289           __ set(low(con),  O7);
  1290           __ st(O7, temp_slot_lo);
  1291           __ set(high(con), O7);
  1292           __ st(O7, temp_slot_hi);
  1293           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
  1296       break;
  1298     case T_OBJECT:
  1300         if (patch_code == lir_patch_none) {
  1301           jobject2reg(c->as_jobject(), to_reg->as_register());
  1302         } else {
  1303           jobject2reg_with_patching(to_reg->as_register(), info);
  1306       break;
  1308     case T_FLOAT:
  1310         address const_addr = __ float_constant(c->as_jfloat());
  1311         if (const_addr == NULL) {
  1312           bailout("const section overflow");
  1313           break;
  1315         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1316         AddressLiteral const_addrlit(const_addr, rspec);
  1317         if (to_reg->is_single_fpu()) {
  1318           __ patchable_sethi(const_addrlit, O7);
  1319           __ relocate(rspec);
  1320           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
  1322         } else {
  1323           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
  1325           __ set(const_addrlit, O7);
  1326           load(O7, 0, to_reg->as_register(), T_INT);
  1329       break;
  1331     case T_DOUBLE:
  1333         address const_addr = __ double_constant(c->as_jdouble());
  1334         if (const_addr == NULL) {
  1335           bailout("const section overflow");
  1336           break;
  1338         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1340         if (to_reg->is_double_fpu()) {
  1341           AddressLiteral const_addrlit(const_addr, rspec);
  1342           __ patchable_sethi(const_addrlit, O7);
  1343           __ relocate(rspec);
  1344           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
  1345         } else {
  1346           assert(to_reg->is_double_cpu(), "Must be a long register.");
  1347 #ifdef _LP64
  1348           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
  1349 #else
  1350           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
  1351           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
  1352 #endif
  1356       break;
  1358     default:
  1359       ShouldNotReachHere();
  1363 Address LIR_Assembler::as_Address(LIR_Address* addr) {
  1364   Register reg = addr->base()->as_register();
  1365   return Address(reg, addr->disp());
  1369 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1370   switch (type) {
  1371     case T_INT:
  1372     case T_FLOAT: {
  1373       Register tmp = O7;
  1374       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1375       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1376       __ lduw(from.base(), from.disp(), tmp);
  1377       __ stw(tmp, to.base(), to.disp());
  1378       break;
  1380     case T_OBJECT: {
  1381       Register tmp = O7;
  1382       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1383       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1384       __ ld_ptr(from.base(), from.disp(), tmp);
  1385       __ st_ptr(tmp, to.base(), to.disp());
  1386       break;
  1388     case T_LONG:
  1389     case T_DOUBLE: {
  1390       Register tmp = O7;
  1391       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
  1392       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1393       __ lduw(from.base(), from.disp(), tmp);
  1394       __ stw(tmp, to.base(), to.disp());
  1395       __ lduw(from.base(), from.disp() + 4, tmp);
  1396       __ stw(tmp, to.base(), to.disp() + 4);
  1397       break;
  1400     default:
  1401       ShouldNotReachHere();
  1406 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
  1407   Address base = as_Address(addr);
  1408   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
  1412 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
  1413   Address base = as_Address(addr);
  1414   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
  1418 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
  1419                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
  1421   LIR_Address* addr = src_opr->as_address_ptr();
  1422   LIR_Opr to_reg = dest;
  1424   Register src = addr->base()->as_pointer_register();
  1425   Register disp_reg = noreg;
  1426   int disp_value = addr->disp();
  1427   bool needs_patching = (patch_code != lir_patch_none);
  1429   if (addr->base()->type() == T_OBJECT) {
  1430     __ verify_oop(src);
  1433   PatchingStub* patch = NULL;
  1434   if (needs_patching) {
  1435     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1436     assert(!to_reg->is_double_cpu() ||
  1437            patch_code == lir_patch_none ||
  1438            patch_code == lir_patch_normal, "patching doesn't match register");
  1441   if (addr->index()->is_illegal()) {
  1442     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1443       if (needs_patching) {
  1444         __ patchable_set(0, O7);
  1445       } else {
  1446         __ set(disp_value, O7);
  1448       disp_reg = O7;
  1450   } else if (unaligned || PatchALot) {
  1451     __ add(src, addr->index()->as_register(), O7);
  1452     src = O7;
  1453   } else {
  1454     disp_reg = addr->index()->as_pointer_register();
  1455     assert(disp_value == 0, "can't handle 3 operand addresses");
  1458   // remember the offset of the load.  The patching_epilog must be done
  1459   // before the call to add_debug_info, otherwise the PcDescs don't get
  1460   // entered in increasing order.
  1461   int offset = code_offset();
  1463   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1464   if (disp_reg == noreg) {
  1465     offset = load(src, disp_value, to_reg, type, unaligned);
  1466   } else {
  1467     assert(!unaligned, "can't handle this");
  1468     offset = load(src, disp_reg, to_reg, type);
  1471   if (patch != NULL) {
  1472     patching_epilog(patch, patch_code, src, info);
  1475   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1479 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1480   LIR_Address* addr = src->as_address_ptr();
  1481   Address from_addr = as_Address(addr);
  1483   if (VM_Version::has_v9()) {
  1484     __ prefetch(from_addr, Assembler::severalReads);
  1489 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1490   LIR_Address* addr = src->as_address_ptr();
  1491   Address from_addr = as_Address(addr);
  1493   if (VM_Version::has_v9()) {
  1494     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
  1499 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1500   Address addr;
  1501   if (src->is_single_word()) {
  1502     addr = frame_map()->address_for_slot(src->single_stack_ix());
  1503   } else if (src->is_double_word())  {
  1504     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
  1507   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1508   load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
  1512 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
  1513   Address addr;
  1514   if (dest->is_single_word()) {
  1515     addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1516   } else if (dest->is_double_word())  {
  1517     addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1519   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1520   store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
  1524 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
  1525   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
  1526     if (from_reg->is_double_fpu()) {
  1527       // double to double moves
  1528       assert(to_reg->is_double_fpu(), "should match");
  1529       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
  1530     } else {
  1531       // float to float moves
  1532       assert(to_reg->is_single_fpu(), "should match");
  1533       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
  1535   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
  1536     if (from_reg->is_double_cpu()) {
  1537 #ifdef _LP64
  1538       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
  1539 #else
  1540       assert(to_reg->is_double_cpu() &&
  1541              from_reg->as_register_hi() != to_reg->as_register_lo() &&
  1542              from_reg->as_register_lo() != to_reg->as_register_hi(),
  1543              "should both be long and not overlap");
  1544       // long to long moves
  1545       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
  1546       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
  1547 #endif
  1548 #ifdef _LP64
  1549     } else if (to_reg->is_double_cpu()) {
  1550       // int to int moves
  1551       __ mov(from_reg->as_register(), to_reg->as_register_lo());
  1552 #endif
  1553     } else {
  1554       // int to int moves
  1555       __ mov(from_reg->as_register(), to_reg->as_register());
  1557   } else {
  1558     ShouldNotReachHere();
  1560   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
  1561     __ verify_oop(to_reg->as_register());
  1566 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
  1567                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
  1568                             bool unaligned) {
  1569   LIR_Address* addr = dest->as_address_ptr();
  1571   Register src = addr->base()->as_pointer_register();
  1572   Register disp_reg = noreg;
  1573   int disp_value = addr->disp();
  1574   bool needs_patching = (patch_code != lir_patch_none);
  1576   if (addr->base()->is_oop_register()) {
  1577     __ verify_oop(src);
  1580   PatchingStub* patch = NULL;
  1581   if (needs_patching) {
  1582     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1583     assert(!from_reg->is_double_cpu() ||
  1584            patch_code == lir_patch_none ||
  1585            patch_code == lir_patch_normal, "patching doesn't match register");
  1588   if (addr->index()->is_illegal()) {
  1589     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1590       if (needs_patching) {
  1591         __ patchable_set(0, O7);
  1592       } else {
  1593         __ set(disp_value, O7);
  1595       disp_reg = O7;
  1597   } else if (unaligned || PatchALot) {
  1598     __ add(src, addr->index()->as_register(), O7);
  1599     src = O7;
  1600   } else {
  1601     disp_reg = addr->index()->as_pointer_register();
  1602     assert(disp_value == 0, "can't handle 3 operand addresses");
  1605   // remember the offset of the store.  The patching_epilog must be done
  1606   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
  1607   // entered in increasing order.
