src/share/vm/oops/methodDataOop.hpp

Fri, 02 Sep 2011 20:58:21 -0700

author
never
date
Fri, 02 Sep 2011 20:58:21 -0700
changeset 3105
c26de9aef2ed
parent 2877
bad7ecd0b6ed
permissions
-rw-r--r--

7071307: MethodHandle bimorphic inlining should consider the frequency
Reviewed-by: twisti, roland, kvn, iveresov

     1 /*
     2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OOPS_METHODDATAOOP_HPP
    26 #define SHARE_VM_OOPS_METHODDATAOOP_HPP
    28 #include "interpreter/bytecodes.hpp"
    29 #include "memory/universe.hpp"
    30 #include "oops/methodOop.hpp"
    31 #include "oops/oop.hpp"
    32 #include "runtime/orderAccess.hpp"
    34 class BytecodeStream;
    36 // The MethodData object collects counts and other profile information
    37 // during zeroth-tier (interpretive) and first-tier execution.
    38 // The profile is used later by compilation heuristics.  Some heuristics
    39 // enable use of aggressive (or "heroic") optimizations.  An aggressive
    40 // optimization often has a down-side, a corner case that it handles
    41 // poorly, but which is thought to be rare.  The profile provides
    42 // evidence of this rarity for a given method or even BCI.  It allows
    43 // the compiler to back out of the optimization at places where it
    44 // has historically been a poor choice.  Other heuristics try to use
    45 // specific information gathered about types observed at a given site.
    46 //
    47 // All data in the profile is approximate.  It is expected to be accurate
    48 // on the whole, but the system expects occasional inaccuraces, due to
    49 // counter overflow, multiprocessor races during data collection, space
    50 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
    51 // optimization quality but will not affect correctness.  Also, each MDO
    52 // is marked with its birth-date ("creation_mileage") which can be used
    53 // to assess the quality ("maturity") of its data.
    54 //
    55 // Short (<32-bit) counters are designed to overflow to a known "saturated"
    56 // state.  Also, certain recorded per-BCI events are given one-bit counters
    57 // which overflow to a saturated state which applied to all counters at
    58 // that BCI.  In other words, there is a small lattice which approximates
    59 // the ideal of an infinite-precision counter for each event at each BCI,
    60 // and the lattice quickly "bottoms out" in a state where all counters
    61 // are taken to be indefinitely large.
    62 //
    63 // The reader will find many data races in profile gathering code, starting
    64 // with invocation counter incrementation.  None of these races harm correct
    65 // execution of the compiled code.
    67 // forward decl
    68 class ProfileData;
    70 // DataLayout
    71 //
    72 // Overlay for generic profiling data.
    73 class DataLayout VALUE_OBJ_CLASS_SPEC {
    74 private:
    75   // Every data layout begins with a header.  This header
    76   // contains a tag, which is used to indicate the size/layout
    77   // of the data, 4 bits of flags, which can be used in any way,
    78   // 4 bits of trap history (none/one reason/many reasons),
    79   // and a bci, which is used to tie this piece of data to a
    80   // specific bci in the bytecodes.
    81   union {
    82     intptr_t _bits;
    83     struct {
    84       u1 _tag;
    85       u1 _flags;
    86       u2 _bci;
    87     } _struct;
    88   } _header;
    90   // The data layout has an arbitrary number of cells, each sized
    91   // to accomodate a pointer or an integer.
    92   intptr_t _cells[1];
    94   // Some types of data layouts need a length field.
    95   static bool needs_array_len(u1 tag);
    97 public:
    98   enum {
    99     counter_increment = 1
   100   };
   102   enum {
   103     cell_size = sizeof(intptr_t)
   104   };
   106   // Tag values
   107   enum {
   108     no_tag,
   109     bit_data_tag,
   110     counter_data_tag,
   111     jump_data_tag,
   112     receiver_type_data_tag,
   113     virtual_call_data_tag,
   114     ret_data_tag,
   115     branch_data_tag,
   116     multi_branch_data_tag,
   117     arg_info_data_tag
   118   };
   120   enum {
   121     // The _struct._flags word is formatted as [trap_state:4 | flags:4].
   122     // The trap state breaks down further as [recompile:1 | reason:3].
   123     // This further breakdown is defined in deoptimization.cpp.
   124     // See Deoptimization::trap_state_reason for an assert that
   125     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
   126     //
   127     // The trap_state is collected only if ProfileTraps is true.
   128     trap_bits = 1+3,  // 3: enough to distinguish [0..Reason_RECORDED_LIMIT].
   129     trap_shift = BitsPerByte - trap_bits,
   130     trap_mask = right_n_bits(trap_bits),
   131     trap_mask_in_place = (trap_mask << trap_shift),
   132     flag_limit = trap_shift,
   133     flag_mask = right_n_bits(flag_limit),
   134     first_flag = 0
   135   };
   137   // Size computation
   138   static int header_size_in_bytes() {
   139     return cell_size;
   140   }
   141   static int header_size_in_cells() {
   142     return 1;
   143   }
   145   static int compute_size_in_bytes(int cell_count) {
   146     return header_size_in_bytes() + cell_count * cell_size;
   147   }
   149   // Initialization
   150   void initialize(u1 tag, u2 bci, int cell_count);
   152   // Accessors
   153   u1 tag() {
   154     return _header._struct._tag;
   155   }
   157   // Return a few bits of trap state.  Range is [0..trap_mask].
   158   // The state tells if traps with zero, one, or many reasons have occurred.
   159   // It also tells whether zero or many recompilations have occurred.
   160   // The associated trap histogram in the MDO itself tells whether
   161   // traps are common or not.  If a BCI shows that a trap X has
   162   // occurred, and the MDO shows N occurrences of X, we make the
   163   // simplifying assumption that all N occurrences can be blamed
   164   // on that BCI.
