src/share/vm/opto/graphKit.cpp

Wed, 23 Nov 2016 23:01:34 -0800

author
shshahma
date
Wed, 23 Nov 2016 23:01:34 -0800
changeset 8653
0ffee573412b
parent 8608
0d78aecb0948
child 8856
ac27a9c85bea
child 9738
18fd6d87f16f
permissions
-rw-r--r--

8140309: [REDO] failed: no mismatched stores, except on raw memory: StoreB StoreI
Summary: Mismatched stores on same slice possible with Unsafe.Put*Unaligned methods
Reviewed-by: kvn, thartmann

     1 /*
     2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    28 #include "gc_implementation/g1/heapRegion.hpp"
    29 #include "gc_interface/collectedHeap.hpp"
    30 #include "memory/barrierSet.hpp"
    31 #include "memory/cardTableModRefBS.hpp"
    32 #include "opto/addnode.hpp"
    33 #include "opto/graphKit.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/locknode.hpp"
    36 #include "opto/machnode.hpp"
    37 #include "opto/parse.hpp"
    38 #include "opto/rootnode.hpp"
    39 #include "opto/runtime.hpp"
    40 #include "runtime/deoptimization.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    43 //----------------------------GraphKit-----------------------------------------
    44 // Main utility constructor.
    45 GraphKit::GraphKit(JVMState* jvms)
    46   : Phase(Phase::Parser),
    47     _env(C->env()),
    48     _gvn(*C->initial_gvn())
    49 {
    50   _exceptions = jvms->map()->next_exception();
    51   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
    52   set_jvms(jvms);
    53 }
    55 // Private constructor for parser.
    56 GraphKit::GraphKit()
    57   : Phase(Phase::Parser),
    58     _env(C->env()),
    59     _gvn(*C->initial_gvn())
    60 {
    61   _exceptions = NULL;
    62   set_map(NULL);
    63   debug_only(_sp = -99);
    64   debug_only(set_bci(-99));
    65 }
    69 //---------------------------clean_stack---------------------------------------
    70 // Clear away rubbish from the stack area of the JVM state.
    71 // This destroys any arguments that may be waiting on the stack.
    72 void GraphKit::clean_stack(int from_sp) {
    73   SafePointNode* map      = this->map();
    74   JVMState*      jvms     = this->jvms();
    75   int            stk_size = jvms->stk_size();
    76   int            stkoff   = jvms->stkoff();
    77   Node*          top      = this->top();
    78   for (int i = from_sp; i < stk_size; i++) {
    79     if (map->in(stkoff + i) != top) {
    80       map->set_req(stkoff + i, top);
    81     }
    82   }
    83 }
    86 //--------------------------------sync_jvms-----------------------------------
    87 // Make sure our current jvms agrees with our parse state.
    88 JVMState* GraphKit::sync_jvms() const {
    89   JVMState* jvms = this->jvms();
    90   jvms->set_bci(bci());       // Record the new bci in the JVMState
    91   jvms->set_sp(sp());         // Record the new sp in the JVMState
    92   assert(jvms_in_sync(), "jvms is now in sync");
    93   return jvms;
    94 }
    96 //--------------------------------sync_jvms_for_reexecute---------------------
    97 // Make sure our current jvms agrees with our parse state.  This version
    98 // uses the reexecute_sp for reexecuting bytecodes.
    99 JVMState* GraphKit::sync_jvms_for_reexecute() {
   100   JVMState* jvms = this->jvms();
   101   jvms->set_bci(bci());          // Record the new bci in the JVMState
   102   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
   103   return jvms;
   104 }
   106 #ifdef ASSERT
   107 bool GraphKit::jvms_in_sync() const {
   108   Parse* parse = is_Parse();
   109   if (parse == NULL) {
   110     if (bci() !=      jvms()->bci())          return false;
   111     if (sp()  != (int)jvms()->sp())           return false;
   112     return true;
   113   }
   114   if (jvms()->method() != parse->method())    return false;
   115   if (jvms()->bci()    != parse->bci())       return false;
   116   int jvms_sp = jvms()->sp();
   117   if (jvms_sp          != parse->sp())        return false;
   118   int jvms_depth = jvms()->depth();
   119   if (jvms_depth       != parse->depth())     return false;
   120   return true;
   121 }
   123 // Local helper checks for special internal merge points
   124 // used to accumulate and merge exception states.
   125 // They are marked by the region's in(0) edge being the map itself.
   126 // Such merge points must never "escape" into the parser at large,
   127 // until they have been handed to gvn.transform.
   128 static bool is_hidden_merge(Node* reg) {
   129   if (reg == NULL)  return false;
   130   if (reg->is_Phi()) {
   131     reg = reg->in(0);
   132     if (reg == NULL)  return false;
   133   }
   134   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
   135 }
   137 void GraphKit::verify_map() const {
   138   if (map() == NULL)  return;  // null map is OK
   139   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
   140   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
   141   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
   142 }
   144 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
   145   assert(ex_map->next_exception() == NULL, "not already part of a chain");
   146   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
   147 }
   148 #endif
   150 //---------------------------stop_and_kill_map---------------------------------
   151 // Set _map to NULL, signalling a stop to further bytecode execution.
   152 // First smash the current map's control to a constant, to mark it dead.
   153 void GraphKit::stop_and_kill_map() {
   154   SafePointNode* dead_map = stop();
   155   if (dead_map != NULL) {
   156     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
   157     assert(dead_map->is_killed(), "must be so marked");
   158   }
   159 }
   162 //--------------------------------stopped--------------------------------------
   163 // Tell if _map is NULL, or control is top.
   164 bool GraphKit::stopped() {
   165   if (map() == NULL)           return true;
   166   else if (control() == top()) return true;
   167   else                         return false;
   168 }
   171 //-----------------------------has_ex_handler----------------------------------
   172 // Tell if this method or any caller method has exception handlers.
   173 bool GraphKit::has_ex_handler() {
   174   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
   175     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
   176       return true;
   177     }
   178   }
   179   return false;
   180 }
   182 //------------------------------save_ex_oop------------------------------------
   183 // Save an exception without blowing stack contents or other JVM state.
   184 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
   185   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
   186   ex_map->add_req(ex_oop);
   187   debug_only(verify_exception_state(ex_map));
   188 }
   190 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
   191   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
   192   Node* ex_oop = ex_map->in(ex_map->req()-1);
   193   if (clear_it)  ex_map->del_req(ex_map->req()-1);
   194   return ex_oop;
   195 }
   197 //-----------------------------saved_ex_oop------------------------------------
   198 // Recover a saved exception from its map.
   199 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
   200   return common_saved_ex_oop(ex_map, false);
   201 }
   203 //--------------------------clear_saved_ex_oop---------------------------------
   204 // Erase a previously saved exception from its map.
