src/share/vm/memory/space.cpp

Wed, 29 Oct 2008 06:30:02 -0700

author
jcoomes
date
Wed, 29 Oct 2008 06:30:02 -0700
changeset 873
122d10c82f3f
parent 791
1ee8caae33af
child 916
7d7a7c599c17
permissions
-rw-r--r--

6765804: GC "dead ratios" should be unsigned
Reviewed-by: ysr, tonyp

     1 /*
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_space.cpp.incl"
    28 void SpaceMemRegionOopsIterClosure::do_oop(oop* p)       { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
    29 void SpaceMemRegionOopsIterClosure::do_oop(narrowOop* p) { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
    31 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
    32                                                 HeapWord* top_obj) {
    33   if (top_obj != NULL) {
    34     if (_sp->block_is_obj(top_obj)) {
    35       if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
    36         if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
    37           // An arrayOop is starting on the dirty card - since we do exact
    38           // store checks for objArrays we are done.
    39         } else {
    40           // Otherwise, it is possible that the object starting on the dirty
    41           // card spans the entire card, and that the store happened on a
    42           // later card.  Figure out where the object ends.
    43           // Use the block_size() method of the space over which
    44           // the iteration is being done.  That space (e.g. CMS) may have
    45           // specific requirements on object sizes which will
    46           // be reflected in the block_size() method.
    47           top = top_obj + oop(top_obj)->size();
    48         }
    49       }
    50     } else {
    51       top = top_obj;
    52     }
    53   } else {
    54     assert(top == _sp->end(), "only case where top_obj == NULL");
    55   }
    56   return top;
    57 }
    59 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
    60                                             HeapWord* bottom,
    61                                             HeapWord* top) {
    62   // 1. Blocks may or may not be objects.
    63   // 2. Even when a block_is_obj(), it may not entirely
    64   //    occupy the block if the block quantum is larger than
    65   //    the object size.
    66   // We can and should try to optimize by calling the non-MemRegion
    67   // version of oop_iterate() for all but the extremal objects
    68   // (for which we need to call the MemRegion version of
    69   // oop_iterate()) To be done post-beta XXX
    70   for (; bottom < top; bottom += _sp->block_size(bottom)) {
    71     // As in the case of contiguous space above, we'd like to
    72     // just use the value returned by oop_iterate to increment the
    73     // current pointer; unfortunately, that won't work in CMS because
    74     // we'd need an interface change (it seems) to have the space
    75     // "adjust the object size" (for instance pad it up to its
    76     // block alignment or minimum block size restrictions. XXX
    77     if (_sp->block_is_obj(bottom) &&
    78         !_sp->obj_allocated_since_save_marks(oop(bottom))) {
    79       oop(bottom)->oop_iterate(_cl, mr);
    80     }
    81   }
    82 }
    84 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
    86   // Some collectors need to do special things whenever their dirty
    87   // cards are processed. For instance, CMS must remember mutator updates
    88   // (i.e. dirty cards) so as to re-scan mutated objects.
    89   // Such work can be piggy-backed here on dirty card scanning, so as to make
    90   // it slightly more efficient than doing a complete non-detructive pre-scan
    91   // of the card table.
    92   MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
    93   if (pCl != NULL) {
    94     pCl->do_MemRegion(mr);
    95   }
    97   HeapWord* bottom = mr.start();
    98   HeapWord* last = mr.last();
    99   HeapWord* top = mr.end();
   100   HeapWord* bottom_obj;
   101   HeapWord* top_obj;
   103   assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
   104          _precision == CardTableModRefBS::Precise,
   105          "Only ones we deal with for now.");
   107   assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
   108          _cl->idempotent() || _last_bottom == NULL ||
   109          top <= _last_bottom,
   110          "Not decreasing");
   111   NOT_PRODUCT(_last_bottom = mr.start());
   113   bottom_obj = _sp->block_start(bottom);
   114   top_obj    = _sp->block_start(last);
   116   assert(bottom_obj <= bottom, "just checking");
   117   assert(top_obj    <= top,    "just checking");
   119   // Given what we think is the top of the memory region and
   120   // the start of the object at the top, get the actual
   121   // value of the top.
   122   top = get_actual_top(top, top_obj);
   124   // If the previous call did some part of this region, don't redo.
   125   if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
   126       _min_done != NULL &&
   127       _min_done < top) {
   128     top = _min_done;
   129   }
   131   // Top may have been reset, and in fact may be below bottom,
   132   // e.g. the dirty card region is entirely in a now free object
   133   // -- something that could happen with a concurrent sweeper.