  1608   int offset;
  1610   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1611   if (disp_reg == noreg) {
  1612     offset = store(from_reg, src, disp_value, type, unaligned);
  1613   } else {
  1614     assert(!unaligned, "can't handle this");
  1615     offset = store(from_reg, src, disp_reg, type);
  1618   if (patch != NULL) {
  1619     patching_epilog(patch, patch_code, src, info);
  1622   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1626 void LIR_Assembler::return_op(LIR_Opr result) {
  1627   // the poll may need a register so just pick one that isn't the return register
  1628 #ifdef TIERED
  1629   if (result->type_field() == LIR_OprDesc::long_type) {
  1630     // Must move the result to G1
  1631     // Must leave proper result in O0,O1 and G1 (TIERED only)
  1632     __ sllx(I0, 32, G1);          // Shift bits into high G1
  1633     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  1634     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  1636 #endif // TIERED
  1637   __ set((intptr_t)os::get_polling_page(), L0);
  1638   __ relocate(relocInfo::poll_return_type);
  1639   __ ld_ptr(L0, 0, G0);
  1640   __ ret();
  1641   __ delayed()->restore();
  1645 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
  1646   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
  1647   if (info != NULL) {
  1648     add_debug_info_for_branch(info);
  1649   } else {
  1650     __ relocate(relocInfo::poll_type);
  1653   int offset = __ offset();
  1654   __ ld_ptr(tmp->as_register(), 0, G0);
  1656   return offset;
  1660 void LIR_Assembler::emit_static_call_stub() {
  1661   address call_pc = __ pc();
  1662   address stub = __ start_a_stub(call_stub_size);
  1663   if (stub == NULL) {
  1664     bailout("static call stub overflow");
  1665     return;
  1668   int start = __ offset();
  1669   __ relocate(static_stub_Relocation::spec(call_pc));
  1671   __ set_oop(NULL, G5);
  1672   // must be set to -1 at code generation time
  1673   AddressLiteral addrlit(-1);
  1674   __ jump_to(addrlit, G3);
  1675   __ delayed()->nop();
  1677   assert(__ offset() - start <= call_stub_size, "stub too big");
  1678   __ end_a_stub();
  1682 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  1683   if (opr1->is_single_fpu()) {
  1684     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
  1685   } else if (opr1->is_double_fpu()) {
  1686     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
  1687   } else if (opr1->is_single_cpu()) {
  1688     if (opr2->is_constant()) {
  1689       switch (opr2->as_constant_ptr()->type()) {
  1690         case T_INT:
  1691           { jint con = opr2->as_constant_ptr()->as_jint();
  1692             if (Assembler::is_simm13(con)) {
  1693               __ cmp(opr1->as_register(), con);
  1694             } else {
  1695               __ set(con, O7);
  1696               __ cmp(opr1->as_register(), O7);
  1699           break;
  1701         case T_OBJECT:
  1702           // there are only equal/notequal comparisions on objects
  1703           { jobject con = opr2->as_constant_ptr()->as_jobject();
  1704             if (con == NULL) {
  1705               __ cmp(opr1->as_register(), 0);
  1706             } else {
  1707               jobject2reg(con, O7);
  1708               __ cmp(opr1->as_register(), O7);
  1711           break;
  1713         default:
  1714           ShouldNotReachHere();
  1715           break;
  1717     } else {
  1718       if (opr2->is_address()) {
  1719         LIR_Address * addr = opr2->as_address_ptr();
  1720         BasicType type = addr->type();
  1721         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1722         else                    __ ld(as_Address(addr), O7);
  1723         __ cmp(opr1->as_register(), O7);
  1724       } else {
  1725         __ cmp(opr1->as_register(), opr2->as_register());
  1728   } else if (opr1->is_double_cpu()) {
  1729     Register xlo = opr1->as_register_lo();
  1730     Register xhi = opr1->as_register_hi();
  1731     if (opr2->is_constant() && opr2->as_jlong() == 0) {
  1732       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
  1733 #ifdef _LP64
  1734       __ orcc(xhi, G0, G0);
  1735 #else
  1736       __ orcc(xhi, xlo, G0);
  1737 #endif
  1738     } else if (opr2->is_register()) {
  1739       Register ylo = opr2->as_register_lo();
  1740       Register yhi = opr2->as_register_hi();
  1741 #ifdef _LP64
  1742       __ cmp(xlo, ylo);
  1743 #else
  1744       __ subcc(xlo, ylo, xlo);
  1745       __ subccc(xhi, yhi, xhi);
  1746       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  1747         __ orcc(xhi, xlo, G0);
  1749 #endif
  1750     } else {
  1751       ShouldNotReachHere();
  1753   } else if (opr1->is_address()) {
  1754     LIR_Address * addr = opr1->as_address_ptr();
  1755     BasicType type = addr->type();
  1756     assert (opr2->is_constant(), "Checking");
  1757     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1758     else                    __ ld(as_Address(addr), O7);
  1759     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
  1760   } else {
  1761     ShouldNotReachHere();
  1766 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
  1767   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  1768     bool is_unordered_less = (code == lir_ucmp_fd2i);
  1769     if (left->is_single_fpu()) {
  1770       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
  1771     } else if (left->is_double_fpu()) {
  1772       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
  1773     } else {
  1774       ShouldNotReachHere();
  1776   } else if (code == lir_cmp_l2i) {
  1777 #ifdef _LP64
  1778     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
  1779 #else
  1780     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
  1781             right->as_register_hi(), right->as_register_lo(),
  1782             dst->as_register());
  1783 #endif
  1784   } else {
  1785     ShouldNotReachHere();
  1790 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
  1792   Assembler::Condition acond;
  1793   switch (condition) {
  1794     case lir_cond_equal:        acond = Assembler::equal;        break;
  1795     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
  1796     case lir_cond_less:         acond = Assembler::less;         break;
  1797     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
  1798     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
  1799     case lir_cond_greater:      acond = Assembler::greater;      break;
  1800     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
  1801     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
  1802     default:                         ShouldNotReachHere();
  1803   };
  1805   if (opr1->is_constant() && opr1->type() == T_INT) {
  1806     Register dest = result->as_register();
  1807     // load up first part of constant before branch
  1808     // and do the rest in the delay slot.