   205 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
   206   return common_saved_ex_oop(ex_map, true);
   207 }
   209 #ifdef ASSERT
   210 //---------------------------has_saved_ex_oop----------------------------------
   211 // Erase a previously saved exception from its map.
   212 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
   213   return ex_map->req() == ex_map->jvms()->endoff()+1;
   214 }
   215 #endif
   217 //-------------------------make_exception_state--------------------------------
   218 // Turn the current JVM state into an exception state, appending the ex_oop.
   219 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
   220   sync_jvms();
   221   SafePointNode* ex_map = stop();  // do not manipulate this map any more
   222   set_saved_ex_oop(ex_map, ex_oop);
   223   return ex_map;
   224 }
   227 //--------------------------add_exception_state--------------------------------
   228 // Add an exception to my list of exceptions.
   229 void GraphKit::add_exception_state(SafePointNode* ex_map) {
   230   if (ex_map == NULL || ex_map->control() == top()) {
   231     return;
   232   }
   233 #ifdef ASSERT
   234   verify_exception_state(ex_map);
   235   if (has_exceptions()) {
   236     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
   237   }
   238 #endif
   240   // If there is already an exception of exactly this type, merge with it.
   241   // In particular, null-checks and other low-level exceptions common up here.
   242   Node*       ex_oop  = saved_ex_oop(ex_map);
   243   const Type* ex_type = _gvn.type(ex_oop);
   244   if (ex_oop == top()) {
   245     // No action needed.
   246     return;
   247   }
   248   assert(ex_type->isa_instptr(), "exception must be an instance");
   249   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
   250     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
   251     // We check sp also because call bytecodes can generate exceptions
   252     // both before and after arguments are popped!
   253     if (ex_type2 == ex_type
   254         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
   255       combine_exception_states(ex_map, e2);
   256       return;
   257     }
   258   }
   260   // No pre-existing exception of the same type.  Chain it on the list.
   261   push_exception_state(ex_map);
   262 }
   264 //-----------------------add_exception_states_from-----------------------------
   265 void GraphKit::add_exception_states_from(JVMState* jvms) {
   266   SafePointNode* ex_map = jvms->map()->next_exception();
   267   if (ex_map != NULL) {
   268     jvms->map()->set_next_exception(NULL);
   269     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
   270       next_map = ex_map->next_exception();
   271       ex_map->set_next_exception(NULL);
   272       add_exception_state(ex_map);
   273     }
   274   }
   275 }
   277 //-----------------------transfer_exceptions_into_jvms-------------------------
   278 JVMState* GraphKit::transfer_exceptions_into_jvms() {
   279   if (map() == NULL) {
   280     // We need a JVMS to carry the exceptions, but the map has gone away.
   281     // Create a scratch JVMS, cloned from any of the exception states...
   282     if (has_exceptions()) {
   283       _map = _exceptions;
   284       _map = clone_map();
   285       _map->set_next_exception(NULL);
   286       clear_saved_ex_oop(_map);
   287       debug_only(verify_map());
   288     } else {
   289       // ...or created from scratch
   290       JVMState* jvms = new (C) JVMState(_method, NULL);
   291       jvms->set_bci(_bci);
   292       jvms->set_sp(_sp);
   293       jvms->set_map(new (C) SafePointNode(TypeFunc::Parms, jvms));
   294       set_jvms(jvms);
   295       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
   296       set_all_memory(top());
   297       while (map()->req() < jvms->endoff())  map()->add_req(top());
   298     }
   299     // (This is a kludge, in case you didn't notice.)
   300     set_control(top());
   301   }
   302   JVMState* jvms = sync_jvms();
   303   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
   304   jvms->map()->set_next_exception(_exceptions);
   305   _exceptions = NULL;   // done with this set of exceptions
   306   return jvms;
   307 }
   309 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
   310   assert(is_hidden_merge(dstphi), "must be a special merge node");
   311   assert(is_hidden_merge(srcphi), "must be a special merge node");
   312   uint limit = srcphi->req();
   313   for (uint i = PhiNode::Input; i < limit; i++) {
   314     dstphi->add_req(srcphi->in(i));
   315   }
   316 }
   317 static inline void add_one_req(Node* dstphi, Node* src) {
   318   assert(is_hidden_merge(dstphi), "must be a special merge node");
   319   assert(!is_hidden_merge(src), "must not be a special merge node");
   320   dstphi->add_req(src);
   321 }
   323 //-----------------------combine_exception_states------------------------------
   324 // This helper function combines exception states by building phis on a
   325 // specially marked state-merging region.  These regions and phis are
   326 // untransformed, and can build up gradually.  The region is marked by
   327 // having a control input of its exception map, rather than NULL.  Such
   328 // regions do not appear except in this function, and in use_exception_state.
   329 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
   330   if (failing())  return;  // dying anyway...
   331   JVMState* ex_jvms = ex_map->_jvms;
   332   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
   333   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
   334   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
   335   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
   336   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
   337   assert(ex_map->req() == phi_map->req(), "matching maps");
   338   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
   339   Node*         hidden_merge_mark = root();
   340   Node*         region  = phi_map->control();
   341   MergeMemNode* phi_mem = phi_map->merged_memory();
   342   MergeMemNode* ex_mem  = ex_map->merged_memory();
   343   if (region->in(0) != hidden_merge_mark) {
   344     // The control input is not (yet) a specially-marked region in phi_map.
   345     // Make it so, and build some phis.
   346     region = new (C) RegionNode(2);
   347     _gvn.set_type(region, Type::CONTROL);
   348     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
   349     region->init_req(1, phi_map->control());
   350     phi_map->set_control(region);
   351     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
   352     record_for_igvn(io_phi);
   353     _gvn.set_type(io_phi, Type::ABIO);
   354     phi_map->set_i_o(io_phi);
   355     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
   356       Node* m = mms.memory();
   357       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
   358       record_for_igvn(m_phi);
   359       _gvn.set_type(m_phi, Type::MEMORY);
   360       mms.set_memory(m_phi);
   361     }
   362   }
   364   // Either or both of phi_map and ex_map might already be converted into phis.
   365   Node* ex_control = ex_map->control();
   366   // if there is special marking on ex_map also, we add multiple edges from src
   367   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
   368   // how wide was the destination phi_map, originally?