   134   bottom = MIN2(bottom, top);
   135   mr     = MemRegion(bottom, top);
   136   assert(bottom <= top &&
   137          (_precision != CardTableModRefBS::ObjHeadPreciseArray ||
   138           _min_done == NULL ||
   139           top <= _min_done),
   140          "overlap!");
   142   // Walk the region if it is not empty; otherwise there is nothing to do.
   143   if (!mr.is_empty()) {
   144     walk_mem_region(mr, bottom_obj, top);
   145   }
   147   // An idempotent closure might be applied in any order, so we don't
   148   // record a _min_done for it.
   149   if (!_cl->idempotent()) {
   150     _min_done = bottom;
   151   } else {
   152     assert(_min_done == _last_explicit_min_done,
   153            "Don't update _min_done for idempotent cl");
   154   }
   155 }
   157 DirtyCardToOopClosure* Space::new_dcto_cl(OopClosure* cl,
   158                                           CardTableModRefBS::PrecisionStyle precision,
   159                                           HeapWord* boundary) {
   160   return new DirtyCardToOopClosure(this, cl, precision, boundary);
   161 }
   163 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
   164                                                HeapWord* top_obj) {
   165   if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
   166     if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
   167       if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
   168         // An arrayOop is starting on the dirty card - since we do exact
   169         // store checks for objArrays we are done.
   170       } else {
   171         // Otherwise, it is possible that the object starting on the dirty
   172         // card spans the entire card, and that the store happened on a
   173         // later card.  Figure out where the object ends.
   174         assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
   175           "Block size and object size mismatch");
   176         top = top_obj + oop(top_obj)->size();
   177       }
   178     }
   179   } else {
   180     top = (_sp->toContiguousSpace())->top();
   181   }
   182   return top;
   183 }
   185 void Filtering_DCTOC::walk_mem_region(MemRegion mr,
   186                                       HeapWord* bottom,
   187                                       HeapWord* top) {
   188   // Note that this assumption won't hold if we have a concurrent
   189   // collector in this space, which may have freed up objects after
   190   // they were dirtied and before the stop-the-world GC that is
   191   // examining cards here.
   192   assert(bottom < top, "ought to be at least one obj on a dirty card.");
   194   if (_boundary != NULL) {
   195     // We have a boundary outside of which we don't want to look
   196     // at objects, so create a filtering closure around the
   197     // oop closure before walking the region.
   198     FilteringClosure filter(_boundary, _cl);
   199     walk_mem_region_with_cl(mr, bottom, top, &filter);
   200   } else {
   201     // No boundary, simply walk the heap with the oop closure.
   202     walk_mem_region_with_cl(mr, bottom, top, _cl);
   203   }
   205 }
   207 // We must replicate this so that the static type of "FilteringClosure"
   208 // (see above) is apparent at the oop_iterate calls.
   209 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
   210 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr,        \
   211                                                    HeapWord* bottom,    \
   212                                                    HeapWord* top,       \
   213                                                    ClosureType* cl) {   \
   214   bottom += oop(bottom)->oop_iterate(cl, mr);                           \
   215   if (bottom < top) {                                                   \
   216     HeapWord* next_obj = bottom + oop(bottom)->size();                  \
   217     while (next_obj < top) {                                            \
   218       /* Bottom lies entirely below top, so we can call the */          \
   219       /* non-memRegion version of oop_iterate below. */                 \
   220       oop(bottom)->oop_iterate(cl);                                     \
   221       bottom = next_obj;                                                \
   222       next_obj = bottom + oop(bottom)->size();                          \
   223     }                                                                   \
   224     /* Last object. */                                                  \
   225     oop(bottom)->oop_iterate(cl, mr);                                   \
   226   }                                                                     \
   227 }
   229 // (There are only two of these, rather than N, because the split is due
   230 // only to the introduction of the FilteringClosure, a local part of the
   231 // impl of this abstraction.)
