src/share/vm/adlc/formssel.cpp

Tue, 16 Aug 2011 11:53:57 -0700

author
kvn
date
Tue, 16 Aug 2011 11:53:57 -0700
changeset 3051
11211f7cb5a0
parent 3049
95134e034042
child 3052
1af104d6cf99
permissions
-rw-r--r--

7079317: Incorrect branch's destination block in PrintoOptoAssembly output
Summary: save/restore label and block in scratch_emit_size()
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
    26 #include "adlc.hpp"
    28 //==============================Instructions===================================
    29 //------------------------------InstructForm-----------------------------------
    30 InstructForm::InstructForm(const char *id, bool ideal_only)
    31   : _ident(id), _ideal_only(ideal_only),
    32     _localNames(cmpstr, hashstr, Form::arena),
    33     _effects(cmpstr, hashstr, Form::arena),
    34     _is_mach_constant(false)
    35 {
    36       _ftype = Form::INS;
    38       _matrule   = NULL;
    39       _insencode = NULL;
    40       _constant  = NULL;
    41       _opcode    = NULL;
    42       _size      = NULL;
    43       _attribs   = NULL;
    44       _predicate = NULL;
    45       _exprule   = NULL;
    46       _rewrule   = NULL;
    47       _format    = NULL;
    48       _peephole  = NULL;
    49       _ins_pipe  = NULL;
    50       _uniq_idx  = NULL;
    51       _num_uniq  = 0;
    52       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
    53       _cisc_spill_alternate = NULL;            // possible cisc replacement
    54       _cisc_reg_mask_name = NULL;
    55       _is_cisc_alternate = false;
    56       _is_short_branch = false;
    57       _short_branch_form = NULL;
    58       _alignment = 1;
    59 }
    61 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
    62   : _ident(id), _ideal_only(false),
    63     _localNames(instr->_localNames),
    64     _effects(instr->_effects),
    65     _is_mach_constant(false)
    66 {
    67       _ftype = Form::INS;
    69       _matrule   = rule;
    70       _insencode = instr->_insencode;
    71       _constant  = instr->_constant;
    72       _opcode    = instr->_opcode;
    73       _size      = instr->_size;
    74       _attribs   = instr->_attribs;
    75       _predicate = instr->_predicate;
    76       _exprule   = instr->_exprule;
    77       _rewrule   = instr->_rewrule;
    78       _format    = instr->_format;
    79       _peephole  = instr->_peephole;
    80       _ins_pipe  = instr->_ins_pipe;
    81       _uniq_idx  = instr->_uniq_idx;
    82       _num_uniq  = instr->_num_uniq;
    83       _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
    84       _cisc_spill_alternate = NULL;            // possible cisc replacement
    85       _cisc_reg_mask_name = NULL;
    86       _is_cisc_alternate = false;
    87       _is_short_branch = false;
    88       _short_branch_form = NULL;
    89       _alignment = 1;
    90      // Copy parameters
    91      const char *name;
    92      instr->_parameters.reset();
    93      for (; (name = instr->_parameters.iter()) != NULL;)
    94        _parameters.addName(name);
    95 }
    97 InstructForm::~InstructForm() {
    98 }
   100 InstructForm *InstructForm::is_instruction() const {
   101   return (InstructForm*)this;
   102 }
   104 bool InstructForm::ideal_only() const {
   105   return _ideal_only;
   106 }
   108 bool InstructForm::sets_result() const {
   109   return (_matrule != NULL && _matrule->sets_result());
   110 }
   112 bool InstructForm::needs_projections() {
   113   _components.reset();
   114   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   115     if (comp->isa(Component::KILL)) {
   116       return true;
   117     }
   118   }
   119   return false;
   120 }
   123 bool InstructForm::has_temps() {
   124   if (_matrule) {
   125     // Examine each component to see if it is a TEMP
   126     _components.reset();
   127     // Skip the first component, if already handled as (SET dst (...))
   128     Component *comp = NULL;
   129     if (sets_result())  comp = _components.iter();
   130     while ((comp = _components.iter()) != NULL) {
   131       if (comp->isa(Component::TEMP)) {
   132         return true;
   133       }
   134     }
   135   }
   137   return false;
   138 }
   140 uint InstructForm::num_defs_or_kills() {
   141   uint   defs_or_kills = 0;
   143   _components.reset();
   144   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   145     if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
   146       ++defs_or_kills;
   147     }
   148   }
   150   return  defs_or_kills;
   151 }
   153 // This instruction has an expand rule?
   154 bool InstructForm::expands() const {
   155   return ( _exprule != NULL );
   156 }
   158 // This instruction has a peephole rule?
   159 Peephole *InstructForm::peepholes() const {
   160   return _peephole;
   161 }
   163 // This instruction has a peephole rule?
   164 void InstructForm::append_peephole(Peephole *peephole) {
   165   if( _peephole == NULL ) {
   166     _peephole = peephole;
   167   } else {
   168     _peephole->append_peephole(peephole);
   169   }
   170 }
   173 // ideal opcode enumeration
   174 const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
   175   if( !_matrule ) return "Node"; // Something weird
   176   // Chain rules do not really have ideal Opcodes; use their source
   177   // operand ideal Opcode instead.
   178   if( is_simple_chain_rule(globalNames) ) {
   179     const char *src = _matrule->_rChild->_opType;
   180     OperandForm *src_op = globalNames[src]->is_operand();
   181     assert( src_op, "Not operand class of chain rule" );
   182     if( !src_op->_matrule ) return "Node";
   183     return src_op->_matrule->_opType;
   184   }
   185   // Operand chain rules do not really have ideal Opcodes
   186   if( _matrule->is_chain_rule(globalNames) )
   187     return "Node";
   188   return strcmp(_matrule->_opType,"Set")
   189     ? _matrule->_opType
   190     : _matrule->_rChild->_opType;
   191 }
   193 // Recursive check on all operands' match rules in my match rule
   194 bool InstructForm::is_pinned(FormDict &globals) {
   195   if ( ! _matrule)  return false;
   197   int  index   = 0;
   198   if (_matrule->find_type("Goto",          index)) return true;
   199   if (_matrule->find_type("If",            index)) return true;
   200   if (_matrule->find_type("CountedLoopEnd",index)) return true;
   201   if (_matrule->find_type("Return",        index)) return true;
   202   if (_matrule->find_type("Rethrow",       index)) return true;
   203   if (_matrule->find_type("TailCall",      index)) return true;
   204   if (_matrule->find_type("TailJump",      index)) return true;
   205   if (_matrule->find_type("Halt",          index)) return true;
   206   if (_matrule->find_type("Jump",          index)) return true;
   208   return is_parm(globals);
   209 }
   211 // Recursive check on all operands' match rules in my match rule
   212 bool InstructForm::is_projection(FormDict &globals) {
   213   if ( ! _matrule)  return false;
   215   int  index   = 0;
   216   if (_matrule->find_type("Goto",    index)) return true;
   217   if (_matrule->find_type("Return",  index)) return true;
   218   if (_matrule->find_type("Rethrow", index)) return true;
   219   if (_matrule->find_type("TailCall",index)) return true;
   220   if (_matrule->find_type("TailJump",index)) return true;
   221   if (_matrule->find_type("Halt",    index)) return true;
   223   return false;
   224 }
   226 // Recursive check on all operands' match rules in my match rule
   227 bool InstructForm::is_parm(FormDict &globals) {
   228   if ( ! _matrule)  return false;
   230   int  index   = 0;
   231   if (_matrule->find_type("Parm",index)) return true;
   233   return false;
   234 }
   237 // Return 'true' if this instruction matches an ideal 'Copy*' node
   238 int InstructForm::is_ideal_copy() const {
   239   return _matrule ? _matrule->is_ideal_copy() : 0;
   240 }
   242 // Return 'true' if this instruction is too complex to rematerialize.
   243 int InstructForm::is_expensive() const {
   244   // We can prove it is cheap if it has an empty encoding.
   245   // This helps with platform-specific nops like ThreadLocal and RoundFloat.
   246   if (is_empty_encoding())
   247     return 0;
   249   if (is_tls_instruction())
   250     return 1;
   252   if (_matrule == NULL)  return 0;
   254   return _matrule->is_expensive();
   255 }
   257 // Has an empty encoding if _size is a constant zero or there
   258 // are no ins_encode tokens.
   259 int InstructForm::is_empty_encoding() const {
   260   if (_insencode != NULL) {
   261     _insencode->reset();
   262     if (_insencode->encode_class_iter() == NULL) {
   263       return 1;
   264     }
   265   }
   266   if (_size != NULL && strcmp(_size, "0") == 0) {
   267     return 1;
   268   }
   269   return 0;
   270 }
   272 int InstructForm::is_tls_instruction() const {
   273   if (_ident != NULL &&
   274       ( ! strcmp( _ident,"tlsLoadP") ||
   275         ! strncmp(_ident,"tlsLoadP_",9)) ) {
   276     return 1;
   277   }
   279   if (_matrule != NULL && _insencode != NULL) {
   280     const char* opType = _matrule->_opType;
   281     if (strcmp(opType, "Set")==0)
   282       opType = _matrule->_rChild->_opType;
   283     if (strcmp(opType,"ThreadLocal")==0) {
   284       fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
   285               (_ident == NULL ? "NULL" : _ident));
   286       return 1;
   287     }
   288   }
   290   return 0;
   291 }
   294 // Return 'true' if this instruction matches an ideal 'If' node
   295 bool InstructForm::is_ideal_if() const {
   296   if( _matrule == NULL ) return false;
   298   return _matrule->is_ideal_if();
   299 }
   301 // Return 'true' if this instruction matches an ideal 'FastLock' node
   302 bool InstructForm::is_ideal_fastlock() const {
   303   if( _matrule == NULL ) return false;
   305   return _matrule->is_ideal_fastlock();
   306 }
   308 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
   309 bool InstructForm::is_ideal_membar() const {
   310   if( _matrule == NULL ) return false;
   312   return _matrule->is_ideal_membar();
   313 }
   315 // Return 'true' if this instruction matches an ideal 'LoadPC' node
   316 bool InstructForm::is_ideal_loadPC() const {
   317   if( _matrule == NULL ) return false;
   319   return _matrule->is_ideal_loadPC();
   320 }
   322 // Return 'true' if this instruction matches an ideal 'Box' node
   323 bool InstructForm::is_ideal_box() const {
   324   if( _matrule == NULL ) return false;
   326   return _matrule->is_ideal_box();
   327 }
   329 // Return 'true' if this instruction matches an ideal 'Goto' node
   330 bool InstructForm::is_ideal_goto() const {
   331   if( _matrule == NULL ) return false;
   333   return _matrule->is_ideal_goto();
   334 }
   336 // Return 'true' if this instruction matches an ideal 'Jump' node
   337 bool InstructForm::is_ideal_jump() const {
   338   if( _matrule == NULL ) return false;
   340   return _matrule->is_ideal_jump();
   341 }
   343 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
   344 bool InstructForm::is_ideal_branch() const {
   345   if( _matrule == NULL ) return false;
   347   return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
   348 }
   351 // Return 'true' if this instruction matches an ideal 'Return' node
   352 bool InstructForm::is_ideal_return() const {
   353   if( _matrule == NULL ) return false;
   355   // Check MatchRule to see if the first entry is the ideal "Return" node
   356   int  index   = 0;
   357   if (_matrule->find_type("Return",index)) return true;
   358   if (_matrule->find_type("Rethrow",index)) return true;
   359   if (_matrule->find_type("TailCall",index)) return true;
   360   if (_matrule->find_type("TailJump",index)) return true;
   362   return false;
   363 }
   365 // Return 'true' if this instruction matches an ideal 'Halt' node
   366 bool InstructForm::is_ideal_halt() const {
   367   int  index   = 0;
   368   return _matrule && _matrule->find_type("Halt",index);
   369 }
   371 // Return 'true' if this instruction matches an ideal 'SafePoint' node
   372 bool InstructForm::is_ideal_safepoint() const {
   373   int  index   = 0;
   374   return _matrule && _matrule->find_type("SafePoint",index);
   375 }
   377 // Return 'true' if this instruction matches an ideal 'Nop' node
   378 bool InstructForm::is_ideal_nop() const {
   379   return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
   380 }
   382 bool InstructForm::is_ideal_control() const {
   383   if ( ! _matrule)  return false;
   385   return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
   386 }
   388 // Return 'true' if this instruction matches an ideal 'Call' node
   389 Form::CallType InstructForm::is_ideal_call() const {
   390   if( _matrule == NULL ) return Form::invalid_type;
   392   // Check MatchRule to see if the first entry is the ideal "Call" node
   393   int  idx   = 0;
   394   if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
   395   idx = 0;
   396   if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
   397   idx = 0;
   398   if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
   399   idx = 0;
   400   if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
   401   idx = 0;
   402   if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
   403   idx = 0;
   404   if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
   405   idx = 0;
   406   if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
   407   idx = 0;
   409   return Form::invalid_type;
   410 }
   412 // Return 'true' if this instruction matches an ideal 'Load?' node
   413 Form::DataType InstructForm::is_ideal_load() const {
   414   if( _matrule == NULL ) return Form::none;
   416   return  _matrule->is_ideal_load();
   417 }
   419 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
   420 bool InstructForm::skip_antidep_check() const {
   421   if( _matrule == NULL ) return false;
   423   return  _matrule->skip_antidep_check();
   424 }
   426 // Return 'true' if this instruction matches an ideal 'Load?' node
   427 Form::DataType InstructForm::is_ideal_store() const {
   428   if( _matrule == NULL ) return Form::none;
   430   return  _matrule->is_ideal_store();
   431 }
   433 // Return the input register that must match the output register
   434 // If this is not required, return 0
   435 uint InstructForm::two_address(FormDict &globals) {
   436   uint  matching_input = 0;
   437   if(_components.count() == 0) return 0;
   439   _components.reset();
   440   Component *comp = _components.iter();
   441   // Check if there is a DEF
   442   if( comp->isa(Component::DEF) ) {
   443     // Check that this is a register
   444     const char  *def_type = comp->_type;
   445     const Form  *form     = globals[def_type];
   446     OperandForm *op       = form->is_operand();
   447     if( op ) {
   448       if( op->constrained_reg_class() != NULL &&
   449           op->interface_type(globals) == Form::register_interface ) {
   450         // Remember the local name for equality test later
   451         const char *def_name = comp->_name;
   452         // Check if a component has the same name and is a USE
   453         do {
   454           if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
   455             return operand_position_format(def_name);
   456           }
   457         } while( (comp = _components.iter()) != NULL);
   458       }
   459     }
   460   }
   462   return 0;
   463 }
   466 // when chaining a constant to an instruction, returns 'true' and sets opType
   467 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
   468   const char *dummy  = NULL;
   469   const char *dummy2 = NULL;
   470   return is_chain_of_constant(globals, dummy, dummy2);
   471 }
   472 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   473                 const char * &opTypeParam) {
   474   const char *result = NULL;
   476   return is_chain_of_constant(globals, opTypeParam, result);
   477 }
   479 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   480                 const char * &opTypeParam, const char * &resultParam) {
   481   Form::DataType  data_type = Form::none;
   482   if ( ! _matrule)  return data_type;
   484   // !!!!!
   485   // The source of the chain rule is 'position = 1'
   486   uint         position = 1;
   487   const char  *result   = NULL;
   488   const char  *name     = NULL;
   489   const char  *opType   = NULL;
   490   // Here base_operand is looking for an ideal type to be returned (opType).
   491   if ( _matrule->is_chain_rule(globals)
   492        && _matrule->base_operand(position, globals, result, name, opType) ) {
   493     data_type = ideal_to_const_type(opType);
   495     // if it isn't an ideal constant type, just return
   496     if ( data_type == Form::none ) return data_type;
   498     // Ideal constant types also adjust the opType parameter.
   499     resultParam = result;
   500     opTypeParam = opType;
   501     return data_type;
   502   }
   504   return data_type;
   505 }
   507 // Check if a simple chain rule
   508 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
   509   if( _matrule && _matrule->sets_result()
   510       && _matrule->_rChild->_lChild == NULL
   511       && globals[_matrule->_rChild->_opType]
   512       && globals[_matrule->_rChild->_opType]->is_opclass() ) {
   513     return true;
   514   }
   515   return false;
   516 }
   518 // check for structural rematerialization
   519 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
   520   bool   rematerialize = false;
   522   Form::DataType data_type = is_chain_of_constant(globals);
   523   if( data_type != Form::none )
   524     rematerialize = true;
   526   // Constants
   527   if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
   528     rematerialize = true;
   530   // Pseudo-constants (values easily available to the runtime)
   531   if (is_empty_encoding() && is_tls_instruction())
   532     rematerialize = true;
   534   // 1-input, 1-output, such as copies or increments.