   369   uint orig_width = region->req();
   371   if (add_multiple) {
   372     add_n_reqs(region, ex_control);
   373     add_n_reqs(phi_map->i_o(), ex_map->i_o());
   374   } else {
   375     // ex_map has no merges, so we just add single edges everywhere
   376     add_one_req(region, ex_control);
   377     add_one_req(phi_map->i_o(), ex_map->i_o());
   378   }
   379   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
   380     if (mms.is_empty()) {
   381       // get a copy of the base memory, and patch some inputs into it
   382       const TypePtr* adr_type = mms.adr_type(C);
   383       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
   384       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
   385       mms.set_memory(phi);
   386       // Prepare to append interesting stuff onto the newly sliced phi:
   387       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
   388     }
   389     // Append stuff from ex_map:
   390     if (add_multiple) {
   391       add_n_reqs(mms.memory(), mms.memory2());
   392     } else {
   393       add_one_req(mms.memory(), mms.memory2());
   394     }
   395   }
   396   uint limit = ex_map->req();
   397   for (uint i = TypeFunc::Parms; i < limit; i++) {
   398     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
   399     if (i == tos)  i = ex_jvms->monoff();
   400     Node* src = ex_map->in(i);
   401     Node* dst = phi_map->in(i);
   402     if (src != dst) {
   403       PhiNode* phi;
   404       if (dst->in(0) != region) {
   405         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
   406         record_for_igvn(phi);
   407         _gvn.set_type(phi, phi->type());
   408         phi_map->set_req(i, dst);
   409         // Prepare to append interesting stuff onto the new phi:
   410         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
   411       } else {
   412         assert(dst->is_Phi(), "nobody else uses a hidden region");
   413         phi = dst->as_Phi();
   414       }
   415       if (add_multiple && src->in(0) == ex_control) {
   416         // Both are phis.
   417         add_n_reqs(dst, src);
   418       } else {
   419         while (dst->req() < region->req())  add_one_req(dst, src);
   420       }
   421       const Type* srctype = _gvn.type(src);
   422       if (phi->type() != srctype) {
   423         const Type* dsttype = phi->type()->meet_speculative(srctype);
   424         if (phi->type() != dsttype) {
   425           phi->set_type(dsttype);
   426           _gvn.set_type(phi, dsttype);
   427         }
   428       }
   429     }
   430   }
   431   phi_map->merge_replaced_nodes_with(ex_map);
   432 }
   434 //--------------------------use_exception_state--------------------------------
   435 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
   436   if (failing()) { stop(); return top(); }
   437   Node* region = phi_map->control();
   438   Node* hidden_merge_mark = root();
   439   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
   440   Node* ex_oop = clear_saved_ex_oop(phi_map);
   441   if (region->in(0) == hidden_merge_mark) {
   442     // Special marking for internal ex-states.  Process the phis now.
   443     region->set_req(0, region);  // now it's an ordinary region
   444     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
   445     // Note: Setting the jvms also sets the bci and sp.
   446     set_control(_gvn.transform(region));
   447     uint tos = jvms()->stkoff() + sp();
   448     for (uint i = 1; i < tos; i++) {
   449       Node* x = phi_map->in(i);
   450       if (x->in(0) == region) {
   451         assert(x->is_Phi(), "expected a special phi");
   452         phi_map->set_req(i, _gvn.transform(x));
   453       }
   454     }
   455     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
   456       Node* x = mms.memory();
   457       if (x->in(0) == region) {
   458         assert(x->is_Phi(), "nobody else uses a hidden region");
   459         mms.set_memory(_gvn.transform(x));
   460       }
   461     }
   462     if (ex_oop->in(0) == region) {
   463       assert(ex_oop->is_Phi(), "expected a special phi");
   464       ex_oop = _gvn.transform(ex_oop);
   465     }
   466   } else {
   467     set_jvms(phi_map->jvms());
   468   }
   470   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
   471   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
   472   return ex_oop;
   473 }
   475 //---------------------------------java_bc-------------------------------------
   476 Bytecodes::Code GraphKit::java_bc() const {
   477   ciMethod* method = this->method();
   478   int       bci    = this->bci();
   479   if (method != NULL && bci != InvocationEntryBci)
   480     return method->java_code_at_bci(bci);
   481   else
   482     return Bytecodes::_illegal;
   483 }
   485 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
   486                                                           bool must_throw) {
   487     // if the exception capability is set, then we will generate code
   488     // to check the JavaThread.should_post_on_exceptions flag to see
   489     // if we actually need to report exception events (for this
   490     // thread).  If we don't need to report exception events, we will
   491     // take the normal fast path provided by add_exception_events.  If
   492     // exception event reporting is enabled for this thread, we will
   493     // take the uncommon_trap in the BuildCutout below.
   495     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
   496     Node* jthread = _gvn.transform(new (C) ThreadLocalNode());
   497     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
   498     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
   500     // Test the should_post_on_exceptions_flag vs. 0
   501     Node* chk = _gvn.transform( new (C) CmpINode(should_post_flag, intcon(0)) );
   502     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
   504     // Branch to slow_path if should_post_on_exceptions_flag was true
   505     { BuildCutout unless(this, tst, PROB_MAX);
   506       // Do not try anything fancy if we're notifying the VM on every throw.
   507       // Cf. case Bytecodes::_athrow in parse2.cpp.
   508       uncommon_trap(reason, Deoptimization::Action_none,
   509                     (ciKlass*)NULL, (char*)NULL, must_throw);
   510     }
   512 }
   514 //------------------------------builtin_throw----------------------------------
   515 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
   516   bool must_throw = true;
   518   if (env()->jvmti_can_post_on_exceptions()) {
   519     // check if we must post exception events, take uncommon trap if so
   520     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
   521     // here if should_post_on_exceptions is false
   522     // continue on with the normal codegen
   523   }
   525   // If this particular condition has not yet happened at this
   526   // bytecode, then use the uncommon trap mechanism, and allow for
   527   // a future recompilation if several traps occur here.
   528   // If the throw is hot, try to use a more complicated inline mechanism
   529   // which keeps execution inside the compiled code.
   530   bool treat_throw_as_hot = false;
   531   ciMethodData* md = method()->method_data();
   533   if (ProfileTraps) {
   534     if (too_many_traps(reason)) {
   535       treat_throw_as_hot = true;
   536     }
   537     // (If there is no MDO at all, assume it is early in
   538     // execution, and that any deopts are part of the
   539     // startup transient, and don't need to be remembered.)
   541     // Also, if there is a local exception handler, treat all throws
   542     // as hot if there has been at least one in this method.
   543     if (C->trap_count(reason) != 0
   544         && method()->method_data()->trap_count(reason) != 0
   545         && has_ex_handler()) {
   546         treat_throw_as_hot = true;
   547     }
   548   }
   550   // If this throw happens frequently, an uncommon trap might cause
   551   // a performance pothole.  If there is a local exception handler,
   552   // and if this particular bytecode appears to be deoptimizing often,
   553   // let us handle the throw inline, with a preconstructed instance.
   554   // Note:   If the deopt count has blown up, the uncommon trap
   555   // runtime is going to flush this nmethod, not matter what.
   556   if (treat_throw_as_hot
   557       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
   558     // If the throw is local, we use a pre-existing instance and
   559     // punt on the backtrace.  This would lead to a missing backtrace
   560     // (a repeat of 4292742) if the backtrace object is ever asked
   561     // for its backtrace.
   562     // Fixing this remaining case of 4292742 requires some flavor of
   563     // escape analysis.  Leave that for the future.