   232 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(OopClosure)
   233 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
   235 DirtyCardToOopClosure*
   236 ContiguousSpace::new_dcto_cl(OopClosure* cl,
   237                              CardTableModRefBS::PrecisionStyle precision,
   238                              HeapWord* boundary) {
   239   return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
   240 }
   242 void Space::initialize(MemRegion mr,
   243                        bool clear_space,
   244                        bool mangle_space) {
   245   HeapWord* bottom = mr.start();
   246   HeapWord* end    = mr.end();
   247   assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
   248          "invalid space boundaries");
   249   set_bottom(bottom);
   250   set_end(end);
   251   if (clear_space) clear(mangle_space);
   252 }
   254 void Space::clear(bool mangle_space) {
   255   if (ZapUnusedHeapArea && mangle_space) {
   256     mangle_unused_area();
   257   }
   258 }
   260 ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
   261     _concurrent_iteration_safe_limit(NULL) {
   262   _mangler = new GenSpaceMangler(this);
   263 }
   265 ContiguousSpace::~ContiguousSpace() {
   266   delete _mangler;
   267 }
   269 void ContiguousSpace::initialize(MemRegion mr,
   270                                  bool clear_space,
   271                                  bool mangle_space)
   272 {
   273   CompactibleSpace::initialize(mr, clear_space, mangle_space);
   274   set_concurrent_iteration_safe_limit(top());
   275 }
   277 void ContiguousSpace::clear(bool mangle_space) {
   278   set_top(bottom());
   279   set_saved_mark();
   280   CompactibleSpace::clear(mangle_space);
   281 }
   283 bool Space::is_in(const void* p) const {
   284   HeapWord* b = block_start_const(p);
   285   return b != NULL && block_is_obj(b);
   286 }
   288 bool ContiguousSpace::is_in(const void* p) const {
   289   return _bottom <= p && p < _top;
   290 }
   292 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
   293   return p >= _top;
   294 }
   296 void OffsetTableContigSpace::clear(bool mangle_space) {
   297   ContiguousSpace::clear(mangle_space);
   298   _offsets.initialize_threshold();
   299 }
   301 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
   302   Space::set_bottom(new_bottom);
   303   _offsets.set_bottom(new_bottom);
   304 }
   306 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
   307   // Space should not advertize an increase in size
   308   // until after the underlying offest table has been enlarged.
   309   _offsets.resize(pointer_delta(new_end, bottom()));
   310   Space::set_end(new_end);
   311 }
   313 #ifndef PRODUCT
   315 void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
   316   mangler()->set_top_for_allocations(v);
   317 }
   318 void ContiguousSpace::set_top_for_allocations() {
   319   mangler()->set_top_for_allocations(top());
   320 }
   321 void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
   322   mangler()->check_mangled_unused_area(limit);
   323 }
   325 void ContiguousSpace::check_mangled_unused_area_complete() {
   326   mangler()->check_mangled_unused_area_complete();
   327 }
   329 // Mangled only the unused space that has not previously
   330 // been mangled and that has not been allocated since being
   331 // mangled.
   332 void ContiguousSpace::mangle_unused_area() {
   333   mangler()->mangle_unused_area();
   334 }
   335 void ContiguousSpace::mangle_unused_area_complete() {
   336   mangler()->mangle_unused_area_complete();
   337 }
   338 void ContiguousSpace::mangle_region(MemRegion mr) {
   339   // Although this method uses SpaceMangler::mangle_region() which
   340   // is not specific to a space, the when the ContiguousSpace version
   341   // is called, it is always with regard to a space and this
   342   // bounds checking is appropriate.
   343   MemRegion space_mr(bottom(), end());
   344   assert(space_mr.contains(mr), "Mangling outside space");
   345   SpaceMangler::mangle_region(mr);
   346 }
   347 #endif  // NOT_PRODUCT
   349 void CompactibleSpace::initialize(MemRegion mr,
   350                                   bool clear_space,
   351                                   bool mangle_space) {
   352   Space::initialize(mr, clear_space, mangle_space);
   353   set_compaction_top(bottom());
   354   _next_compaction_space = NULL;
   355 }
   357 void CompactibleSpace::clear(bool mangle_space) {
   358   Space::clear(mangle_space);
   359   _compaction_top = bottom();
   360 }
   362 HeapWord* CompactibleSpace::forward(oop q, size_t size,
   363                                     CompactPoint* cp, HeapWord* compact_top) {
   364   // q is alive
   365   // First check if we should switch compaction space
   366   assert(this == cp->space, "'this' should be current compaction space.");
   367   size_t compaction_max_size = pointer_delta(end(), compact_top);
   368   while (size > compaction_max_size) {
   369     // switch to next compaction space
   370     cp->space->set_compaction_top(compact_top);
   371     cp->space = cp->space->next_compaction_space();
   372     if (cp->space == NULL) {
   373       cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
   374       assert(cp->gen != NULL, "compaction must succeed");
   375       cp->space = cp->gen->first_compaction_space();
   376       assert(cp->space != NULL, "generation must have a first compaction space");
   377     }
   378     compact_top = cp->space->bottom();
   379     cp->space->set_compaction_top(compact_top);
   380     cp->threshold = cp->space->initialize_threshold();
   381     compaction_max_size = pointer_delta(cp->space->end(), compact_top);
   382   }
   384   // store the forwarding pointer into the mark word
   385   if ((HeapWord*)q != compact_top) {
   386     q->forward_to(oop(compact_top));
   387     assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
   388   } else {
   389     // if the object isn't moving we can just set the mark to the default
   390     // mark and handle it specially later on.