   165   int trap_state() {
   166     return ((_header._struct._flags >> trap_shift) & trap_mask);
   167   }
   169   void set_trap_state(int new_state) {
   170     assert(ProfileTraps, "used only under +ProfileTraps");
   171     uint old_flags = (_header._struct._flags & flag_mask);
   172     _header._struct._flags = (new_state << trap_shift) | old_flags;
   173   }
   175   u1 flags() {
   176     return _header._struct._flags;
   177   }
   179   u2 bci() {
   180     return _header._struct._bci;
   181   }
   183   void set_header(intptr_t value) {
   184     _header._bits = value;
   185   }
   186   void release_set_header(intptr_t value) {
   187     OrderAccess::release_store_ptr(&_header._bits, value);
   188   }
   189   intptr_t header() {
   190     return _header._bits;
   191   }
   192   void set_cell_at(int index, intptr_t value) {
   193     _cells[index] = value;
   194   }
   195   void release_set_cell_at(int index, intptr_t value) {
   196     OrderAccess::release_store_ptr(&_cells[index], value);
   197   }
   198   intptr_t cell_at(int index) {
   199     return _cells[index];
   200   }
   201   intptr_t* adr_cell_at(int index) {
   202     return &_cells[index];
   203   }
   204   oop* adr_oop_at(int index) {
   205     return (oop*)&(_cells[index]);
   206   }
   208   void set_flag_at(int flag_number) {
   209     assert(flag_number < flag_limit, "oob");
   210     _header._struct._flags |= (0x1 << flag_number);
   211   }
   212   bool flag_at(int flag_number) {
   213     assert(flag_number < flag_limit, "oob");
   214     return (_header._struct._flags & (0x1 << flag_number)) != 0;
   215   }
   217   // Low-level support for code generation.
   218   static ByteSize header_offset() {
   219     return byte_offset_of(DataLayout, _header);
   220   }
   221   static ByteSize tag_offset() {
   222     return byte_offset_of(DataLayout, _header._struct._tag);
   223   }
   224   static ByteSize flags_offset() {
   225     return byte_offset_of(DataLayout, _header._struct._flags);
   226   }
   227   static ByteSize bci_offset() {
   228     return byte_offset_of(DataLayout, _header._struct._bci);
   229   }
   230   static ByteSize cell_offset(int index) {
   231     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
   232   }
   233   // Return a value which, when or-ed as a byte into _flags, sets the flag.
   234   static int flag_number_to_byte_constant(int flag_number) {
   235     assert(0 <= flag_number && flag_number < flag_limit, "oob");
   236     DataLayout temp; temp.set_header(0);
   237     temp.set_flag_at(flag_number);
   238     return temp._header._struct._flags;
   239   }
   240   // Return a value which, when or-ed as a word into _header, sets the flag.
   241   static intptr_t flag_mask_to_header_mask(int byte_constant) {
   242     DataLayout temp; temp.set_header(0);
   243     temp._header._struct._flags = byte_constant;
   244     return temp._header._bits;
   245   }
   247   // GC support
   248   ProfileData* data_in();
   249   void follow_weak_refs(BoolObjectClosure* cl);
   250 };
   253 // ProfileData class hierarchy
   254 class ProfileData;
   255 class   BitData;
   256 class     CounterData;
   257 class       ReceiverTypeData;
   258 class         VirtualCallData;
   259 class       RetData;
   260 class   JumpData;
   261 class     BranchData;
   262 class   ArrayData;
   263 class     MultiBranchData;
   264 class     ArgInfoData;
   267 // ProfileData
   268 //
   269 // A ProfileData object is created to refer to a section of profiling
   270 // data in a structured way.
   271 class ProfileData : public ResourceObj {
   272 private:
   273 #ifndef PRODUCT
   274   enum {
   275     tab_width_one = 16,
   276     tab_width_two = 36
   277   };
   278 #endif // !PRODUCT
   280   // This is a pointer to a section of profiling data.
   281   DataLayout* _data;
   283 protected:
   284   DataLayout* data() { return _data; }
   286   enum {
   287     cell_size = DataLayout::cell_size
   288   };
   290 public:
   291   // How many cells are in this?
   292   virtual int cell_count() {
   293     ShouldNotReachHere();
   294     return -1;
   295   }
   297   // Return the size of this data.
   298   int size_in_bytes() {
   299     return DataLayout::compute_size_in_bytes(cell_count());
   300   }
   302 protected:
   303   // Low-level accessors for underlying data
   304   void set_intptr_at(int index, intptr_t value) {
   305     assert(0 <= index && index < cell_count(), "oob");
   306     data()->set_cell_at(index, value);
   307   }
   308   void release_set_intptr_at(int index, intptr_t value) {
   309     assert(0 <= index && index < cell_count(), "oob");
   310     data()->release_set_cell_at(index, value);
   311   }
   312   intptr_t intptr_at(int index) {
   313     assert(0 <= index && index < cell_count(), "oob");
   314     return data()->cell_at(index);
   315   }
   316   void set_uint_at(int index, uint value) {
   317     set_intptr_at(index, (intptr_t) value);
   318   }
   319   void release_set_uint_at(int index, uint value) {
   320     release_set_intptr_at(index, (intptr_t) value);
   321   }
   322   uint uint_at(int index) {
   323     return (uint)intptr_at(index);
   324   }
   325   void set_int_at(int index, int value) {
   326     set_intptr_at(index, (intptr_t) value);
   327   }
   328   void release_set_int_at(int index, int value) {
   329     release_set_intptr_at(index, (intptr_t) value);
   330   }
   331   int int_at(int index) {
   332     return (int)intptr_at(index);
   333   }
   334   int int_at_unchecked(int index) {
   335     return (int)data()->cell_at(index);
   336   }
   337   void set_oop_at(int index, oop value) {
   338     set_intptr_at(index, (intptr_t) value);
   339   }
   340   oop oop_at(int index) {
   341     return (oop)intptr_at(index);
   342   }
   343   oop* adr_oop_at(int index) {
   344     assert(0 <= index && index < cell_count(), "oob");
   345     return data()->adr_oop_at(index);
   346   }
   348   void set_flag_at(int flag_number) {
   349     data()->set_flag_at(flag_number);
   350   }
   351   bool flag_at(int flag_number) {
   352     return data()->flag_at(flag_number);
   353   }
   355   // two convenient imports for use by subclasses:
   356   static ByteSize cell_offset(int index) {
   357     return DataLayout::cell_offset(index);
   358   }
   359   static int flag_number_to_byte_constant(int flag_number) {
   360     return DataLayout::flag_number_to_byte_constant(flag_number);
   361   }
   363   ProfileData(DataLayout* data) {
   364     _data = data;
   365   }
   367 public:
   368   // Constructor for invalid ProfileData.