   564     ciInstance* ex_obj = NULL;
   565     switch (reason) {
   566     case Deoptimization::Reason_null_check:
   567       ex_obj = env()->NullPointerException_instance();
   568       break;
   569     case Deoptimization::Reason_div0_check:
   570       ex_obj = env()->ArithmeticException_instance();
   571       break;
   572     case Deoptimization::Reason_range_check:
   573       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
   574       break;
   575     case Deoptimization::Reason_class_check:
   576       if (java_bc() == Bytecodes::_aastore) {
   577         ex_obj = env()->ArrayStoreException_instance();
   578       } else {
   579         ex_obj = env()->ClassCastException_instance();
   580       }
   581       break;
   582     }
   583     if (failing()) { stop(); return; }  // exception allocation might fail
   584     if (ex_obj != NULL) {
   585       // Cheat with a preallocated exception object.
   586       if (C->log() != NULL)
   587         C->log()->elem("hot_throw preallocated='1' reason='%s'",
   588                        Deoptimization::trap_reason_name(reason));
   589       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
   590       Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
   592       // Clear the detail message of the preallocated exception object.
   593       // Weblogic sometimes mutates the detail message of exceptions
   594       // using reflection.
   595       int offset = java_lang_Throwable::get_detailMessage_offset();
   596       const TypePtr* adr_typ = ex_con->add_offset(offset);
   598       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
   599       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
   600       // Conservatively release stores of object references.
   601       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, MemNode::release);
   603       add_exception_state(make_exception_state(ex_node));
   604       return;
   605     }
   606   }
   608   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
   609   // It won't be much cheaper than bailing to the interp., since we'll
   610   // have to pass up all the debug-info, and the runtime will have to
   611   // create the stack trace.
   613   // Usual case:  Bail to interpreter.
   614   // Reserve the right to recompile if we haven't seen anything yet.
   616   assert(!Deoptimization::reason_is_speculate(reason), "unsupported");
   617   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
   618   if (treat_throw_as_hot
   619       && (method()->method_data()->trap_recompiled_at(bci(), NULL)
   620           || C->too_many_traps(reason))) {
   621     // We cannot afford to take more traps here.  Suffer in the interpreter.
   622     if (C->log() != NULL)
   623       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
   624                      Deoptimization::trap_reason_name(reason),
   625                      C->trap_count(reason));
   626     action = Deoptimization::Action_none;
   627   }
   629   // "must_throw" prunes the JVM state to include only the stack, if there
   630   // are no local exception handlers.  This should cut down on register
   631   // allocation time and code size, by drastically reducing the number
   632   // of in-edges on the call to the uncommon trap.
   634   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
   635 }
   638 //----------------------------PreserveJVMState---------------------------------
   639 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
   640   debug_only(kit->verify_map());
   641   _kit    = kit;
   642   _map    = kit->map();   // preserve the map
   643   _sp     = kit->sp();
   644   kit->set_map(clone_map ? kit->clone_map() : NULL);
   645 #ifdef ASSERT
   646   _bci    = kit->bci();
   647   Parse* parser = kit->is_Parse();
   648   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
   649   _block  = block;
   650 #endif
   651 }
   652 PreserveJVMState::~PreserveJVMState() {
   653   GraphKit* kit = _kit;
   654 #ifdef ASSERT
   655   assert(kit->bci() == _bci, "bci must not shift");
   656   Parse* parser = kit->is_Parse();
   657   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
   658   assert(block == _block,    "block must not shift");
   659 #endif
   660   kit->set_map(_map);
   661   kit->set_sp(_sp);
   662 }
   665 //-----------------------------BuildCutout-------------------------------------
   666 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
   667   : PreserveJVMState(kit)
   668 {
   669   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
   670   SafePointNode* outer_map = _map;   // preserved map is caller's
   671   SafePointNode* inner_map = kit->map();
   672   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
   673   outer_map->set_control(kit->gvn().transform( new (kit->C) IfTrueNode(iff) ));
   674   inner_map->set_control(kit->gvn().transform( new (kit->C) IfFalseNode(iff) ));
   675 }
   676 BuildCutout::~BuildCutout() {
   677   GraphKit* kit = _kit;
   678   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
   679 }
   681 //---------------------------PreserveReexecuteState----------------------------
   682 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
   683   assert(!kit->stopped(), "must call stopped() before");
   684   _kit    =    kit;
   685   _sp     =    kit->sp();
   686   _reexecute = kit->jvms()->_reexecute;
   687 }
   688 PreserveReexecuteState::~PreserveReexecuteState() {
   689   if (_kit->stopped()) return;
   690   _kit->jvms()->_reexecute = _reexecute;
   691   _kit->set_sp(_sp);
   692 }
   694 //------------------------------clone_map--------------------------------------
   695 // Implementation of PreserveJVMState
   696 //
   697 // Only clone_map(...) here. If this function is only used in the
   698 // PreserveJVMState class we may want to get rid of this extra
   699 // function eventually and do it all there.
   701 SafePointNode* GraphKit::clone_map() {
   702   if (map() == NULL)  return NULL;
   704   // Clone the memory edge first
   705   Node* mem = MergeMemNode::make(C, map()->memory());
   706   gvn().set_type_bottom(mem);
   708   SafePointNode *clonemap = (SafePointNode*)map()->clone();
   709   JVMState* jvms = this->jvms();
   710   JVMState* clonejvms = jvms->clone_shallow(C);
   711   clonemap->set_memory(mem);
   712   clonemap->set_jvms(clonejvms);
   713   clonejvms->set_map(clonemap);
   714   record_for_igvn(clonemap);
   715   gvn().set_type_bottom(clonemap);
   716   return clonemap;
   717 }
   720 //-----------------------------set_map_clone-----------------------------------
   721 void GraphKit::set_map_clone(SafePointNode* m) {
   722   _map = m;
   723   _map = clone_map();
   724   _map->set_next_exception(NULL);
   725   debug_only(verify_map());
   726 }
   729 //----------------------------kill_dead_locals---------------------------------
   730 // Detect any locals which are known to be dead, and force them to top.
   731 void GraphKit::kill_dead_locals() {
   732   // Consult the liveness information for the locals.  If any
   733   // of them are unused, then they can be replaced by top().  This
   734   // should help register allocation time and cut down on the size
   735   // of the deoptimization information.
   737   // This call is made from many of the bytecode handling
   738   // subroutines called from the Big Switch in do_one_bytecode.
   739   // Every bytecode which might include a slow path is responsible
   740   // for killing its dead locals.  The more consistent we
   741   // are about killing deads, the fewer useless phis will be
   742   // constructed for them at various merge points.
   744   // bci can be -1 (InvocationEntryBci).  We return the entry
   745   // liveness for the method.
   747   if (method() == NULL || method()->code_size() == 0) {
   748     // We are building a graph for a call to a native method.
   749     // All locals are live.