   391     q->init_mark();
   392     assert(q->forwardee() == NULL, "should be forwarded to NULL");
   393   }
   395   VALIDATE_MARK_SWEEP_ONLY(MarkSweep::register_live_oop(q, size));
   396   compact_top += size;
   398   // we need to update the offset table so that the beginnings of objects can be
   399   // found during scavenge.  Note that we are updating the offset table based on
   400   // where the object will be once the compaction phase finishes.
   401   if (compact_top > cp->threshold)
   402     cp->threshold =
   403       cp->space->cross_threshold(compact_top - size, compact_top);
   404   return compact_top;
   405 }
   408 bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
   409                                         HeapWord* q, size_t deadlength) {
   410   if (allowed_deadspace_words >= deadlength) {
   411     allowed_deadspace_words -= deadlength;
   412     oop(q)->set_mark(markOopDesc::prototype()->set_marked());
   413     const size_t min_int_array_size = typeArrayOopDesc::header_size(T_INT);
   414     if (deadlength >= min_int_array_size) {
   415       oop(q)->set_klass(Universe::intArrayKlassObj());
   416       typeArrayOop(q)->set_length((int)((deadlength - min_int_array_size)
   417                                             * (HeapWordSize/sizeof(jint))));
   418     } else {
   419       assert((int) deadlength == instanceOopDesc::header_size(),
   420              "size for smallest fake dead object doesn't match");
   421       oop(q)->set_klass(SystemDictionary::object_klass());
   422     }
   423     assert((int) deadlength == oop(q)->size(),
   424            "make sure size for fake dead object match");
   425     // Recall that we required "q == compaction_top".
   426     return true;
   427   } else {
   428     allowed_deadspace_words = 0;
   429     return false;
   430   }
   431 }
   433 #define block_is_always_obj(q) true
   434 #define obj_size(q) oop(q)->size()
   435 #define adjust_obj_size(s) s
   437 void CompactibleSpace::prepare_for_compaction(CompactPoint* cp) {
   438   SCAN_AND_FORWARD(cp, end, block_is_obj, block_size);
   439 }
   441 // Faster object search.
   442 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
   443   SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size);
   444 }
   446 void Space::adjust_pointers() {
   447   // adjust all the interior pointers to point at the new locations of objects
   448   // Used by MarkSweep::mark_sweep_phase3()
   450   // First check to see if there is any work to be done.
   451   if (used() == 0) {
   452     return;  // Nothing to do.
   453   }
   455   // Otherwise...
   456   HeapWord* q = bottom();
   457   HeapWord* t = end();
   459   debug_only(HeapWord* prev_q = NULL);
   460   while (q < t) {
   461     if (oop(q)->is_gc_marked()) {
   462       // q is alive
   464       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));
   465       // point all the oops to the new location
   466       size_t size = oop(q)->adjust_pointers();
   467       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());
   469       debug_only(prev_q = q);
   470       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));
   472       q += size;
   473     } else {
   474       // q is not a live object.  But we're not in a compactible space,
   475       // So we don't have live ranges.
   476       debug_only(prev_q = q);
   477       q += block_size(q);
   478       assert(q > prev_q, "we should be moving forward through memory");
   479     }
   480   }
   481   assert(q == t, "just checking");
   482 }
   484 void CompactibleSpace::adjust_pointers() {
   485   // Check first is there is any work to do.
   486   if (used() == 0) {
   487     return;   // Nothing to do.
