src/share/vm/gc_implementation/g1/concurrentMark.hpp

Wed, 07 Oct 2009 10:09:57 -0400

author
tonyp
date
Wed, 07 Oct 2009 10:09:57 -0400
changeset 1458
11d4857fe5e1
parent 1454
035d2e036a9b
child 1479
6270f80a7331
permissions
-rw-r--r--

6888619: G1: too many guarantees in concurrent marking
Summary: change more guarantees in concurrent marking into asserts.
Reviewed-by: apetrusenko, iveresov

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class G1CollectedHeap;
    26 class CMTask;
    27 typedef GenericTaskQueue<oop> CMTaskQueue;
    28 typedef GenericTaskQueueSet<oop> CMTaskQueueSet;
    30 // A generic CM bit map.  This is essentially a wrapper around the BitMap
    31 // class, with one bit per (1<<_shifter) HeapWords.
    33 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
    34  protected:
    35   HeapWord* _bmStartWord;      // base address of range covered by map
    36   size_t    _bmWordSize;       // map size (in #HeapWords covered)
    37   const int _shifter;          // map to char or bit
    38   VirtualSpace _virtual_space; // underlying the bit map
    39   BitMap    _bm;               // the bit map itself
    41  public:
    42   // constructor
    43   CMBitMapRO(ReservedSpace rs, int shifter);
    45   enum { do_yield = true };
    47   // inquiries
    48   HeapWord* startWord()   const { return _bmStartWord; }
    49   size_t    sizeInWords() const { return _bmWordSize;  }
    50   // the following is one past the last word in space
    51   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    53   // read marks
    55   bool isMarked(HeapWord* addr) const {
    56     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
    57            "outside underlying space?");
    58     return _bm.at(heapWordToOffset(addr));
    59   }
    61   // iteration
    62   bool iterate(BitMapClosure* cl) { return _bm.iterate(cl); }
    63   bool iterate(BitMapClosure* cl, MemRegion mr);
    65   // Return the address corresponding to the next marked bit at or after
    66   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    67   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    68   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
    69                                      HeapWord* limit = NULL) const;
    70   // Return the address corresponding to the next unmarked bit at or after
    71   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    72   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    73   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
    74                                        HeapWord* limit = NULL) const;
    76   // conversion utilities
    77   // XXX Fix these so that offsets are size_t's...
    78   HeapWord* offsetToHeapWord(size_t offset) const {
    79     return _bmStartWord + (offset << _shifter);
    80   }
    81   size_t heapWordToOffset(HeapWord* addr) const {
    82     return pointer_delta(addr, _bmStartWord) >> _shifter;
    83   }
    84   int heapWordDiffToOffsetDiff(size_t diff) const;
    85   HeapWord* nextWord(HeapWord* addr) {
    86     return offsetToHeapWord(heapWordToOffset(addr) + 1);
    87   }
    89   void mostly_disjoint_range_union(BitMap*   from_bitmap,
    90                                    size_t    from_start_index,
    91                                    HeapWord* to_start_word,
    92                                    size_t    word_num);
    94   // debugging
    95   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
    96 };
    98 class CMBitMap : public CMBitMapRO {
   100  public:
   101   // constructor
   102   CMBitMap(ReservedSpace rs, int shifter) :
   103     CMBitMapRO(rs, shifter) {}
   105   // write marks
   106   void mark(HeapWord* addr) {
   107     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   108            "outside underlying space?");
   109     _bm.at_put(heapWordToOffset(addr), true);
   110   }
   111   void clear(HeapWord* addr) {
   112     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   113            "outside underlying space?");
   114     _bm.at_put(heapWordToOffset(addr), false);
   115   }
   116   bool parMark(HeapWord* addr) {
   117     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   118            "outside underlying space?");
   119     return _bm.par_at_put(heapWordToOffset(addr), true);
   120   }
   121   bool parClear(HeapWord* addr) {
   122     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   123            "outside underlying space?");
   124     return _bm.par_at_put(heapWordToOffset(addr), false);
   125   }
   126   void markRange(MemRegion mr);
   127   void clearAll();
   128   void clearRange(MemRegion mr);
   130   // Starting at the bit corresponding to "addr" (inclusive), find the next
   131   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
   132   // the end of this run (stopping at "end_addr").  Return the MemRegion
   133   // covering from the start of the region corresponding to the first bit
   134   // of the run to the end of the region corresponding to the last bit of
   135   // the run.  If there is no "1" bit at or after "addr", return an empty
   136   // MemRegion.
   137   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
   138 };
   140 // Represents a marking stack used by the CM collector.
   141 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
   142 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
   143   ConcurrentMark* _cm;
   144   oop*   _base;      // bottom of stack
   145   jint   _index;     // one more than last occupied index
   146   jint   _capacity;  // max #elements
   147   jint   _oops_do_bound;  // Number of elements to include in next iteration.