   369   ProfileData();
   371   u2 bci() {
   372     return data()->bci();
   373   }
   375   address dp() {
   376     return (address)_data;
   377   }
   379   int trap_state() {
   380     return data()->trap_state();
   381   }
   382   void set_trap_state(int new_state) {
   383     data()->set_trap_state(new_state);
   384   }
   386   // Type checking
   387   virtual bool is_BitData()         { return false; }
   388   virtual bool is_CounterData()     { return false; }
   389   virtual bool is_JumpData()        { return false; }
   390   virtual bool is_ReceiverTypeData(){ return false; }
   391   virtual bool is_VirtualCallData() { return false; }
   392   virtual bool is_RetData()         { return false; }
   393   virtual bool is_BranchData()      { return false; }
   394   virtual bool is_ArrayData()       { return false; }
   395   virtual bool is_MultiBranchData() { return false; }
   396   virtual bool is_ArgInfoData()     { return false; }
   399   BitData* as_BitData() {
   400     assert(is_BitData(), "wrong type");
   401     return is_BitData()         ? (BitData*)        this : NULL;
   402   }
   403   CounterData* as_CounterData() {
   404     assert(is_CounterData(), "wrong type");
   405     return is_CounterData()     ? (CounterData*)    this : NULL;
   406   }
   407   JumpData* as_JumpData() {
   408     assert(is_JumpData(), "wrong type");
   409     return is_JumpData()        ? (JumpData*)       this : NULL;
   410   }
   411   ReceiverTypeData* as_ReceiverTypeData() {
   412     assert(is_ReceiverTypeData(), "wrong type");
   413     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
   414   }
   415   VirtualCallData* as_VirtualCallData() {
   416     assert(is_VirtualCallData(), "wrong type");
   417     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
   418   }
   419   RetData* as_RetData() {
   420     assert(is_RetData(), "wrong type");
   421     return is_RetData()         ? (RetData*)        this : NULL;
   422   }
   423   BranchData* as_BranchData() {
   424     assert(is_BranchData(), "wrong type");
   425     return is_BranchData()      ? (BranchData*)     this : NULL;
   426   }
   427   ArrayData* as_ArrayData() {
   428     assert(is_ArrayData(), "wrong type");
   429     return is_ArrayData()       ? (ArrayData*)      this : NULL;
   430   }
   431   MultiBranchData* as_MultiBranchData() {
   432     assert(is_MultiBranchData(), "wrong type");
   433     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
   434   }
   435   ArgInfoData* as_ArgInfoData() {
   436     assert(is_ArgInfoData(), "wrong type");
   437     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
   438   }
   441   // Subclass specific initialization
   442   virtual void post_initialize(BytecodeStream* stream, methodDataOop mdo) {}
   444   // GC support
   445   virtual void follow_contents() {}
   446   virtual void oop_iterate(OopClosure* blk) {}
   447   virtual void oop_iterate_m(OopClosure* blk, MemRegion mr) {}
   448   virtual void adjust_pointers() {}
   449   virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure) {}
   451 #ifndef SERIALGC
   452   // Parallel old support
   453   virtual void follow_contents(ParCompactionManager* cm) {}
   454   virtual void update_pointers() {}
   455 #endif // SERIALGC
   457   // CI translation: ProfileData can represent both MethodDataOop data
   458   // as well as CIMethodData data. This function is provided for translating
   459   // an oop in a ProfileData to the ci equivalent. Generally speaking,
   460   // most ProfileData don't require any translation, so we provide the null
   461   // translation here, and the required translators are in the ci subclasses.
   462   virtual void translate_from(ProfileData* data) {}
   464   virtual void print_data_on(outputStream* st) {
   465     ShouldNotReachHere();
   466   }
   468 #ifndef PRODUCT
   469   void print_shared(outputStream* st, const char* name);
   470   void tab(outputStream* st);
   471 #endif
   472 };
   474 // BitData
   475 //
   476 // A BitData holds a flag or two in its header.
   477 class BitData : public ProfileData {
   478 protected:
   479   enum {
   480     // null_seen:
   481     //  saw a null operand (cast/aastore/instanceof)
   482     null_seen_flag              = DataLayout::first_flag + 0
   483   };
   484   enum { bit_cell_count = 0 };  // no additional data fields needed.
   485 public:
   486   BitData(DataLayout* layout) : ProfileData(layout) {
   487   }
   489   virtual bool is_BitData() { return true; }
   491   static int static_cell_count() {
   492     return bit_cell_count;
   493   }
   495   virtual int cell_count() {
   496     return static_cell_count();
   497   }
   499   // Accessor
   501   // The null_seen flag bit is specially known to the interpreter.
   502   // Consulting it allows the compiler to avoid setting up null_check traps.
   503   bool null_seen()     { return flag_at(null_seen_flag); }
   504   void set_null_seen()    { set_flag_at(null_seen_flag); }
   507   // Code generation support
   508   static int null_seen_byte_constant() {
   509     return flag_number_to_byte_constant(null_seen_flag);
   510   }
   512   static ByteSize bit_data_size() {
   513     return cell_offset(bit_cell_count);
   514   }
   516 #ifndef PRODUCT
   517   void print_data_on(outputStream* st);
   518 #endif
   519 };
   521 // CounterData
   522 //
   523 // A CounterData corresponds to a simple counter.
   524 class CounterData : public BitData {
   525 protected:
   526   enum {
   527     count_off,
   528     counter_cell_count
   529   };
   530 public:
   531   CounterData(DataLayout* layout) : BitData(layout) {}
   533   virtual bool is_CounterData() { return true; }
   535   static int static_cell_count() {
   536     return counter_cell_count;
   537   }
   539   virtual int cell_count() {
   540     return static_cell_count();
   541   }
   543   // Direct accessor
   544   uint count() {
   545     return uint_at(count_off);
   546   }
   548   // Code generation support
   549   static ByteSize count_offset() {
   550     return cell_offset(count_off);
   551   }
   552   static ByteSize counter_data_size() {
   553     return cell_offset(counter_cell_count);
   554   }
   556   void set_count(uint count) {
   557     set_uint_at(count_off, count);
   558   }
   560 #ifndef PRODUCT
   561   void print_data_on(outputStream* st);
   562 #endif
   563 };
   565 // JumpData
   566 //
   567 // A JumpData is used to access profiling information for a direct
   568 // branch.  It is a counter, used for counting the number of branches,
   569 // plus a data displacement, used for realigning the data pointer to
   570 // the corresponding target bci.