   535   if( _components.count() == 2 &&
   536       _components[0]->is(Component::DEF) &&
   537       _components[1]->isa(Component::USE) )
   538     rematerialize = true;
   540   // Check for an ideal 'Load?' and eliminate rematerialize option
   541   if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
   542        is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
   543        is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
   544     rematerialize = false;
   545   }
   547   // Always rematerialize the flags.  They are more expensive to save &
   548   // restore than to recompute (and possibly spill the compare's inputs).
   549   if( _components.count() >= 1 ) {
   550     Component *c = _components[0];
   551     const Form *form = globals[c->_type];
   552     OperandForm *opform = form->is_operand();
   553     if( opform ) {
   554       // Avoid the special stack_slots register classes
   555       const char *rc_name = opform->constrained_reg_class();
   556       if( rc_name ) {
   557         if( strcmp(rc_name,"stack_slots") ) {
   558           // Check for ideal_type of RegFlags
   559           const char *type = opform->ideal_type( globals, registers );
   560           if( !strcmp(type,"RegFlags") )
   561             rematerialize = true;
   562         } else
   563           rematerialize = false; // Do not rematerialize things target stk
   564       }
   565     }
   566   }
   568   return rematerialize;
   569 }
   571 // loads from memory, so must check for anti-dependence
   572 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
   573   if ( skip_antidep_check() ) return false;
   575   // Machine independent loads must be checked for anti-dependences
   576   if( is_ideal_load() != Form::none )  return true;
   578   // !!!!! !!!!! !!!!!
   579   // TEMPORARY
   580   // if( is_simple_chain_rule(globals) )  return false;
   582   // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
   583   // but writes none
   584   if( _matrule && _matrule->_rChild &&
   585       ( strcmp(_matrule->_rChild->_opType,"StrComp"    )==0 ||
   586         strcmp(_matrule->_rChild->_opType,"StrEquals"  )==0 ||
   587         strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
   588         strcmp(_matrule->_rChild->_opType,"AryEq"      )==0 ))
   589     return true;
   591   // Check if instruction has a USE of a memory operand class, but no defs
   592   bool USE_of_memory  = false;
   593   bool DEF_of_memory  = false;
   594   Component     *comp = NULL;
   595   ComponentList &components = (ComponentList &)_components;
   597   components.reset();
   598   while( (comp = components.iter()) != NULL ) {
   599     const Form  *form = globals[comp->_type];
   600     if( !form ) continue;
   601     OpClassForm *op   = form->is_opclass();
   602     if( !op ) continue;
   603     if( form->interface_type(globals) == Form::memory_interface ) {
   604       if( comp->isa(Component::USE) ) USE_of_memory = true;
   605       if( comp->isa(Component::DEF) ) {
   606         OperandForm *oper = form->is_operand();
   607         if( oper && oper->is_user_name_for_sReg() ) {
   608           // Stack slots are unaliased memory handled by allocator
   609           oper = oper;  // debug stopping point !!!!!
   610         } else {
   611           DEF_of_memory = true;
   612         }
   613       }
   614     }
   615   }
   616   return (USE_of_memory && !DEF_of_memory);
   617 }
   620 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
   621   if( _matrule == NULL ) return false;
   622   if( !_matrule->_opType ) return false;
   624   if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
   625   if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
   626   if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true;
   627   if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true;
   629   return false;
   630 }
   632 int InstructForm::memory_operand(FormDict &globals) const {
   633   // Machine independent loads must be checked for anti-dependences
   634   // Check if instruction has a USE of a memory operand class, or a def.
   635   int USE_of_memory  = 0;
   636   int DEF_of_memory  = 0;
   637   const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
   638   Component     *unique          = NULL;
   639   Component     *comp            = NULL;
   640   ComponentList &components      = (ComponentList &)_components;
   642   components.reset();
   643   while( (comp = components.iter()) != NULL ) {
   644     const Form  *form = globals[comp->_type];
   645     if( !form ) continue;
   646     OpClassForm *op   = form->is_opclass();
   647     if( !op ) continue;
   648     if( op->stack_slots_only(globals) )  continue;
   649     if( form->interface_type(globals) == Form::memory_interface ) {
   650       if( comp->isa(Component::DEF) ) {
   651         last_memory_DEF = comp->_name;
   652         DEF_of_memory++;
   653         unique = comp;
   654       } else if( comp->isa(Component::USE) ) {
   655         if( last_memory_DEF != NULL ) {
   656           assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
   657           last_memory_DEF = NULL;
   658         }
   659         USE_of_memory++;
   660         if (DEF_of_memory == 0)  // defs take precedence
   661           unique = comp;
   662       } else {
   663         assert(last_memory_DEF == NULL, "unpaired memory DEF");
   664       }
   665     }
   666   }
   667   assert(last_memory_DEF == NULL, "unpaired memory DEF");
   668   assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
   669   USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
   670   if( (USE_of_memory + DEF_of_memory) > 0 ) {
   671     if( is_simple_chain_rule(globals) ) {
   672       //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
   673       //((InstructForm*)this)->dump();
   674       // Preceding code prints nothing on sparc and these insns on intel:
   675       // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
   676       // leaPIdxOff leaPIdxScale leaPIdxScaleOff
   677       return NO_MEMORY_OPERAND;
   678     }
   680     if( DEF_of_memory == 1 ) {
   681       assert(unique != NULL, "");
   682       if( USE_of_memory == 0 ) {
   683         // unique def, no uses
   684       } else {
   685         // // unique def, some uses
   686         // // must return bottom unless all uses match def
   687         // unique = NULL;
   688       }
   689     } else if( DEF_of_memory > 0 ) {
   690       // multiple defs, don't care about uses
   691       unique = NULL;
   692     } else if( USE_of_memory == 1) {
   693       // unique use, no defs
   694       assert(unique != NULL, "");
   695     } else if( USE_of_memory > 0 ) {
   696       // multiple uses, no defs
   697       unique = NULL;
   698     } else {
   699       assert(false, "bad case analysis");
   700     }
   701     // process the unique DEF or USE, if there is one
   702     if( unique == NULL ) {
   703       return MANY_MEMORY_OPERANDS;
   704     } else {
   705       int pos = components.operand_position(unique->_name);
   706       if( unique->isa(Component::DEF) ) {
   707         pos += 1;                // get corresponding USE from DEF
   708       }
   709       assert(pos >= 1, "I was just looking at it!");
   710       return pos;
   711     }
   712   }
   714   // missed the memory op??
   715   if( true ) {  // %%% should not be necessary
   716     if( is_ideal_store() != Form::none ) {
   717       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   718       ((InstructForm*)this)->dump();
   719       // pretend it has multiple defs and uses
   720       return MANY_MEMORY_OPERANDS;
   721     }
   722     if( is_ideal_load()  != Form::none ) {
   723       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   724       ((InstructForm*)this)->dump();
   725       // pretend it has multiple uses and no defs
   726       return MANY_MEMORY_OPERANDS;
   727     }
   728   }
   730   return NO_MEMORY_OPERAND;
   731 }
   734 // This instruction captures the machine-independent bottom_type
   735 // Expected use is for pointer vs oop determination for LoadP
   736 bool InstructForm::captures_bottom_type(FormDict &globals) const {
   737   if( _matrule && _matrule->_rChild &&
   738        (!strcmp(_matrule->_rChild->_opType,"CastPP")     ||  // new result type
   739         !strcmp(_matrule->_rChild->_opType,"CastX2P")    ||  // new result type
   740         !strcmp(_matrule->_rChild->_opType,"DecodeN")    ||
   741         !strcmp(_matrule->_rChild->_opType,"EncodeP")    ||
   742         !strcmp(_matrule->_rChild->_opType,"LoadN")      ||
   743         !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
   744         !strcmp(_matrule->_rChild->_opType,"CreateEx")   ||  // type of exception
   745         !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
   746   else if ( is_ideal_load() == Form::idealP )                return true;
   747   else if ( is_ideal_store() != Form::none  )                return true;
   749   if (needs_base_oop_edge(globals)) return true;
   751   return  false;
   752 }
   755 // Access instr_cost attribute or return NULL.
   756 const char* InstructForm::cost() {
   757   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
   758     if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
   759       return cur->_val;
   760     }
   761   }
   762   return NULL;
   763 }
   765 // Return count of top-level operands.
   766 uint InstructForm::num_opnds() {
   767   int  num_opnds = _components.num_operands();
   769   // Need special handling for matching some ideal nodes
   770   // i.e. Matching a return node
   771   /*
   772   if( _matrule ) {
   773     if( strcmp(_matrule->_opType,"Return"   )==0 ||
   774         strcmp(_matrule->_opType,"Halt"     )==0 )
   775       return 3;
   776   }
   777     */
   778   return num_opnds;
   779 }
   781 // Return count of unmatched operands.
   782 uint InstructForm::num_post_match_opnds() {
   783   uint  num_post_match_opnds = _components.count();
   784   uint  num_match_opnds = _components.match_count();
   785   num_post_match_opnds = num_post_match_opnds - num_match_opnds;
   787   return num_post_match_opnds;
   788 }
   790 // Return the number of leaves below this complex operand
   791 uint InstructForm::num_consts(FormDict &globals) const {
   792   if ( ! _matrule) return 0;
   794   // This is a recursive invocation on all operands in the matchrule
   795   return _matrule->num_consts(globals);
   796 }
   798 // Constants in match rule with specified type
   799 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
   800   if ( ! _matrule) return 0;
   802   // This is a recursive invocation on all operands in the matchrule
   803   return _matrule->num_consts(globals, type);
   804 }
   807 // Return the register class associated with 'leaf'.
   808 const char *InstructForm::out_reg_class(FormDict &globals) {
   809   assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
   811   return NULL;
   812 }
   816 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
   817 uint InstructForm::oper_input_base(FormDict &globals) {
   818   if( !_matrule ) return 1;     // Skip control for most nodes
   820   // Need special handling for matching some ideal nodes
   821   // i.e. Matching a return node
   822   if( strcmp(_matrule->_opType,"Return"    )==0 ||
   823       strcmp(_matrule->_opType,"Rethrow"   )==0 ||
   824       strcmp(_matrule->_opType,"TailCall"  )==0 ||
   825       strcmp(_matrule->_opType,"TailJump"  )==0 ||
   826       strcmp(_matrule->_opType,"SafePoint" )==0 ||
   827       strcmp(_matrule->_opType,"Halt"      )==0 )
   828     return AdlcVMDeps::Parms;   // Skip the machine-state edges
   830   if( _matrule->_rChild &&
   831       ( strcmp(_matrule->_rChild->_opType,"AryEq"     )==0 ||
   832         strcmp(_matrule->_rChild->_opType,"StrComp"   )==0 ||
   833         strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
   834         strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 )) {
   835         // String.(compareTo/equals/indexOf) and Arrays.equals
   836         // take 1 control and 1 memory edges.
   837     return 2;
   838   }
   840   // Check for handling of 'Memory' input/edge in the ideal world.
   841   // The AD file writer is shielded from knowledge of these edges.
   842   int base = 1;                 // Skip control
   843   base += _matrule->needs_ideal_memory_edge(globals);
   845   // Also skip the base-oop value for uses of derived oops.
   846   // The AD file writer is shielded from knowledge of these edges.
   847   base += needs_base_oop_edge(globals);
   849   return base;
   850 }
   852 // Implementation does not modify state of internal structures
   853 void InstructForm::build_components() {
   854   // Add top-level operands to the components
   855   if (_matrule)  _matrule->append_components(_localNames, _components);
   857   // Add parameters that "do not appear in match rule".
   858   bool has_temp = false;
   859   const char *name;
   860   const char *kill_name = NULL;
   861   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
   862     OperandForm *opForm = (OperandForm*)_localNames[name];
   864     Effect* e = NULL;
   865     {
   866       const Form* form = _effects[name];
   867       e = form ? form->is_effect() : NULL;
   868     }
   870     if (e != NULL) {
   871       has_temp |= e->is(Component::TEMP);
   873       // KILLs must be declared after any TEMPs because TEMPs are real
   874       // uses so their operand numbering must directly follow the real
   875       // inputs from the match rule.  Fixing the numbering seems
   876       // complex so simply enforce the restriction during parse.
   877       if (kill_name != NULL &&
   878           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
   879         OperandForm* kill = (OperandForm*)_localNames[kill_name];
   880         globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
   881                              _ident, kill->_ident, kill_name);
   882       } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
   883         kill_name = name;
   884       }
   885     }
   887     const Component *component  = _components.search(name);
   888     if ( component  == NULL ) {
   889       if (e) {
   890         _components.insert(name, opForm->_ident, e->_use_def, false);
   891         component = _components.search(name);
   892         if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
   893           const Form *form = globalAD->globalNames()[component->_type];
   894           assert( form, "component type must be a defined form");
   895           OperandForm *op   = form->is_operand();
   896           if (op->_interface && op->_interface->is_RegInterface()) {
   897             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   898                                  _ident, opForm->_ident, name);
   899           }
   900         }
   901       } else {
   902         // This would be a nice warning but it triggers in a few places in a benign way
   903         // if (_matrule != NULL && !expands()) {
   904         //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
   905         //                        _ident, opForm->_ident, name);
   906         // }
   907         _components.insert(name, opForm->_ident, Component::INVALID, false);
   908       }
   909     }
   910     else if (e) {
   911       // Component was found in the list
   912       // Check if there is a new effect that requires an extra component.
   913       // This happens when adding 'USE' to a component that is not yet one.
   914       if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
   915         if (component->isa(Component::USE) && _matrule) {
   916           const Form *form = globalAD->globalNames()[component->_type];
   917           assert( form, "component type must be a defined form");
   918           OperandForm *op   = form->is_operand();
   919           if (op->_interface && op->_interface->is_RegInterface()) {
   920             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   921                                  _ident, opForm->_ident, name);
   922           }
   923         }
   924         _components.insert(name, opForm->_ident, e->_use_def, false);
   925       } else {
   926         Component  *comp = (Component*)component;
   927         comp->promote_use_def_info(e->_use_def);
   928       }
   929       // Component positions are zero based.
   930       int  pos  = _components.operand_position(name);
   931       assert( ! (component->isa(Component::DEF) && (pos >= 1)),
   932               "Component::DEF can only occur in the first position");
   933     }
   934   }
   936   // Resolving the interactions between expand rules and TEMPs would
   937   // be complex so simply disallow it.
   938   if (_matrule == NULL && has_temp) {
   939     globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
   940   }
   942   return;
   943 }
   945 // Return zero-based position in component list;  -1 if not in list.
   946 int   InstructForm::operand_position(const char *name, int usedef) {
   947   return unique_opnds_idx(_components.operand_position(name, usedef));
   948 }
   950 int   InstructForm::operand_position_format(const char *name) {
   951   return unique_opnds_idx(_components.operand_position_format(name));
   952 }
   954 // Return zero-based position in component list; -1 if not in list.
   955 int   InstructForm::label_position() {
   956   return unique_opnds_idx(_components.label_position());
   957 }
   959 int   InstructForm::method_position() {
   960   return unique_opnds_idx(_components.method_position());
   961 }
   963 // Return number of relocation entries needed for this instruction.
   964 uint  InstructForm::reloc(FormDict &globals) {
   965   uint reloc_entries  = 0;
   966   // Check for "Call" nodes
   967   if ( is_ideal_call() )      ++reloc_entries;
   968   if ( is_ideal_return() )    ++reloc_entries;
   969   if ( is_ideal_safepoint() ) ++reloc_entries;
   972   // Check if operands MAYBE oop pointers, by checking for ConP elements
   973   // Proceed through the leaves of the match-tree and check for ConPs
   974   if ( _matrule != NULL ) {
   975     uint         position = 0;
   976     const char  *result   = NULL;
   977     const char  *name     = NULL;
   978     const char  *opType   = NULL;
   979     while (_matrule->base_operand(position, globals, result, name, opType)) {
   980       if ( strcmp(opType,"ConP") == 0 ) {
   981 #ifdef SPARC
   982         reloc_entries += 2; // 1 for sethi + 1 for setlo
   983 #else
   984         ++reloc_entries;
   985 #endif
   986       }
   987       ++position;
   988     }
   989   }
   991   // Above is only a conservative estimate
   992   // because it did not check contents of operand classes.
   993   // !!!!! !!!!!
   994   // Add 1 to reloc info for each operand class in the component list.
   995   Component  *comp;
   996   _components.reset();
   997   while ( (comp = _components.iter()) != NULL ) {
   998     const Form        *form = globals[comp->_type];
   999     assert( form, "Did not find component's type in global names");
  1000     const OpClassForm *opc  = form->is_opclass();
  1001     const OperandForm *oper = form->is_operand();
  1002     if ( opc && (oper == NULL) ) {
  1003       ++reloc_entries;
  1004     } else if ( oper ) {
  1005       // floats and doubles loaded out of method's constant pool require reloc info
  1006       Form::DataType type = oper->is_base_constant(globals);
  1007       if ( (type == Form::idealF) || (type == Form::idealD) ) {
  1008         ++reloc_entries;
  1013   // Float and Double constants may come from the CodeBuffer table
  1014   // and require relocatable addresses for access
  1015   // !!!!!