   488   }
   490   SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
   491 }
   493 void CompactibleSpace::compact() {
   494   SCAN_AND_COMPACT(obj_size);
   495 }
   497 void Space::print_short() const { print_short_on(tty); }
   499 void Space::print_short_on(outputStream* st) const {
   500   st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
   501               (int) ((double) used() * 100 / capacity()));
   502 }
   504 void Space::print() const { print_on(tty); }
   506 void Space::print_on(outputStream* st) const {
   507   print_short_on(st);
   508   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   509                 bottom(), end());
   510 }
   512 void ContiguousSpace::print_on(outputStream* st) const {
   513   print_short_on(st);
   514   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   515                 bottom(), top(), end());
   516 }
   518 void OffsetTableContigSpace::print_on(outputStream* st) const {
   519   print_short_on(st);
   520   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
   521                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   522               bottom(), top(), _offsets.threshold(), end());
   523 }
   525 void ContiguousSpace::verify(bool allow_dirty) const {
   526   HeapWord* p = bottom();
   527   HeapWord* t = top();
   528   HeapWord* prev_p = NULL;
   529   while (p < t) {
   530     oop(p)->verify();
   531     prev_p = p;
   532     p += oop(p)->size();
   533   }
   534   guarantee(p == top(), "end of last object must match end of space");
   535   if (top() != end()) {
   536     guarantee(top() == block_start_const(end()-1) &&
   537               top() == block_start_const(top()),
   538               "top should be start of unallocated block, if it exists");
   539   }
   540 }
   542 void Space::oop_iterate(OopClosure* blk) {
   543   ObjectToOopClosure blk2(blk);
   544   object_iterate(&blk2);
   545 }
   547 HeapWord* Space::object_iterate_careful(ObjectClosureCareful* cl) {
   548   guarantee(false, "NYI");
   549   return bottom();
   550 }
   552 HeapWord* Space::object_iterate_careful_m(MemRegion mr,
   553                                           ObjectClosureCareful* cl) {
   554   guarantee(false, "NYI");
   555   return bottom();
   556 }
   559 void Space::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
   560   assert(!mr.is_empty(), "Should be non-empty");
   561   // We use MemRegion(bottom(), end()) rather than used_region() below
   562   // because the two are not necessarily equal for some kinds of
   563   // spaces, in particular, certain kinds of free list spaces.
   564   // We could use the more complicated but more precise:
   565   // MemRegion(used_region().start(), round_to(used_region().end(), CardSize))
   566   // but the slight imprecision seems acceptable in the assertion check.
   567   assert(MemRegion(bottom(), end()).contains(mr),
   568          "Should be within used space");
   569   HeapWord* prev = cl->previous();   // max address from last time
   570   if (prev >= mr.end()) { // nothing to do
   571     return;
   572   }
   573   // This assert will not work when we go from cms space to perm
   574   // space, and use same closure. Easy fix deferred for later. XXX YSR
   575   // assert(prev == NULL || contains(prev), "Should be within space");
   577   bool last_was_obj_array = false;
   578   HeapWord *blk_start_addr, *region_start_addr;
   579   if (prev > mr.start()) {
   580     region_start_addr = prev;
   581     blk_start_addr    = prev;
   582     assert(blk_start_addr == block_start(region_start_addr), "invariant");
   583   } else {
   584     region_start_addr = mr.start();
   585     blk_start_addr    = block_start(region_start_addr);
   586   }
   587   HeapWord* region_end_addr = mr.end();
   588   MemRegion derived_mr(region_start_addr, region_end_addr);
   589   while (blk_start_addr < region_end_addr) {
   590     const size_t size = block_size(blk_start_addr);
   591     if (block_is_obj(blk_start_addr)) {
   592       last_was_obj_array = cl->do_object_bm(oop(blk_start_addr), derived_mr);
   593     } else {
   594       last_was_obj_array = false;
   595     }
   596     blk_start_addr += size;
   597   }
   598   if (!last_was_obj_array) {
   599     assert((bottom() <= blk_start_addr) && (blk_start_addr <= end()),
   600            "Should be within (closed) used space");
   601     assert(blk_start_addr > prev, "Invariant");
   602     cl->set_previous(blk_start_addr); // min address for next time
   603   }
   604 }
   606 bool Space::obj_is_alive(const HeapWord* p) const {
   607   assert (block_is_obj(p), "The address should point to an object");
   608   return true;
   609 }
   611 void ContiguousSpace::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
   612   assert(!mr.is_empty(), "Should be non-empty");
   613   assert(used_region().contains(mr), "Should be within used space");
   614   HeapWord* prev = cl->previous();   // max address from last time
   615   if (prev >= mr.end()) { // nothing to do
   616     return;
   617   }
   618   // See comment above (in more general method above) in case you
   619   // happen to use this method.