   571 class JumpData : public ProfileData {
   572 protected:
   573   enum {
   574     taken_off_set,
   575     displacement_off_set,
   576     jump_cell_count
   577   };
   579   void set_displacement(int displacement) {
   580     set_int_at(displacement_off_set, displacement);
   581   }
   583 public:
   584   JumpData(DataLayout* layout) : ProfileData(layout) {
   585     assert(layout->tag() == DataLayout::jump_data_tag ||
   586       layout->tag() == DataLayout::branch_data_tag, "wrong type");
   587   }
   589   virtual bool is_JumpData() { return true; }
   591   static int static_cell_count() {
   592     return jump_cell_count;
   593   }
   595   virtual int cell_count() {
   596     return static_cell_count();
   597   }
   599   // Direct accessor
   600   uint taken() {
   601     return uint_at(taken_off_set);
   602   }
   604   void set_taken(uint cnt) {
   605     set_uint_at(taken_off_set, cnt);
   606   }
   608   // Saturating counter
   609   uint inc_taken() {
   610     uint cnt = taken() + 1;
   611     // Did we wrap? Will compiler screw us??
   612     if (cnt == 0) cnt--;
   613     set_uint_at(taken_off_set, cnt);
   614     return cnt;
   615   }
   617   int displacement() {
   618     return int_at(displacement_off_set);
   619   }
   621   // Code generation support
   622   static ByteSize taken_offset() {
   623     return cell_offset(taken_off_set);
   624   }
   626   static ByteSize displacement_offset() {
   627     return cell_offset(displacement_off_set);
   628   }
   630   // Specific initialization.
   631   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
   633 #ifndef PRODUCT
   634   void print_data_on(outputStream* st);
   635 #endif
   636 };
   638 // ReceiverTypeData
   639 //
   640 // A ReceiverTypeData is used to access profiling information about a
   641 // dynamic type check.  It consists of a counter which counts the total times
   642 // that the check is reached, and a series of (klassOop, count) pairs
   643 // which are used to store a type profile for the receiver of the check.
   644 class ReceiverTypeData : public CounterData {
   645 protected:
   646   enum {
   647     receiver0_offset = counter_cell_count,
   648     count0_offset,
   649     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
   650   };
   652 public:
   653   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
   654     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
   655            layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
   656   }
   658   virtual bool is_ReceiverTypeData() { return true; }
   660   static int static_cell_count() {
   661     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count;
   662   }
   664   virtual int cell_count() {
   665     return static_cell_count();
   666   }
   668   // Direct accessors
   669   static uint row_limit() {
   670     return TypeProfileWidth;
   671   }
   672   static int receiver_cell_index(uint row) {
   673     return receiver0_offset + row * receiver_type_row_cell_count;
   674   }
   675   static int receiver_count_cell_index(uint row) {
   676     return count0_offset + row * receiver_type_row_cell_count;
   677   }
   679   // Get the receiver at row.  The 'unchecked' version is needed by parallel old
   680   // gc; it does not assert the receiver is a klass.  During compaction of the
   681   // perm gen, the klass may already have moved, so the is_klass() predicate
   682   // would fail.  The 'normal' version should be used whenever possible.
   683   klassOop receiver_unchecked(uint row) {
   684     assert(row < row_limit(), "oob");
   685     oop recv = oop_at(receiver_cell_index(row));
   686     return (klassOop)recv;
   687   }
   689   klassOop receiver(uint row) {
   690     klassOop recv = receiver_unchecked(row);
   691     assert(recv == NULL || ((oop)recv)->is_klass(), "wrong type");
   692     return recv;
   693   }
   695   void set_receiver(uint row, oop p) {
   696     assert((uint)row < row_limit(), "oob");
   697     set_oop_at(receiver_cell_index(row), p);
   698   }
   700   uint receiver_count(uint row) {
   701     assert(row < row_limit(), "oob");
   702     return uint_at(receiver_count_cell_index(row));
   703   }
   705   void set_receiver_count(uint row, uint count) {
   706     assert(row < row_limit(), "oob");
   707     set_uint_at(receiver_count_cell_index(row), count);
   708   }
   710   void clear_row(uint row) {
   711     assert(row < row_limit(), "oob");
   712     // Clear total count - indicator of polymorphic call site.
   713     // The site may look like as monomorphic after that but
   714     // it allow to have more accurate profiling information because
   715     // there was execution phase change since klasses were unloaded.
   716     // If the site is still polymorphic then MDO will be updated
   717     // to reflect it. But it could be the case that the site becomes
   718     // only bimorphic. Then keeping total count not 0 will be wrong.
   719     // Even if we use monomorphic (when it is not) for compilation
   720     // we will only have trap, deoptimization and recompile again
   721     // with updated MDO after executing method in Interpreter.
   722     // An additional receiver will be recorded in the cleaned row
   723     // during next call execution.
   724     //
   725     // Note: our profiling logic works with empty rows in any slot.
   726     // We do sorting a profiling info (ciCallProfile) for compilation.
   727     //
   728     set_count(0);
   729     set_receiver(row, NULL);
   730     set_receiver_count(row, 0);
   731   }
   733   // Code generation support
   734   static ByteSize receiver_offset(uint row) {
   735     return cell_offset(receiver_cell_index(row));
   736   }
   737   static ByteSize receiver_count_offset(uint row) {
   738     return cell_offset(receiver_count_cell_index(row));
   739   }
   740   static ByteSize receiver_type_data_size() {
   741     return cell_offset(static_cell_count());
   742   }
   744   // GC support
   745   virtual void follow_contents();
   746   virtual void oop_iterate(OopClosure* blk);
   747   virtual void oop_iterate_m(OopClosure* blk, MemRegion mr);
   748   virtual void adjust_pointers();
   749   virtual void follow_weak_refs(BoolObjectClosure* is_alive_closure);
   751 #ifndef SERIALGC
   752   // Parallel old support
   753   virtual void follow_contents(ParCompactionManager* cm);
   754   virtual void update_pointers();
   755 #endif // SERIALGC
   757   oop* adr_receiver(uint row) {
   758     return adr_oop_at(receiver_cell_index(row));
   759   }
   761 #ifndef PRODUCT
   762   void print_receiver_data_on(outputStream* st);
   763   void print_data_on(outputStream* st);
   764 #endif
   765 };
   767 // VirtualCallData
   768 //
   769 // A VirtualCallData is used to access profiling information about a
   770 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
   771 class VirtualCallData : public ReceiverTypeData {
   772 public:
   773   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
   774     assert(layout->tag() == DataLayout::virtual_call_data_tag, "wrong type");
   775   }
   777   virtual bool is_VirtualCallData() { return true; }
   779   static int static_cell_count() {
   780     // At this point we could add more profile state, e.g., for arguments.