   750     return;
   751   }
   753   ResourceMark rm;
   755   // Consult the liveness information for the locals.  If any
   756   // of them are unused, then they can be replaced by top().  This
   757   // should help register allocation time and cut down on the size
   758   // of the deoptimization information.
   759   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
   761   int len = (int)live_locals.size();
   762   assert(len <= jvms()->loc_size(), "too many live locals");
   763   for (int local = 0; local < len; local++) {
   764     if (!live_locals.at(local)) {
   765       set_local(local, top());
   766     }
   767   }
   768 }
   770 #ifdef ASSERT
   771 //-------------------------dead_locals_are_killed------------------------------
   772 // Return true if all dead locals are set to top in the map.
   773 // Used to assert "clean" debug info at various points.
   774 bool GraphKit::dead_locals_are_killed() {
   775   if (method() == NULL || method()->code_size() == 0) {
   776     // No locals need to be dead, so all is as it should be.
   777     return true;
   778   }
   780   // Make sure somebody called kill_dead_locals upstream.
   781   ResourceMark rm;
   782   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
   783     if (jvms->loc_size() == 0)  continue;  // no locals to consult
   784     SafePointNode* map = jvms->map();
   785     ciMethod* method = jvms->method();
   786     int       bci    = jvms->bci();
   787     if (jvms == this->jvms()) {
   788       bci = this->bci();  // it might not yet be synched
   789     }
   790     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
   791     int len = (int)live_locals.size();
   792     if (!live_locals.is_valid() || len == 0)
   793       // This method is trivial, or is poisoned by a breakpoint.
   794       return true;
   795     assert(len == jvms->loc_size(), "live map consistent with locals map");
   796     for (int local = 0; local < len; local++) {
   797       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
   798         if (PrintMiscellaneous && (Verbose || WizardMode)) {
   799           tty->print_cr("Zombie local %d: ", local);
   800           jvms->dump();
   801         }
   802         return false;
   803       }
   804     }
   805   }
   806   return true;
   807 }
   809 #endif //ASSERT
   811 // Helper function for enforcing certain bytecodes to reexecute if
   812 // deoptimization happens
   813 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
   814   ciMethod* cur_method = jvms->method();
   815   int       cur_bci   = jvms->bci();
   816   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
   817     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
   818     return Interpreter::bytecode_should_reexecute(code) ||
   819            is_anewarray && code == Bytecodes::_multianewarray;
   820     // Reexecute _multianewarray bytecode which was replaced with
   821     // sequence of [a]newarray. See Parse::do_multianewarray().
   822     //
   823     // Note: interpreter should not have it set since this optimization
   824     // is limited by dimensions and guarded by flag so in some cases
   825     // multianewarray() runtime calls will be generated and
   826     // the bytecode should not be reexecutes (stack will not be reset).
   827   } else
   828     return false;
   829 }
   831 // Helper function for adding JVMState and debug information to node
   832 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
   833   // Add the safepoint edges to the call (or other safepoint).
   835   // Make sure dead locals are set to top.  This
   836   // should help register allocation time and cut down on the size
   837   // of the deoptimization information.
   838   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
   840   // Walk the inline list to fill in the correct set of JVMState's
   841   // Also fill in the associated edges for each JVMState.
   843   // If the bytecode needs to be reexecuted we need to put
   844   // the arguments back on the stack.
   845   const bool should_reexecute = jvms()->should_reexecute();
   846   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
   848   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
   849   // undefined if the bci is different.  This is normal for Parse but it
   850   // should not happen for LibraryCallKit because only one bci is processed.
   851   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
   852          "in LibraryCallKit the reexecute bit should not change");
   854   // If we are guaranteed to throw, we can prune everything but the
   855   // input to the current bytecode.
   856   bool can_prune_locals = false;
   857   uint stack_slots_not_pruned = 0;
   858   int inputs = 0, depth = 0;
   859   if (must_throw) {
   860     assert(method() == youngest_jvms->method(), "sanity");
   861     if (compute_stack_effects(inputs, depth)) {
   862       can_prune_locals = true;
   863       stack_slots_not_pruned = inputs;
   864     }
   865   }
   867   if (env()->jvmti_can_access_local_variables()) {
   868     // At any safepoint, this method can get breakpointed, which would
   869     // then require an immediate deoptimization.
   870     can_prune_locals = false;  // do not prune locals
   871     stack_slots_not_pruned = 0;
   872   }
   874   // do not scribble on the input jvms
   875   JVMState* out_jvms = youngest_jvms->clone_deep(C);
   876   call->set_jvms(out_jvms); // Start jvms list for call node
   878   // For a known set of bytecodes, the interpreter should reexecute them if
   879   // deoptimization happens. We set the reexecute state for them here
   880   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
   881       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
   882     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
   883   }
   885   // Presize the call:
   886   DEBUG_ONLY(uint non_debug_edges = call->req());
   887   call->add_req_batch(top(), youngest_jvms->debug_depth());
   888   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
   890   // Set up edges so that the call looks like this:
   891   //  Call [state:] ctl io mem fptr retadr
   892   //       [parms:] parm0 ... parmN
   893   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
   894   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
   895   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
   896   // Note that caller debug info precedes callee debug info.
   898   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
   899   uint debug_ptr = call->req();
   901   // Loop over the map input edges associated with jvms, add them
   902   // to the call node, & reset all offsets to match call node array.
   903   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
   904     uint debug_end   = debug_ptr;
   905     uint debug_start = debug_ptr - in_jvms->debug_size();
   906     debug_ptr = debug_start;  // back up the ptr
   908     uint p = debug_start;  // walks forward in [debug_start, debug_end)
   909     uint j, k, l;
   910     SafePointNode* in_map = in_jvms->map();
   911     out_jvms->set_map(call);
   913     if (can_prune_locals) {
   914       assert(in_jvms->method() == out_jvms->method(), "sanity");
   915       // If the current throw can reach an exception handler in this JVMS,
   916       // then we must keep everything live that can reach that handler.
   917       // As a quick and dirty approximation, we look for any handlers at all.
   918       if (in_jvms->method()->has_exception_handlers()) {
   919         can_prune_locals = false;
   920       }
   921     }
   923     // Add the Locals
   924     k = in_jvms->locoff();
   925     l = in_jvms->loc_size();
   926     out_jvms->set_locoff(p);
   927     if (!can_prune_locals) {
   928       for (j = 0; j < l; j++)
   929         call->set_req(p++, in_map->in(k+j));
   930     } else {
   931       p += l;  // already set to top above by add_req_batch
   932     }
   934     // Add the Expression Stack
   935     k = in_jvms->stkoff();
   936     l = in_jvms->sp();
   937     out_jvms->set_stkoff(p);
   938     if (!can_prune_locals) {
   939       for (j = 0; j < l; j++)
   940         call->set_req(p++, in_map->in(k+j));
   941     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
   942       // Divide stack into {S0,...,S1}, where S0 is set to top.