   620   assert(prev == NULL || is_in_reserved(prev), "Should be within space");
   622   bool last_was_obj_array = false;
   623   HeapWord *obj_start_addr, *region_start_addr;
   624   if (prev > mr.start()) {
   625     region_start_addr = prev;
   626     obj_start_addr    = prev;
   627     assert(obj_start_addr == block_start(region_start_addr), "invariant");
   628   } else {
   629     region_start_addr = mr.start();
   630     obj_start_addr    = block_start(region_start_addr);
   631   }
   632   HeapWord* region_end_addr = mr.end();
   633   MemRegion derived_mr(region_start_addr, region_end_addr);
   634   while (obj_start_addr < region_end_addr) {
   635     oop obj = oop(obj_start_addr);
   636     const size_t size = obj->size();
   637     last_was_obj_array = cl->do_object_bm(obj, derived_mr);
   638     obj_start_addr += size;
   639   }
   640   if (!last_was_obj_array) {
   641     assert((bottom() <= obj_start_addr)  && (obj_start_addr <= end()),
   642            "Should be within (closed) used space");
   643     assert(obj_start_addr > prev, "Invariant");
   644     cl->set_previous(obj_start_addr); // min address for next time
   645   }
   646 }
   648 #ifndef SERIALGC
   649 #define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix)         \
   650                                                                             \
   651   void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
   652     HeapWord* obj_addr = mr.start();                                        \
   653     HeapWord* t = mr.end();                                                 \
   654     while (obj_addr < t) {                                                  \
   655       assert(oop(obj_addr)->is_oop(), "Should be an oop");                  \
   656       obj_addr += oop(obj_addr)->oop_iterate(blk);                          \
   657     }                                                                       \
   658   }
   660   ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
   662 #undef ContigSpace_PAR_OOP_ITERATE_DEFN
   663 #endif // SERIALGC
   665 void ContiguousSpace::oop_iterate(OopClosure* blk) {
   666   if (is_empty()) return;
   667   HeapWord* obj_addr = bottom();
   668   HeapWord* t = top();
   669   // Could call objects iterate, but this is easier.
   670   while (obj_addr < t) {
   671     obj_addr += oop(obj_addr)->oop_iterate(blk);
   672   }
   673 }
   675 void ContiguousSpace::oop_iterate(MemRegion mr, OopClosure* blk) {
   676   if (is_empty()) {
   677     return;
   678   }
   679   MemRegion cur = MemRegion(bottom(), top());
   680   mr = mr.intersection(cur);
   681   if (mr.is_empty()) {
   682     return;
   683   }
   684   if (mr.equals(cur)) {
   685     oop_iterate(blk);
   686     return;
   687   }
   688   assert(mr.end() <= top(), "just took an intersection above");
   689   HeapWord* obj_addr = block_start(mr.start());
   690   HeapWord* t = mr.end();
   692   // Handle first object specially.
   693   oop obj = oop(obj_addr);
   694   SpaceMemRegionOopsIterClosure smr_blk(blk, mr);
   695   obj_addr += obj->oop_iterate(&smr_blk);
   696   while (obj_addr < t) {
   697     oop obj = oop(obj_addr);
   698     assert(obj->is_oop(), "expected an oop");
   699     obj_addr += obj->size();
   700     // If "obj_addr" is not greater than top, then the
   701     // entire object "obj" is within the region.
   702     if (obj_addr <= t) {
   703       obj->oop_iterate(blk);
   704     } else {
   705       // "obj" extends beyond end of region
   706       obj->oop_iterate(&smr_blk);
   707       break;
   708     }
   709   };
   710 }
   712 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
   713   if (is_empty()) return;
   714   WaterMark bm = bottom_mark();
   715   object_iterate_from(bm, blk);
   716 }
   718 void ContiguousSpace::object_iterate_from(WaterMark mark, ObjectClosure* blk) {
   719   assert(mark.space() == this, "Mark does not match space");
   720   HeapWord* p = mark.point();
   721   while (p < top()) {
   722     blk->do_object(oop(p));
   723     p += oop(p)->size();
   724   }
   725 }
   727 HeapWord*
   728 ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
   729   HeapWord * limit = concurrent_iteration_safe_limit();
   730   assert(limit <= top(), "sanity check");
   731   for (HeapWord* p = bottom(); p < limit;) {
   732     size_t size = blk->do_object_careful(oop(p));
   733     if (size == 0) {
   734       return p;  // failed at p
   735     } else {
   736       p += size;
   737     }
   738   }
   739   return NULL; // all done
   740 }
   742 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)  \
   743                                                                           \
   744 void ContiguousSpace::                                                    \
   745 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {            \
   746   HeapWord* t;                                                            \
   747   HeapWord* p = saved_mark_word();                                        \
   748   assert(p != NULL, "expected saved mark");                               \
   749                                                                           \
   750   const intx interval = PrefetchScanIntervalInBytes;                      \
   751   do {                                                                    \
   752     t = top();                                                            \
   753     while (p < t) {                                                       \
   754       Prefetch::write(p, interval);                                       \
   755       debug_only(HeapWord* prev = p);                                     \
   756       oop m = oop(p);                                                     \
   757       p += m->oop_iterate(blk);                                           \
   758     }                                                                     \
   759   } while (t < top());                                                    \
   760                                                                           \
   761   set_saved_mark_word(p);                                                 \
   762 }
   764 ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
   766 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
   768 // Very general, slow implementation.