  1809     if (!Assembler::is_simm13(opr1->as_jint())) {
  1810       __ sethi(opr1->as_jint(), dest);
  1812   } else if (opr1->is_constant()) {
  1813     const2reg(opr1, result, lir_patch_none, NULL);
  1814   } else if (opr1->is_register()) {
  1815     reg2reg(opr1, result);
  1816   } else if (opr1->is_stack()) {
  1817     stack2reg(opr1, result, result->type());
  1818   } else {
  1819     ShouldNotReachHere();
  1821   Label skip;
  1822   __ br(acond, false, Assembler::pt, skip);
  1823   if (opr1->is_constant() && opr1->type() == T_INT) {
  1824     Register dest = result->as_register();
  1825     if (Assembler::is_simm13(opr1->as_jint())) {
  1826       __ delayed()->or3(G0, opr1->as_jint(), dest);
  1827     } else {
  1828       // the sethi has been done above, so just put in the low 10 bits
  1829       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
  1831   } else {
  1832     // can't do anything useful in the delay slot
  1833     __ delayed()->nop();
  1835   if (opr2->is_constant()) {
  1836     const2reg(opr2, result, lir_patch_none, NULL);
  1837   } else if (opr2->is_register()) {
  1838     reg2reg(opr2, result);
  1839   } else if (opr2->is_stack()) {
  1840     stack2reg(opr2, result, result->type());
  1841   } else {
  1842     ShouldNotReachHere();
  1844   __ bind(skip);
  1848 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1849   assert(info == NULL, "unused on this code path");
  1850   assert(left->is_register(), "wrong items state");
  1851   assert(dest->is_register(), "wrong items state");
  1853   if (right->is_register()) {
  1854     if (dest->is_float_kind()) {
  1856       FloatRegister lreg, rreg, res;
  1857       FloatRegisterImpl::Width w;
  1858       if (right->is_single_fpu()) {
  1859         w = FloatRegisterImpl::S;
  1860         lreg = left->as_float_reg();
  1861         rreg = right->as_float_reg();
  1862         res  = dest->as_float_reg();
  1863       } else {
  1864         w = FloatRegisterImpl::D;
  1865         lreg = left->as_double_reg();
  1866         rreg = right->as_double_reg();
  1867         res  = dest->as_double_reg();
  1870       switch (code) {
  1871         case lir_add: __ fadd(w, lreg, rreg, res); break;
  1872         case lir_sub: __ fsub(w, lreg, rreg, res); break;
  1873         case lir_mul: // fall through
  1874         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
  1875         case lir_div: // fall through
  1876         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
  1877         default: ShouldNotReachHere();
  1880     } else if (dest->is_double_cpu()) {
  1881 #ifdef _LP64
  1882       Register dst_lo = dest->as_register_lo();
  1883       Register op1_lo = left->as_pointer_register();
  1884       Register op2_lo = right->as_pointer_register();
  1886       switch (code) {
  1887         case lir_add:
  1888           __ add(op1_lo, op2_lo, dst_lo);
  1889           break;
  1891         case lir_sub:
  1892           __ sub(op1_lo, op2_lo, dst_lo);
  1893           break;
  1895         default: ShouldNotReachHere();
  1897 #else
  1898       Register op1_lo = left->as_register_lo();
  1899       Register op1_hi = left->as_register_hi();
  1900       Register op2_lo = right->as_register_lo();
  1901       Register op2_hi = right->as_register_hi();
  1902       Register dst_lo = dest->as_register_lo();
  1903       Register dst_hi = dest->as_register_hi();
  1905       switch (code) {
  1906         case lir_add:
  1907           __ addcc(op1_lo, op2_lo, dst_lo);
  1908           __ addc (op1_hi, op2_hi, dst_hi);
  1909           break;
  1911         case lir_sub:
  1912           __ subcc(op1_lo, op2_lo, dst_lo);
  1913           __ subc (op1_hi, op2_hi, dst_hi);
  1914           break;
  1916         default: ShouldNotReachHere();
  1918 #endif
  1919     } else {
  1920       assert (right->is_single_cpu(), "Just Checking");
  1922       Register lreg = left->as_register();
  1923       Register res  = dest->as_register();
  1924       Register rreg = right->as_register();
  1925       switch (code) {
  1926         case lir_add:  __ add  (lreg, rreg, res); break;
  1927         case lir_sub:  __ sub  (lreg, rreg, res); break;
  1928         case lir_mul:  __ mult (lreg, rreg, res); break;
  1929         default: ShouldNotReachHere();
  1932   } else {
  1933     assert (right->is_constant(), "must be constant");
  1935     if (dest->is_single_cpu()) {
  1936       Register lreg = left->as_register();
  1937       Register res  = dest->as_register();
  1938       int    simm13 = right->as_constant_ptr()->as_jint();
  1940       switch (code) {
  1941         case lir_add:  __ add  (lreg, simm13, res); break;
  1942         case lir_sub:  __ sub  (lreg, simm13, res); break;
  1943         case lir_mul:  __ mult (lreg, simm13, res); break;
  1944         default: ShouldNotReachHere();
  1946     } else {
  1947       Register lreg = left->as_pointer_register();
  1948       Register res  = dest->as_register_lo();
  1949       long con = right->as_constant_ptr()->as_jlong();
  1950       assert(Assembler::is_simm13(con), "must be simm13");
  1952       switch (code) {
  1953         case lir_add:  __ add  (lreg, (int)con, res); break;
  1954         case lir_sub:  __ sub  (lreg, (int)con, res); break;
  1955         case lir_mul:  __ mult (lreg, (int)con, res); break;
  1956         default: ShouldNotReachHere();
  1963 void LIR_Assembler::fpop() {
  1964   // do nothing
  1968 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
  1969   switch (code) {
  1970     case lir_sin:
  1971     case lir_tan:
  1972     case lir_cos: {
  1973       assert(thread->is_valid(), "preserve the thread object for performance reasons");
  1974       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
  1975       break;
  1977     case lir_sqrt: {
  1978       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
  1979       FloatRegister src_reg = value->as_double_reg();
  1980       FloatRegister dst_reg = dest->as_double_reg();
  1981       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
  1982       break;
  1984     case lir_abs: {
  1985       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
  1986       FloatRegister src_reg = value->as_double_reg();
  1987       FloatRegister dst_reg = dest->as_double_reg();
  1988       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
  1989       break;
  1991     default: {
  1992       ShouldNotReachHere();
  1993       break;
  1999 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
  2000   if (right->is_constant()) {
  2001     if (dest->is_single_cpu()) {
  2002       int simm13 = right->as_constant_ptr()->as_jint();
  2003       switch (code) {
  2004         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
  2005         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
  2006         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
  2007         default: ShouldNotReachHere();
  2009     } else {
  2010       long c = right->as_constant_ptr()->as_jlong();
  2011       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
  2012       int simm13 = (int)c;
  2013       switch (code) {
  2014         case lir_logic_and:
  2015 #ifndef _LP64
  2016           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2017 #endif
  2018           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2019           break;
  2021         case lir_logic_or:
  2022 #ifndef _LP64
  2023           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2024 #endif
  2025           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2026           break;
  2028         case lir_logic_xor:
  2029 #ifndef _LP64
  2030           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2031 #endif
  2032           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2033           break;
  2035         default: ShouldNotReachHere();
  2038   } else {
  2039     assert(right->is_register(), "right should be in register");
  2041     if (dest->is_single_cpu()) {
  2042       switch (code) {
  2043         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
  2044         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
  2045         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
  2046         default: ShouldNotReachHere();
  2048     } else {
  2049 #ifdef _LP64
  2050       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
  2051                                                                         left->as_register_lo();