   943       uint s1 = stack_slots_not_pruned;
   944       stack_slots_not_pruned = 0;  // for next iteration
   945       if (s1 > l)  s1 = l;
   946       uint s0 = l - s1;
   947       p += s0;  // skip the tops preinstalled by add_req_batch
   948       for (j = s0; j < l; j++)
   949         call->set_req(p++, in_map->in(k+j));
   950     } else {
   951       p += l;  // already set to top above by add_req_batch
   952     }
   954     // Add the Monitors
   955     k = in_jvms->monoff();
   956     l = in_jvms->mon_size();
   957     out_jvms->set_monoff(p);
   958     for (j = 0; j < l; j++)
   959       call->set_req(p++, in_map->in(k+j));
   961     // Copy any scalar object fields.
   962     k = in_jvms->scloff();
   963     l = in_jvms->scl_size();
   964     out_jvms->set_scloff(p);
   965     for (j = 0; j < l; j++)
   966       call->set_req(p++, in_map->in(k+j));
   968     // Finish the new jvms.
   969     out_jvms->set_endoff(p);
   971     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
   972     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
   973     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
   974     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
   975     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
   976     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
   978     // Update the two tail pointers in parallel.
   979     out_jvms = out_jvms->caller();
   980     in_jvms  = in_jvms->caller();
   981   }
   983   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
   985   // Test the correctness of JVMState::debug_xxx accessors:
   986   assert(call->jvms()->debug_start() == non_debug_edges, "");
   987   assert(call->jvms()->debug_end()   == call->req(), "");
   988   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
   989 }
   991 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
   992   Bytecodes::Code code = java_bc();
   993   if (code == Bytecodes::_wide) {
   994     code = method()->java_code_at_bci(bci() + 1);
   995   }
   997   BasicType rtype = T_ILLEGAL;
   998   int       rsize = 0;
  1000   if (code != Bytecodes::_illegal) {
  1001     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
  1002     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
  1003     if (rtype < T_CONFLICT)
  1004       rsize = type2size[rtype];
  1007   switch (code) {
  1008   case Bytecodes::_illegal:
  1009     return false;
  1011   case Bytecodes::_ldc:
  1012   case Bytecodes::_ldc_w:
  1013   case Bytecodes::_ldc2_w:
  1014     inputs = 0;
  1015     break;
  1017   case Bytecodes::_dup:         inputs = 1;  break;
  1018   case Bytecodes::_dup_x1:      inputs = 2;  break;
  1019   case Bytecodes::_dup_x2:      inputs = 3;  break;
  1020   case Bytecodes::_dup2:        inputs = 2;  break;
  1021   case Bytecodes::_dup2_x1:     inputs = 3;  break;
  1022   case Bytecodes::_dup2_x2:     inputs = 4;  break;
  1023   case Bytecodes::_swap:        inputs = 2;  break;
  1024   case Bytecodes::_arraylength: inputs = 1;  break;
  1026   case Bytecodes::_getstatic:
  1027   case Bytecodes::_putstatic:
  1028   case Bytecodes::_getfield:
  1029   case Bytecodes::_putfield:
  1031       bool ignored_will_link;
  1032       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
  1033       int      size  = field->type()->size();
  1034       bool is_get = (depth >= 0), is_static = (depth & 1);
  1035       inputs = (is_static ? 0 : 1);
  1036       if (is_get) {
  1037         depth = size - inputs;
  1038       } else {
  1039         inputs += size;        // putxxx pops the value from the stack
  1040         depth = - inputs;
  1043     break;
  1045   case Bytecodes::_invokevirtual:
  1046   case Bytecodes::_invokespecial:
  1047   case Bytecodes::_invokestatic:
  1048   case Bytecodes::_invokedynamic:
  1049   case Bytecodes::_invokeinterface:
  1051       bool ignored_will_link;
  1052       ciSignature* declared_signature = NULL;
  1053       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
  1054       assert(declared_signature != NULL, "cannot be null");
  1055       inputs   = declared_signature->arg_size_for_bc(code);
  1056       int size = declared_signature->return_type()->size();
  1057       depth = size - inputs;
  1059     break;
  1061   case Bytecodes::_multianewarray:
  1063       ciBytecodeStream iter(method());
  1064       iter.reset_to_bci(bci());
  1065       iter.next();
  1066       inputs = iter.get_dimensions();
  1067       assert(rsize == 1, "");
  1068       depth = rsize - inputs;
  1070     break;
  1072   case Bytecodes::_ireturn:
  1073   case Bytecodes::_lreturn:
  1074   case Bytecodes::_freturn:
  1075   case Bytecodes::_dreturn:
  1076   case Bytecodes::_areturn:
  1077     assert(rsize = -depth, "");
  1078     inputs = rsize;
  1079     break;
  1081   case Bytecodes::_jsr:
  1082   case Bytecodes::_jsr_w:
  1083     inputs = 0;
  1084     depth  = 1;                  // S.B. depth=1, not zero
  1085     break;
  1087   default:
  1088     // bytecode produces a typed result
  1089     inputs = rsize - depth;
  1090     assert(inputs >= 0, "");
  1091     break;
  1094 #ifdef ASSERT
  1095   // spot check
  1096   int outputs = depth + inputs;
  1097   assert(outputs >= 0, "sanity");
  1098   switch (code) {
  1099   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
  1100   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
  1101   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
  1102   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
  1103   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
  1105 #endif //ASSERT
  1107   return true;
  1112 //------------------------------basic_plus_adr---------------------------------
  1113 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
  1114   // short-circuit a common case
  1115   if (offset == intcon(0))  return ptr;
  1116   return _gvn.transform( new (C) AddPNode(base, ptr, offset) );
  1119 Node* GraphKit::ConvI2L(Node* offset) {
  1120   // short-circuit a common case
  1121   jint offset_con = find_int_con(offset, Type::OffsetBot);
  1122   if (offset_con != Type::OffsetBot) {
  1123     return longcon((jlong) offset_con);
  1125   return _gvn.transform( new (C) ConvI2LNode(offset));
  1128 Node* GraphKit::ConvI2UL(Node* offset) {
  1129   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
  1130   if (offset_con != (juint) Type::OffsetBot) {
  1131     return longcon((julong) offset_con);
  1133   Node* conv = _gvn.transform( new (C) ConvI2LNode(offset));
  1134   Node* mask = _gvn.transform( ConLNode::make(C, (julong) max_juint) );
  1135   return _gvn.transform( new (C) AndLNode(conv, mask) );
  1138 Node* GraphKit::ConvL2I(Node* offset) {
  1139   // short-circuit a common case
  1140   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
  1141   if (offset_con != (jlong)Type::OffsetBot) {
  1142     return intcon((int) offset_con);
  1144   return _gvn.transform( new (C) ConvL2INode(offset));
  1147 //-------------------------load_object_klass-----------------------------------
  1148 Node* GraphKit::load_object_klass(Node* obj) {
  1149   // Special-case a fresh allocation to avoid building nodes:
  1150   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
  1151   if (akls != NULL)  return akls;
  1152   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
  1153   return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
  1156 //-------------------------load_array_length-----------------------------------
  1157 Node* GraphKit::load_array_length(Node* array) {
  1158   // Special-case a fresh allocation to avoid building nodes:
  1159   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
  1160   Node *alen;
  1161   if (alloc == NULL) {
  1162     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
  1163     alen = _gvn.transform( new (C) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
  1164   } else {
  1165     alen = alloc->Ideal_length();
  1166     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
  1167     if (ccast != alen) {
  1168       alen = _gvn.transform(ccast);
  1171   return alen;
  1174 //------------------------------do_null_check----------------------------------
  1175 // Helper function to do a NULL pointer check.  Returned value is
  1176 // the incoming address with NULL casted away.  You are allowed to use the
  1177 // not-null value only if you are control dependent on the test.