   148   NOT_PRODUCT(jint _max_depth;)  // max depth plumbed during run
   150   bool   _overflow;
   151   DEBUG_ONLY(bool _drain_in_progress;)
   152   DEBUG_ONLY(bool _drain_in_progress_yields;)
   154  public:
   155   CMMarkStack(ConcurrentMark* cm);
   156   ~CMMarkStack();
   158   void allocate(size_t size);
   160   oop pop() {
   161     if (!isEmpty()) {
   162       return _base[--_index] ;
   163     }
   164     return NULL;
   165   }
   167   // If overflow happens, don't do the push, and record the overflow.
   168   // *Requires* that "ptr" is already marked.
   169   void push(oop ptr) {
   170     if (isFull()) {
   171       // Record overflow.
   172       _overflow = true;
   173       return;
   174     } else {
   175       _base[_index++] = ptr;
   176       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   177     }
   178   }
   179   // Non-block impl.  Note: concurrency is allowed only with other
   180   // "par_push" operations, not with "pop" or "drain".  We would need
   181   // parallel versions of them if such concurrency was desired.
   182   void par_push(oop ptr);
   184   // Pushes the first "n" elements of "ptr_arr" on the stack.
   185   // Non-block impl.  Note: concurrency is allowed only with other
   186   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
   187   void par_adjoin_arr(oop* ptr_arr, int n);
   189   // Pushes the first "n" elements of "ptr_arr" on the stack.
   190   // Locking impl: concurrency is allowed only with
   191   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
   192   // locking strategy.
   193   void par_push_arr(oop* ptr_arr, int n);
   195   // If returns false, the array was empty.  Otherwise, removes up to "max"
   196   // elements from the stack, and transfers them to "ptr_arr" in an
   197   // unspecified order.  The actual number transferred is given in "n" ("n
   198   // == 0" is deliberately redundant with the return value.)  Locking impl:
   199   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
   200   // operations, which use the same locking strategy.
   201   bool par_pop_arr(oop* ptr_arr, int max, int* n);
   203   // Drain the mark stack, applying the given closure to all fields of
   204   // objects on the stack.  (That is, continue until the stack is empty,
   205   // even if closure applications add entries to the stack.)  The "bm"
   206   // argument, if non-null, may be used to verify that only marked objects
   207   // are on the mark stack.  If "yield_after" is "true", then the
   208   // concurrent marker performing the drain offers to yield after
   209   // processing each object.  If a yield occurs, stops the drain operation
   210   // and returns false.  Otherwise, returns true.
   211   template<class OopClosureClass>
   212   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
   214   bool isEmpty()    { return _index == 0; }
   215   bool isFull()     { return _index == _capacity; }
   216   int maxElems()    { return _capacity; }
   218   bool overflow() { return _overflow; }
   219   void clear_overflow() { _overflow = false; }
   221   int  size() { return _index; }
   223   void setEmpty()   { _index = 0; clear_overflow(); }
   225   // Record the current size; a subsequent "oops_do" will iterate only over
   226   // indices valid at the time of this call.
   227   void set_oops_do_bound(jint bound = -1) {
   228     if (bound == -1) {
   229       _oops_do_bound = _index;
   230     } else {
   231       _oops_do_bound = bound;
   232     }
   233   }
   234   jint oops_do_bound() { return _oops_do_bound; }
   235   // iterate over the oops in the mark stack, up to the bound recorded via
   236   // the call above.
   237   void oops_do(OopClosure* f);
   238 };
   240 class CMRegionStack VALUE_OBJ_CLASS_SPEC {
   241   MemRegion* _base;
   242   jint _capacity;
   243   jint _index;
   244   jint _oops_do_bound;
   245   bool _overflow;
   246 public:
   247   CMRegionStack();
   248   ~CMRegionStack();
   249   void allocate(size_t size);
   251   // This is lock-free; assumes that it will only be called in parallel
   252   // with other "push" operations (no pops).
   253   void push(MemRegion mr);
   255   // Lock-free; assumes that it will only be called in parallel
   256   // with other "pop" operations (no pushes).
   257   MemRegion pop();
   259   bool isEmpty()    { return _index == 0; }
   260   bool isFull()     { return _index == _capacity; }
   262   bool overflow() { return _overflow; }
   263   void clear_overflow() { _overflow = false; }
   265   int  size() { return _index; }
   267   // It iterates over the entries in the region stack and it
   268   // invalidates (i.e. assigns MemRegion()) the ones that point to
   269   // regions in the collection set.