  2052       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
  2053                                                                           right->as_register_lo();
  2055       switch (code) {
  2056         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
  2057         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
  2058         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
  2059         default: ShouldNotReachHere();
  2061 #else
  2062       switch (code) {
  2063         case lir_logic_and:
  2064           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2065           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2066           break;
  2068         case lir_logic_or:
  2069           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2070           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2071           break;
  2073         case lir_logic_xor:
  2074           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2075           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2076           break;
  2078         default: ShouldNotReachHere();
  2080 #endif
  2086 int LIR_Assembler::shift_amount(BasicType t) {
  2087   int elem_size = type2aelembytes(t);
  2088   switch (elem_size) {
  2089     case 1 : return 0;
  2090     case 2 : return 1;
  2091     case 4 : return 2;
  2092     case 8 : return 3;
  2094   ShouldNotReachHere();
  2095   return -1;
  2099 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2100   assert(exceptionOop->as_register() == Oexception, "should match");
  2101   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
  2103   info->add_register_oop(exceptionOop);
  2105   // reuse the debug info from the safepoint poll for the throw op itself
  2106   address pc_for_athrow  = __ pc();
  2107   int pc_for_athrow_offset = __ offset();
  2108   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
  2109   __ set(pc_for_athrow, Oissuing_pc, rspec);
  2110   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2112   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
  2113   __ delayed()->nop();
  2117 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2118   assert(exceptionOop->as_register() == Oexception, "should match");
  2120   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
  2121   __ delayed()->nop();
  2125 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2126   Register src = op->src()->as_register();
  2127   Register dst = op->dst()->as_register();
  2128   Register src_pos = op->src_pos()->as_register();
  2129   Register dst_pos = op->dst_pos()->as_register();
  2130   Register length  = op->length()->as_register();
  2131   Register tmp = op->tmp()->as_register();
  2132   Register tmp2 = O7;
  2134   int flags = op->flags();
  2135   ciArrayKlass* default_type = op->expected_type();
  2136   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2137   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2139   // set up the arraycopy stub information
  2140   ArrayCopyStub* stub = op->stub();
  2142   // always do stub if no type information is available.  it's ok if
  2143   // the known type isn't loaded since the code sanity checks
  2144   // in debug mode and the type isn't required when we know the exact type
  2145   // also check that the type is an array type.
  2146   // We also, for now, always call the stub if the barrier set requires a
  2147   // write_ref_pre barrier (which the stub does, but none of the optimized
  2148   // cases currently does).
  2149   if (op->expected_type() == NULL ||
  2150       Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
  2151     __ mov(src,     O0);
  2152     __ mov(src_pos, O1);
  2153     __ mov(dst,     O2);
  2154     __ mov(dst_pos, O3);
  2155     __ mov(length,  O4);
  2156     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
  2158     __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
  2159     __ delayed()->nop();
  2160     __ bind(*stub->continuation());
  2161     return;
  2164   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
  2166   // make sure src and dst are non-null and load array length
  2167   if (flags & LIR_OpArrayCopy::src_null_check) {
  2168     __ tst(src);
  2169     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2170     __ delayed()->nop();
  2173   if (flags & LIR_OpArrayCopy::dst_null_check) {
  2174     __ tst(dst);
  2175     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2176     __ delayed()->nop();
  2179   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  2180     // test src_pos register
  2181     __ tst(src_pos);
  2182     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2183     __ delayed()->nop();
  2186   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  2187     // test dst_pos register
  2188     __ tst(dst_pos);
  2189     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2190     __ delayed()->nop();
  2193   if (flags & LIR_OpArrayCopy::length_positive_check) {
  2194     // make sure length isn't negative
  2195     __ tst(length);
  2196     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
  2197     __ delayed()->nop();
  2200   if (flags & LIR_OpArrayCopy::src_range_check) {
  2201     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2202     __ add(length, src_pos, tmp);
  2203     __ cmp(tmp2, tmp);
  2204     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2205     __ delayed()->nop();
  2208   if (flags & LIR_OpArrayCopy::dst_range_check) {
  2209     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2210     __ add(length, dst_pos, tmp);
  2211     __ cmp(tmp2, tmp);
  2212     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2213     __ delayed()->nop();
  2216   if (flags & LIR_OpArrayCopy::type_check) {
  2217     __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
  2218     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2219     __ cmp(tmp, tmp2);
  2220     __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2221     __ delayed()->nop();
  2224 #ifdef ASSERT
  2225   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  2226     // Sanity check the known type with the incoming class.  For the
  2227     // primitive case the types must match exactly with src.klass and
  2228     // dst.klass each exactly matching the default type.  For the
  2229     // object array case, if no type check is needed then either the
  2230     // dst type is exactly the expected type and the src type is a
  2231     // subtype which we can't check or src is the same array as dst
  2232     // but not necessarily exactly of type default_type.
  2233     Label known_ok, halt;
  2234     jobject2reg(op->expected_type()->constant_encoding(), tmp);
  2235     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2236     if (basic_type != T_OBJECT) {
  2237       __ cmp(tmp, tmp2);
  2238       __ br(Assembler::notEqual, false, Assembler::pn, halt);
  2239       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2240       __ cmp(tmp, tmp2);
  2241       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2242       __ delayed()->nop();
  2243     } else {
  2244       __ cmp(tmp, tmp2);
  2245       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2246       __ delayed()->cmp(src, dst);
  2247       __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2248       __ delayed()->nop();
  2250     __ bind(halt);
  2251     __ stop("incorrect type information in arraycopy");
  2252     __ bind(known_ok);
  2254 #endif
  2256   int shift = shift_amount(basic_type);
  2258   Register src_ptr = O0;
  2259   Register dst_ptr = O1;
  2260   Register len     = O2;
  2262   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2263   LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
  2264   if (shift == 0) {
  2265     __ add(src_ptr, src_pos, src_ptr);
  2266   } else {
  2267     __ sll(src_pos, shift, tmp);
  2268     __ add(src_ptr, tmp, src_ptr);
  2271   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2272   LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
  2273   if (shift == 0) {
  2274     __ add(dst_ptr, dst_pos, dst_ptr);
  2275   } else {
  2276     __ sll(dst_pos, shift, tmp);
  2277     __ add(dst_ptr, tmp, dst_ptr);
  2280   if (basic_type != T_OBJECT) {
  2281     if (shift == 0) {
  2282       __ mov(length, len);
  2283     } else {
  2284       __ sll(length, shift, len);
  2286     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
  2287   } else {
  2288     // oop_arraycopy takes a length in number of elements, so don't scale it.