  1016   // Check for any component being an immediate float or double.
  1017   Form::DataType data_type = is_chain_of_constant(globals);
  1018   if( data_type==idealD || data_type==idealF ) {
  1019 #ifdef SPARC
  1020     // sparc required more relocation entries for floating constants
  1021     // (expires 9/98)
  1022     reloc_entries += 6;
  1023 #else
  1024     reloc_entries++;
  1025 #endif
  1028   return reloc_entries;
  1031 // Utility function defined in archDesc.cpp
  1032 extern bool is_def(int usedef);
  1034 // Return the result of reducing an instruction
  1035 const char *InstructForm::reduce_result() {
  1036   const char* result = "Universe";  // default
  1037   _components.reset();
  1038   Component *comp = _components.iter();
  1039   if (comp != NULL && comp->isa(Component::DEF)) {
  1040     result = comp->_type;
  1041     // Override this if the rule is a store operation:
  1042     if (_matrule && _matrule->_rChild &&
  1043         is_store_to_memory(_matrule->_rChild->_opType))
  1044       result = "Universe";
  1046   return result;
  1049 // Return the name of the operand on the right hand side of the binary match
  1050 // Return NULL if there is no right hand side
  1051 const char *InstructForm::reduce_right(FormDict &globals)  const {
  1052   if( _matrule == NULL ) return NULL;
  1053   return  _matrule->reduce_right(globals);
  1056 // Similar for left
  1057 const char *InstructForm::reduce_left(FormDict &globals)   const {
  1058   if( _matrule == NULL ) return NULL;
  1059   return  _matrule->reduce_left(globals);
  1063 // Base class for this instruction, MachNode except for calls
  1064 const char *InstructForm::mach_base_class(FormDict &globals)  const {
  1065   if( is_ideal_call() == Form::JAVA_STATIC ) {
  1066     return "MachCallStaticJavaNode";
  1068   else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
  1069     return "MachCallDynamicJavaNode";
  1071   else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
  1072     return "MachCallRuntimeNode";
  1074   else if( is_ideal_call() == Form::JAVA_LEAF ) {
  1075     return "MachCallLeafNode";
  1077   else if (is_ideal_return()) {
  1078     return "MachReturnNode";
  1080   else if (is_ideal_halt()) {
  1081     return "MachHaltNode";
  1083   else if (is_ideal_safepoint()) {
  1084     return "MachSafePointNode";
  1086   else if (is_ideal_if()) {
  1087     return "MachIfNode";
  1089   else if (is_ideal_goto()) {
  1090     return "MachGotoNode";
  1092   else if (is_ideal_fastlock()) {
  1093     return "MachFastLockNode";
  1095   else if (is_ideal_nop()) {
  1096     return "MachNopNode";
  1098   else if (is_mach_constant()) {
  1099     return "MachConstantNode";
  1101   else if (captures_bottom_type(globals)) {
  1102     return "MachTypeNode";
  1103   } else {
  1104     return "MachNode";
  1106   assert( false, "ShouldNotReachHere()");
  1107   return NULL;
  1110 // Compare the instruction predicates for textual equality
  1111 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
  1112   const Predicate *pred1  = instr1->_predicate;
  1113   const Predicate *pred2  = instr2->_predicate;
  1114   if( pred1 == NULL && pred2 == NULL ) {
  1115     // no predicates means they are identical
  1116     return true;
  1118   if( pred1 != NULL && pred2 != NULL ) {
  1119     // compare the predicates
  1120     if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
  1121       return true;
  1125   return false;
  1128 // Check if this instruction can cisc-spill to 'alternate'
  1129 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
  1130   assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
  1131   // Do not replace if a cisc-version has been found.
  1132   if( cisc_spill_operand() != Not_cisc_spillable ) return false;
  1134   int         cisc_spill_operand = Maybe_cisc_spillable;
  1135   char       *result             = NULL;
  1136   char       *result2            = NULL;
  1137   const char *op_name            = NULL;
  1138   const char *reg_type           = NULL;
  1139   FormDict   &globals            = AD.globalNames();
  1140   cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
  1141   if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
  1142     cisc_spill_operand = operand_position(op_name, Component::USE);
  1143     int def_oper  = operand_position(op_name, Component::DEF);
  1144     if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
  1145       // Do not support cisc-spilling for destination operands and
  1146       // make sure they have the same number of operands.
  1147       _cisc_spill_alternate = instr;
  1148       instr->set_cisc_alternate(true);
  1149       if( AD._cisc_spill_debug ) {
  1150         fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
  1151         fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
  1153       // Record that a stack-version of the reg_mask is needed
  1154       // !!!!!
  1155       OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
  1156       assert( oper != NULL, "cisc-spilling non operand");
  1157       const char *reg_class_name = oper->constrained_reg_class();
  1158       AD.set_stack_or_reg(reg_class_name);
  1159       const char *reg_mask_name  = AD.reg_mask(*oper);
  1160       set_cisc_reg_mask_name(reg_mask_name);
  1161       const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
  1162     } else {
  1163       cisc_spill_operand = Not_cisc_spillable;
  1165   } else {
  1166     cisc_spill_operand = Not_cisc_spillable;
  1169   set_cisc_spill_operand(cisc_spill_operand);
  1170   return (cisc_spill_operand != Not_cisc_spillable);
  1173 // Check to see if this instruction can be replaced with the short branch
  1174 // instruction `short-branch'
  1175 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
  1176   if (_matrule != NULL &&
  1177       this != short_branch &&   // Don't match myself
  1178       !is_short_branch() &&     // Don't match another short branch variant
  1179       reduce_result() != NULL &&
  1180       strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
  1181       _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
  1182     // The instructions are equivalent.
  1184     // Now verify that both instructions have the same parameters and
  1185     // the same effects. Both branch forms should have the same inputs
  1186     // and resulting projections to correctly replace a long branch node
  1187     // with corresponding short branch node during code generation.
  1189     bool different = false;
  1190     if (short_branch->_components.count() != _components.count()) {
  1191        different = true;
  1192     } else if (_components.count() > 0) {
  1193       short_branch->_components.reset();
  1194       _components.reset();
  1195       Component *comp;
  1196       while ((comp = _components.iter()) != NULL) {
  1197         Component *short_comp = short_branch->_components.iter();
  1198         if (short_comp == NULL ||
  1199             short_comp->_type != comp->_type ||
  1200             short_comp->_usedef != comp->_usedef) {
  1201           different = true;
  1202           break;
  1205       if (short_branch->_components.iter() != NULL)
  1206         different = true;
  1208     if (different) {
  1209       globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
  1211     if (AD._short_branch_debug) {
  1212       fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
  1214     _short_branch_form = short_branch;
  1215     return true;
  1217   return false;
  1221 // --------------------------- FILE *output_routines
  1222 //
  1223 // Generate the format call for the replacement variable
  1224 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
  1225   // Handle special constant table variables.
  1226   if (strcmp(rep_var, "constanttablebase") == 0) {
  1227     fprintf(fp, "char reg[128];  ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
  1228     fprintf(fp, "st->print(\"%%s\");\n");
  1229     return;
  1231   if (strcmp(rep_var, "constantoffset") == 0) {
  1232     fprintf(fp, "st->print(\"#%%d\", constant_offset());\n");
  1233     return;
  1235   if (strcmp(rep_var, "constantaddress") == 0) {
  1236     fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset());\n");
  1237     return;
  1240   // Find replacement variable's type
  1241   const Form *form   = _localNames[rep_var];
  1242   if (form == NULL) {
  1243     fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
  1244     assert(false, "ShouldNotReachHere()");
  1246   OpClassForm *opc   = form->is_opclass();
  1247   assert( opc, "replacement variable was not found in local names");
  1248   // Lookup the index position of the replacement variable
  1249   int idx  = operand_position_format(rep_var);
  1250   if ( idx == -1 ) {
  1251     assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
  1252     assert( false, "ShouldNotReachHere()");
  1255   if (is_noninput_operand(idx)) {
  1256     // This component isn't in the input array.  Print out the static
  1257     // name of the register.
  1258     OperandForm* oper = form->is_operand();
  1259     if (oper != NULL && oper->is_bound_register()) {
  1260       const RegDef* first = oper->get_RegClass()->find_first_elem();
  1261       fprintf(fp, "    tty->print(\"%s\");\n", first->_regname);
  1262     } else {
  1263       globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
  1265   } else {
  1266     // Output the format call for this operand
  1267     fprintf(fp,"opnd_array(%d)->",idx);
  1268     if (idx == 0)
  1269       fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
  1270     else
  1271       fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
  1275 // Seach through operands to determine parameters unique positions.
  1276 void InstructForm::set_unique_opnds() {
  1277   uint* uniq_idx = NULL;
  1278   int  nopnds = num_opnds();
  1279   uint  num_uniq = nopnds;
  1280   int i;
  1281   _uniq_idx_length = 0;
  1282   if ( nopnds > 0 ) {
  1283     // Allocate index array.  Worst case we're mapping from each
  1284     // component back to an index and any DEF always goes at 0 so the
  1285     // length of the array has to be the number of components + 1.
  1286     _uniq_idx_length = _components.count() + 1;
  1287     uniq_idx = (uint*) malloc(sizeof(uint)*(_uniq_idx_length));
  1288     for( i = 0; i < _uniq_idx_length; i++ ) {
  1289       uniq_idx[i] = i;
  1292   // Do it only if there is a match rule and no expand rule.  With an
  1293   // expand rule it is done by creating new mach node in Expand()
  1294   // method.
  1295   if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
  1296     const char *name;
  1297     uint count;
  1298     bool has_dupl_use = false;
  1300     _parameters.reset();
  1301     while( (name = _parameters.iter()) != NULL ) {
  1302       count = 0;
  1303       int position = 0;
  1304       int uniq_position = 0;
  1305       _components.reset();
  1306       Component *comp = NULL;
  1307       if( sets_result() ) {
  1308         comp = _components.iter();
  1309         position++;
  1311       // The next code is copied from the method operand_position().
  1312       for (; (comp = _components.iter()) != NULL; ++position) {
  1313         // When the first component is not a DEF,
  1314         // leave space for the result operand!
  1315         if ( position==0 && (! comp->isa(Component::DEF)) ) {
  1316           ++position;
  1318         if( strcmp(name, comp->_name)==0 ) {
  1319           if( ++count > 1 ) {
  1320             assert(position < _uniq_idx_length, "out of bounds");
  1321             uniq_idx[position] = uniq_position;
  1322             has_dupl_use = true;
  1323           } else {
  1324             uniq_position = position;
  1327         if( comp->isa(Component::DEF)
  1328             && comp->isa(Component::USE) ) {
  1329           ++position;
  1330           if( position != 1 )
  1331             --position;   // only use two slots for the 1st USE_DEF
  1335     if( has_dupl_use ) {
  1336       for( i = 1; i < nopnds; i++ )
  1337         if( i != uniq_idx[i] )
  1338           break;
  1339       int  j = i;
  1340       for( ; i < nopnds; i++ )
  1341         if( i == uniq_idx[i] )
  1342           uniq_idx[i] = j++;
  1343       num_uniq = j;
  1346   _uniq_idx = uniq_idx;
  1347   _num_uniq = num_uniq;
  1350 // Generate index values needed for determining the operand position
  1351 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
  1352   uint  idx = 0;                  // position of operand in match rule
  1353   int   cur_num_opnds = num_opnds();
  1355   // Compute the index into vector of operand pointers:
  1356   // idx0=0 is used to indicate that info comes from this same node, not from input edge.
  1357   // idx1 starts at oper_input_base()
  1358   if ( cur_num_opnds >= 1 ) {
  1359     fprintf(fp,"    // Start at oper_input_base() and count operands\n");
  1360     fprintf(fp,"    unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
  1361     fprintf(fp,"    unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
  1363     // Generate starting points for other unique operands if they exist
  1364     for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
  1365       if( *receiver == 0 ) {
  1366         fprintf(fp,"    unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
  1367                 prefix, idx, prefix, idx-1, idx-1 );
  1368       } else {
  1369         fprintf(fp,"    unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
  1370                 prefix, idx, prefix, idx-1, receiver, idx-1 );
  1374   if( *receiver != 0 ) {
  1375     // This value is used by generate_peepreplace when copying a node.
  1376     // Don't emit it in other cases since it can hide bugs with the
  1377     // use invalid idx's.
  1378     fprintf(fp,"    unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
  1383 // ---------------------------
  1384 bool InstructForm::verify() {
  1385   // !!!!! !!!!!
  1386   // Check that a "label" operand occurs last in the operand list, if present
  1387   return true;
  1390 void InstructForm::dump() {
  1391   output(stderr);
  1394 void InstructForm::output(FILE *fp) {
  1395   fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
  1396   if (_matrule)   _matrule->output(fp);
  1397   if (_insencode) _insencode->output(fp);
  1398   if (_constant)  _constant->output(fp);
  1399   if (_opcode)    _opcode->output(fp);
  1400   if (_attribs)   _attribs->output(fp);
  1401   if (_predicate) _predicate->output(fp);
  1402   if (_effects.Size()) {
  1403     fprintf(fp,"Effects\n");
  1404     _effects.dump();
  1406   if (_exprule)   _exprule->output(fp);
  1407   if (_rewrule)   _rewrule->output(fp);
  1408   if (_format)    _format->output(fp);
  1409   if (_peephole)  _peephole->output(fp);
  1412 void MachNodeForm::dump() {
  1413   output(stderr);
  1416 void MachNodeForm::output(FILE *fp) {
  1417   fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
  1420 //------------------------------build_predicate--------------------------------
  1421 // Build instruction predicates.  If the user uses the same operand name
  1422 // twice, we need to check that the operands are pointer-eequivalent in
  1423 // the DFA during the labeling process.
  1424 Predicate *InstructForm::build_predicate() {
  1425   char buf[1024], *s=buf;
  1426   Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
  1428   MatchNode *mnode =
  1429     strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
  1430   mnode->count_instr_names(names);
  1432   uint first = 1;
  1433   // Start with the predicate supplied in the .ad file.
  1434   if( _predicate ) {
  1435     if( first ) first=0;
  1436     strcpy(s,"("); s += strlen(s);
  1437     strcpy(s,_predicate->_pred);
  1438     s += strlen(s);
  1439     strcpy(s,")"); s += strlen(s);
  1441   for( DictI i(&names); i.test(); ++i ) {
  1442     uintptr_t cnt = (uintptr_t)i._value;
  1443     if( cnt > 1 ) {             // Need a predicate at all?
  1444       assert( cnt == 2, "Unimplemented" );
  1445       // Handle many pairs
  1446       if( first ) first=0;
  1447       else {                    // All tests must pass, so use '&&'
  1448         strcpy(s," && ");
  1449         s += strlen(s);
  1451       // Add predicate to working buffer
  1452       sprintf(s,"/*%s*/(",(char*)i._key);
  1453       s += strlen(s);
  1454       mnode->build_instr_pred(s,(char*)i._key,0);
  1455       s += strlen(s);
  1456       strcpy(s," == "); s += strlen(s);
  1457       mnode->build_instr_pred(s,(char*)i._key,1);
  1458       s += strlen(s);
  1459       strcpy(s,")"); s += strlen(s);
  1462   if( s == buf ) s = NULL;
  1463   else {
  1464     assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
  1465     s = strdup(buf);
  1467   return new Predicate(s);
  1470 //------------------------------EncodeForm-------------------------------------
  1471 // Constructor
  1472 EncodeForm::EncodeForm()
  1473   : _encClass(cmpstr,hashstr, Form::arena) {
  1475 EncodeForm::~EncodeForm() {
  1478 // record a new register class
  1479 EncClass *EncodeForm::add_EncClass(const char *className) {
  1480   EncClass *encClass = new EncClass(className);
  1481   _eclasses.addName(className);
  1482   _encClass.Insert(className,encClass);
  1483   return encClass;
  1486 // Lookup the function body for an encoding class
  1487 EncClass  *EncodeForm::encClass(const char *className) {
  1488   assert( className != NULL, "Must provide a defined encoding name");
  1490   EncClass *encClass = (EncClass*)_encClass[className];
  1491   return encClass;
  1494 // Lookup the function body for an encoding class
  1495 const char *EncodeForm::encClassBody(const char *className) {
  1496   if( className == NULL ) return NULL;
  1498   EncClass *encClass = (EncClass*)_encClass[className];
  1499   assert( encClass != NULL, "Encode Class is missing.");
  1500   encClass->_code.reset();
  1501   const char *code = (const char*)encClass->_code.iter();
  1502   assert( code != NULL, "Found an empty encode class body.");
  1504   return code;
  1507 // Lookup the function body for an encoding class
  1508 const char *EncodeForm::encClassPrototype(const char *className) {
  1509   assert( className != NULL, "Encode class name must be non NULL.");
  1511   return className;
  1514 void EncodeForm::dump() {                  // Debug printer
  1515   output(stderr);
  1518 void EncodeForm::output(FILE *fp) {          // Write info to output files
  1519   const char *name;
  1520   fprintf(fp,"\n");
  1521   fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
  1522   for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
  1523     ((EncClass*)_encClass[name])->output(fp);
  1525   fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
  1527 //------------------------------EncClass---------------------------------------
  1528 EncClass::EncClass(const char *name)
  1529   : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
  1531 EncClass::~EncClass() {
  1534 // Add a parameter <type,name> pair
  1535 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
  1536   _parameter_type.addName( parameter_type );
  1537   _parameter_name.addName( parameter_name );
  1540 // Verify operand types in parameter list
  1541 bool EncClass::check_parameter_types(FormDict &globals) {
  1542   // !!!!!