   270   bool invalidate_entries_into_cset();
   272   // This gives an upper bound up to which the iteration in
   273   // invalidate_entries_into_cset() will reach. This prevents
   274   // newly-added entries to be unnecessarily scanned.
   275   void set_oops_do_bound() {
   276     _oops_do_bound = _index;
   277   }
   279   void setEmpty()   { _index = 0; clear_overflow(); }
   280 };
   282 // this will enable a variety of different statistics per GC task
   283 #define _MARKING_STATS_       0
   284 // this will enable the higher verbose levels
   285 #define _MARKING_VERBOSE_     0
   287 #if _MARKING_STATS_
   288 #define statsOnly(statement)  \
   289 do {                          \
   290   statement ;                 \
   291 } while (0)
   292 #else // _MARKING_STATS_
   293 #define statsOnly(statement)  \
   294 do {                          \
   295 } while (0)
   296 #endif // _MARKING_STATS_
   298 typedef enum {
   299   no_verbose  = 0,   // verbose turned off
   300   stats_verbose,     // only prints stats at the end of marking
   301   low_verbose,       // low verbose, mostly per region and per major event
   302   medium_verbose,    // a bit more detailed than low
   303   high_verbose       // per object verbose
   304 } CMVerboseLevel;
   307 class ConcurrentMarkThread;
   309 class ConcurrentMark: public CHeapObj {
   310   friend class ConcurrentMarkThread;
   311   friend class CMTask;
   312   friend class CMBitMapClosure;
   313   friend class CSMarkOopClosure;
   314   friend class CMGlobalObjectClosure;
   315   friend class CMRemarkTask;
   316   friend class CMConcurrentMarkingTask;
   317   friend class G1ParNoteEndTask;
   318   friend class CalcLiveObjectsClosure;
   320 protected:
   321   ConcurrentMarkThread* _cmThread;   // the thread doing the work
   322   G1CollectedHeap*      _g1h;        // the heap.
   323   size_t                _parallel_marking_threads; // the number of marking
   324                                                    // threads we'll use
   325   double                _sleep_factor; // how much we have to sleep, with
   326                                        // respect to the work we just did, to
   327                                        // meet the marking overhead goal
   328   double                _marking_task_overhead; // marking target overhead for
   329                                                 // a single task
   331   // same as the two above, but for the cleanup task
   332   double                _cleanup_sleep_factor;
   333   double                _cleanup_task_overhead;
   335   // Stuff related to age cohort processing.
   336   struct ParCleanupThreadState {
   337     char _pre[64];
   338     UncleanRegionList list;
   339     char _post[64];
   340   };
   341   ParCleanupThreadState** _par_cleanup_thread_state;
   343   // CMS marking support structures
   344   CMBitMap                _markBitMap1;
   345   CMBitMap                _markBitMap2;
   346   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
   347   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
   348   bool                    _at_least_one_mark_complete;
   350   BitMap                  _region_bm;
   351   BitMap                  _card_bm;
   353   // Heap bounds
   354   HeapWord*               _heap_start;
   355   HeapWord*               _heap_end;
   357   // For gray objects
   358   CMMarkStack             _markStack; // Grey objects behind global finger.
   359   CMRegionStack           _regionStack; // Grey regions behind global finger.
   360   HeapWord* volatile      _finger;  // the global finger, region aligned,
   361                                     // always points to the end of the
   362                                     // last claimed region
   364   // marking tasks
   365   size_t                  _max_task_num; // maximum task number
   366   size_t                  _active_tasks; // task num currently active
   367   CMTask**                _tasks;        // task queue array (max_task_num len)
   368   CMTaskQueueSet*         _task_queues;  // task queue set
   369   ParallelTaskTerminator  _terminator;   // for termination
   371   // Two sync barriers that are used to synchronise tasks when an
   372   // overflow occurs. The algorithm is the following. All tasks enter
   373   // the first one to ensure that they have all stopped manipulating
   374   // the global data structures. After they exit it, they re-initialise
   375   // their data structures and task 0 re-initialises the global data
   376   // structures. Then, they enter the second sync barrier. This
   377   // ensure, that no task starts doing work before all data
   378   // structures (local and global) have been re-initialised. When they
   379   // exit it, they are free to start working again.
   380   WorkGangBarrierSync     _first_overflow_barrier_sync;
   381   WorkGangBarrierSync     _second_overflow_barrier_sync;
   384   // this is set by any task, when an overflow on the global data
   385   // structures is detected.
   386   volatile bool           _has_overflown;
   387   // true: marking is concurrent, false: we're in remark
   388   volatile bool           _concurrent;
   389   // set at the end of a Full GC so that marking aborts
   390   volatile bool           _has_aborted;
   391   // used when remark aborts due to an overflow to indicate that
   392   // another concurrent marking phase should start
   393   volatile bool           _restart_for_overflow;
   395   // This is true from the very start of concurrent marking until the
   396   // point when all the tasks complete their work. It is really used
   397   // to determine the points between the end of concurrent marking and
   398   // time of remark.