   769 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
   770   assert(MemRegion(bottom(), end()).contains(p), "p not in space");
   771   if (p >= top()) {
   772     return top();
   773   } else {
   774     HeapWord* last = bottom();
   775     HeapWord* cur = last;
   776     while (cur <= p) {
   777       last = cur;
   778       cur += oop(cur)->size();
   779     }
   780     assert(oop(last)->is_oop(), "Should be an object start");
   781     return last;
   782   }
   783 }
   785 size_t ContiguousSpace::block_size(const HeapWord* p) const {
   786   assert(MemRegion(bottom(), end()).contains(p), "p not in space");
   787   HeapWord* current_top = top();
   788   assert(p <= current_top, "p is not a block start");
   789   assert(p == current_top || oop(p)->is_oop(), "p is not a block start");
   790   if (p < current_top)
   791     return oop(p)->size();
   792   else {
   793     assert(p == current_top, "just checking");
   794     return pointer_delta(end(), (HeapWord*) p);
   795   }
   796 }
   798 // This version requires locking.
   799 inline HeapWord* ContiguousSpace::allocate_impl(size_t size,
   800                                                 HeapWord* const end_value) {
   801   assert(Heap_lock->owned_by_self() ||
   802          (SafepointSynchronize::is_at_safepoint() &&
   803           Thread::current()->is_VM_thread()),
   804          "not locked");
   805   HeapWord* obj = top();
   806   if (pointer_delta(end_value, obj) >= size) {
   807     HeapWord* new_top = obj + size;
   808     set_top(new_top);
   809     assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   810     return obj;
   811   } else {
   812     return NULL;
   813   }
   814 }
   816 // This version is lock-free.
   817 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size,
   818                                                     HeapWord* const end_value) {
   819   do {
   820     HeapWord* obj = top();
   821     if (pointer_delta(end_value, obj) >= size) {
   822       HeapWord* new_top = obj + size;
   823       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
   824       // result can be one of two:
   825       //  the old top value: the exchange succeeded
   826       //  otherwise: the new value of the top is returned.
   827       if (result == obj) {
   828         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   829         return obj;
   830       }
   831     } else {
   832       return NULL;
   833     }
   834   } while (true);
   835 }
   837 // Requires locking.
   838 HeapWord* ContiguousSpace::allocate(size_t size) {
   839   return allocate_impl(size, end());
   840 }
   842 // Lock-free.
   843 HeapWord* ContiguousSpace::par_allocate(size_t size) {
   844   return par_allocate_impl(size, end());
   845 }
   847 void ContiguousSpace::allocate_temporary_filler(int factor) {
   848   // allocate temporary type array decreasing free size with factor 'factor'
   849   assert(factor >= 0, "just checking");
   850   size_t size = pointer_delta(end(), top());
   852   // if space is full, return
   853   if (size == 0) return;
   855   if (factor > 0) {
   856     size -= size/factor;
   857   }
   858   size = align_object_size(size);
   860   const size_t min_int_array_size = typeArrayOopDesc::header_size(T_INT);
   861   if (size >= min_int_array_size) {
   862     size_t length = (size - min_int_array_size) * (HeapWordSize / sizeof(jint));
   863     // allocate uninitialized int array
   864     typeArrayOop t = (typeArrayOop) allocate(size);
   865     assert(t != NULL, "allocation should succeed");
   866     t->set_mark(markOopDesc::prototype());
   867     t->set_klass(Universe::intArrayKlassObj());
   868     t->set_length((int)length);
   869   } else {
   870     assert((int) size == instanceOopDesc::header_size(),
   871            "size for smallest fake object doesn't match");
   872     instanceOop obj = (instanceOop) allocate(size);
   873     obj->set_mark(markOopDesc::prototype());
   874     obj->set_klass_gap(0);
   875     obj->set_klass(SystemDictionary::object_klass());
   876   }
   877 }
   879 void EdenSpace::clear(bool mangle_space) {
   880   ContiguousSpace::clear(mangle_space);
   881   set_soft_end(end());
   882 }
   884 // Requires locking.