  1543   return false;
  1546 // Add the decomposed "code" sections of an encoding's code-block
  1547 void EncClass::add_code(const char *code) {
  1548   _code.addName(code);
  1551 // Add the decomposed "replacement variables" of an encoding's code-block
  1552 void EncClass::add_rep_var(char *replacement_var) {
  1553   _code.addName(NameList::_signal);
  1554   _rep_vars.addName(replacement_var);
  1557 // Lookup the function body for an encoding class
  1558 int EncClass::rep_var_index(const char *rep_var) {
  1559   uint        position = 0;
  1560   const char *name     = NULL;
  1562   _parameter_name.reset();
  1563   while ( (name = _parameter_name.iter()) != NULL ) {
  1564     if ( strcmp(rep_var,name) == 0 ) return position;
  1565     ++position;
  1568   return -1;
  1571 // Check after parsing
  1572 bool EncClass::verify() {
  1573   // 1!!!!
  1574   // Check that each replacement variable, '$name' in architecture description
  1575   // is actually a local variable for this encode class, or a reserved name
  1576   // "primary, secondary, tertiary"
  1577   return true;
  1580 void EncClass::dump() {
  1581   output(stderr);
  1584 // Write info to output files
  1585 void EncClass::output(FILE *fp) {
  1586   fprintf(fp,"EncClass: %s", (_name ? _name : ""));
  1588   // Output the parameter list
  1589   _parameter_type.reset();
  1590   _parameter_name.reset();
  1591   const char *type = _parameter_type.iter();
  1592   const char *name = _parameter_name.iter();
  1593   fprintf(fp, " ( ");
  1594   for ( ; (type != NULL) && (name != NULL);
  1595         (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
  1596     fprintf(fp, " %s %s,", type, name);
  1598   fprintf(fp, " ) ");
  1600   // Output the code block
  1601   _code.reset();
  1602   _rep_vars.reset();
  1603   const char *code;
  1604   while ( (code = _code.iter()) != NULL ) {
  1605     if ( _code.is_signal(code) ) {
  1606       // A replacement variable
  1607       const char *rep_var = _rep_vars.iter();
  1608       fprintf(fp,"($%s)", rep_var);
  1609     } else {
  1610       // A section of code
  1611       fprintf(fp,"%s", code);
  1617 //------------------------------Opcode-----------------------------------------
  1618 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
  1619   : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
  1622 Opcode::~Opcode() {
  1625 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
  1626   if( strcmp(param,"primary") == 0 ) {
  1627     return Opcode::PRIMARY;
  1629   else if( strcmp(param,"secondary") == 0 ) {
  1630     return Opcode::SECONDARY;
  1632   else if( strcmp(param,"tertiary") == 0 ) {
  1633     return Opcode::TERTIARY;
  1635   return Opcode::NOT_AN_OPCODE;
  1638 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
  1639   // Default values previously provided by MachNode::primary()...
  1640   const char *description = NULL;
  1641   const char *value       = NULL;
  1642   // Check if user provided any opcode definitions
  1643   if( this != NULL ) {
  1644     // Update 'value' if user provided a definition in the instruction
  1645     switch (desired_opcode) {
  1646     case PRIMARY:
  1647       description = "primary()";
  1648       if( _primary   != NULL)  { value = _primary;     }
  1649       break;
  1650     case SECONDARY:
  1651       description = "secondary()";
  1652       if( _secondary != NULL ) { value = _secondary;   }
  1653       break;
  1654     case TERTIARY:
  1655       description = "tertiary()";
  1656       if( _tertiary  != NULL ) { value = _tertiary;    }
  1657       break;
  1658     default:
  1659       assert( false, "ShouldNotReachHere();");
  1660       break;
  1663   if (value != NULL) {
  1664     fprintf(fp, "(%s /*%s*/)", value, description);
  1666   return value != NULL;
  1669 void Opcode::dump() {
  1670   output(stderr);
  1673 // Write info to output files
  1674 void Opcode::output(FILE *fp) {
  1675   if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
  1676   if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
  1677   if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
  1680 //------------------------------InsEncode--------------------------------------
  1681 InsEncode::InsEncode() {
  1683 InsEncode::~InsEncode() {
  1686 // Add "encode class name" and its parameters
  1687 NameAndList *InsEncode::add_encode(char *encoding) {
  1688   assert( encoding != NULL, "Must provide name for encoding");
  1690   // add_parameter(NameList::_signal);
  1691   NameAndList *encode = new NameAndList(encoding);
  1692   _encoding.addName((char*)encode);
  1694   return encode;
  1697 // Access the list of encodings
  1698 void InsEncode::reset() {
  1699   _encoding.reset();
  1700   // _parameter.reset();
  1702 const char* InsEncode::encode_class_iter() {
  1703   NameAndList  *encode_class = (NameAndList*)_encoding.iter();
  1704   return  ( encode_class != NULL ? encode_class->name() : NULL );
  1706 // Obtain parameter name from zero based index
  1707 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
  1708   NameAndList *params = (NameAndList*)_encoding.current();
  1709   assert( params != NULL, "Internal Error");
  1710   const char *param = (*params)[param_no];
  1712   // Remove '$' if parser placed it there.
  1713   return ( param != NULL && *param == '$') ? (param+1) : param;
  1716 void InsEncode::dump() {
  1717   output(stderr);
  1720 // Write info to output files
  1721 void InsEncode::output(FILE *fp) {
  1722   NameAndList *encoding  = NULL;
  1723   const char  *parameter = NULL;
  1725   fprintf(fp,"InsEncode: ");
  1726   _encoding.reset();
  1728   while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
  1729     // Output the encoding being used
  1730     fprintf(fp,"%s(", encoding->name() );
  1732     // Output its parameter list, if any
  1733     bool first_param = true;
  1734     encoding->reset();
  1735     while (  (parameter = encoding->iter()) != 0 ) {
  1736       // Output the ',' between parameters
  1737       if ( ! first_param )  fprintf(fp,", ");
  1738       first_param = false;
  1739       // Output the parameter
  1740       fprintf(fp,"%s", parameter);
  1741     } // done with parameters
  1742     fprintf(fp,")  ");
  1743   } // done with encodings
  1745   fprintf(fp,"\n");
  1748 //------------------------------Effect-----------------------------------------
  1749 static int effect_lookup(const char *name) {
  1750   if(!strcmp(name, "USE")) return Component::USE;
  1751   if(!strcmp(name, "DEF")) return Component::DEF;
  1752   if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
  1753   if(!strcmp(name, "KILL")) return Component::KILL;
  1754   if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
  1755   if(!strcmp(name, "TEMP")) return Component::TEMP;
  1756   if(!strcmp(name, "INVALID")) return Component::INVALID;
  1757   assert( false,"Invalid effect name specified\n");
  1758   return Component::INVALID;
  1761 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
  1762   _ftype = Form::EFF;
  1764 Effect::~Effect() {
  1767 // Dynamic type check
  1768 Effect *Effect::is_effect() const {
  1769   return (Effect*)this;
  1773 // True if this component is equal to the parameter.
  1774 bool Effect::is(int use_def_kill_enum) const {
  1775   return (_use_def == use_def_kill_enum ? true : false);
  1777 // True if this component is used/def'd/kill'd as the parameter suggests.
  1778 bool Effect::isa(int use_def_kill_enum) const {
  1779   return (_use_def & use_def_kill_enum) == use_def_kill_enum;
  1782 void Effect::dump() {
  1783   output(stderr);
  1786 void Effect::output(FILE *fp) {          // Write info to output files
  1787   fprintf(fp,"Effect: %s\n", (_name?_name:""));
  1790 //------------------------------ExpandRule-------------------------------------
  1791 ExpandRule::ExpandRule() : _expand_instrs(),
  1792                            _newopconst(cmpstr, hashstr, Form::arena) {
  1793   _ftype = Form::EXP;
  1796 ExpandRule::~ExpandRule() {                  // Destructor
  1799 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
  1800   _expand_instrs.addName((char*)instruction_name_and_operand_list);
  1803 void ExpandRule::reset_instructions() {
  1804   _expand_instrs.reset();
  1807 NameAndList* ExpandRule::iter_instructions() {
  1808   return (NameAndList*)_expand_instrs.iter();
  1812 void ExpandRule::dump() {
  1813   output(stderr);
  1816 void ExpandRule::output(FILE *fp) {         // Write info to output files
  1817   NameAndList *expand_instr = NULL;
  1818   const char *opid = NULL;
  1820   fprintf(fp,"\nExpand Rule:\n");
  1822   // Iterate over the instructions 'node' expands into
  1823   for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
  1824     fprintf(fp,"%s(", expand_instr->name());
  1826     // iterate over the operand list
  1827     for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
  1828       fprintf(fp,"%s ", opid);
  1830     fprintf(fp,");\n");
  1834 //------------------------------RewriteRule------------------------------------
  1835 RewriteRule::RewriteRule(char* params, char* block)
  1836   : _tempParams(params), _tempBlock(block) { };  // Constructor
  1837 RewriteRule::~RewriteRule() {                 // Destructor
  1840 void RewriteRule::dump() {
  1841   output(stderr);
  1844 void RewriteRule::output(FILE *fp) {         // Write info to output files
  1845   fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
  1846           (_tempParams?_tempParams:""),
  1847           (_tempBlock?_tempBlock:""));
  1851 //==============================MachNodes======================================
  1852 //------------------------------MachNodeForm-----------------------------------
  1853 MachNodeForm::MachNodeForm(char *id)
  1854   : _ident(id) {
  1857 MachNodeForm::~MachNodeForm() {
  1860 MachNodeForm *MachNodeForm::is_machnode() const {
  1861   return (MachNodeForm*)this;
  1864 //==============================Operand Classes================================
  1865 //------------------------------OpClassForm------------------------------------
  1866 OpClassForm::OpClassForm(const char* id) : _ident(id) {
  1867   _ftype = Form::OPCLASS;
  1870 OpClassForm::~OpClassForm() {
  1873 bool OpClassForm::ideal_only() const { return 0; }
  1875 OpClassForm *OpClassForm::is_opclass() const {
  1876   return (OpClassForm*)this;
  1879 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
  1880   if( _oplst.count() == 0 ) return Form::no_interface;
  1882   // Check that my operands have the same interface type
  1883   Form::InterfaceType  interface;
  1884   bool  first = true;
  1885   NameList &op_list = (NameList &)_oplst;
  1886   op_list.reset();
  1887   const char *op_name;
  1888   while( (op_name = op_list.iter()) != NULL ) {
  1889     const Form  *form    = globals[op_name];
  1890     OperandForm *operand = form->is_operand();
  1891     assert( operand, "Entry in operand class that is not an operand");
  1892     if( first ) {
  1893       first     = false;
  1894       interface = operand->interface_type(globals);
  1895     } else {
  1896       interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
  1899   return interface;
  1902 bool OpClassForm::stack_slots_only(FormDict &globals) const {
  1903   if( _oplst.count() == 0 ) return false;  // how?
  1905   NameList &op_list = (NameList &)_oplst;
  1906   op_list.reset();
  1907   const char *op_name;
  1908   while( (op_name = op_list.iter()) != NULL ) {
  1909     const Form  *form    = globals[op_name];
  1910     OperandForm *operand = form->is_operand();
  1911     assert( operand, "Entry in operand class that is not an operand");
  1912     if( !operand->stack_slots_only(globals) )  return false;
  1914   return true;
  1918 void OpClassForm::dump() {
  1919   output(stderr);
  1922 void OpClassForm::output(FILE *fp) {
  1923   const char *name;
  1924   fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
  1925   fprintf(fp,"\nCount = %d\n", _oplst.count());
  1926   for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
  1927     fprintf(fp,"%s, ",name);
  1929   fprintf(fp,"\n");
  1933 //==============================Operands=======================================
  1934 //------------------------------OperandForm------------------------------------
  1935 OperandForm::OperandForm(const char* id)
  1936   : OpClassForm(id), _ideal_only(false),
  1937     _localNames(cmpstr, hashstr, Form::arena) {
  1938       _ftype = Form::OPER;
  1940       _matrule   = NULL;
  1941       _interface = NULL;
  1942       _attribs   = NULL;
  1943       _predicate = NULL;
  1944       _constraint= NULL;
  1945       _construct = NULL;
  1946       _format    = NULL;
  1948 OperandForm::OperandForm(const char* id, bool ideal_only)
  1949   : OpClassForm(id), _ideal_only(ideal_only),
  1950     _localNames(cmpstr, hashstr, Form::arena) {
  1951       _ftype = Form::OPER;
  1953       _matrule   = NULL;
  1954       _interface = NULL;
  1955       _attribs   = NULL;
  1956       _predicate = NULL;
  1957       _constraint= NULL;
  1958       _construct = NULL;
  1959       _format    = NULL;
  1961 OperandForm::~OperandForm() {
  1965 OperandForm *OperandForm::is_operand() const {
  1966   return (OperandForm*)this;
  1969 bool OperandForm::ideal_only() const {
  1970   return _ideal_only;
  1973 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
  1974   if( _interface == NULL )  return Form::no_interface;
  1976   return _interface->interface_type(globals);
  1980 bool OperandForm::stack_slots_only(FormDict &globals) const {
  1981   if( _constraint == NULL )  return false;
  1982   return _constraint->stack_slots_only();
  1986 // Access op_cost attribute or return NULL.
  1987 const char* OperandForm::cost() {
  1988   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
  1989     if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
  1990       return cur->_val;
  1993   return NULL;
  1996 // Return the number of leaves below this complex operand
  1997 uint OperandForm::num_leaves() const {
  1998   if ( ! _matrule) return 0;
  2000   int num_leaves = _matrule->_numleaves;
  2001   return num_leaves;
  2004 // Return the number of constants contained within this complex operand
  2005 uint OperandForm::num_consts(FormDict &globals) const {
  2006   if ( ! _matrule) return 0;
  2008   // This is a recursive invocation on all operands in the matchrule
  2009   return _matrule->num_consts(globals);
  2012 // Return the number of constants in match rule with specified type
  2013 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
  2014   if ( ! _matrule) return 0;
  2016   // This is a recursive invocation on all operands in the matchrule
  2017   return _matrule->num_consts(globals, type);
  2020 // Return the number of pointer constants contained within this complex operand
  2021 uint OperandForm::num_const_ptrs(FormDict &globals) const {
  2022   if ( ! _matrule) return 0;
  2024   // This is a recursive invocation on all operands in the matchrule
  2025   return _matrule->num_const_ptrs(globals);
  2028 uint OperandForm::num_edges(FormDict &globals) const {
  2029   uint edges  = 0;
  2030   uint leaves = num_leaves();
  2031   uint consts = num_consts(globals);
  2033   // If we are matching a constant directly, there are no leaves.
  2034   edges = ( leaves > consts ) ? leaves - consts : 0;
  2036   // !!!!!
  2037   // Special case operands that do not have a corresponding ideal node.
  2038   if( (edges == 0) && (consts == 0) ) {
  2039     if( constrained_reg_class() != NULL ) {
  2040       edges = 1;
  2041     } else {
  2042       if( _matrule
  2043           && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
  2044         const Form *form = globals[_matrule->_opType];
  2045         OperandForm *oper = form ? form->is_operand() : NULL;
  2046         if( oper ) {
  2047           return oper->num_edges(globals);
  2053   return edges;
  2057 // Check if this operand is usable for cisc-spilling
  2058 bool  OperandForm::is_cisc_reg(FormDict &globals) const {
  2059   const char *ideal = ideal_type(globals);
  2060   bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
  2061   return is_cisc_reg;
  2064 bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
  2065   Form::InterfaceType my_interface = interface_type(globals);
  2066   return (my_interface == memory_interface);
  2070 // node matches ideal 'Bool'
  2071 bool OperandForm::is_ideal_bool() const {
  2072   if( _matrule == NULL ) return false;
  2074   return _matrule->is_ideal_bool();
  2077 // Require user's name for an sRegX to be stackSlotX
  2078 Form::DataType OperandForm::is_user_name_for_sReg() const {
  2079   DataType data_type = none;
  2080   if( _ident != NULL ) {
  2081     if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
  2082     else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
  2083     else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
  2084     else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
  2085     else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
  2087   assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
  2089   return data_type;
  2093 // Return ideal type, if there is a single ideal type for this operand
  2094 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
  2095   const char *type = NULL;
  2096   if (ideal_only()) type = _ident;
  2097   else if( _matrule == NULL ) {
  2098     // Check for condition code register
  2099     const char *rc_name = constrained_reg_class();
  2100     // !!!!!