   399   volatile bool           _concurrent_marking_in_progress;
   401   // verbose level
   402   CMVerboseLevel          _verbose_level;
   404   // These two fields are used to implement the optimisation that
   405   // avoids pushing objects on the global/region stack if there are
   406   // no collection set regions above the lowest finger.
   408   // This is the lowest finger (among the global and local fingers),
   409   // which is calculated before a new collection set is chosen.
   410   HeapWord* _min_finger;
   411   // If this flag is true, objects/regions that are marked below the
   412   // finger should be pushed on the stack(s). If this is flag is
   413   // false, it is safe not to push them on the stack(s).
   414   bool      _should_gray_objects;
   416   // All of these times are in ms.
   417   NumberSeq _init_times;
   418   NumberSeq _remark_times;
   419   NumberSeq   _remark_mark_times;
   420   NumberSeq   _remark_weak_ref_times;
   421   NumberSeq _cleanup_times;
   422   double    _total_counting_time;
   423   double    _total_rs_scrub_time;
   425   double*   _accum_task_vtime;   // accumulated task vtime
   427   WorkGang* _parallel_workers;
   429   void weakRefsWork(bool clear_all_soft_refs);
   431   void swapMarkBitMaps();
   433   // It resets the global marking data structures, as well as the
   434   // task local ones; should be called during initial mark.
   435   void reset();
   436   // It resets all the marking data structures.
   437   void clear_marking_state();
   439   // It should be called to indicate which phase we're in (concurrent
   440   // mark or remark) and how many threads are currently active.
   441   void set_phase(size_t active_tasks, bool concurrent);
   442   // We do this after we're done with marking so that the marking data
   443   // structures are initialised to a sensible and predictable state.
   444   void set_non_marking_state();
   446   // prints all gathered CM-related statistics
   447   void print_stats();
   449   // accessor methods
   450   size_t parallel_marking_threads() { return _parallel_marking_threads; }
   451   double sleep_factor()             { return _sleep_factor; }
   452   double marking_task_overhead()    { return _marking_task_overhead;}
   453   double cleanup_sleep_factor()     { return _cleanup_sleep_factor; }
   454   double cleanup_task_overhead()    { return _cleanup_task_overhead;}
   456   HeapWord*               finger()        { return _finger;   }
   457   bool                    concurrent()    { return _concurrent; }
   458   size_t                  active_tasks()  { return _active_tasks; }
   459   ParallelTaskTerminator* terminator()    { return &_terminator; }
   461   // It claims the next available region to be scanned by a marking
   462   // task. It might return NULL if the next region is empty or we have
   463   // run out of regions. In the latter case, out_of_regions()
   464   // determines whether we've really run out of regions or the task
   465   // should call claim_region() again.  This might seem a bit
   466   // awkward. Originally, the code was written so that claim_region()
   467   // either successfully returned with a non-empty region or there
   468   // were no more regions to be claimed. The problem with this was
   469   // that, in certain circumstances, it iterated over large chunks of
   470   // the heap finding only empty regions and, while it was working, it
   471   // was preventing the calling task to call its regular clock
   472   // method. So, this way, each task will spend very little time in
   473   // claim_region() and is allowed to call the regular clock method
   474   // frequently.
   475   HeapRegion* claim_region(int task);
   477   // It determines whether we've run out of regions to scan.
   478   bool        out_of_regions() { return _finger == _heap_end; }
   480   // Returns the task with the given id
   481   CMTask* task(int id) {
   482     assert(0 <= id && id < (int) _active_tasks,
   483            "task id not within active bounds");
   484     return _tasks[id];
   485   }
   487   // Returns the task queue with the given id
   488   CMTaskQueue* task_queue(int id) {
   489     assert(0 <= id && id < (int) _active_tasks,
   490            "task queue id not within active bounds");
   491     return (CMTaskQueue*) _task_queues->queue(id);
   492   }
   494   // Returns the task queue set
   495   CMTaskQueueSet* task_queues()  { return _task_queues; }
   497   // Access / manipulation of the overflow flag which is set to
   498   // indicate that the global stack or region stack has overflown
   499   bool has_overflown()           { return _has_overflown; }
   500   void set_has_overflown()       { _has_overflown = true; }
   501   void clear_has_overflown()     { _has_overflown = false; }
   503   bool has_aborted()             { return _has_aborted; }
   504   bool restart_for_overflow()    { return _restart_for_overflow; }
   506   // Methods to enter the two overflow sync barriers
   507   void enter_first_sync_barrier(int task_num);
   508   void enter_second_sync_barrier(int task_num);
   510 public:
   511   // Manipulation of the global mark stack.