   885 HeapWord* EdenSpace::allocate(size_t size) {
   886   return allocate_impl(size, soft_end());
   887 }
   889 // Lock-free.
   890 HeapWord* EdenSpace::par_allocate(size_t size) {
   891   return par_allocate_impl(size, soft_end());
   892 }
   894 HeapWord* ConcEdenSpace::par_allocate(size_t size)
   895 {
   896   do {
   897     // The invariant is top() should be read before end() because
   898     // top() can't be greater than end(), so if an update of _soft_end
   899     // occurs between 'end_val = end();' and 'top_val = top();' top()
   900     // also can grow up to the new end() and the condition
   901     // 'top_val > end_val' is true. To ensure the loading order
   902     // OrderAccess::loadload() is required after top() read.
   903     HeapWord* obj = top();
   904     OrderAccess::loadload();
   905     if (pointer_delta(*soft_end_addr(), obj) >= size) {
   906       HeapWord* new_top = obj + size;
   907       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
   908       // result can be one of two:
   909       //  the old top value: the exchange succeeded
   910       //  otherwise: the new value of the top is returned.
   911       if (result == obj) {
   912         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
   913         return obj;
   914       }
   915     } else {
   916       return NULL;
   917     }
   918   } while (true);
   919 }
   922 HeapWord* OffsetTableContigSpace::initialize_threshold() {
   923   return _offsets.initialize_threshold();
   924 }
   926 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
   927   _offsets.alloc_block(start, end);
   928   return _offsets.threshold();
   929 }
   931 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
   932                                                MemRegion mr) :
   933   _offsets(sharedOffsetArray, mr),
   934   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
   935 {
   936   _offsets.set_contig_space(this);
   937   initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
   938 }
   941 class VerifyOldOopClosure : public OopClosure {
   942  public:
   943   oop  _the_obj;
   944   bool _allow_dirty;
   945   void do_oop(oop* p) {
   946     _the_obj->verify_old_oop(p, _allow_dirty);
   947   }
   948   void do_oop(narrowOop* p) {
   949     _the_obj->verify_old_oop(p, _allow_dirty);
   950   }
   951 };
   953 #define OBJ_SAMPLE_INTERVAL 0
   954 #define BLOCK_SAMPLE_INTERVAL 100
   956 void OffsetTableContigSpace::verify(bool allow_dirty) const {
   957   HeapWord* p = bottom();
   958   HeapWord* prev_p = NULL;
   959   VerifyOldOopClosure blk;      // Does this do anything?
   960   blk._allow_dirty = allow_dirty;
   961   int objs = 0;
   962   int blocks = 0;
   964   if (VerifyObjectStartArray) {
   965     _offsets.verify();
   966   }
   968   while (p < top()) {
   969     size_t size = oop(p)->size();
   970     // For a sampling of objects in the space, find it using the
   971     // block offset table.
   972     if (blocks == BLOCK_SAMPLE_INTERVAL) {
   973       guarantee(p == block_start_const(p + (size/2)),
   974                 "check offset computation");
   975       blocks = 0;
   976     } else {
   977       blocks++;
   978     }
   980     if (objs == OBJ_SAMPLE_INTERVAL) {
   981       oop(p)->verify();
   982       blk._the_obj = oop(p);
   983       oop(p)->oop_iterate(&blk);
   984       objs = 0;
   985     } else {
   986       objs++;
   987     }
   988     prev_p = p;
   989     p += size;
   990   }
   991   guarantee(p == top(), "end of last object must match end of space");
   992 }
   994 void OffsetTableContigSpace::serialize_block_offset_array_offsets(
   995                                                       SerializeOopClosure* soc) {
   996   _offsets.serialize(soc);
   997 }
  1000 size_t TenuredSpace::allowed_dead_ratio() const {
  1001   return MarkSweepDeadRatio;
  1005 size_t ContigPermSpace::allowed_dead_ratio() const {
  1006   return PermMarkSweepDeadRatio;

mercurial