  2101     if (rc_name == NULL) return NULL;
  2102     // !!!!! !!!!!
  2103     // Check constraints on result's register class
  2104     if( registers ) {
  2105       RegClass *reg_class  = registers->getRegClass(rc_name);
  2106       assert( reg_class != NULL, "Register class is not defined");
  2108       // Check for ideal type of entries in register class, all are the same type
  2109       reg_class->reset();
  2110       RegDef *reg_def = reg_class->RegDef_iter();
  2111       assert( reg_def != NULL, "No entries in register class");
  2112       assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
  2113       // Return substring that names the register's ideal type
  2114       type = reg_def->_idealtype + 3;
  2115       assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
  2116       assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
  2117       assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
  2120   else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
  2121     // This operand matches a single type, at the top level.
  2122     // Check for ideal type
  2123     type = _matrule->_opType;
  2124     if( strcmp(type,"Bool") == 0 )
  2125       return "Bool";
  2126     // transitive lookup
  2127     const Form *frm = globals[type];
  2128     OperandForm *op = frm->is_operand();
  2129     type = op->ideal_type(globals, registers);
  2131   return type;
  2135 // If there is a single ideal type for this interface field, return it.
  2136 const char *OperandForm::interface_ideal_type(FormDict &globals,
  2137                                               const char *field) const {
  2138   const char  *ideal_type = NULL;
  2139   const char  *value      = NULL;
  2141   // Check if "field" is valid for this operand's interface
  2142   if ( ! is_interface_field(field, value) )   return ideal_type;
  2144   // !!!!! !!!!! !!!!!
  2145   // If a valid field has a constant value, identify "ConI" or "ConP" or ...
  2147   // Else, lookup type of field's replacement variable
  2149   return ideal_type;
  2153 RegClass* OperandForm::get_RegClass() const {
  2154   if (_interface && !_interface->is_RegInterface()) return NULL;
  2155   return globalAD->get_registers()->getRegClass(constrained_reg_class());
  2159 bool OperandForm::is_bound_register() const {
  2160   RegClass *reg_class  = get_RegClass();
  2161   if (reg_class == NULL) return false;
  2163   const char * name = ideal_type(globalAD->globalNames());
  2164   if (name == NULL) return false;
  2166   int size = 0;
  2167   if (strcmp(name,"RegFlags")==0) size =  1;
  2168   if (strcmp(name,"RegI")==0) size =  1;
  2169   if (strcmp(name,"RegF")==0) size =  1;
  2170   if (strcmp(name,"RegD")==0) size =  2;
  2171   if (strcmp(name,"RegL")==0) size =  2;
  2172   if (strcmp(name,"RegN")==0) size =  1;
  2173   if (strcmp(name,"RegP")==0) size =  globalAD->get_preproc_def("_LP64") ? 2 : 1;
  2174   if (size == 0) return false;
  2175   return size == reg_class->size();
  2179 // Check if this is a valid field for this operand,
  2180 // Return 'true' if valid, and set the value to the string the user provided.
  2181 bool  OperandForm::is_interface_field(const char *field,
  2182                                       const char * &value) const {
  2183   return false;
  2187 // Return register class name if a constraint specifies the register class.
  2188 const char *OperandForm::constrained_reg_class() const {
  2189   const char *reg_class  = NULL;
  2190   if ( _constraint ) {
  2191     // !!!!!
  2192     Constraint *constraint = _constraint;
  2193     if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
  2194       reg_class = _constraint->_arg;
  2198   return reg_class;
  2202 // Return the register class associated with 'leaf'.
  2203 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
  2204   const char *reg_class = NULL; // "RegMask::Empty";
  2206   if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
  2207     reg_class = constrained_reg_class();
  2208     return reg_class;
  2210   const char *result   = NULL;
  2211   const char *name     = NULL;
  2212   const char *type     = NULL;
  2213   // iterate through all base operands
  2214   // until we reach the register that corresponds to "leaf"
  2215   // This function is not looking for an ideal type.  It needs the first
  2216   // level user type associated with the leaf.
  2217   for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
  2218     const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
  2219     OperandForm *oper = form ? form->is_operand() : NULL;
  2220     if( oper ) {
  2221       reg_class = oper->constrained_reg_class();
  2222       if( reg_class ) {
  2223         reg_class = reg_class;
  2224       } else {
  2225         // ShouldNotReachHere();
  2227     } else {
  2228       // ShouldNotReachHere();
  2231     // Increment our target leaf position if current leaf is not a candidate.
  2232     if( reg_class == NULL)    ++leaf;
  2233     // Exit the loop with the value of reg_class when at the correct index
  2234     if( idx == leaf )         break;
  2235     // May iterate through all base operands if reg_class for 'leaf' is NULL
  2237   return reg_class;
  2241 // Recursive call to construct list of top-level operands.
  2242 // Implementation does not modify state of internal structures
  2243 void OperandForm::build_components() {
  2244   if (_matrule)  _matrule->append_components(_localNames, _components);
  2246   // Add parameters that "do not appear in match rule".
  2247   const char *name;
  2248   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
  2249     OperandForm *opForm = (OperandForm*)_localNames[name];
  2251     if ( _components.operand_position(name) == -1 ) {
  2252       _components.insert(name, opForm->_ident, Component::INVALID, false);
  2256   return;
  2259 int OperandForm::operand_position(const char *name, int usedef) {
  2260   return _components.operand_position(name, usedef);
  2264 // Return zero-based position in component list, only counting constants;
  2265 // Return -1 if not in list.
  2266 int OperandForm::constant_position(FormDict &globals, const Component *last) {
  2267   // Iterate through components and count constants preceding 'constant'
  2268   int position = 0;
  2269   Component *comp;
  2270   _components.reset();
  2271   while( (comp = _components.iter()) != NULL  && (comp != last) ) {
  2272     // Special case for operands that take a single user-defined operand
  2273     // Skip the initial definition in the component list.
  2274     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2276     const char *type = comp->_type;
  2277     // Lookup operand form for replacement variable's type
  2278     const Form *form = globals[type];
  2279     assert( form != NULL, "Component's type not found");
  2280     OperandForm *oper = form ? form->is_operand() : NULL;
  2281     if( oper ) {
  2282       if( oper->_matrule->is_base_constant(globals) != Form::none ) {
  2283         ++position;
  2288   // Check for being passed a component that was not in the list
  2289   if( comp != last )  position = -1;
  2291   return position;
  2293 // Provide position of constant by "name"
  2294 int OperandForm::constant_position(FormDict &globals, const char *name) {
  2295   const Component *comp = _components.search(name);
  2296   int idx = constant_position( globals, comp );
  2298   return idx;
  2302 // Return zero-based position in component list, only counting constants;
  2303 // Return -1 if not in list.
  2304 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
  2305   // Iterate through components and count registers preceding 'last'
  2306   uint  position = 0;
  2307   Component *comp;
  2308   _components.reset();
  2309   while( (comp = _components.iter()) != NULL
  2310          && (strcmp(comp->_name,reg_name) != 0) ) {
  2311     // Special case for operands that take a single user-defined operand
  2312     // Skip the initial definition in the component list.
  2313     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2315     const char *type = comp->_type;
  2316     // Lookup operand form for component's type
  2317     const Form *form = globals[type];
  2318     assert( form != NULL, "Component's type not found");
  2319     OperandForm *oper = form ? form->is_operand() : NULL;
  2320     if( oper ) {
  2321       if( oper->_matrule->is_base_register(globals) ) {
  2322         ++position;
  2327   return position;
  2331 const char *OperandForm::reduce_result()  const {
  2332   return _ident;
  2334 // Return the name of the operand on the right hand side of the binary match
  2335 // Return NULL if there is no right hand side
  2336 const char *OperandForm::reduce_right(FormDict &globals)  const {
  2337   return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
  2340 // Similar for left
  2341 const char *OperandForm::reduce_left(FormDict &globals)   const {
  2342   return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
  2346 // --------------------------- FILE *output_routines
  2347 //
  2348 // Output code for disp_is_oop, if true.
  2349 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
  2350   //  Check it is a memory interface with a non-user-constant disp field
  2351   if ( this->_interface == NULL ) return;
  2352   MemInterface *mem_interface = this->_interface->is_MemInterface();
  2353   if ( mem_interface == NULL )    return;
  2354   const char   *disp  = mem_interface->_disp;
  2355   if ( *disp != '$' )             return;
  2357   // Lookup replacement variable in operand's component list
  2358   const char   *rep_var = disp + 1;
  2359   const Component *comp = this->_components.search(rep_var);
  2360   assert( comp != NULL, "Replacement variable not found in components");
  2361   // Lookup operand form for replacement variable's type
  2362   const char      *type = comp->_type;
  2363   Form            *form = (Form*)globals[type];
  2364   assert( form != NULL, "Replacement variable's type not found");
  2365   OperandForm     *op   = form->is_operand();
  2366   assert( op, "Memory Interface 'disp' can only emit an operand form");
  2367   // Check if this is a ConP, which may require relocation
  2368   if ( op->is_base_constant(globals) == Form::idealP ) {
  2369     // Find the constant's index:  _c0, _c1, _c2, ... , _cN
  2370     uint idx  = op->constant_position( globals, rep_var);
  2371     fprintf(fp,"  virtual bool disp_is_oop() const {");
  2372     fprintf(fp,  "  return _c%d->isa_oop_ptr();", idx);
  2373     fprintf(fp, " }\n");
  2377 // Generate code for internal and external format methods
  2378 //
  2379 // internal access to reg# node->_idx
  2380 // access to subsumed constant _c0, _c1,
  2381 void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
  2382   Form::DataType dtype;
  2383   if (_matrule && (_matrule->is_base_register(globals) ||
  2384                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2385     // !!!!! !!!!!
  2386     fprintf(fp,    "{ char reg_str[128];\n");
  2387     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
  2388     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2389     fprintf(fp,"    }\n");
  2390   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2391     format_constant( fp, index, dtype );
  2392   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2393     // Special format for Stack Slot Register
  2394     fprintf(fp,    "{ char reg_str[128];\n");
  2395     fprintf(fp,"      ra->dump_register(node,reg_str);\n");
  2396     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2397     fprintf(fp,"    }\n");
  2398   } else {
  2399     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
  2400     fflush(fp);
  2401     fprintf(stderr,"No format defined for %s\n", _ident);
  2402     dump();
  2403     assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
  2407 // Similar to "int_format" but for cases where data is external to operand
  2408 // external access to reg# node->in(idx)->_idx,
  2409 void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
  2410   Form::DataType dtype;
  2411   if (_matrule && (_matrule->is_base_register(globals) ||
  2412                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2413     fprintf(fp,    "{ char reg_str[128];\n");
  2414     fprintf(fp,"      ra->dump_register(node->in(idx");
  2415     if ( index != 0 ) fprintf(fp,                  "+%d",index);
  2416     fprintf(fp,                                       "),reg_str);\n");
  2417     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2418     fprintf(fp,"    }\n");
  2419   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2420     format_constant( fp, index, dtype );
  2421   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2422     // Special format for Stack Slot Register
  2423     fprintf(fp,    "{ char reg_str[128];\n");
  2424     fprintf(fp,"      ra->dump_register(node->in(idx");
  2425     if ( index != 0 ) fprintf(fp,                  "+%d",index);
  2426     fprintf(fp,                                       "),reg_str);\n");
  2427     fprintf(fp,"      tty->print(\"%cs\",reg_str);\n",'%');
  2428     fprintf(fp,"    }\n");
  2429   } else {
  2430     fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
  2431     assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
  2435 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
  2436   switch(const_type) {
  2437   case Form::idealI:  fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
  2438   case Form::idealP:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
  2439   case Form::idealN:  fprintf(fp,"_c%d->dump_on(st);\n",         const_index); break;
  2440   case Form::idealL:  fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
  2441   case Form::idealF:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
  2442   case Form::idealD:  fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
  2443   default:
  2444     assert( false, "ShouldNotReachHere()");
  2448 // Return the operand form corresponding to the given index, else NULL.
  2449 OperandForm *OperandForm::constant_operand(FormDict &globals,
  2450                                            uint      index) {
  2451   // !!!!!
  2452   // Check behavior on complex operands
  2453   uint n_consts = num_consts(globals);
  2454   if( n_consts > 0 ) {
  2455     uint i = 0;
  2456     const char *type;
  2457     Component  *comp;
  2458     _components.reset();
  2459     if ((comp = _components.iter()) == NULL) {
  2460       assert(n_consts == 1, "Bad component list detected.\n");
  2461       // Current operand is THE operand
  2462       if ( index == 0 ) {
  2463         return this;
  2465     } // end if NULL
  2466     else {
  2467       // Skip the first component, it can not be a DEF of a constant
  2468       do {
  2469         type = comp->base_type(globals);
  2470         // Check that "type" is a 'ConI', 'ConP', ...
  2471         if ( ideal_to_const_type(type) != Form::none ) {
  2472           // When at correct component, get corresponding Operand
  2473           if ( index == 0 ) {
  2474             return globals[comp->_type]->is_operand();
  2476           // Decrement number of constants to go
  2477           --index;
  2479       } while((comp = _components.iter()) != NULL);
  2483   // Did not find a constant for this index.