   512   // Notice that the first mark_stack_push is CAS-based, whereas the
   513   // two below are Mutex-based. This is OK since the first one is only
   514   // called during evacuation pauses and doesn't compete with the
   515   // other two (which are called by the marking tasks during
   516   // concurrent marking or remark).
   517   bool mark_stack_push(oop p) {
   518     _markStack.par_push(p);
   519     if (_markStack.overflow()) {
   520       set_has_overflown();
   521       return false;
   522     }
   523     return true;
   524   }
   525   bool mark_stack_push(oop* arr, int n) {
   526     _markStack.par_push_arr(arr, n);
   527     if (_markStack.overflow()) {
   528       set_has_overflown();
   529       return false;
   530     }
   531     return true;
   532   }
   533   void mark_stack_pop(oop* arr, int max, int* n) {
   534     _markStack.par_pop_arr(arr, max, n);
   535   }
   536   size_t mark_stack_size()              { return _markStack.size(); }
   537   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
   538   bool mark_stack_overflow()            { return _markStack.overflow(); }
   539   bool mark_stack_empty()               { return _markStack.isEmpty(); }
   541   // Manipulation of the region stack
   542   bool region_stack_push(MemRegion mr) {
   543     _regionStack.push(mr);
   544     if (_regionStack.overflow()) {
   545       set_has_overflown();
   546       return false;
   547     }
   548     return true;
   549   }
   550   MemRegion region_stack_pop()          { return _regionStack.pop(); }
   551   int region_stack_size()               { return _regionStack.size(); }
   552   bool region_stack_overflow()          { return _regionStack.overflow(); }
   553   bool region_stack_empty()             { return _regionStack.isEmpty(); }
   555   bool concurrent_marking_in_progress() {
   556     return _concurrent_marking_in_progress;
   557   }
   558   void set_concurrent_marking_in_progress() {
   559     _concurrent_marking_in_progress = true;
   560   }
   561   void clear_concurrent_marking_in_progress() {
   562     _concurrent_marking_in_progress = false;
   563   }
   565   void update_accum_task_vtime(int i, double vtime) {
   566     _accum_task_vtime[i] += vtime;
   567   }
   569   double all_task_accum_vtime() {
   570     double ret = 0.0;
   571     for (int i = 0; i < (int)_max_task_num; ++i)
   572       ret += _accum_task_vtime[i];
   573     return ret;
   574   }
   576   // Attempts to steal an object from the task queues of other tasks
   577   bool try_stealing(int task_num, int* hash_seed, oop& obj) {
   578     return _task_queues->steal(task_num, hash_seed, obj);
   579   }
   581   // It grays an object by first marking it. Then, if it's behind the
   582   // global finger, it also pushes it on the global stack.
   583   void deal_with_reference(oop obj);
   585   ConcurrentMark(ReservedSpace rs, int max_regions);
   586   ~ConcurrentMark();
   587   ConcurrentMarkThread* cmThread() { return _cmThread; }
   589   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
   590   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
   592   // The following three are interaction between CM and
   593   // G1CollectedHeap
   595   // This notifies CM that a root during initial-mark needs to be
   596   // grayed and it's MT-safe. Currently, we just mark it. But, in the
   597   // future, we can experiment with pushing it on the stack and we can
   598   // do this without changing G1CollectedHeap.
   599   void grayRoot(oop p);
   600   // It's used during evacuation pauses to gray a region, if
   601   // necessary, and it's MT-safe. It assumes that the caller has
   602   // marked any objects on that region. If _should_gray_objects is
   603   // true and we're still doing concurrent marking, the region is
   604   // pushed on the region stack, if it is located below the global
   605   // finger, otherwise we do nothing.
   606   void grayRegionIfNecessary(MemRegion mr);
   607   // It's used during evacuation pauses to mark and, if necessary,
   608   // gray a single object and it's MT-safe. It assumes the caller did
   609   // not mark the object. If _should_gray_objects is true and we're
   610   // still doing concurrent marking, the objects is pushed on the
   611   // global stack, if it is located below the global finger, otherwise
   612   // we do nothing.
   613   void markAndGrayObjectIfNecessary(oop p);
   615   // This iterates over the bitmap of the previous marking and prints
   616   // out all objects that are marked on the bitmap and indicates
   617   // whether what they point to is also marked or not.
   618   void print_prev_bitmap_reachable();
   620   // Clear the next marking bitmap (will be called concurrently).