   781     // But for now it's the same size as the base record type.
   782     return ReceiverTypeData::static_cell_count();
   783   }
   785   virtual int cell_count() {
   786     return static_cell_count();
   787   }
   789   // Direct accessors
   790   static ByteSize virtual_call_data_size() {
   791     return cell_offset(static_cell_count());
   792   }
   794 #ifndef PRODUCT
   795   void print_data_on(outputStream* st);
   796 #endif
   797 };
   799 // RetData
   800 //
   801 // A RetData is used to access profiling information for a ret bytecode.
   802 // It is composed of a count of the number of times that the ret has
   803 // been executed, followed by a series of triples of the form
   804 // (bci, count, di) which count the number of times that some bci was the
   805 // target of the ret and cache a corresponding data displacement.
   806 class RetData : public CounterData {
   807 protected:
   808   enum {
   809     bci0_offset = counter_cell_count,
   810     count0_offset,
   811     displacement0_offset,
   812     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
   813   };
   815   void set_bci(uint row, int bci) {
   816     assert((uint)row < row_limit(), "oob");
   817     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
   818   }
   819   void release_set_bci(uint row, int bci) {
   820     assert((uint)row < row_limit(), "oob");
   821     // 'release' when setting the bci acts as a valid flag for other
   822     // threads wrt bci_count and bci_displacement.
   823     release_set_int_at(bci0_offset + row * ret_row_cell_count, bci);
   824   }
   825   void set_bci_count(uint row, uint count) {
   826     assert((uint)row < row_limit(), "oob");
   827     set_uint_at(count0_offset + row * ret_row_cell_count, count);
   828   }
   829   void set_bci_displacement(uint row, int disp) {
   830     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
   831   }
   833 public:
   834   RetData(DataLayout* layout) : CounterData(layout) {
   835     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
   836   }
   838   virtual bool is_RetData() { return true; }
   840   enum {
   841     no_bci = -1 // value of bci when bci1/2 are not in use.
   842   };
   844   static int static_cell_count() {
   845     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
   846   }
   848   virtual int cell_count() {
   849     return static_cell_count();
   850   }
   852   static uint row_limit() {
   853     return BciProfileWidth;
   854   }
   855   static int bci_cell_index(uint row) {
   856     return bci0_offset + row * ret_row_cell_count;
   857   }
   858   static int bci_count_cell_index(uint row) {
   859     return count0_offset + row * ret_row_cell_count;
   860   }
   861   static int bci_displacement_cell_index(uint row) {
   862     return displacement0_offset + row * ret_row_cell_count;
   863   }
   865   // Direct accessors
   866   int bci(uint row) {
   867     return int_at(bci_cell_index(row));
   868   }
   869   uint bci_count(uint row) {
   870     return uint_at(bci_count_cell_index(row));
   871   }
   872   int bci_displacement(uint row) {
   873     return int_at(bci_displacement_cell_index(row));
   874   }
   876   // Interpreter Runtime support
   877   address fixup_ret(int return_bci, methodDataHandle mdo);
   879   // Code generation support
   880   static ByteSize bci_offset(uint row) {
   881     return cell_offset(bci_cell_index(row));
   882   }
   883   static ByteSize bci_count_offset(uint row) {
   884     return cell_offset(bci_count_cell_index(row));
   885   }
   886   static ByteSize bci_displacement_offset(uint row) {
   887     return cell_offset(bci_displacement_cell_index(row));
   888   }
   890   // Specific initialization.
   891   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
   893 #ifndef PRODUCT
   894   void print_data_on(outputStream* st);
   895 #endif
   896 };
   898 // BranchData
   899 //
   900 // A BranchData is used to access profiling data for a two-way branch.
   901 // It consists of taken and not_taken counts as well as a data displacement
   902 // for the taken case.
   903 class BranchData : public JumpData {
   904 protected:
   905   enum {
   906     not_taken_off_set = jump_cell_count,
   907     branch_cell_count
   908   };
   910   void set_displacement(int displacement) {
   911     set_int_at(displacement_off_set, displacement);
   912   }
   914 public:
   915   BranchData(DataLayout* layout) : JumpData(layout) {
   916     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
   917   }
   919   virtual bool is_BranchData() { return true; }
   921   static int static_cell_count() {
   922     return branch_cell_count;
   923   }
   925   virtual int cell_count() {
   926     return static_cell_count();
   927   }
   929   // Direct accessor
   930   uint not_taken() {
   931     return uint_at(not_taken_off_set);
   932   }
   934   void set_not_taken(uint cnt) {
   935     set_uint_at(not_taken_off_set, cnt);
   936   }
   938   uint inc_not_taken() {
   939     uint cnt = not_taken() + 1;
   940     // Did we wrap? Will compiler screw us??
   941     if (cnt == 0) cnt--;
   942     set_uint_at(not_taken_off_set, cnt);
   943     return cnt;
   944   }
   946   // Code generation support
   947   static ByteSize not_taken_offset() {
   948     return cell_offset(not_taken_off_set);
   949   }
   950   static ByteSize branch_data_size() {
   951     return cell_offset(branch_cell_count);
   952   }
   954   // Specific initialization.
   955   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
   957 #ifndef PRODUCT
   958   void print_data_on(outputStream* st);
   959 #endif
   960 };
   962 // ArrayData
   963 //
   964 // A ArrayData is a base class for accessing profiling data which does
   965 // not have a statically known size.  It consists of an array length
   966 // and an array start.