  2484   return NULL;
  2487 // If this operand has a single ideal type, return its type
  2488 Form::DataType OperandForm::simple_type(FormDict &globals) const {
  2489   const char *type_name = ideal_type(globals);
  2490   Form::DataType type   = type_name ? ideal_to_const_type( type_name )
  2491                                     : Form::none;
  2492   return type;
  2495 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
  2496   if ( _matrule == NULL )    return Form::none;
  2498   return _matrule->is_base_constant(globals);
  2501 // "true" if this operand is a simple type that is swallowed
  2502 bool  OperandForm::swallowed(FormDict &globals) const {
  2503   Form::DataType type   = simple_type(globals);
  2504   if( type != Form::none ) {
  2505     return true;
  2508   return false;
  2511 // Output code to access the value of the index'th constant
  2512 void OperandForm::access_constant(FILE *fp, FormDict &globals,
  2513                                   uint const_index) {
  2514   OperandForm *oper = constant_operand(globals, const_index);
  2515   assert( oper, "Index exceeds number of constants in operand");
  2516   Form::DataType dtype = oper->is_base_constant(globals);
  2518   switch(dtype) {
  2519   case idealI: fprintf(fp,"_c%d",           const_index); break;
  2520   case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
  2521   case idealL: fprintf(fp,"_c%d",           const_index); break;
  2522   case idealF: fprintf(fp,"_c%d",           const_index); break;
  2523   case idealD: fprintf(fp,"_c%d",           const_index); break;
  2524   default:
  2525     assert( false, "ShouldNotReachHere()");
  2530 void OperandForm::dump() {
  2531   output(stderr);
  2534 void OperandForm::output(FILE *fp) {
  2535   fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
  2536   if (_matrule)    _matrule->dump();
  2537   if (_interface)  _interface->dump();
  2538   if (_attribs)    _attribs->dump();
  2539   if (_predicate)  _predicate->dump();
  2540   if (_constraint) _constraint->dump();
  2541   if (_construct)  _construct->dump();
  2542   if (_format)     _format->dump();
  2545 //------------------------------Constraint-------------------------------------
  2546 Constraint::Constraint(const char *func, const char *arg)
  2547   : _func(func), _arg(arg) {
  2549 Constraint::~Constraint() { /* not owner of char* */
  2552 bool Constraint::stack_slots_only() const {
  2553   return strcmp(_func, "ALLOC_IN_RC") == 0
  2554       && strcmp(_arg,  "stack_slots") == 0;
  2557 void Constraint::dump() {
  2558   output(stderr);
  2561 void Constraint::output(FILE *fp) {           // Write info to output files
  2562   assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
  2563   fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
  2566 //------------------------------Predicate--------------------------------------
  2567 Predicate::Predicate(char *pr)
  2568   : _pred(pr) {
  2570 Predicate::~Predicate() {
  2573 void Predicate::dump() {
  2574   output(stderr);
  2577 void Predicate::output(FILE *fp) {
  2578   fprintf(fp,"Predicate");  // Write to output files
  2580 //------------------------------Interface--------------------------------------
  2581 Interface::Interface(const char *name) : _name(name) {
  2583 Interface::~Interface() {
  2586 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
  2587   Interface *thsi = (Interface*)this;
  2588   if ( thsi->is_RegInterface()   ) return Form::register_interface;
  2589   if ( thsi->is_MemInterface()   ) return Form::memory_interface;
  2590   if ( thsi->is_ConstInterface() ) return Form::constant_interface;
  2591   if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
  2593   return Form::no_interface;
  2596 RegInterface   *Interface::is_RegInterface() {
  2597   if ( strcmp(_name,"REG_INTER") != 0 )
  2598     return NULL;
  2599   return (RegInterface*)this;
  2601 MemInterface   *Interface::is_MemInterface() {
  2602   if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
  2603   return (MemInterface*)this;
  2605 ConstInterface *Interface::is_ConstInterface() {
  2606   if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
  2607   return (ConstInterface*)this;
  2609 CondInterface  *Interface::is_CondInterface() {
  2610   if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
  2611   return (CondInterface*)this;
  2615 void Interface::dump() {
  2616   output(stderr);
  2619 // Write info to output files
  2620 void Interface::output(FILE *fp) {
  2621   fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
  2624 //------------------------------RegInterface-----------------------------------
  2625 RegInterface::RegInterface() : Interface("REG_INTER") {
  2627 RegInterface::~RegInterface() {
  2630 void RegInterface::dump() {
  2631   output(stderr);
  2634 // Write info to output files
  2635 void RegInterface::output(FILE *fp) {
  2636   Interface::output(fp);
  2639 //------------------------------ConstInterface---------------------------------
  2640 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
  2642 ConstInterface::~ConstInterface() {
  2645 void ConstInterface::dump() {
  2646   output(stderr);
  2649 // Write info to output files
  2650 void ConstInterface::output(FILE *fp) {
  2651   Interface::output(fp);
  2654 //------------------------------MemInterface-----------------------------------
  2655 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
  2656   : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
  2658 MemInterface::~MemInterface() {
  2659   // not owner of any character arrays
  2662 void MemInterface::dump() {
  2663   output(stderr);
  2666 // Write info to output files
  2667 void MemInterface::output(FILE *fp) {
  2668   Interface::output(fp);
  2669   if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
  2670   if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
  2671   if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
  2672   if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
  2673   // fprintf(fp,"\n");
  2676 //------------------------------CondInterface----------------------------------
  2677 CondInterface::CondInterface(const char* equal,         const char* equal_format,
  2678                              const char* not_equal,     const char* not_equal_format,
  2679                              const char* less,          const char* less_format,
  2680                              const char* greater_equal, const char* greater_equal_format,
  2681                              const char* less_equal,    const char* less_equal_format,
  2682                              const char* greater,       const char* greater_format)
  2683   : Interface("COND_INTER"),
  2684     _equal(equal),                 _equal_format(equal_format),
  2685     _not_equal(not_equal),         _not_equal_format(not_equal_format),
  2686     _less(less),                   _less_format(less_format),
  2687     _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
  2688     _less_equal(less_equal),       _less_equal_format(less_equal_format),
  2689     _greater(greater),             _greater_format(greater_format) {
  2691 CondInterface::~CondInterface() {
  2692   // not owner of any character arrays
  2695 void CondInterface::dump() {
  2696   output(stderr);
  2699 // Write info to output files
  2700 void CondInterface::output(FILE *fp) {
  2701   Interface::output(fp);
  2702   if ( _equal  != NULL )     fprintf(fp," equal       == %s\n", _equal);
  2703   if ( _not_equal  != NULL ) fprintf(fp," not_equal   == %s\n", _not_equal);
  2704   if ( _less  != NULL )      fprintf(fp," less        == %s\n", _less);
  2705   if ( _greater_equal  != NULL ) fprintf(fp," greater_equal   == %s\n", _greater_equal);
  2706   if ( _less_equal  != NULL ) fprintf(fp," less_equal  == %s\n", _less_equal);
  2707   if ( _greater  != NULL )    fprintf(fp," greater     == %s\n", _greater);
  2708   // fprintf(fp,"\n");
  2711 //------------------------------ConstructRule----------------------------------
  2712 ConstructRule::ConstructRule(char *cnstr)
  2713   : _construct(cnstr) {
  2715 ConstructRule::~ConstructRule() {
  2718 void ConstructRule::dump() {
  2719   output(stderr);
  2722 void ConstructRule::output(FILE *fp) {
  2723   fprintf(fp,"\nConstruct Rule\n");  // Write to output files
  2727 //==============================Shared Forms===================================
  2728 //------------------------------AttributeForm----------------------------------
  2729 int         AttributeForm::_insId   = 0;           // start counter at 0
  2730 int         AttributeForm::_opId    = 0;           // start counter at 0
  2731 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
  2732 const char* AttributeForm::_op_cost  = "op_cost";  // required name
  2734 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
  2735   : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
  2736     if (type==OP_ATTR) {
  2737       id = ++_opId;
  2739     else if (type==INS_ATTR) {
  2740       id = ++_insId;
  2742     else assert( false,"");
  2744 AttributeForm::~AttributeForm() {
  2747 // Dynamic type check
  2748 AttributeForm *AttributeForm::is_attribute() const {
  2749   return (AttributeForm*)this;
  2753 // inlined  // int  AttributeForm::type() { return id;}
  2755 void AttributeForm::dump() {
  2756   output(stderr);
  2759 void AttributeForm::output(FILE *fp) {
  2760   if( _attrname && _attrdef ) {
  2761     fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
  2762             _attrname, _attrdef);
  2764   else {
  2765     fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
  2766             (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
  2770 //------------------------------Component--------------------------------------
  2771 Component::Component(const char *name, const char *type, int usedef)
  2772   : _name(name), _type(type), _usedef(usedef) {
  2773     _ftype = Form::COMP;
  2775 Component::~Component() {
  2778 // True if this component is equal to the parameter.
  2779 bool Component::is(int use_def_kill_enum) const {
  2780   return (_usedef == use_def_kill_enum ? true : false);
  2782 // True if this component is used/def'd/kill'd as the parameter suggests.
  2783 bool Component::isa(int use_def_kill_enum) const {
  2784   return (_usedef & use_def_kill_enum) == use_def_kill_enum;
  2787 // Extend this component with additional use/def/kill behavior
  2788 int Component::promote_use_def_info(int new_use_def) {
  2789   _usedef |= new_use_def;
  2791   return _usedef;
  2794 // Check the base type of this component, if it has one
  2795 const char *Component::base_type(FormDict &globals) {
  2796   const Form *frm = globals[_type];
  2797   if (frm == NULL) return NULL;
  2798   OperandForm *op = frm->is_operand();
  2799   if (op == NULL) return NULL;
  2800   if (op->ideal_only()) return op->_ident;
  2801   return (char *)op->ideal_type(globals);
  2804 void Component::dump() {
  2805   output(stderr);
  2808 void Component::output(FILE *fp) {
  2809   fprintf(fp,"Component:");  // Write to output files
  2810   fprintf(fp, "  name = %s", _name);
  2811   fprintf(fp, ", type = %s", _type);
  2812   const char * usedef = "Undefined Use/Def info";
  2813   switch (_usedef) {
  2814     case USE:      usedef = "USE";      break;
  2815     case USE_DEF:  usedef = "USE_DEF";  break;
  2816     case USE_KILL: usedef = "USE_KILL"; break;
  2817     case KILL:     usedef = "KILL";     break;
  2818     case TEMP:     usedef = "TEMP";     break;
  2819     case DEF:      usedef = "DEF";      break;
  2820     default: assert(false, "unknown effect");
  2822   fprintf(fp, ", use/def = %s\n", usedef);
  2826 //------------------------------ComponentList---------------------------------
  2827 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
  2829 ComponentList::~ComponentList() {
  2830   // // This list may not own its elements if copied via assignment
  2831   // Component *component;
  2832   // for (reset(); (component = iter()) != NULL;) {
  2833   //   delete component;
  2834   // }
  2837 void   ComponentList::insert(Component *component, bool mflag) {
  2838   NameList::addName((char *)component);
  2839   if(mflag) _matchcnt++;
  2841 void   ComponentList::insert(const char *name, const char *opType, int usedef,
  2842                              bool mflag) {
  2843   Component * component = new Component(name, opType, usedef);
  2844   insert(component, mflag);
  2846 Component *ComponentList::current() { return (Component*)NameList::current(); }
  2847 Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
  2848 Component *ComponentList::match_iter() {
  2849   if(_iter < _matchcnt) return (Component*)NameList::iter();
  2850   return NULL;
  2852 Component *ComponentList::post_match_iter() {
  2853   Component *comp = iter();
  2854   // At end of list?
  2855   if ( comp == NULL ) {
  2856     return comp;
  2858   // In post-match components?
  2859   if (_iter > match_count()-1) {
  2860     return comp;
  2863   return post_match_iter();
  2866 void       ComponentList::reset()   { NameList::reset(); }
  2867 int        ComponentList::count()   { return NameList::count(); }
  2869 Component *ComponentList::operator[](int position) {
  2870   // Shortcut complete iteration if there are not enough entries
  2871   if (position >= count()) return NULL;
  2873   int        index     = 0;
  2874   Component *component = NULL;
  2875   for (reset(); (component = iter()) != NULL;) {
  2876     if (index == position) {
  2877       return component;
  2879     ++index;
  2882   return NULL;
  2885 const Component *ComponentList::search(const char *name) {
  2886   PreserveIter pi(this);
  2887   reset();
  2888   for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
  2889     if( strcmp(comp->_name,name) == 0 ) return comp;
  2892   return NULL;
  2895 // Return number of USEs + number of DEFs
  2896 // When there are no components, or the first component is a USE,
  2897 // then we add '1' to hold a space for the 'result' operand.
  2898 int ComponentList::num_operands() {
  2899   PreserveIter pi(this);
  2900   uint       count = 1;           // result operand
  2901   uint       position = 0;
  2903   Component *component  = NULL;
  2904   for( reset(); (component = iter()) != NULL; ++position ) {
  2905     if( component->isa(Component::USE) ||
  2906         ( position == 0 && (! component->isa(Component::DEF))) ) {
  2907       ++count;
  2911   return count;
  2914 // Return zero-based position in list;  -1 if not in list.
  2915 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
  2916 int ComponentList::operand_position(const char *name, int usedef) {
  2917   PreserveIter pi(this);
  2918   int position = 0;
  2919   int num_opnds = num_operands();
  2920   Component *component;
  2921   Component* preceding_non_use = NULL;
  2922   Component* first_def = NULL;
  2923   for (reset(); (component = iter()) != NULL; ++position) {
  2924     // When the first component is not a DEF,
  2925     // leave space for the result operand!
  2926     if ( position==0 && (! component->isa(Component::DEF)) ) {
  2927       ++position;
  2928       ++num_opnds;
  2930     if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
  2931       // When the first entry in the component list is a DEF and a USE
  2932       // Treat them as being separate, a DEF first, then a USE
  2933       if( position==0
  2934           && usedef==Component::USE && component->isa(Component::DEF) ) {
  2935         assert(position+1 < num_opnds, "advertised index in bounds");
  2936         return position+1;
  2937       } else {
  2938         if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
  2939           fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
  2941         if( position >= num_opnds ) {
  2942           fprintf(stderr, "the name '%s' is too late in its name list\n", name);
  2944         assert(position < num_opnds, "advertised index in bounds");
  2945         return position;
  2948     if( component->isa(Component::DEF)
  2949         && component->isa(Component::USE) ) {
  2950       ++position;
  2951       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2953     if( component->isa(Component::DEF) && !first_def ) {
  2954       first_def = component;
  2956     if( !component->isa(Component::USE) && component != first_def ) {
  2957       preceding_non_use = component;
  2958     } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
  2959       preceding_non_use = NULL;
  2962   return Not_in_list;
  2965 // Find position for this name, regardless of use/def information
  2966 int ComponentList::operand_position(const char *name) {
  2967   PreserveIter pi(this);
  2968   int position = 0;
  2969   Component *component;
  2970   for (reset(); (component = iter()) != NULL; ++position) {
  2971     // When the first component is not a DEF,
  2972     // leave space for the result operand!
  2973     if ( position==0 && (! component->isa(Component::DEF)) ) {
  2974       ++position;
  2976     if (strcmp(name, component->_name)==0) {
  2977       return position;
  2979     if( component->isa(Component::DEF)
  2980         && component->isa(Component::USE) ) {
  2981       ++position;
  2982       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  2985   return Not_in_list;
  2988 int ComponentList::operand_position_format(const char *name) {
  2989   PreserveIter pi(this);
  2990   int  first_position = operand_position(name);
  2991   int  use_position   = operand_position(name, Component::USE);
  2993   return ((first_position < use_position) ? use_position : first_position);
  2996 int ComponentList::label_position() {
  2997   PreserveIter pi(this);
  2998   int position = 0;
  2999   reset();
  3000   for( Component *comp; (comp = iter()) != NULL; ++position) {
  3001     // When the first component is not a DEF,
  3002     // leave space for the result operand!
  3003     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  3004       ++position;
  3006     if (strcmp(comp->_type, "label")==0) {
  3007       return position;
  3009     if( comp->isa(Component::DEF)
  3010         && comp->isa(Component::USE) ) {
  3011       ++position;
  3012       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3016   return -1;
  3019 int ComponentList::method_position() {
  3020   PreserveIter pi(this);
  3021   int position = 0;
  3022   reset();
  3023   for( Component *comp; (comp = iter()) != NULL; ++position) {
  3024     // When the first component is not a DEF,
  3025     // leave space for the result operand!
  3026     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  3027       ++position;
  3029     if (strcmp(comp->_type, "method")==0) {
  3030       return position;
  3032     if( comp->isa(Component::DEF)
  3033         && comp->isa(Component::USE) ) {
  3034       ++position;
  3035       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3039   return -1;
  3042 void ComponentList::dump() { output(stderr); }
  3044 void ComponentList::output(FILE *fp) {
  3045   PreserveIter pi(this);
  3046   fprintf(fp, "\n");
  3047   Component *component;
  3048   for (reset(); (component = iter()) != NULL;) {
  3049     component->output(fp);
  3051   fprintf(fp, "\n");
  3054 //------------------------------MatchNode--------------------------------------
  3055 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
  3056                      const char *opType, MatchNode *lChild, MatchNode *rChild)
  3057   : _AD(ad), _result(result), _name(mexpr), _opType(opType),
  3058     _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
  3059     _commutative_id(0) {
  3060   _numleaves = (lChild ? lChild->_numleaves : 0)
  3061                + (rChild ? rChild->_numleaves : 0);
  3064 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
  3065   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3066     _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
  3067     _internalop(0), _numleaves(mnode._numleaves),
  3068     _commutative_id(mnode._commutative_id) {
  3071 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
  3072   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3073     _opType(mnode._opType),
  3074     _internalop(0), _numleaves(mnode._numleaves),
  3075     _commutative_id(mnode._commutative_id) {
  3076   if (mnode._lChild) {
  3077     _lChild = new MatchNode(ad, *mnode._lChild, clone);
  3078   } else {
  3079     _lChild = NULL;
  3081   if (mnode._rChild) {
  3082     _rChild = new MatchNode(ad, *mnode._rChild, clone);
  3083   } else {
  3084     _rChild = NULL;
  3088 MatchNode::~MatchNode() {
  3089   // // This node may not own its children if copied via assignment
  3090   // if( _lChild ) delete _lChild;
  3091   // if( _rChild ) delete _rChild;
  3094 bool  MatchNode::find_type(const char *type, int &position) const {
  3095   if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
  3096   if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
  3098   if (strcmp(type,_opType)==0)  {
  3099     return true;
  3100   } else {
  3101     ++position;
  3103   return false;
  3106 // Recursive call collecting info on top-level operands, not transitive.
  3107 // Implementation does not modify state of internal structures.
  3108 void MatchNode::append_components(FormDict& locals, ComponentList& components,
  3109                                   bool def_flag) const {
  3110   int usedef = def_flag ? Component::DEF : Component::USE;
  3111   FormDict &globals = _AD.globalNames();
  3113   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3114   // Base case
  3115   if (_lChild==NULL && _rChild==NULL) {
  3116     // If _opType is not an operation, do not build a component for it #####
  3117     const Form *f = globals[_opType];
  3118     if( f != NULL ) {
  3119       // Add non-ideals that are operands, operand-classes,
  3120       if( ! f->ideal_only()
  3121           && (f->is_opclass() || f->is_operand()) ) {
  3122         components.insert(_name, _opType, usedef, true);
  3125     return;
  3127   // Promote results of "Set" to DEF
  3128   bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
  3129   if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
  3130   tmpdef_flag = false;   // only applies to component immediately following 'Set'
  3131   if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
  3134 // Find the n'th base-operand in the match node,
  3135 // recursively investigates match rules of user-defined operands.