   621   void clearNextBitmap();
   623   // main CMS steps and related support
   624   void checkpointRootsInitial();
   626   // These two do the work that needs to be done before and after the
   627   // initial root checkpoint. Since this checkpoint can be done at two
   628   // different points (i.e. an explicit pause or piggy-backed on a
   629   // young collection), then it's nice to be able to easily share the
   630   // pre/post code. It might be the case that we can put everything in
   631   // the post method. TP
   632   void checkpointRootsInitialPre();
   633   void checkpointRootsInitialPost();
   635   // Do concurrent phase of marking, to a tentative transitive closure.
   636   void markFromRoots();
   638   // Process all unprocessed SATB buffers. It is called at the
   639   // beginning of an evacuation pause.
   640   void drainAllSATBBuffers();
   642   void checkpointRootsFinal(bool clear_all_soft_refs);
   643   void checkpointRootsFinalWork();
   644   void calcDesiredRegions();
   645   void cleanup();
   646   void completeCleanup();
   648   // Mark in the previous bitmap.  NB: this is usually read-only, so use
   649   // this carefully!
   650   void markPrev(oop p);
   651   void clear(oop p);
   652   // Clears marks for all objects in the given range, for both prev and
   653   // next bitmaps.  NB: the previous bitmap is usually read-only, so use
   654   // this carefully!
   655   void clearRangeBothMaps(MemRegion mr);
   657   // Record the current top of the mark and region stacks; a
   658   // subsequent oops_do() on the mark stack and
   659   // invalidate_entries_into_cset() on the region stack will iterate
   660   // only over indices valid at the time of this call.
   661   void set_oops_do_bound() {
   662     _markStack.set_oops_do_bound();
   663     _regionStack.set_oops_do_bound();
   664   }
   665   // Iterate over the oops in the mark stack and all local queues. It
   666   // also calls invalidate_entries_into_cset() on the region stack.
   667   void oops_do(OopClosure* f);
   668   // It is called at the end of an evacuation pause during marking so
   669   // that CM is notified of where the new end of the heap is. It
   670   // doesn't do anything if concurrent_marking_in_progress() is false,
   671   // unless the force parameter is true.
   672   void update_g1_committed(bool force = false);
   674   void complete_marking_in_collection_set();
   676   // It indicates that a new collection set is being chosen.
   677   void newCSet();
   678   // It registers a collection set heap region with CM. This is used
   679   // to determine whether any heap regions are located above the finger.
   680   void registerCSetRegion(HeapRegion* hr);
   682   // Returns "true" if at least one mark has been completed.
   683   bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
   685   bool isMarked(oop p) const {
   686     assert(p != NULL && p->is_oop(), "expected an oop");
   687     HeapWord* addr = (HeapWord*)p;
   688     assert(addr >= _nextMarkBitMap->startWord() ||
   689            addr < _nextMarkBitMap->endWord(), "in a region");
   691     return _nextMarkBitMap->isMarked(addr);
   692   }
   694   inline bool not_yet_marked(oop p) const;
   696   // XXX Debug code
   697   bool containing_card_is_marked(void* p);
   698   bool containing_cards_are_marked(void* start, void* last);
   700   bool isPrevMarked(oop p) const {
   701     assert(p != NULL && p->is_oop(), "expected an oop");
   702     HeapWord* addr = (HeapWord*)p;
   703     assert(addr >= _prevMarkBitMap->startWord() ||
   704            addr < _prevMarkBitMap->endWord(), "in a region");
   706     return _prevMarkBitMap->isMarked(addr);
   707   }
   709   inline bool do_yield_check(int worker_i = 0);
   710   inline bool should_yield();
   712   // Called to abort the marking cycle after a Full GC takes palce.
   713   void abort();
   715   // This prints the global/local fingers. It is used for debugging.
   716   NOT_PRODUCT(void print_finger();)
   718   void print_summary_info();
   720   void print_worker_threads_on(outputStream* st) const;
   722   // The following indicate whether a given verbose level has been
   723   // set. Notice that anything above stats is conditional to
   724   // _MARKING_VERBOSE_ having been set to 1
   725   bool verbose_stats()
   726     { return _verbose_level >= stats_verbose; }
   727   bool verbose_low()
   728     { return _MARKING_VERBOSE_ && _verbose_level >= low_verbose; }
   729   bool verbose_medium()
   730     { return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose; }
   731   bool verbose_high()
   732     { return _MARKING_VERBOSE_ && _verbose_level >= high_verbose; }
   733 };
   735 // A class representing a marking task.