   967 class ArrayData : public ProfileData {
   968 protected:
   969   friend class DataLayout;
   971   enum {
   972     array_len_off_set,
   973     array_start_off_set
   974   };
   976   uint array_uint_at(int index) {
   977     int aindex = index + array_start_off_set;
   978     return uint_at(aindex);
   979   }
   980   int array_int_at(int index) {
   981     int aindex = index + array_start_off_set;
   982     return int_at(aindex);
   983   }
   984   oop array_oop_at(int index) {
   985     int aindex = index + array_start_off_set;
   986     return oop_at(aindex);
   987   }
   988   void array_set_int_at(int index, int value) {
   989     int aindex = index + array_start_off_set;
   990     set_int_at(aindex, value);
   991   }
   993   // Code generation support for subclasses.
   994   static ByteSize array_element_offset(int index) {
   995     return cell_offset(array_start_off_set + index);
   996   }
   998 public:
   999   ArrayData(DataLayout* layout) : ProfileData(layout) {}
  1001   virtual bool is_ArrayData() { return true; }
  1003   static int static_cell_count() {
  1004     return -1;
  1007   int array_len() {
  1008     return int_at_unchecked(array_len_off_set);
  1011   virtual int cell_count() {
  1012     return array_len() + 1;
  1015   // Code generation support
  1016   static ByteSize array_len_offset() {
  1017     return cell_offset(array_len_off_set);
  1019   static ByteSize array_start_offset() {
  1020     return cell_offset(array_start_off_set);
  1022 };
  1024 // MultiBranchData
  1025 //
  1026 // A MultiBranchData is used to access profiling information for
  1027 // a multi-way branch (*switch bytecodes).  It consists of a series
  1028 // of (count, displacement) pairs, which count the number of times each
  1029 // case was taken and specify the data displacment for each branch target.
  1030 class MultiBranchData : public ArrayData {
  1031 protected:
  1032   enum {
  1033     default_count_off_set,
  1034     default_disaplacement_off_set,
  1035     case_array_start
  1036   };
  1037   enum {
  1038     relative_count_off_set,
  1039     relative_displacement_off_set,
  1040     per_case_cell_count
  1041   };
  1043   void set_default_displacement(int displacement) {
  1044     array_set_int_at(default_disaplacement_off_set, displacement);
  1046   void set_displacement_at(int index, int displacement) {
  1047     array_set_int_at(case_array_start +
  1048                      index * per_case_cell_count +
  1049                      relative_displacement_off_set,
  1050                      displacement);
  1053 public:
  1054   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
  1055     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
  1058   virtual bool is_MultiBranchData() { return true; }
  1060   static int compute_cell_count(BytecodeStream* stream);
  1062   int number_of_cases() {
  1063     int alen = array_len() - 2; // get rid of default case here.
  1064     assert(alen % per_case_cell_count == 0, "must be even");
  1065     return (alen / per_case_cell_count);
  1068   uint default_count() {
  1069     return array_uint_at(default_count_off_set);
  1071   int default_displacement() {
  1072     return array_int_at(default_disaplacement_off_set);
  1075   uint count_at(int index) {
  1076     return array_uint_at(case_array_start +
  1077                          index * per_case_cell_count +
  1078                          relative_count_off_set);
  1080   int displacement_at(int index) {
  1081     return array_int_at(case_array_start +
  1082                         index * per_case_cell_count +
  1083                         relative_displacement_off_set);
  1086   // Code generation support
  1087   static ByteSize default_count_offset() {
  1088     return array_element_offset(default_count_off_set);
  1090   static ByteSize default_displacement_offset() {
  1091     return array_element_offset(default_disaplacement_off_set);
  1093   static ByteSize case_count_offset(int index) {
  1094     return case_array_offset() +
  1095            (per_case_size() * index) +
  1096            relative_count_offset();
  1098   static ByteSize case_array_offset() {
  1099     return array_element_offset(case_array_start);
  1101   static ByteSize per_case_size() {
  1102     return in_ByteSize(per_case_cell_count) * cell_size;
  1104   static ByteSize relative_count_offset() {
  1105     return in_ByteSize(relative_count_off_set) * cell_size;
  1107   static ByteSize relative_displacement_offset() {
  1108     return in_ByteSize(relative_displacement_off_set) * cell_size;
  1111   // Specific initialization.
  1112   void post_initialize(BytecodeStream* stream, methodDataOop mdo);
  1114 #ifndef PRODUCT
  1115   void print_data_on(outputStream* st);
  1116 #endif
  1117 };
  1119 class ArgInfoData : public ArrayData {
  1121 public:
  1122   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
  1123     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
  1126   virtual bool is_ArgInfoData() { return true; }
  1129   int number_of_args() {
  1130     return array_len();
  1133   uint arg_modified(int arg) {
  1134     return array_uint_at(arg);
  1137   void set_arg_modified(int arg, uint val) {
  1138     array_set_int_at(arg, val);
  1141 #ifndef PRODUCT
  1142   void print_data_on(outputStream* st);
  1143 #endif
  1144 };
  1146 // methodDataOop
  1147 //
  1148 // A methodDataOop holds information which has been collected about
  1149 // a method.  Its layout looks like this:
  1150 //
  1151 // -----------------------------
  1152 // | header                    |
  1153 // | klass                     |
  1154 // -----------------------------
  1155 // | method                    |
  1156 // | size of the methodDataOop |
  1157 // -----------------------------
  1158 // | Data entries...           |
  1159 // |   (variable size)         |
  1160 // |                           |
  1161 // .                           .
  1162 // .                           .
  1163 // .                           .
  1164 // |                           |
  1165 // -----------------------------
  1166 //
  1167 // The data entry area is a heterogeneous array of DataLayouts. Each
  1168 // DataLayout in the array corresponds to a specific bytecode in the
  1169 // method.  The entries in the array are sorted by the corresponding
  1170 // bytecode.  Access to the data is via resource-allocated ProfileData,
  1171 // which point to the underlying blocks of DataLayout structures.
  1172 //
  1173 // During interpretation, if profiling in enabled, the interpreter
  1174 // maintains a method data pointer (mdp), which points at the entry
  1175 // in the array corresponding to the current bci.  In the course of
  1176 // intepretation, when a bytecode is encountered that has profile data
  1177 // associated with it, the entry pointed to by mdp is updated, then the
  1178 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
  1179 // is NULL to begin with, the interpreter assumes that the current method
  1180 // is not (yet) being profiled.