  1178 extern int explicit_null_checks_inserted,
  1179            explicit_null_checks_elided;
  1180 Node* GraphKit::null_check_common(Node* value, BasicType type,
  1181                                   // optional arguments for variations:
  1182                                   bool assert_null,
  1183                                   Node* *null_control) {
  1184   assert(!assert_null || null_control == NULL, "not both at once");
  1185   if (stopped())  return top();
  1186   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
  1187     // For some performance testing, we may wish to suppress null checking.
  1188     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
  1189     return value;
  1191   explicit_null_checks_inserted++;
  1193   // Construct NULL check
  1194   Node *chk = NULL;
  1195   switch(type) {
  1196     case T_LONG   : chk = new (C) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
  1197     case T_INT    : chk = new (C) CmpINode(value, _gvn.intcon(0)); break;
  1198     case T_ARRAY  : // fall through
  1199       type = T_OBJECT;  // simplify further tests
  1200     case T_OBJECT : {
  1201       const Type *t = _gvn.type( value );
  1203       const TypeOopPtr* tp = t->isa_oopptr();
  1204       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
  1205           // Only for do_null_check, not any of its siblings:
  1206           && !assert_null && null_control == NULL) {
  1207         // Usually, any field access or invocation on an unloaded oop type
  1208         // will simply fail to link, since the statically linked class is
  1209         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
  1210         // the static class is loaded but the sharper oop type is not.
  1211         // Rather than checking for this obscure case in lots of places,
  1212         // we simply observe that a null check on an unloaded class
  1213         // will always be followed by a nonsense operation, so we
  1214         // can just issue the uncommon trap here.
  1215         // Our access to the unloaded class will only be correct
  1216         // after it has been loaded and initialized, which requires
  1217         // a trip through the interpreter.
  1218 #ifndef PRODUCT
  1219         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
  1220 #endif
  1221         uncommon_trap(Deoptimization::Reason_unloaded,
  1222                       Deoptimization::Action_reinterpret,
  1223                       tp->klass(), "!loaded");
  1224         return top();
  1227       if (assert_null) {
  1228         // See if the type is contained in NULL_PTR.
  1229         // If so, then the value is already null.
  1230         if (t->higher_equal(TypePtr::NULL_PTR)) {
  1231           explicit_null_checks_elided++;
  1232           return value;           // Elided null assert quickly!
  1234       } else {
  1235         // See if mixing in the NULL pointer changes type.
  1236         // If so, then the NULL pointer was not allowed in the original
  1237         // type.  In other words, "value" was not-null.
  1238         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
  1239           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
  1240           explicit_null_checks_elided++;
  1241           return value;           // Elided null check quickly!
  1244       chk = new (C) CmpPNode( value, null() );
  1245       break;
  1248     default:
  1249       fatal(err_msg_res("unexpected type: %s", type2name(type)));
  1251   assert(chk != NULL, "sanity check");
  1252   chk = _gvn.transform(chk);
  1254   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
  1255   BoolNode *btst = new (C) BoolNode( chk, btest);
  1256   Node   *tst = _gvn.transform( btst );
  1258   //-----------
  1259   // if peephole optimizations occurred, a prior test existed.
  1260   // If a prior test existed, maybe it dominates as we can avoid this test.
  1261   if (tst != btst && type == T_OBJECT) {
  1262     // At this point we want to scan up the CFG to see if we can
  1263     // find an identical test (and so avoid this test altogether).
  1264     Node *cfg = control();
  1265     int depth = 0;
  1266     while( depth < 16 ) {       // Limit search depth for speed
  1267       if( cfg->Opcode() == Op_IfTrue &&
  1268           cfg->in(0)->in(1) == tst ) {
  1269         // Found prior test.  Use "cast_not_null" to construct an identical
  1270         // CastPP (and hence hash to) as already exists for the prior test.
  1271         // Return that casted value.
  1272         if (assert_null) {
  1273           replace_in_map(value, null());
  1274           return null();  // do not issue the redundant test
  1276         Node *oldcontrol = control();
  1277         set_control(cfg);
  1278         Node *res = cast_not_null(value);
  1279         set_control(oldcontrol);
  1280         explicit_null_checks_elided++;
  1281         return res;
  1283       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
  1284       if (cfg == NULL)  break;  // Quit at region nodes
  1285       depth++;
  1289   //-----------
  1290   // Branch to failure if null
  1291   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
  1292   Deoptimization::DeoptReason reason;
  1293   if (assert_null)
  1294     reason = Deoptimization::Reason_null_assert;
  1295   else if (type == T_OBJECT)
  1296     reason = Deoptimization::Reason_null_check;
  1297   else
  1298     reason = Deoptimization::Reason_div0_check;
  1300   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
  1301   // ciMethodData::has_trap_at will return a conservative -1 if any
  1302   // must-be-null assertion has failed.  This could cause performance
  1303   // problems for a method after its first do_null_assert failure.
  1304   // Consider using 'Reason_class_check' instead?
  1306   // To cause an implicit null check, we set the not-null probability
  1307   // to the maximum (PROB_MAX).  For an explicit check the probability
  1308   // is set to a smaller value.
  1309   if (null_control != NULL || too_many_traps(reason)) {
  1310     // probability is less likely
  1311     ok_prob =  PROB_LIKELY_MAG(3);
  1312   } else if (!assert_null &&
  1313              (ImplicitNullCheckThreshold > 0) &&
  1314              method() != NULL &&
  1315              (method()->method_data()->trap_count(reason)
  1316               >= (uint)ImplicitNullCheckThreshold)) {
  1317     ok_prob =  PROB_LIKELY_MAG(3);
  1320   if (null_control != NULL) {
  1321     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
  1322     Node* null_true = _gvn.transform( new (C) IfFalseNode(iff));
  1323     set_control(      _gvn.transform( new (C) IfTrueNode(iff)));
  1324     if (null_true == top())
  1325       explicit_null_checks_elided++;
  1326     (*null_control) = null_true;
  1327   } else {
  1328     BuildCutout unless(this, tst, ok_prob);
  1329     // Check for optimizer eliding test at parse time
  1330     if (stopped()) {
  1331       // Failure not possible; do not bother making uncommon trap.