   736 class CMTask : public TerminatorTerminator {
   737 private:
   738   enum PrivateConstants {
   739     // the regular clock call is called once the scanned words reaches
   740     // this limit
   741     words_scanned_period          = 12*1024,
   742     // the regular clock call is called once the number of visited
   743     // references reaches this limit
   744     refs_reached_period           = 384,
   745     // initial value for the hash seed, used in the work stealing code
   746     init_hash_seed                = 17,
   747     // how many entries will be transferred between global stack and
   748     // local queues
   749     global_stack_transfer_size    = 16
   750   };
   752   int                         _task_id;
   753   G1CollectedHeap*            _g1h;
   754   ConcurrentMark*             _cm;
   755   CMBitMap*                   _nextMarkBitMap;
   756   // the task queue of this task
   757   CMTaskQueue*                _task_queue;
   758 private:
   759   // the task queue set---needed for stealing
   760   CMTaskQueueSet*             _task_queues;
   761   // indicates whether the task has been claimed---this is only  for
   762   // debugging purposes
   763   bool                        _claimed;
   765   // number of calls to this task
   766   int                         _calls;
   768   // when the virtual timer reaches this time, the marking step should
   769   // exit
   770   double                      _time_target_ms;
   771   // the start time of the current marking step
   772   double                      _start_time_ms;
   774   // the oop closure used for iterations over oops
   775   OopClosure*                 _oop_closure;
   777   // the region this task is scanning, NULL if we're not scanning any
   778   HeapRegion*                 _curr_region;
   779   // the local finger of this task, NULL if we're not scanning a region
   780   HeapWord*                   _finger;
   781   // limit of the region this task is scanning, NULL if we're not scanning one
   782   HeapWord*                   _region_limit;
   784   // This is used only when we scan regions popped from the region
   785   // stack. It records what the last object on such a region we
   786   // scanned was. It is used to ensure that, if we abort region
   787   // iteration, we do not rescan the first part of the region. This
   788   // should be NULL when we're not scanning a region from the region
   789   // stack.
   790   HeapWord*                   _region_finger;
   792   // the number of words this task has scanned
   793   size_t                      _words_scanned;
   794   // When _words_scanned reaches this limit, the regular clock is
   795   // called. Notice that this might be decreased under certain
   796   // circumstances (i.e. when we believe that we did an expensive
   797   // operation).
   798   size_t                      _words_scanned_limit;
   799   // the initial value of _words_scanned_limit (i.e. what it was
   800   // before it was decreased).
   801   size_t                      _real_words_scanned_limit;
   803   // the number of references this task has visited
   804   size_t                      _refs_reached;
   805   // When _refs_reached reaches this limit, the regular clock is
   806   // called. Notice this this might be decreased under certain
   807   // circumstances (i.e. when we believe that we did an expensive
   808   // operation).
   809   size_t                      _refs_reached_limit;
   810   // the initial value of _refs_reached_limit (i.e. what it was before
   811   // it was decreased).
   812   size_t                      _real_refs_reached_limit;
   814   // used by the work stealing stuff
   815   int                         _hash_seed;
   816   // if this is true, then the task has aborted for some reason
   817   bool                        _has_aborted;
   818   // set when the task aborts because it has met its time quota
   819   bool                        _has_aborted_timed_out;
   820   // true when we're draining SATB buffers; this avoids the task
   821   // aborting due to SATB buffers being available (as we're already
   822   // dealing with them)
   823   bool                        _draining_satb_buffers;
   825   // number sequence of past step times
   826   NumberSeq                   _step_times_ms;
   827   // elapsed time of this task
   828   double                      _elapsed_time_ms;
   829   // termination time of this task
   830   double                      _termination_time_ms;
   831   // when this task got into the termination protocol
   832   double                      _termination_start_time_ms;
   834   // true when the task is during a concurrent phase, false when it is
   835   // in the remark phase (so, in the latter case, we do not have to
   836   // check all the things that we have to check during the concurrent
   837   // phase, i.e. SATB buffer availability...)