  3136 //
  3137 // Implementation does not modify state of internal structures since they
  3138 // can be shared.
  3139 bool MatchNode::base_operand(uint &position, FormDict &globals,
  3140                              const char * &result, const char * &name,
  3141                              const char * &opType) const {
  3142   assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
  3143   // Base case
  3144   if (_lChild==NULL && _rChild==NULL) {
  3145     // Check for special case: "Universe", "label"
  3146     if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
  3147       if (position == 0) {
  3148         result = _result;
  3149         name   = _name;
  3150         opType = _opType;
  3151         return 1;
  3152       } else {
  3153         -- position;
  3154         return 0;
  3158     const Form *form = globals[_opType];
  3159     MatchNode *matchNode = NULL;
  3160     // Check for user-defined type
  3161     if (form) {
  3162       // User operand or instruction?
  3163       OperandForm  *opForm = form->is_operand();
  3164       InstructForm *inForm = form->is_instruction();
  3165       if ( opForm ) {
  3166         matchNode = (MatchNode*)opForm->_matrule;
  3167       } else if ( inForm ) {
  3168         matchNode = (MatchNode*)inForm->_matrule;
  3171     // if this is user-defined, recurse on match rule
  3172     // User-defined operand and instruction forms have a match-rule.
  3173     if (matchNode) {
  3174       return (matchNode->base_operand(position,globals,result,name,opType));
  3175     } else {
  3176       // Either not a form, or a system-defined form (no match rule).
  3177       if (position==0) {
  3178         result = _result;
  3179         name   = _name;
  3180         opType = _opType;
  3181         return 1;
  3182       } else {
  3183         --position;
  3184         return 0;
  3188   } else {
  3189     // Examine the left child and right child as well
  3190     if (_lChild) {
  3191       if (_lChild->base_operand(position, globals, result, name, opType))
  3192         return 1;
  3195     if (_rChild) {
  3196       if (_rChild->base_operand(position, globals, result, name, opType))
  3197         return 1;
  3201   return 0;
  3204 // Recursive call on all operands' match rules in my match rule.
  3205 uint  MatchNode::num_consts(FormDict &globals) const {
  3206   uint        index      = 0;
  3207   uint        num_consts = 0;
  3208   const char *result;
  3209   const char *name;
  3210   const char *opType;
  3212   for (uint position = index;
  3213        base_operand(position,globals,result,name,opType); position = index) {
  3214     ++index;
  3215     if( ideal_to_const_type(opType) )        num_consts++;
  3218   return num_consts;
  3221 // Recursive call on all operands' match rules in my match rule.
  3222 // Constants in match rule subtree with specified type
  3223 uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
  3224   uint        index      = 0;
  3225   uint        num_consts = 0;
  3226   const char *result;
  3227   const char *name;
  3228   const char *opType;
  3230   for (uint position = index;
  3231        base_operand(position,globals,result,name,opType); position = index) {
  3232     ++index;
  3233     if( ideal_to_const_type(opType) == type ) num_consts++;
  3236   return num_consts;
  3239 // Recursive call on all operands' match rules in my match rule.
  3240 uint  MatchNode::num_const_ptrs(FormDict &globals) const {
  3241   return  num_consts( globals, Form::idealP );
  3244 bool  MatchNode::sets_result() const {
  3245   return   ( (strcmp(_name,"Set") == 0) ? true : false );
  3248 const char *MatchNode::reduce_right(FormDict &globals) const {
  3249   // If there is no right reduction, return NULL.
  3250   const char      *rightStr    = NULL;
  3252   // If we are a "Set", start from the right child.
  3253   const MatchNode *const mnode = sets_result() ?
  3254     (const MatchNode *const)this->_rChild :
  3255     (const MatchNode *const)this;
  3257   // If our right child exists, it is the right reduction
  3258   if ( mnode->_rChild ) {
  3259     rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
  3260       : mnode->_rChild->_opType;
  3262   // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
  3263   return rightStr;
  3266 const char *MatchNode::reduce_left(FormDict &globals) const {
  3267   // If there is no left reduction, return NULL.
  3268   const char  *leftStr  = NULL;
  3270   // If we are a "Set", start from the right child.
  3271   const MatchNode *const mnode = sets_result() ?
  3272     (const MatchNode *const)this->_rChild :
  3273     (const MatchNode *const)this;
  3275   // If our left child exists, it is the left reduction
  3276   if ( mnode->_lChild ) {
  3277     leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
  3278       : mnode->_lChild->_opType;
  3279   } else {
  3280     // May be simple chain rule: (Set dst operand_form_source)
  3281     if ( sets_result() ) {
  3282       OperandForm *oper = globals[mnode->_opType]->is_operand();
  3283       if( oper ) {
  3284         leftStr = mnode->_opType;
  3288   return leftStr;
  3291 //------------------------------count_instr_names------------------------------
  3292 // Count occurrences of operands names in the leaves of the instruction
  3293 // match rule.
  3294 void MatchNode::count_instr_names( Dict &names ) {
  3295   if( !this ) return;
  3296   if( _lChild ) _lChild->count_instr_names(names);
  3297   if( _rChild ) _rChild->count_instr_names(names);
  3298   if( !_lChild && !_rChild ) {
  3299     uintptr_t cnt = (uintptr_t)names[_name];
  3300     cnt++;                      // One more name found
  3301     names.Insert(_name,(void*)cnt);
  3305 //------------------------------build_instr_pred-------------------------------
  3306 // Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
  3307 // can skip some leading instances of 'name'.
  3308 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
  3309   if( _lChild ) {
  3310     if( !cnt ) strcpy( buf, "_kids[0]->" );
  3311     cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3312     if( cnt < 0 ) return cnt;   // Found it, all done
  3314   if( _rChild ) {
  3315     if( !cnt ) strcpy( buf, "_kids[1]->" );
  3316     cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3317     if( cnt < 0 ) return cnt;   // Found it, all done
  3319   if( !_lChild && !_rChild ) {  // Found a leaf
  3320     // Wrong name?  Give up...
  3321     if( strcmp(name,_name) ) return cnt;
  3322     if( !cnt ) strcpy(buf,"_leaf");
  3323     return cnt-1;
  3325   return cnt;
  3329 //------------------------------build_internalop-------------------------------
  3330 // Build string representation of subtree
  3331 void MatchNode::build_internalop( ) {
  3332   char *iop, *subtree;
  3333   const char *lstr, *rstr;
  3334   // Build string representation of subtree
  3335   // Operation lchildType rchildType
  3336   int len = (int)strlen(_opType) + 4;
  3337   lstr = (_lChild) ? ((_lChild->_internalop) ?
  3338                        _lChild->_internalop : _lChild->_opType) : "";
  3339   rstr = (_rChild) ? ((_rChild->_internalop) ?
  3340                        _rChild->_internalop : _rChild->_opType) : "";
  3341   len += (int)strlen(lstr) + (int)strlen(rstr);
  3342   subtree = (char *)malloc(len);
  3343   sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
  3344   // Hash the subtree string in _internalOps; if a name exists, use it
  3345   iop = (char *)_AD._internalOps[subtree];
  3346   // Else create a unique name, and add it to the hash table
  3347   if (iop == NULL) {
  3348     iop = subtree;
  3349     _AD._internalOps.Insert(subtree, iop);
  3350     _AD._internalOpNames.addName(iop);
  3351     _AD._internalMatch.Insert(iop, this);
  3353   // Add the internal operand name to the MatchNode
  3354   _internalop = iop;
  3355   _result = iop;
  3359 void MatchNode::dump() {
  3360   output(stderr);
  3363 void MatchNode::output(FILE *fp) {
  3364   if (_lChild==0 && _rChild==0) {
  3365     fprintf(fp," %s",_name);    // operand
  3367   else {
  3368     fprintf(fp," (%s ",_name);  // " (opcodeName "
  3369     if(_lChild) _lChild->output(fp); //               left operand
  3370     if(_rChild) _rChild->output(fp); //                    right operand
  3371     fprintf(fp,")");                 //                                 ")"
  3375 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
  3376   static const char *needs_ideal_memory_list[] = {
  3377     "StoreI","StoreL","StoreP","StoreN","StoreD","StoreF" ,
  3378     "StoreB","StoreC","Store" ,"StoreFP",
  3379     "LoadI", "LoadUI2L", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
  3380     "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load"   ,
  3381     "Store4I","Store2I","Store2L","Store2D","Store4F","Store2F","Store16B",
  3382     "Store8B","Store4B","Store8C","Store4C","Store2C",
  3383     "Load4I" ,"Load2I" ,"Load2L" ,"Load2D" ,"Load4F" ,"Load2F" ,"Load16B" ,
  3384     "Load8B" ,"Load4B" ,"Load8C" ,"Load4C" ,"Load2C" ,"Load8S", "Load4S","Load2S",
  3385     "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
  3386     "LoadPLocked", "LoadLLocked",
  3387     "StorePConditional", "StoreIConditional", "StoreLConditional",
  3388     "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
  3389     "StoreCM",
  3390     "ClearArray"
  3391   };
  3392   int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
  3393   if( strcmp(_opType,"PrefetchRead")==0 || strcmp(_opType,"PrefetchWrite")==0 )
  3394     return 1;
  3395   if( _lChild ) {
  3396     const char *opType = _lChild->_opType;
  3397     for( int i=0; i<cnt; i++ )
  3398       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3399         return 1;
  3400     if( _lChild->needs_ideal_memory_edge(globals) )
  3401       return 1;
  3403   if( _rChild ) {
  3404     const char *opType = _rChild->_opType;
  3405     for( int i=0; i<cnt; i++ )
  3406       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3407         return 1;
  3408     if( _rChild->needs_ideal_memory_edge(globals) )
  3409       return 1;
  3412   return 0;
  3415 // TRUE if defines a derived oop, and so needs a base oop edge present
  3416 // post-matching.
  3417 int MatchNode::needs_base_oop_edge() const {
  3418   if( !strcmp(_opType,"AddP") ) return 1;
  3419   if( strcmp(_opType,"Set") ) return 0;
  3420   return !strcmp(_rChild->_opType,"AddP");
  3423 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
  3424   if( is_simple_chain_rule(globals) ) {
  3425     const char *src = _matrule->_rChild->_opType;
  3426     OperandForm *src_op = globals[src]->is_operand();
  3427     assert( src_op, "Not operand class of chain rule" );
  3428     return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
  3429   }                             // Else check instruction
  3431   return _matrule ? _matrule->needs_base_oop_edge() : 0;
  3435 //-------------------------cisc spilling methods-------------------------------
  3436 // helper routines and methods for detecting cisc-spilling instructions
  3437 //-------------------------cisc_spill_merge------------------------------------
  3438 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
  3439   int cisc_spillable  = Maybe_cisc_spillable;
  3441   // Combine results of left and right checks
  3442   if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
  3443     // neither side is spillable, nor prevents cisc spilling
  3444     cisc_spillable = Maybe_cisc_spillable;
  3446   else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
  3447     // right side is spillable
  3448     cisc_spillable = right_spillable;
  3450   else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
  3451     // left side is spillable
  3452     cisc_spillable = left_spillable;
  3454   else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
  3455     // left or right prevents cisc spilling this instruction
  3456     cisc_spillable = Not_cisc_spillable;
  3458   else {
  3459     // Only allow one to spill
  3460     cisc_spillable = Not_cisc_spillable;
  3463   return cisc_spillable;
  3466 //-------------------------root_ops_match--------------------------------------
  3467 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
  3468   // Base Case: check that the current operands/operations match
  3469   assert( op1, "Must have op's name");
  3470   assert( op2, "Must have op's name");
  3471   const Form *form1 = globals[op1];
  3472   const Form *form2 = globals[op2];
  3474   return (form1 == form2);
  3477 //-------------------------cisc_spill_match_node-------------------------------
  3478 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3479 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
  3480   int cisc_spillable  = Maybe_cisc_spillable;
  3481   int left_spillable  = Maybe_cisc_spillable;
  3482   int right_spillable = Maybe_cisc_spillable;
  3484   // Check that each has same number of operands at this level
  3485   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
  3486     return Not_cisc_spillable;
  3488   // Base Case: check that the current operands/operations match
  3489   // or are CISC spillable
  3490   assert( _opType, "Must have _opType");
  3491   assert( mRule2->_opType, "Must have _opType");
  3492   const Form *form  = globals[_opType];
  3493   const Form *form2 = globals[mRule2->_opType];
  3494   if( form == form2 ) {
  3495     cisc_spillable = Maybe_cisc_spillable;
  3496   } else {
  3497     const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
  3498     const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
  3499     const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
  3500     DataType data_type = Form::none;
  3501     if (form->is_operand()) {
  3502       // Make sure the loadX matches the type of the reg
  3503       data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
  3505     // Detect reg vs (loadX memory)
  3506     if( form->is_cisc_reg(globals)
  3507         && form2_inst
  3508         && data_type != Form::none
  3509         && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
  3510         && (name_left != NULL)       // NOT (load)
  3511         && (name_right == NULL) ) {  // NOT (load memory foo)
  3512       const Form *form2_left = name_left ? globals[name_left] : NULL;
  3513       if( form2_left && form2_left->is_cisc_mem(globals) ) {
  3514         cisc_spillable = Is_cisc_spillable;
  3515         operand        = _name;
  3516         reg_type       = _result;
  3517         return Is_cisc_spillable;
  3518       } else {
  3519         cisc_spillable = Not_cisc_spillable;
  3522     // Detect reg vs memory
  3523     else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
  3524       cisc_spillable = Is_cisc_spillable;
  3525       operand        = _name;
  3526       reg_type       = _result;
  3527       return Is_cisc_spillable;
  3528     } else {
  3529       cisc_spillable = Not_cisc_spillable;
  3533   // If cisc is still possible, check rest of tree
  3534   if( cisc_spillable == Maybe_cisc_spillable ) {
  3535     // Check that each has same number of operands at this level
  3536     if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3538     // Check left operands
  3539     if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
  3540       left_spillable = Maybe_cisc_spillable;
  3541     } else {
  3542       left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
  3545     // Check right operands
  3546     if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3547       right_spillable =  Maybe_cisc_spillable;
  3548     } else {
  3549       right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3552     // Combine results of left and right checks
  3553     cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3556   return cisc_spillable;
  3559 //---------------------------cisc_spill_match_rule------------------------------
  3560 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3561 // This method handles the root of Match tree,
  3562 // general recursive checks done in MatchNode
  3563 int  MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
  3564                                            MatchRule* mRule2, const char* &operand,
  3565                                            const char* &reg_type) {
  3566   int cisc_spillable  = Maybe_cisc_spillable;
  3567   int left_spillable  = Maybe_cisc_spillable;
  3568   int right_spillable = Maybe_cisc_spillable;
  3570   // Check that each sets a result
  3571   if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
  3572   // Check that each has same number of operands at this level
  3573   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3575   // Check left operands: at root, must be target of 'Set'
  3576   if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
  3577     left_spillable = Not_cisc_spillable;
  3578   } else {
  3579     // Do not support cisc-spilling instruction's target location
  3580     if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
  3581       left_spillable = Maybe_cisc_spillable;
  3582     } else {
  3583       left_spillable = Not_cisc_spillable;
  3587   // Check right operands: recursive walk to identify reg->mem operand
  3588   if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3589     right_spillable =  Maybe_cisc_spillable;
  3590   } else {
  3591     right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3594   // Combine results of left and right checks
  3595   cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3597   return cisc_spillable;
  3600 //----------------------------- equivalent ------------------------------------
  3601 // Recursively check to see if two match rules are equivalent.
  3602 // This rule handles the root.
  3603 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
  3604   // Check that each sets a result
  3605   if (sets_result() != mRule2->sets_result()) {
  3606     return false;
  3609   // Check that the current operands/operations match
  3610   assert( _opType, "Must have _opType");
  3611   assert( mRule2->_opType, "Must have _opType");
  3612   const Form *form  = globals[_opType];
  3613   const Form *form2 = globals[mRule2->_opType];
  3614   if( form != form2 ) {
  3615     return false;
  3618   if (_lChild ) {
  3619     if( !_lChild->equivalent(globals, mRule2->_lChild) )
  3620       return false;
  3621   } else if (mRule2->_lChild) {
  3622     return false; // I have NULL left child, mRule2 has non-NULL left child.
  3625   if (_rChild ) {
  3626     if( !_rChild->equivalent(globals, mRule2->_rChild) )
  3627       return false;
  3628   } else if (mRule2->_rChild) {
  3629     return false; // I have NULL right child, mRule2 has non-NULL right child.
  3632   // We've made it through the gauntlet.