  1181 //
  1182 // In methodDataOop parlance, "dp" is a "data pointer", the actual address
  1183 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
  1184 // from the base of the data entry array.  A "displacement" is the byte offset
  1185 // in certain ProfileData objects that indicate the amount the mdp must be
  1186 // adjusted in the event of a change in control flow.
  1187 //
  1189 class methodDataOopDesc : public oopDesc {
  1190   friend class VMStructs;
  1191 private:
  1192   friend class ProfileData;
  1194   // Back pointer to the methodOop
  1195   methodOop _method;
  1197   // Size of this oop in bytes
  1198   int _size;
  1200   // Cached hint for bci_to_dp and bci_to_data
  1201   int _hint_di;
  1203   // Whole-method sticky bits and flags
  1204 public:
  1205   enum {
  1206     _trap_hist_limit    = 17,   // decoupled from Deoptimization::Reason_LIMIT
  1207     _trap_hist_mask     = max_jubyte,
  1208     _extra_data_count   = 4     // extra DataLayout headers, for trap history
  1209   }; // Public flag values
  1210 private:
  1211   uint _nof_decompiles;             // count of all nmethod removals
  1212   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
  1213   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
  1214   union {
  1215     intptr_t _align;
  1216     u1 _array[_trap_hist_limit];
  1217   } _trap_hist;
  1219   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1220   intx              _eflags;          // flags on escape information
  1221   intx              _arg_local;       // bit set of non-escaping arguments
  1222   intx              _arg_stack;       // bit set of stack-allocatable arguments
  1223   intx              _arg_returned;    // bit set of returned arguments
  1225   int _creation_mileage;              // method mileage at MDO creation
  1227   // How many invocations has this MDO seen?
  1228   // These counters are used to determine the exact age of MDO.
  1229   // We need those because in tiered a method can be concurrently
  1230   // executed at different levels.
  1231   InvocationCounter _invocation_counter;
  1232   // Same for backedges.
  1233   InvocationCounter _backedge_counter;
  1234   // Counter values at the time profiling started.
  1235   int               _invocation_counter_start;
  1236   int               _backedge_counter_start;
  1237   // Number of loops and blocks is computed when compiling the first
  1238   // time with C1. It is used to determine if method is trivial.
  1239   short             _num_loops;
  1240   short             _num_blocks;
  1241   // Highest compile level this method has ever seen.
  1242   u1                _highest_comp_level;
  1243   // Same for OSR level
  1244   u1                _highest_osr_comp_level;
  1245   // Does this method contain anything worth profiling?
  1246   bool              _would_profile;
  1248   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
  1249   int _data_size;
  1251   // Beginning of the data entries
  1252   intptr_t _data[1];
  1254   // Helper for size computation
  1255   static int compute_data_size(BytecodeStream* stream);
  1256   static int bytecode_cell_count(Bytecodes::Code code);
  1257   enum { no_profile_data = -1, variable_cell_count = -2 };
  1259   // Helper for initialization
  1260   DataLayout* data_layout_at(int data_index) {
  1261     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
  1262     return (DataLayout*) (((address)_data) + data_index);
  1265   // Initialize an individual data segment.  Returns the size of
  1266   // the segment in bytes.
  1267   int initialize_data(BytecodeStream* stream, int data_index);
  1269   // Helper for data_at
  1270   DataLayout* limit_data_position() {
  1271     return (DataLayout*)((address)data_base() + _data_size);
  1273   bool out_of_bounds(int data_index) {
  1274     return data_index >= data_size();
  1277   // Give each of the data entries a chance to perform specific
  1278   // data initialization.
  1279   void post_initialize(BytecodeStream* stream);
  1281   // hint accessors
  1282   int      hint_di() const  { return _hint_di; }
  1283   void set_hint_di(int di)  {
  1284     assert(!out_of_bounds(di), "hint_di out of bounds");
  1285     _hint_di = di;
  1287   ProfileData* data_before(int bci) {
  1288     // avoid SEGV on this edge case
  1289     if (data_size() == 0)
  1290       return NULL;
  1291     int hint = hint_di();
  1292     if (data_layout_at(hint)->bci() <= bci)
  1293       return data_at(hint);
  1294     return first_data();
  1297   // What is the index of the first data entry?
  1298   int first_di() { return 0; }
  1300   // Find or create an extra ProfileData:
  1301   ProfileData* bci_to_extra_data(int bci, bool create_if_missing);
  1303   // return the argument info cell
  1304   ArgInfoData *arg_info();
  1306 public:
  1307   static int header_size() {
  1308     return sizeof(methodDataOopDesc)/wordSize;
  1311   // Compute the size of a methodDataOop before it is created.
  1312   static int compute_allocation_size_in_bytes(methodHandle method);
  1313   static int compute_allocation_size_in_words(methodHandle method);
  1314   static int compute_extra_data_count(int data_size, int empty_bc_count);
  1316   // Determine if a given bytecode can have profile information.
  1317   static bool bytecode_has_profile(Bytecodes::Code code) {
  1318     return bytecode_cell_count(code) != no_profile_data;
  1321   // Perform initialization of a new methodDataOop
  1322   void initialize(methodHandle method);
  1324   // My size
  1325   int object_size_in_bytes() { return _size; }
  1326   int object_size() {
  1327     return align_object_size(align_size_up(_size, BytesPerWord)/BytesPerWord);
  1330   int      creation_mileage() const  { return _creation_mileage; }
  1331   void set_creation_mileage(int x)   { _creation_mileage = x; }
  1333   int invocation_count() {
  1334     if (invocation_counter()->carry()) {
  1335       return InvocationCounter::count_limit;
  1337     return invocation_counter()->count();
  1339   int backedge_count() {
  1340     if (backedge_counter()->carry()) {
  1341       return InvocationCounter::count_limit;
  1343     return backedge_counter()->count();
  1346   int invocation_count_start() {
  1347     if (invocation_counter()->carry()) {
  1348       return 0;
  1350     return _invocation_counter_start;
  1353   int backedge_count_start() {
  1354     if (backedge_counter()->carry()) {
  1355       return 0;
  1357     return _backedge_counter_start;
  1360   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
  1361   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
  1363   void reset_start_counters() {
  1364     _invocation_counter_start = invocation_count();
  1365     _backedge_counter_start = backedge_count();
  1368   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
  1369   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
  1371   void set_would_profile(bool p)              { _would_profile = p;    }
  1372   bool would_profile() const                  { return _would_profile; }
  1374   int highest_comp_level()                    { return _highest_comp_level;      }
  1375   void set_highest_comp_level(int level)      { _highest_comp_level = level;     }
  1376   int highest_osr_comp_level()                { return _highest_osr_comp_level;  }
  1377   void set_highest_osr_comp_level(int level)  { _highest_osr_comp_level = level; }
  1379   int num_loops() const                       { return _num_loops;  }
  1380   void set_num_loops(int n)                   { _num_loops = n;     }
  1381   int num_blocks() const                      { return _num_blocks; }
  1382   void set_num_blocks(int n)                  { _num_blocks = n;    }
  1384   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
  1385   static int mileage_of(methodOop m);
  1387   // Support for interprocedural escape analysis, from Thomas Kotzmann.