   838   bool                        _concurrent;
   840   TruncatedSeq                _marking_step_diffs_ms;
   842   // LOTS of statistics related with this task
   843 #if _MARKING_STATS_
   844   NumberSeq                   _all_clock_intervals_ms;
   845   double                      _interval_start_time_ms;
   847   int                         _aborted;
   848   int                         _aborted_overflow;
   849   int                         _aborted_cm_aborted;
   850   int                         _aborted_yield;
   851   int                         _aborted_timed_out;
   852   int                         _aborted_satb;
   853   int                         _aborted_termination;
   855   int                         _steal_attempts;
   856   int                         _steals;
   858   int                         _clock_due_to_marking;
   859   int                         _clock_due_to_scanning;
   861   int                         _local_pushes;
   862   int                         _local_pops;
   863   int                         _local_max_size;
   864   int                         _objs_scanned;
   866   int                         _global_pushes;
   867   int                         _global_pops;
   868   int                         _global_max_size;
   870   int                         _global_transfers_to;
   871   int                         _global_transfers_from;
   873   int                         _region_stack_pops;
   875   int                         _regions_claimed;
   876   int                         _objs_found_on_bitmap;
   878   int                         _satb_buffers_processed;
   879 #endif // _MARKING_STATS_
   881   // it updates the local fields after this task has claimed
   882   // a new region to scan
   883   void setup_for_region(HeapRegion* hr);
   884   // it brings up-to-date the limit of the region
   885   void update_region_limit();
   886   // it resets the local fields after a task has finished scanning a
   887   // region
   888   void giveup_current_region();
   890   // called when either the words scanned or the refs visited limit
   891   // has been reached
   892   void reached_limit();
   893   // recalculates the words scanned and refs visited limits
   894   void recalculate_limits();
   895   // decreases the words scanned and refs visited limits when we reach
   896   // an expensive operation
   897   void decrease_limits();
   898   // it checks whether the words scanned or refs visited reached their
   899   // respective limit and calls reached_limit() if they have
   900   void check_limits() {
   901     if (_words_scanned >= _words_scanned_limit ||
   902         _refs_reached >= _refs_reached_limit)
   903       reached_limit();
   904   }
   905   // this is supposed to be called regularly during a marking step as
   906   // it checks a bunch of conditions that might cause the marking step
   907   // to abort
   908   void regular_clock_call();
   909   bool concurrent() { return _concurrent; }
   911 public:
   912   // It resets the task; it should be called right at the beginning of
   913   // a marking phase.
   914   void reset(CMBitMap* _nextMarkBitMap);
   915   // it clears all the fields that correspond to a claimed region.
   916   void clear_region_fields();
   918   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
   920   // The main method of this class which performs a marking step
   921   // trying not to exceed the given duration. However, it might exit
   922   // prematurely, according to some conditions (i.e. SATB buffers are
   923   // available for processing).
   924   void do_marking_step(double target_ms);
   926   // These two calls start and stop the timer
   927   void record_start_time() {
   928     _elapsed_time_ms = os::elapsedTime() * 1000.0;
   929   }
   930   void record_end_time() {
   931     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
   932   }
   934   // returns the task ID
   935   int task_id() { return _task_id; }
   937   // From TerminatorTerminator. It determines whether this task should
   938   // exit the termination protocol after it's entered it.
   939   virtual bool should_exit_termination();
   941   HeapWord* finger()            { return _finger; }
   943   bool has_aborted()            { return _has_aborted; }
   944   void set_has_aborted()        { _has_aborted = true; }
   945   void clear_has_aborted()      { _has_aborted = false; }
   946   bool claimed() { return _claimed; }
   948   void set_oop_closure(OopClosure* oop_closure) {
   949     _oop_closure = oop_closure;
   950   }
   952   // It grays the object by marking it and, if necessary, pushing it
   953   // on the local queue
   954   void deal_with_reference(oop obj);
   956   // It scans an object and visits its children.
   957   void scan_object(oop obj) {
   958     assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
   960     if (_cm->verbose_high())
   961       gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
   962                              _task_id, (void*) obj);
   964     size_t obj_size = obj->size();
   965     _words_scanned += obj_size;
   967     obj->oop_iterate(_oop_closure);
   968     statsOnly( ++_objs_scanned );
   969     check_limits();
   970   }
   972   // It pushes an object on the local queue.
   973   void push(oop obj);
   975   // These two move entries to/from the global stack.
   976   void move_entries_to_global_stack();
   977   void get_entries_from_global_stack();
   979   // It pops and scans objects from the local queue. If partially is
   980   // true, then it stops when the queue size is of a given limit. If
   981   // partially is false, then it stops when the queue is empty.
   982   void drain_local_queue(bool partially);
   983   // It moves entries from the global stack to the local queue and
   984   // drains the local queue. If partially is true, then it stops when
   985   // both the global stack and the local queue reach a given size. If
   986   // partially if false, it tries to empty them totally.
   987   void drain_global_stack(bool partially);
   988   // It keeps picking SATB buffers and processing them until no SATB
   989   // buffers are available.
   990   void drain_satb_buffers();
   991   // It keeps popping regions from the region stack and processing
   992   // them until the region stack is empty.
   993   void drain_region_stack(BitMapClosure* closure);
   995   // moves the local finger to a new location
   996   inline void move_finger_to(HeapWord* new_finger) {
   997     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
   998     _finger = new_finger;
   999   }
  1001   // moves the region finger to a new location
  1002   inline void move_region_finger_to(HeapWord* new_finger) {
  1003     assert(new_finger < _cm->finger(), "invariant");
  1004     _region_finger = new_finger;
  1007   CMTask(int task_num, ConcurrentMark *cm,
  1008          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
  1010   // it prints statistics associated with this task
  1011   void print_stats();
  1013 #if _MARKING_STATS_
  1014   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
  1015 #endif // _MARKING_STATS_
  1016 };

mercurial