  2289     __ mov(length, len);
  2290     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
  2293   __ bind(*stub->continuation());
  2297 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2298   if (dest->is_single_cpu()) {
  2299 #ifdef _LP64
  2300     if (left->type() == T_OBJECT) {
  2301       switch (code) {
  2302         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
  2303         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
  2304         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2305         default: ShouldNotReachHere();
  2307     } else
  2308 #endif
  2309       switch (code) {
  2310         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
  2311         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
  2312         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2313         default: ShouldNotReachHere();
  2315   } else {
  2316 #ifdef _LP64
  2317     switch (code) {
  2318       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2319       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2320       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2321       default: ShouldNotReachHere();
  2323 #else
  2324     switch (code) {
  2325       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2326       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2327       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2328       default: ShouldNotReachHere();
  2330 #endif
  2335 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2336 #ifdef _LP64
  2337   if (left->type() == T_OBJECT) {
  2338     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
  2339     Register l = left->as_register();
  2340     Register d = dest->as_register_lo();
  2341     switch (code) {
  2342       case lir_shl:  __ sllx  (l, count, d); break;
  2343       case lir_shr:  __ srax  (l, count, d); break;
  2344       case lir_ushr: __ srlx  (l, count, d); break;
  2345       default: ShouldNotReachHere();
  2347     return;
  2349 #endif
  2351   if (dest->is_single_cpu()) {
  2352     count = count & 0x1F; // Java spec
  2353     switch (code) {
  2354       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
  2355       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
  2356       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
  2357       default: ShouldNotReachHere();
  2359   } else if (dest->is_double_cpu()) {
  2360     count = count & 63; // Java spec
  2361     switch (code) {
  2362       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2363       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2364       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2365       default: ShouldNotReachHere();
  2367   } else {
  2368     ShouldNotReachHere();
  2373 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  2374   assert(op->tmp1()->as_register()  == G1 &&
  2375          op->tmp2()->as_register()  == G3 &&
  2376          op->tmp3()->as_register()  == G4 &&
  2377          op->obj()->as_register()   == O0 &&
  2378          op->klass()->as_register() == G5, "must be");
  2379   if (op->init_check()) {
  2380     __ ld(op->klass()->as_register(),
  2381           instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
  2382           op->tmp1()->as_register());
  2383     add_debug_info_for_null_check_here(op->stub()->info());
  2384     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
  2385     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
  2386     __ delayed()->nop();
  2388   __ allocate_object(op->obj()->as_register(),
  2389                      op->tmp1()->as_register(),
  2390                      op->tmp2()->as_register(),
  2391                      op->tmp3()->as_register(),
  2392                      op->header_size(),
  2393                      op->object_size(),
  2394                      op->klass()->as_register(),
  2395                      *op->stub()->entry());
  2396   __ bind(*op->stub()->continuation());
  2397   __ verify_oop(op->obj()->as_register());
  2401 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  2402   assert(op->tmp1()->as_register()  == G1 &&
  2403          op->tmp2()->as_register()  == G3 &&
  2404          op->tmp3()->as_register()  == G4 &&
  2405          op->tmp4()->as_register()  == O1 &&
  2406          op->klass()->as_register() == G5, "must be");
  2407   if (UseSlowPath ||
  2408       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  2409       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  2410     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2411     __ delayed()->nop();
  2412   } else {
  2413     __ allocate_array(op->obj()->as_register(),
  2414                       op->len()->as_register(),
  2415                       op->tmp1()->as_register(),
  2416                       op->tmp2()->as_register(),
  2417                       op->tmp3()->as_register(),
  2418                       arrayOopDesc::header_size(op->type()),
  2419                       type2aelembytes(op->type()),
  2420                       op->klass()->as_register(),
  2421                       *op->stub()->entry());
  2423   __ bind(*op->stub()->continuation());
  2427 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  2428   LIR_Code code = op->code();
  2429   if (code == lir_store_check) {
  2430     Register value = op->object()->as_register();
  2431     Register array = op->array()->as_register();
  2432     Register k_RInfo = op->tmp1()->as_register();
  2433     Register klass_RInfo = op->tmp2()->as_register();
  2434     Register Rtmp1 = op->tmp3()->as_register();
  2436     __ verify_oop(value);
  2438     CodeStub* stub = op->stub();
  2439     Label done;
  2440     __ cmp(value, 0);
  2441     __ br(Assembler::equal, false, Assembler::pn, done);
  2442     __ delayed()->nop();
  2443     load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
  2444     load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2446     // get instance klass
  2447     load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
  2448     // perform the fast part of the checking logic
  2449     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, &done, stub->entry(), NULL);
  2451     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2452     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2453     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2454     __ delayed()->nop();
  2455     __ cmp(G3, 0);
  2456     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2457     __ delayed()->nop();
  2458     __ bind(done);
  2459   } else if (op->code() == lir_checkcast) {
  2460     // we always need a stub for the failure case.
  2461     CodeStub* stub = op->stub();
  2462     Register obj = op->object()->as_register();
  2463     Register k_RInfo = op->tmp1()->as_register();
  2464     Register klass_RInfo = op->tmp2()->as_register();
  2465     Register dst = op->result_opr()->as_register();
  2466     Register Rtmp1 = op->tmp3()->as_register();
  2467     ciKlass* k = op->klass();
  2469     if (obj == k_RInfo) {
  2470       k_RInfo = klass_RInfo;
  2471       klass_RInfo = obj;
  2473     if (op->profiled_method() != NULL) {
  2474       ciMethod* method = op->profiled_method();
  2475       int bci          = op->profiled_bci();
  2477       // We need two temporaries to perform this operation on SPARC,
  2478       // so to keep things simple we perform a redundant test here
  2479       Label profile_done;
  2480       __ cmp(obj, 0);
  2481       __ br(Assembler::notEqual, false, Assembler::pn, profile_done);
  2482       __ delayed()->nop();
  2483       // Object is null; update methodDataOop
  2484       ciMethodData* md = method->method_data();
  2485       if (md == NULL) {
  2486         bailout("out of memory building methodDataOop");
  2487         return;
  2489       ciProfileData* data = md->bci_to_data(bci);
  2490       assert(data != NULL,       "need data for checkcast");
  2491       assert(data->is_BitData(), "need BitData for checkcast");
  2492       Register mdo      = k_RInfo;
  2493       Register data_val = Rtmp1;
  2494       jobject2reg(md->constant_encoding(), mdo);
  2496       int mdo_offset_bias = 0;
  2497       if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
  2498         // The offset is large so bias the mdo by the base of the slot so
  2499         // that the ld can use simm13s to reference the slots of the data
  2500         mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
  2501         __ set(mdo_offset_bias, data_val);
  2502         __ add(mdo, data_val, mdo);