  3633   return true;
  3636 //----------------------------- equivalent ------------------------------------
  3637 // Recursively check to see if two match rules are equivalent.
  3638 // This rule handles the operands.
  3639 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
  3640   if( !mNode2 )
  3641     return false;
  3643   // Check that the current operands/operations match
  3644   assert( _opType, "Must have _opType");
  3645   assert( mNode2->_opType, "Must have _opType");
  3646   const Form *form  = globals[_opType];
  3647   const Form *form2 = globals[mNode2->_opType];
  3648   if( form != form2 ) {
  3649     return false;
  3652   // Check that their children also match
  3653   if (_lChild ) {
  3654     if( !_lChild->equivalent(globals, mNode2->_lChild) )
  3655       return false;
  3656   } else if (mNode2->_lChild) {
  3657     return false; // I have NULL left child, mNode2 has non-NULL left child.
  3660   if (_rChild ) {
  3661     if( !_rChild->equivalent(globals, mNode2->_rChild) )
  3662       return false;
  3663   } else if (mNode2->_rChild) {
  3664     return false; // I have NULL right child, mNode2 has non-NULL right child.
  3667   // We've made it through the gauntlet.
  3668   return true;
  3671 //-------------------------- has_commutative_op -------------------------------
  3672 // Recursively check for commutative operations with subtree operands
  3673 // which could be swapped.
  3674 void MatchNode::count_commutative_op(int& count) {
  3675   static const char *commut_op_list[] = {
  3676     "AddI","AddL","AddF","AddD",
  3677     "AndI","AndL",
  3678     "MaxI","MinI",
  3679     "MulI","MulL","MulF","MulD",
  3680     "OrI" ,"OrL" ,
  3681     "XorI","XorL"
  3682   };
  3683   int cnt = sizeof(commut_op_list)/sizeof(char*);
  3685   if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
  3686     // Don't swap if right operand is an immediate constant.
  3687     bool is_const = false;
  3688     if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
  3689       FormDict &globals = _AD.globalNames();
  3690       const Form *form = globals[_rChild->_opType];
  3691       if ( form ) {
  3692         OperandForm  *oper = form->is_operand();
  3693         if( oper && oper->interface_type(globals) == Form::constant_interface )
  3694           is_const = true;
  3697     if( !is_const ) {
  3698       for( int i=0; i<cnt; i++ ) {
  3699         if( strcmp(_opType, commut_op_list[i]) == 0 ) {
  3700           count++;
  3701           _commutative_id = count; // id should be > 0
  3702           break;
  3707   if( _lChild )
  3708     _lChild->count_commutative_op(count);
  3709   if( _rChild )
  3710     _rChild->count_commutative_op(count);
  3713 //-------------------------- swap_commutative_op ------------------------------
  3714 // Recursively swap specified commutative operation with subtree operands.
  3715 void MatchNode::swap_commutative_op(bool atroot, int id) {
  3716   if( _commutative_id == id ) { // id should be > 0
  3717     assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
  3718             "not swappable operation");
  3719     MatchNode* tmp = _lChild;
  3720     _lChild = _rChild;
  3721     _rChild = tmp;
  3722     // Don't exit here since we need to build internalop.
  3725   bool is_set = ( strcmp(_opType, "Set") == 0 );
  3726   if( _lChild )
  3727     _lChild->swap_commutative_op(is_set, id);
  3728   if( _rChild )
  3729     _rChild->swap_commutative_op(is_set, id);
  3731   // If not the root, reduce this subtree to an internal operand
  3732   if( !atroot && (_lChild || _rChild) ) {
  3733     build_internalop();
  3737 //-------------------------- swap_commutative_op ------------------------------
  3738 // Recursively swap specified commutative operation with subtree operands.
  3739 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
  3740   assert(match_rules_cnt < 100," too many match rule clones");
  3741   // Clone
  3742   MatchRule* clone = new MatchRule(_AD, this);
  3743   // Swap operands of commutative operation
  3744   ((MatchNode*)clone)->swap_commutative_op(true, count);
  3745   char* buf = (char*) malloc(strlen(instr_ident) + 4);
  3746   sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
  3747   clone->_result = buf;
  3749   clone->_next = this->_next;
  3750   this-> _next = clone;
  3751   if( (--count) > 0 ) {
  3752     this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
  3753     clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
  3757 //------------------------------MatchRule--------------------------------------
  3758 MatchRule::MatchRule(ArchDesc &ad)
  3759   : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
  3760     _next = NULL;
  3763 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
  3764   : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
  3765     _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
  3766     _next = NULL;
  3769 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
  3770                      int numleaves)
  3771   : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
  3772     _numchilds(0) {
  3773       _next = NULL;
  3774       mroot->_lChild = NULL;
  3775       mroot->_rChild = NULL;
  3776       delete mroot;
  3777       _numleaves = numleaves;
  3778       _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
  3780 MatchRule::~MatchRule() {
  3783 // Recursive call collecting info on top-level operands, not transitive.
  3784 // Implementation does not modify state of internal structures.
  3785 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
  3786   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3788   MatchNode::append_components(locals, components,
  3789                                false /* not necessarily a def */);
  3792 // Recursive call on all operands' match rules in my match rule.
  3793 // Implementation does not modify state of internal structures  since they
  3794 // can be shared.
  3795 // The MatchNode that is called first treats its
  3796 bool MatchRule::base_operand(uint &position0, FormDict &globals,
  3797                              const char *&result, const char * &name,
  3798                              const char * &opType)const{
  3799   uint position = position0;
  3801   return (MatchNode::base_operand( position, globals, result, name, opType));
  3805 bool MatchRule::is_base_register(FormDict &globals) const {
  3806   uint   position = 1;
  3807   const char  *result   = NULL;
  3808   const char  *name     = NULL;
  3809   const char  *opType   = NULL;
  3810   if (!base_operand(position, globals, result, name, opType)) {
  3811     position = 0;
  3812     if( base_operand(position, globals, result, name, opType) &&
  3813         (strcmp(opType,"RegI")==0 ||
  3814          strcmp(opType,"RegP")==0 ||
  3815          strcmp(opType,"RegN")==0 ||
  3816          strcmp(opType,"RegL")==0 ||
  3817          strcmp(opType,"RegF")==0 ||
  3818          strcmp(opType,"RegD")==0 ||
  3819          strcmp(opType,"Reg" )==0) ) {
  3820       return 1;
  3823   return 0;
  3826 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
  3827   uint         position = 1;
  3828   const char  *result   = NULL;
  3829   const char  *name     = NULL;
  3830   const char  *opType   = NULL;
  3831   if (!base_operand(position, globals, result, name, opType)) {
  3832     position = 0;
  3833     if (base_operand(position, globals, result, name, opType)) {
  3834       return ideal_to_const_type(opType);
  3837   return Form::none;
  3840 bool MatchRule::is_chain_rule(FormDict &globals) const {
  3842   // Check for chain rule, and do not generate a match list for it
  3843   if ((_lChild == NULL) && (_rChild == NULL) ) {
  3844     const Form *form = globals[_opType];
  3845     // If this is ideal, then it is a base match, not a chain rule.
  3846     if ( form && form->is_operand() && (!form->ideal_only())) {
  3847       return true;
  3850   // Check for "Set" form of chain rule, and do not generate a match list
  3851   if (_rChild) {
  3852     const char *rch = _rChild->_opType;
  3853     const Form *form = globals[rch];
  3854     if ((!strcmp(_opType,"Set") &&
  3855          ((form) && form->is_operand()))) {
  3856       return true;
  3859   return false;
  3862 int MatchRule::is_ideal_copy() const {
  3863   if( _rChild ) {
  3864     const char  *opType = _rChild->_opType;
  3865 #if 1
  3866     if( strcmp(opType,"CastIP")==0 )
  3867       return 1;
  3868 #else
  3869     if( strcmp(opType,"CastII")==0 )
  3870       return 1;
  3871     // Do not treat *CastPP this way, because it
  3872     // may transfer a raw pointer to an oop.
  3873     // If the register allocator were to coalesce this
  3874     // into a single LRG, the GC maps would be incorrect.
  3875     //if( strcmp(opType,"CastPP")==0 )
  3876     //  return 1;
  3877     //if( strcmp(opType,"CheckCastPP")==0 )
  3878     //  return 1;
  3879     //
  3880     // Do not treat CastX2P or CastP2X this way, because
  3881     // raw pointers and int types are treated differently
  3882     // when saving local & stack info for safepoints in
  3883     // Output().
  3884     //if( strcmp(opType,"CastX2P")==0 )
  3885     //  return 1;
  3886     //if( strcmp(opType,"CastP2X")==0 )
  3887     //  return 1;
  3888 #endif
  3890   if( is_chain_rule(_AD.globalNames()) &&
  3891       _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
  3892     return 1;
  3893   return 0;
  3897 int MatchRule::is_expensive() const {
  3898   if( _rChild ) {
  3899     const char  *opType = _rChild->_opType;
  3900     if( strcmp(opType,"AtanD")==0 ||
  3901         strcmp(opType,"CosD")==0 ||
  3902         strcmp(opType,"DivD")==0 ||
  3903         strcmp(opType,"DivF")==0 ||
  3904         strcmp(opType,"DivI")==0 ||
  3905         strcmp(opType,"ExpD")==0 ||
  3906         strcmp(opType,"LogD")==0 ||
  3907         strcmp(opType,"Log10D")==0 ||
  3908         strcmp(opType,"ModD")==0 ||
  3909         strcmp(opType,"ModF")==0 ||
  3910         strcmp(opType,"ModI")==0 ||
  3911         strcmp(opType,"PowD")==0 ||
  3912         strcmp(opType,"SinD")==0 ||
  3913         strcmp(opType,"SqrtD")==0 ||
  3914         strcmp(opType,"TanD")==0 ||
  3915         strcmp(opType,"ConvD2F")==0 ||
  3916         strcmp(opType,"ConvD2I")==0 ||
  3917         strcmp(opType,"ConvD2L")==0 ||
  3918         strcmp(opType,"ConvF2D")==0 ||
  3919         strcmp(opType,"ConvF2I")==0 ||
  3920         strcmp(opType,"ConvF2L")==0 ||
  3921         strcmp(opType,"ConvI2D")==0 ||
  3922         strcmp(opType,"ConvI2F")==0 ||
  3923         strcmp(opType,"ConvI2L")==0 ||
  3924         strcmp(opType,"ConvL2D")==0 ||
  3925         strcmp(opType,"ConvL2F")==0 ||
  3926         strcmp(opType,"ConvL2I")==0 ||
  3927         strcmp(opType,"DecodeN")==0 ||
  3928         strcmp(opType,"EncodeP")==0 ||
  3929         strcmp(opType,"RoundDouble")==0 ||
  3930         strcmp(opType,"RoundFloat")==0 ||
  3931         strcmp(opType,"ReverseBytesI")==0 ||
  3932         strcmp(opType,"ReverseBytesL")==0 ||
  3933         strcmp(opType,"ReverseBytesUS")==0 ||
  3934         strcmp(opType,"ReverseBytesS")==0 ||
  3935         strcmp(opType,"Replicate16B")==0 ||
  3936         strcmp(opType,"Replicate8B")==0 ||
  3937         strcmp(opType,"Replicate4B")==0 ||
  3938         strcmp(opType,"Replicate8C")==0 ||
  3939         strcmp(opType,"Replicate4C")==0 ||
  3940         strcmp(opType,"Replicate8S")==0 ||
  3941         strcmp(opType,"Replicate4S")==0 ||
  3942         strcmp(opType,"Replicate4I")==0 ||
  3943         strcmp(opType,"Replicate2I")==0 ||
  3944         strcmp(opType,"Replicate2L")==0 ||
  3945         strcmp(opType,"Replicate4F")==0 ||
  3946         strcmp(opType,"Replicate2F")==0 ||
  3947         strcmp(opType,"Replicate2D")==0 ||
  3948         0 /* 0 to line up columns nicely */ )
  3949       return 1;
  3951   return 0;
  3954 bool MatchRule::is_ideal_if() const {
  3955   if( !_opType ) return false;
  3956   return
  3957     !strcmp(_opType,"If"            ) ||
  3958     !strcmp(_opType,"CountedLoopEnd");
  3961 bool MatchRule::is_ideal_fastlock() const {
  3962   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3963     return (strcmp(_rChild->_opType,"FastLock") == 0);
  3965   return false;
  3968 bool MatchRule::is_ideal_membar() const {
  3969   if( !_opType ) return false;
  3970   return
  3971     !strcmp(_opType,"MemBarAcquire"  ) ||
  3972     !strcmp(_opType,"MemBarRelease"  ) ||
  3973     !strcmp(_opType,"MemBarAcquireLock") ||
  3974     !strcmp(_opType,"MemBarReleaseLock") ||
  3975     !strcmp(_opType,"MemBarVolatile" ) ||
  3976     !strcmp(_opType,"MemBarCPUOrder" ) ;
  3979 bool MatchRule::is_ideal_loadPC() const {
  3980   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3981     return (strcmp(_rChild->_opType,"LoadPC") == 0);
  3983   return false;
  3986 bool MatchRule::is_ideal_box() const {
  3987   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  3988     return (strcmp(_rChild->_opType,"Box") == 0);
  3990   return false;
  3993 bool MatchRule::is_ideal_goto() const {
  3994   bool   ideal_goto = false;
  3996   if( _opType && (strcmp(_opType,"Goto") == 0) ) {
  3997     ideal_goto = true;
  3999   return ideal_goto;
  4002 bool MatchRule::is_ideal_jump() const {
  4003   if( _opType ) {
  4004     if( !strcmp(_opType,"Jump") )
  4005       return true;
  4007   return false;
  4010 bool MatchRule::is_ideal_bool() const {
  4011   if( _opType ) {
  4012     if( !strcmp(_opType,"Bool") )
  4013       return true;
  4015   return false;
  4019 Form::DataType MatchRule::is_ideal_load() const {
  4020   Form::DataType ideal_load = Form::none;
  4022   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4023     const char *opType = _rChild->_opType;
  4024     ideal_load = is_load_from_memory(opType);
  4027   return ideal_load;
  4031 bool MatchRule::skip_antidep_check() const {
  4032   // Some loads operate on what is effectively immutable memory so we
  4033   // should skip the anti dep computations.  For some of these nodes
  4034   // the rewritable field keeps the anti dep logic from triggering but
  4035   // for certain kinds of LoadKlass it does not since they are
  4036   // actually reading memory which could be rewritten by the runtime,
  4037   // though never by generated code.  This disables it uniformly for
  4038   // the nodes that behave like this: LoadKlass, LoadNKlass and
  4039   // LoadRange.
  4040   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4041     const char *opType = _rChild->_opType;
  4042     if (strcmp("LoadKlass", opType) == 0 ||
  4043         strcmp("LoadNKlass", opType) == 0 ||
  4044         strcmp("LoadRange", opType) == 0) {
  4045       return true;
  4049   return false;
  4053 Form::DataType MatchRule::is_ideal_store() const {
  4054   Form::DataType ideal_store = Form::none;
  4056   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4057     const char *opType = _rChild->_opType;
  4058     ideal_store = is_store_to_memory(opType);
  4061   return ideal_store;
  4065 void MatchRule::dump() {
  4066   output(stderr);
  4069 void MatchRule::output(FILE *fp) {
  4070   fprintf(fp,"MatchRule: ( %s",_name);
  4071   if (_lChild) _lChild->output(fp);
  4072   if (_rChild) _rChild->output(fp);
  4073   fprintf(fp," )\n");
  4074   fprintf(fp,"   nesting depth = %d\n", _depth);
  4075   if (_result) fprintf(fp,"   Result Type = %s", _result);
  4076   fprintf(fp,"\n");
  4079 //------------------------------Attribute--------------------------------------
  4080 Attribute::Attribute(char *id, char* val, int type)
  4081   : _ident(id), _val(val), _atype(type) {
  4083 Attribute::~Attribute() {
  4086 int Attribute::int_val(ArchDesc &ad) {
  4087   // Make sure it is an integer constant:
  4088   int result = 0;
  4089   if (!_val || !ADLParser::is_int_token(_val, result)) {
  4090     ad.syntax_err(0, "Attribute %s must have an integer value: %s",
  4091                   _ident, _val ? _val : "");
  4093   return result;
  4096 void Attribute::dump() {
  4097   output(stderr);
  4098 } // Debug printer
  4100 // Write to output files
  4101 void Attribute::output(FILE *fp) {
  4102   fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
  4105 //------------------------------FormatRule----------------------------------
  4106 FormatRule::FormatRule(char *temp)
  4107   : _temp(temp) {
  4109 FormatRule::~FormatRule() {
  4112 void FormatRule::dump() {
  4113   output(stderr);
  4116 // Write to output files
  4117 void FormatRule::output(FILE *fp) {
  4118   fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
  4119   fprintf(fp,"\n");

mercurial