  1388   enum EscapeFlag {
  1389     estimated    = 1 << 0,
  1390     return_local = 1 << 1,
  1391     return_allocated = 1 << 2,
  1392     allocated_escapes = 1 << 3,
  1393     unknown_modified = 1 << 4
  1394   };
  1396   intx eflags()                                  { return _eflags; }
  1397   intx arg_local()                               { return _arg_local; }
  1398   intx arg_stack()                               { return _arg_stack; }
  1399   intx arg_returned()                            { return _arg_returned; }
  1400   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
  1401                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1402                                                    return aid->arg_modified(a); }
  1404   void set_eflags(intx v)                        { _eflags = v; }
  1405   void set_arg_local(intx v)                     { _arg_local = v; }
  1406   void set_arg_stack(intx v)                     { _arg_stack = v; }
  1407   void set_arg_returned(intx v)                  { _arg_returned = v; }
  1408   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
  1409                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
  1411                                                    aid->set_arg_modified(a, v); }
  1413   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
  1415   // Location and size of data area
  1416   address data_base() const {
  1417     return (address) _data;
  1419   int data_size() {
  1420     return _data_size;
  1423   // Accessors
  1424   methodOop method() { return _method; }
  1426   // Get the data at an arbitrary (sort of) data index.
  1427   ProfileData* data_at(int data_index);
  1429   // Walk through the data in order.
  1430   ProfileData* first_data() { return data_at(first_di()); }
  1431   ProfileData* next_data(ProfileData* current);
  1432   bool is_valid(ProfileData* current) { return current != NULL; }
  1434   // Convert a dp (data pointer) to a di (data index).
  1435   int dp_to_di(address dp) {
  1436     return dp - ((address)_data);
  1439   address di_to_dp(int di) {
  1440     return (address)data_layout_at(di);
  1443   // bci to di/dp conversion.
  1444   address bci_to_dp(int bci);
  1445   int bci_to_di(int bci) {
  1446     return dp_to_di(bci_to_dp(bci));
  1449   // Get the data at an arbitrary bci, or NULL if there is none.
  1450   ProfileData* bci_to_data(int bci);
  1452   // Same, but try to create an extra_data record if one is needed:
  1453   ProfileData* allocate_bci_to_data(int bci) {
  1454     ProfileData* data = bci_to_data(bci);
  1455     return (data != NULL) ? data : bci_to_extra_data(bci, true);
  1458   // Add a handful of extra data records, for trap tracking.
  1459   DataLayout* extra_data_base() { return limit_data_position(); }
  1460   DataLayout* extra_data_limit() { return (DataLayout*)((address)this + object_size_in_bytes()); }
  1461   int extra_data_size() { return (address)extra_data_limit()
  1462                                - (address)extra_data_base(); }
  1463   static DataLayout* next_extra(DataLayout* dp) { return (DataLayout*)((address)dp + in_bytes(DataLayout::cell_offset(0))); }
  1465   // Return (uint)-1 for overflow.
  1466   uint trap_count(int reason) const {
  1467     assert((uint)reason < _trap_hist_limit, "oob");
  1468     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
  1470   // For loops:
  1471   static uint trap_reason_limit() { return _trap_hist_limit; }
  1472   static uint trap_count_limit()  { return _trap_hist_mask; }
  1473   uint inc_trap_count(int reason) {
  1474     // Count another trap, anywhere in this method.
  1475     assert(reason >= 0, "must be single trap");
  1476     if ((uint)reason < _trap_hist_limit) {
  1477       uint cnt1 = 1 + _trap_hist._array[reason];
  1478       if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
  1479         _trap_hist._array[reason] = cnt1;
  1480         return cnt1;
  1481       } else {
  1482         return _trap_hist_mask + (++_nof_overflow_traps);
  1484     } else {
  1485       // Could not represent the count in the histogram.
  1486       return (++_nof_overflow_traps);
  1490   uint overflow_trap_count() const {
  1491     return _nof_overflow_traps;
  1493   uint overflow_recompile_count() const {
  1494     return _nof_overflow_recompiles;
  1496   void inc_overflow_recompile_count() {
  1497     _nof_overflow_recompiles += 1;
  1499   uint decompile_count() const {
  1500     return _nof_decompiles;
  1502   void inc_decompile_count() {
  1503     _nof_decompiles += 1;
  1504     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
  1505       method()->set_not_compilable(CompLevel_full_optimization);
  1509   // Support for code generation
  1510   static ByteSize data_offset() {
  1511     return byte_offset_of(methodDataOopDesc, _data[0]);
  1514   static ByteSize invocation_counter_offset() {
  1515     return byte_offset_of(methodDataOopDesc, _invocation_counter);
  1517   static ByteSize backedge_counter_offset() {
  1518     return byte_offset_of(methodDataOopDesc, _backedge_counter);
  1521   // GC support
  1522   oop* adr_method() const { return (oop*)&_method; }
  1523   bool object_is_parsable() const { return _size != 0; }
  1524   void set_object_is_parsable(int object_size_in_bytes) { _size = object_size_in_bytes; }
  1526 #ifndef PRODUCT
  1527   // printing support for method data
  1528   void print_data_on(outputStream* st);
  1529 #endif
  1531   // verification
  1532   void verify_data_on(outputStream* st);
  1533 };
  1535 #endif // SHARE_VM_OOPS_METHODDATAOOP_HPP

mercurial