  2506       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2507       __ ldub(flags_addr, data_val);
  2508       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2509       __ stb(data_val, flags_addr);
  2510       __ bind(profile_done);
  2513     Label done;
  2514     // patching may screw with our temporaries on sparc,
  2515     // so let's do it before loading the class
  2516     if (k->is_loaded()) {
  2517       jobject2reg(k->constant_encoding(), k_RInfo);
  2518     } else {
  2519       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  2521     assert(obj != k_RInfo, "must be different");
  2522     __ cmp(obj, 0);
  2523     __ br(Assembler::equal, false, Assembler::pn, done);
  2524     __ delayed()->nop();
  2526     // get object class
  2527     // not a safepoint as obj null check happens earlier
  2528     load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2529     if (op->fast_check()) {
  2530       assert_different_registers(klass_RInfo, k_RInfo);
  2531       __ cmp(k_RInfo, klass_RInfo);
  2532       __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2533       __ delayed()->nop();
  2534       __ bind(done);
  2535     } else {
  2536       bool need_slow_path = true;
  2537       if (k->is_loaded()) {
  2538         if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
  2539           need_slow_path = false;
  2540         // perform the fast part of the checking logic
  2541         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
  2542                                          (need_slow_path ? &done : NULL),
  2543                                          stub->entry(), NULL,
  2544                                          RegisterOrConstant(k->super_check_offset()));
  2545       } else {
  2546         // perform the fast part of the checking logic
  2547         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7,
  2548                                          &done, stub->entry(), NULL);
  2550       if (need_slow_path) {
  2551         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2552         assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2553         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2554         __ delayed()->nop();
  2555         __ cmp(G3, 0);
  2556         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2557         __ delayed()->nop();
  2559       __ bind(done);
  2561     __ mov(obj, dst);
  2562   } else if (code == lir_instanceof) {
  2563     Register obj = op->object()->as_register();
  2564     Register k_RInfo = op->tmp1()->as_register();
  2565     Register klass_RInfo = op->tmp2()->as_register();
  2566     Register dst = op->result_opr()->as_register();
  2567     Register Rtmp1 = op->tmp3()->as_register();
  2568     ciKlass* k = op->klass();
  2570     Label done;
  2571     if (obj == k_RInfo) {
  2572       k_RInfo = klass_RInfo;
  2573       klass_RInfo = obj;
  2575     // patching may screw with our temporaries on sparc,
  2576     // so let's do it before loading the class
  2577     if (k->is_loaded()) {
  2578       jobject2reg(k->constant_encoding(), k_RInfo);
  2579     } else {
  2580       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  2582     assert(obj != k_RInfo, "must be different");
  2583     __ cmp(obj, 0);
  2584     __ br(Assembler::equal, true, Assembler::pn, done);
  2585     __ delayed()->set(0, dst);
  2587     // get object class
  2588     // not a safepoint as obj null check happens earlier
  2589     load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
  2590     if (op->fast_check()) {
  2591       __ cmp(k_RInfo, klass_RInfo);
  2592       __ br(Assembler::equal, true, Assembler::pt, done);
  2593       __ delayed()->set(1, dst);
  2594       __ set(0, dst);
  2595       __ bind(done);
  2596     } else {
  2597       bool need_slow_path = true;
  2598       if (k->is_loaded()) {
  2599         if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
  2600           need_slow_path = false;
  2601         // perform the fast part of the checking logic
  2602         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, noreg,
  2603                                          (need_slow_path ? &done : NULL),
  2604                                          (need_slow_path ? &done : NULL), NULL,
  2605                                          RegisterOrConstant(k->super_check_offset()),
  2606                                          dst);
  2607       } else {
  2608         assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
  2609         // perform the fast part of the checking logic
  2610         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, O7, dst,
  2611                                          &done, &done, NULL,
  2612                                          RegisterOrConstant(-1),
  2613                                          dst);
  2615       if (need_slow_path) {
  2616         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2617         assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2618         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2619         __ delayed()->nop();
  2620         __ mov(G3, dst);
  2622       __ bind(done);
  2624   } else {
  2625     ShouldNotReachHere();
  2631 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  2632   if (op->code() == lir_cas_long) {
  2633     assert(VM_Version::supports_cx8(), "wrong machine");
  2634     Register addr = op->addr()->as_pointer_register();
  2635     Register cmp_value_lo = op->cmp_value()->as_register_lo();
  2636     Register cmp_value_hi = op->cmp_value()->as_register_hi();
  2637     Register new_value_lo = op->new_value()->as_register_lo();
  2638     Register new_value_hi = op->new_value()->as_register_hi();
  2639     Register t1 = op->tmp1()->as_register();
  2640     Register t2 = op->tmp2()->as_register();
  2641 #ifdef _LP64
  2642     __ mov(cmp_value_lo, t1);
  2643     __ mov(new_value_lo, t2);
  2644 #else
  2645     // move high and low halves of long values into single registers
  2646     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
  2647     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
  2648     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
  2649     __ sllx(new_value_hi, 32, t2);
  2650     __ srl(new_value_lo, 0, new_value_lo);
  2651     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
  2652 #endif
  2653     // perform the compare and swap operation
  2654     __ casx(addr, t1, t2);
  2655     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2656     // overwritten with the original value in "addr" and will be equal to t1.
  2657     __ cmp(t1, t2);
  2659   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
  2660     Register addr = op->addr()->as_pointer_register();
  2661     Register cmp_value = op->cmp_value()->as_register();
  2662     Register new_value = op->new_value()->as_register();
  2663     Register t1 = op->tmp1()->as_register();
  2664     Register t2 = op->tmp2()->as_register();
  2665     __ mov(cmp_value, t1);
  2666     __ mov(new_value, t2);
  2667 #ifdef _LP64
  2668     if (op->code() == lir_cas_obj) {
  2669       __ casx(addr, t1, t2);
  2670     } else
  2671 #endif
  2673         __ cas(addr, t1, t2);
  2675     __ cmp(t1, t2);
  2676   } else {
  2677     Unimplemented();
  2681 void LIR_Assembler::set_24bit_FPU() {
  2682   Unimplemented();
  2686 void LIR_Assembler::reset_FPU() {
  2687   Unimplemented();
  2691 void LIR_Assembler::breakpoint() {
  2692   __ breakpoint_trap();
  2696 void LIR_Assembler::push(LIR_Opr opr) {
  2697   Unimplemented();
  2701 void LIR_Assembler::pop(LIR_Opr opr) {
  2702   Unimplemented();
  2706 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
  2707   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
  2708   Register dst = dst_opr->as_register();
  2709   Register reg = mon_addr.base();
  2710   int offset = mon_addr.disp();
  2711   // compute pointer to BasicLock
  2712   if (mon_addr.is_simm13()) {
  2713     __ add(reg, offset, dst);
  2714   } else {
  2715     __ set(offset, dst);
  2716     __ add(dst, reg, dst);
  2721 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  2722   Register obj = op->obj_opr()->as_register();
  2723   Register hdr = op->hdr_opr()->as_register();
  2724   Register lock = op->lock_opr()->as_register();
  2726   // obj may not be an oop
  2727   if (op->code() == lir_lock) {
  2728     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
  2729     if (UseFastLocking) {
  2730       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2731       // add debug info for NullPointerException only if one is possible
  2732       if (op->info() != NULL) {
  2733         add_debug_info_for_null_check_here(op->info());
  2735       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
  2736     } else {
  2737       // always do slow locking
  2738       // note: the slow locking code could be inlined here, however if we use
  2739       //       slow locking, speed doesn't matter anyway and this solution is
  2740       //       simpler and requires less duplicated code - additionally, the
  2741       //       slow locking code is the same in either case which simplifies
  2742       //       debugging
  2743       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2744       __ delayed()->nop();
  2746   } else {
  2747     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
  2748     if (UseFastLocking) {
  2749       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2750       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  2751     } else {
  2752       // always do slow unlocking
  2753       // note: the slow unlocking code could be inlined here, however if we use
  2754       //       slow unlocking, speed doesn't matter anyway and this solution is
  2755       //       simpler and requires less duplicated code - additionally, the
  2756       //       slow unlocking code is the same in either case which simplifies
  2757       //       debugging
  2758       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2759       __ delayed()->nop();
  2762   __ bind(*op->stub()->continuation());
  2766 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  2767   ciMethod* method = op->profiled_method();
  2768   int bci          = op->profiled_bci();
  2770   // Update counter for all call types
  2771   ciMethodData* md = method->method_data();
  2772   if (md == NULL) {
  2773     bailout("out of memory building methodDataOop");
  2774     return;
  2776   ciProfileData* data = md->bci_to_data(bci);
  2777   assert(data->is_CounterData(), "need CounterData for calls");
  2778   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  2779   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
  2780   Register mdo  = op->mdo()->as_register();
  2781   Register tmp1 = op->tmp1()->as_register();
  2782   jobject2reg(md->constant_encoding(), mdo);
  2783   int mdo_offset_bias = 0;
  2784   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
  2785                             data->size_in_bytes())) {
  2786     // The offset is large so bias the mdo by the base of the slot so
  2787     // that the ld can use simm13s to reference the slots of the data
  2788     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
  2789     __ set(mdo_offset_bias, O7);
  2790     __ add(mdo, O7, mdo);
  2793   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2794   Bytecodes::Code bc = method->java_code_at_bci(bci);
  2795   // Perform additional virtual call profiling for invokevirtual and
  2796   // invokeinterface bytecodes
  2797   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  2798       Tier1ProfileVirtualCalls) {
  2799     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  2800     Register recv = op->recv()->as_register();
  2801     assert_different_registers(mdo, tmp1, recv);
  2802     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  2803     ciKlass* known_klass = op->known_holder();
  2804     if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
  2805       // We know the type that will be seen at this call site; we can
  2806       // statically update the methodDataOop rather than needing to do
  2807       // dynamic tests on the receiver type
  2809       // NOTE: we should probably put a lock around this search to
  2810       // avoid collisions by concurrent compilations
  2811       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  2812       uint i;
  2813       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2814         ciKlass* receiver = vc_data->receiver(i);
  2815         if (known_klass->equals(receiver)) {
  2816           Address data_addr(mdo, md->byte_offset_of_slot(data,
  2817                                                          VirtualCallData::receiver_count_offset(i)) -
  2818                             mdo_offset_bias);
  2819           __ lduw(data_addr, tmp1);
  2820           __ add(tmp1, DataLayout::counter_increment, tmp1);
  2821           __ stw(tmp1, data_addr);
  2822           return;
  2826       // Receiver type not found in profile data; select an empty slot
  2828       // Note that this is less efficient than it should be because it
  2829       // always does a write to the receiver part of the
  2830       // VirtualCallData rather than just the first time
  2831       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2832         ciKlass* receiver = vc_data->receiver(i);
  2833         if (receiver == NULL) {
  2834           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2835                             mdo_offset_bias);
  2836           jobject2reg(known_klass->constant_encoding(), tmp1);
  2837           __ st_ptr(tmp1, recv_addr);
  2838           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2839                             mdo_offset_bias);
  2840           __ lduw(data_addr, tmp1);
  2841           __ add(tmp1, DataLayout::counter_increment, tmp1);
  2842           __ stw(tmp1, data_addr);
  2843           return;
  2846     } else {
  2847       load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
  2848       Label update_done;
  2849       uint i;
  2850       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2851         Label next_test;
  2852         // See if the receiver is receiver[n].
  2853         Address receiver_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2854                               mdo_offset_bias);
  2855         __ ld_ptr(receiver_addr, tmp1);
  2856         __ verify_oop(tmp1);
  2857         __ cmp(recv, tmp1);
  2858         __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
  2859         __ delayed()->nop();
  2860         Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2861                           mdo_offset_bias);
  2862         __ lduw(data_addr, tmp1);
  2863         __ add(tmp1, DataLayout::counter_increment, tmp1);
  2864         __ stw(tmp1, data_addr);
  2865         __ br(Assembler::always, false, Assembler::pt, update_done);
  2866         __ delayed()->nop();
  2867         __ bind(next_test);
  2870       // Didn't find receiver; find next empty slot and fill it in
  2871       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2872         Label next_test;
  2873         Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  2874                           mdo_offset_bias);
  2875         load(recv_addr, tmp1, T_OBJECT);
  2876         __ tst(tmp1);
  2877         __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
  2878         __ delayed()->nop();
  2879         __ st_ptr(recv, recv_addr);
  2880         __ set(DataLayout::counter_increment, tmp1);
  2881         __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  2882                   mdo_offset_bias);
  2883         __ br(Assembler::always, false, Assembler::pt, update_done);
  2884         __ delayed()->nop();
  2885         __ bind(next_test);
  2887       // Receiver did not match any saved receiver and there is no empty row for it.
  2888       // Increment total counter to indicate polymorphic case.
  2889       __ lduw(counter_addr, tmp1);
  2890       __ add(tmp1, DataLayout::counter_increment, tmp1);
  2891       __ stw(tmp1, counter_addr);
  2893       __ bind(update_done);
  2895   } else {
  2896     // Static call
  2897     __ lduw(counter_addr, tmp1);
  2898     __ add(tmp1, DataLayout::counter_increment, tmp1);
  2899     __ stw(tmp1, counter_addr);
  2904 void LIR_Assembler::align_backward_branch_target() {
  2905   __ align(OptoLoopAlignment);
  2909 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
  2910   // make sure we are expecting a delay
  2911   // this has the side effect of clearing the delay state
  2912   // so we can use _masm instead of _masm->delayed() to do the
  2913   // code generation.
  2914   __ delayed();
  2916   // make sure we only emit one instruction
  2917   int offset = code_offset();
  2918   op->delay_op()->emit_code(this);
  2919 #ifdef ASSERT
  2920   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
  2921     op->delay_op()->print();
  2923   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
  2924          "only one instruction can go in a delay slot");
  2925 #endif
  2927   // we may also be emitting the call info for the instruction
  2928   // which we are the delay slot of.
  2929   CodeEmitInfo* call_info = op->call_info();
  2930   if (call_info) {
  2931     add_call_info(code_offset(), call_info);
  2934   if (VerifyStackAtCalls) {
  2935     _masm->sub(FP, SP, O7);
  2936     _masm->cmp(O7, initial_frame_size_in_bytes());
  2937     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
  2942 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  2943   assert(left->is_register(), "can only handle registers");
  2945   if (left->is_single_cpu()) {
  2946     __ neg(left->as_register(), dest->as_register());
  2947   } else if (left->is_single_fpu()) {
  2948     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
  2949   } else if (left->is_double_fpu()) {
  2950     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
  2951   } else {
  2952     assert (left->is_double_cpu(), "Must be a long");
  2953     Register Rlow = left->as_register_lo();
  2954     Register Rhi = left->as_register_hi();
  2955 #ifdef _LP64
  2956     __ sub(G0, Rlow, dest->as_register_lo());
  2957 #else
  2958     __ subcc(G0, Rlow, dest->as_register_lo());
  2959     __ subc (G0, Rhi,  dest->as_register_hi());
  2960 #endif
  2965 void LIR_Assembler::fxch(int i) {
  2966   Unimplemented();
  2969 void LIR_Assembler::fld(int i) {
  2970   Unimplemented();
  2973 void LIR_Assembler::ffree(int i) {
  2974   Unimplemented();
  2977 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
  2978                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  2980   // if tmp is invalid, then the function being called doesn't destroy the thread
  2981   if (tmp->is_valid()) {
  2982     __ save_thread(tmp->as_register());
  2984   __ call(dest, relocInfo::runtime_call_type);
  2985   __ delayed()->nop();
  2986   if (info != NULL) {
  2987     add_call_info_here(info);
  2989   if (tmp->is_valid()) {
  2990     __ restore_thread(tmp->as_register());
  2993 #ifdef ASSERT
  2994   __ verify_thread();
  2995 #endif // ASSERT
  2999 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3000 #ifdef _LP64
  3001   ShouldNotReachHere();
  3002 #endif
  3004   NEEDS_CLEANUP;
  3005   if (type == T_LONG) {
  3006     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
  3008     // (extended to allow indexed as well as constant displaced for JSR-166)
  3009     Register idx = noreg; // contains either constant offset or index
  3011     int disp = mem_addr->disp();
  3012     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
  3013       if (!Assembler::is_simm13(disp)) {
  3014         idx = O7;
  3015         __ set(disp, idx);
  3017     } else {
  3018       assert(disp == 0, "not both indexed and disp");
  3019       idx = mem_addr->index()->as_register();
  3022     int null_check_offset = -1;
  3024     Register base = mem_addr->base()->as_register();
  3025     if (src->is_register() && dest->is_address()) {
  3026       // G4 is high half, G5 is low half
  3027       if (VM_Version::v9_instructions_work()) {
  3028         // clear the top bits of G5, and scale up G4
  3029         __ srl (src->as_register_lo(),  0, G5);
  3030         __ sllx(src->as_register_hi(), 32, G4);
  3031         // combine the two halves into the 64 bits of G4
  3032         __ or3(G4, G5, G4);
  3033         null_check_offset = __ offset();
  3034         if (idx == noreg) {
  3035           __ stx(G4, base, disp);
  3036         } else {
  3037           __ stx(G4, base, idx);
  3039       } else {
  3040         __ mov (src->as_register_hi(), G4);
  3041         __ mov (src->as_register_lo(), G5);
  3042         null_check_offset = __ offset();
  3043         if (idx == noreg) {
  3044           __ std(G4, base, disp);
  3045         } else {
  3046           __ std(G4, base, idx);
  3049     } else if (src->is_address() && dest->is_register()) {
  3050       null_check_offset = __ offset();
  3051       if (VM_Version::v9_instructions_work()) {
  3052         if (idx == noreg) {
  3053           __ ldx(base, disp, G5);
  3054         } else {
  3055           __ ldx(base, idx, G5);
  3057         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
  3058         __ mov (G5, dest->as_register_lo());     // copy low half into lo
  3059       } else {
  3060         if (idx == noreg) {
  3061           __ ldd(base, disp, G4);
  3062         } else {
  3063           __ ldd(base, idx, G4);
  3065         // G4 is high half, G5 is low half
  3066         __ mov (G4, dest->as_register_hi());
  3067         __ mov (G5, dest->as_register_lo());
  3069     } else {
  3070       Unimplemented();
  3072     if (info != NULL) {
  3073       add_debug_info_for_null_check(null_check_offset, info);
  3076   } else {
  3077     // use normal move for all other volatiles since they don't need
  3078     // special handling to remain atomic.
  3079     move_op(src, dest, type, lir_patch_none, info, false, false);
  3083 void LIR_Assembler::membar() {
  3084   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
  3085   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3088 void LIR_Assembler::membar_acquire() {
  3089   // no-op on TSO
  3092 void LIR_Assembler::membar_release() {
  3093   // no-op on TSO
  3096 // Macro to Pack two sequential registers containing 32 bit values
  3097 // into a single 64 bit register.
  3098 // rs and rs->successor() are packed into rd
  3099 // rd and rs may be the same register.
  3100 // Note: rs and rs->successor() are destroyed.
  3101 void LIR_Assembler::pack64( Register rs, Register rd ) {
  3102   __ sllx(rs, 32, rs);
  3103   __ srl(rs->successor(), 0, rs->successor());
  3104   __ or3(rs, rs->successor(), rd);
  3107 // Macro to unpack a 64 bit value in a register into
  3108 // two sequential registers.
  3109 // rd is unpacked into rd and rd->successor()
  3110 void LIR_Assembler::unpack64( Register rd ) {
  3111   __ mov(rd, rd->successor());
  3112   __ srax(rd, 32, rd);
  3113   __ sra(rd->successor(), 0, rd->successor());
  3117 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
  3118   LIR_Address* addr = addr_opr->as_address_ptr();
  3119   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
  3120   __ add(addr->base()->as_register(), addr->disp(), dest->as_register());
  3124 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3125   assert(result_reg->is_register(), "check");
  3126   __ mov(G2_thread, result_reg->as_register());
  3130 void LIR_Assembler::peephole(LIR_List* lir) {
  3131   LIR_OpList* inst = lir->instructions_list();
  3132   for (int i = 0; i < inst->length(); i++) {
  3133     LIR_Op* op = inst->at(i);
  3134     switch (op->code()) {
  3135       case lir_cond_float_branch:
  3136       case lir_branch: {
  3137         LIR_OpBranch* branch = op->as_OpBranch();
  3138         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
  3139         LIR_Op* delay_op = NULL;
  3140         // we'd like to be able to pull following instructions into
  3141         // this slot but we don't know enough to do it safely yet so
  3142         // only optimize block to block control flow.
  3143         if (LIRFillDelaySlots && branch->block()) {
  3144           LIR_Op* prev = inst->at(i - 1);
  3145           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
  3146             // swap previous instruction into delay slot
  3147             inst->at_put(i - 1, op);
  3148             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3149 #ifndef PRODUCT
  3150             if (LIRTracePeephole) {
  3151               tty->print_cr("delayed");
  3152               inst->at(i - 1)->print();
  3153               inst->at(i)->print();
  3154               tty->cr();
  3156 #endif
  3157             continue;
  3161         if (!delay_op) {
  3162           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
  3164         inst->insert_before(i + 1, delay_op);
  3165         break;
  3167       case lir_static_call:
  3168       case lir_virtual_call:
  3169       case lir_icvirtual_call:
  3170       case lir_optvirtual_call:
  3171       case lir_dynamic_call: {
  3172         LIR_Op* prev = inst->at(i - 1);
  3173         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
  3174             (op->code() != lir_virtual_call ||
  3175              !prev->result_opr()->is_single_cpu() ||
  3176              prev->result_opr()->as_register() != O0) &&
  3177             LIR_Assembler::is_single_instruction(prev)) {
  3178           // Only moves without info can be put into the delay slot.
  3179           // Also don't allow the setup of the receiver in the delay
  3180           // slot for vtable calls.
  3181           inst->at_put(i - 1, op);
  3182           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3183 #ifndef PRODUCT
  3184           if (LIRTracePeephole) {
  3185             tty->print_cr("delayed");
  3186             inst->at(i - 1)->print();
  3187             inst->at(i)->print();
  3188             tty->cr();
  3190 #endif
  3191           continue;
  3194         LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
  3195         inst->insert_before(i + 1, delay_op);
  3196         break;
  3205 #undef __

mercurial