  1332       explicit_null_checks_elided++;
  1333     } else if (assert_null) {
  1334       uncommon_trap(reason,
  1335                     Deoptimization::Action_make_not_entrant,
  1336                     NULL, "assert_null");
  1337     } else {
  1338       replace_in_map(value, zerocon(type));
  1339       builtin_throw(reason);
  1343   // Must throw exception, fall-thru not possible?
  1344   if (stopped()) {
  1345     return top();               // No result
  1348   if (assert_null) {
  1349     // Cast obj to null on this path.
  1350     replace_in_map(value, zerocon(type));
  1351     return zerocon(type);
  1354   // Cast obj to not-null on this path, if there is no null_control.
  1355   // (If there is a null_control, a non-null value may come back to haunt us.)
  1356   if (type == T_OBJECT) {
  1357     Node* cast = cast_not_null(value, false);
  1358     if (null_control == NULL || (*null_control) == top())
  1359       replace_in_map(value, cast);
  1360     value = cast;
  1363   return value;
  1367 //------------------------------cast_not_null----------------------------------
  1368 // Cast obj to not-null on this path
  1369 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
  1370   const Type *t = _gvn.type(obj);
  1371   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
  1372   // Object is already not-null?
  1373   if( t == t_not_null ) return obj;
  1375   Node *cast = new (C) CastPPNode(obj,t_not_null);
  1376   cast->init_req(0, control());
  1377   cast = _gvn.transform( cast );
  1379   // Scan for instances of 'obj' in the current JVM mapping.
  1380   // These instances are known to be not-null after the test.
  1381   if (do_replace_in_map)
  1382     replace_in_map(obj, cast);
  1384   return cast;                  // Return casted value
  1388 //--------------------------replace_in_map-------------------------------------
  1389 void GraphKit::replace_in_map(Node* old, Node* neww) {
  1390   if (old == neww) {
  1391     return;
  1394   map()->replace_edge(old, neww);
  1396   // Note: This operation potentially replaces any edge
  1397   // on the map.  This includes locals, stack, and monitors
  1398   // of the current (innermost) JVM state.
  1400   // don't let inconsistent types from profiling escape this
  1401   // method
  1403   const Type* told = _gvn.type(old);
  1404   const Type* tnew = _gvn.type(neww);
  1406   if (!tnew->higher_equal(told)) {
  1407     return;
  1410   map()->record_replaced_node(old, neww);
  1414 //=============================================================================
  1415 //--------------------------------memory---------------------------------------
  1416 Node* GraphKit::memory(uint alias_idx) {
  1417   MergeMemNode* mem = merged_memory();
  1418   Node* p = mem->memory_at(alias_idx);
  1419   _gvn.set_type(p, Type::MEMORY);  // must be mapped
  1420   return p;
  1423 //-----------------------------reset_memory------------------------------------
  1424 Node* GraphKit::reset_memory() {
  1425   Node* mem = map()->memory();
  1426   // do not use this node for any more parsing!
  1427   debug_only( map()->set_memory((Node*)NULL) );
  1428   return _gvn.transform( mem );
  1431 //------------------------------set_all_memory---------------------------------
  1432 void GraphKit::set_all_memory(Node* newmem) {
  1433   Node* mergemem = MergeMemNode::make(C, newmem);
  1434   gvn().set_type_bottom(mergemem);
  1435   map()->set_memory(mergemem);
  1438 //------------------------------set_all_memory_call----------------------------
  1439 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
  1440   Node* newmem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory, separate_io_proj) );
  1441   set_all_memory(newmem);
  1444 //=============================================================================
  1445 //
  1446 // parser factory methods for MemNodes
  1447 //
  1448 // These are layered on top of the factory methods in LoadNode and StoreNode,
  1449 // and integrate with the parser's memory state and _gvn engine.
  1450 //
  1452 // factory methods in "int adr_idx"
  1453 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
  1454                           int adr_idx,
  1455                           MemNode::MemOrd mo,
  1456                           LoadNode::ControlDependency control_dependency,
  1457                           bool require_atomic_access,
  1458                           bool unaligned,
  1459                           bool mismatched) {
  1460   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
  1461   const TypePtr* adr_type = NULL; // debug-mode-only argument
  1462   debug_only(adr_type = C->get_adr_type(adr_idx));
  1463   Node* mem = memory(adr_idx);
  1464   Node* ld;
  1465   if (require_atomic_access && bt == T_LONG) {
  1466     ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t, mo, control_dependency);
  1467   } else if (require_atomic_access && bt == T_DOUBLE) {
  1468     ld = LoadDNode::make_atomic(C, ctl, mem, adr, adr_type, t, mo, control_dependency);
  1469   } else {
  1470     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency);
  1472   if (unaligned) {
  1473     ld->as_Load()->set_unaligned_access();
  1475   if (mismatched) {
  1476     ld->as_Load()->set_mismatched_access();
  1478   ld = _gvn.transform(ld);
  1479   if ((bt == T_OBJECT) && C->do_escape_analysis() || C->eliminate_boxing()) {
  1480     // Improve graph before escape analysis and boxing elimination.
  1481     record_for_igvn(ld);
  1483   return ld;
  1486 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
  1487                                 int adr_idx,
  1488                                 MemNode::MemOrd mo,
  1489                                 bool require_atomic_access,
  1490                                 bool unaligned,
  1491                                 bool mismatched) {
  1492   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
  1493   const TypePtr* adr_type = NULL;
  1494   debug_only(adr_type = C->get_adr_type(adr_idx));
  1495   Node *mem = memory(adr_idx);
  1496   Node* st;
  1497   if (require_atomic_access && bt == T_LONG) {
  1498     st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val, mo);
  1499   } else if (require_atomic_access && bt == T_DOUBLE) {
  1500     st = StoreDNode::make_atomic(C, ctl, mem, adr, adr_type, val, mo);
  1501   } else {
  1502     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
  1504   if (unaligned) {
  1505     st->as_Store()->set_unaligned_access();
  1507   if (mismatched) {
  1508     st->as_Store()->set_mismatched_access();
  1510   st = _gvn.transform(st);
  1511   set_memory(st, adr_idx);
  1512   // Back-to-back stores can only remove intermediate store with DU info
  1513   // so push on worklist for optimizer.
  1514   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
  1515     record_for_igvn(st);
  1517   return st;
  1521 void GraphKit::pre_barrier(bool do_load,
  1522                            Node* ctl,
  1523                            Node* obj,
  1524                            Node* adr,
  1525                            uint  adr_idx,
  1526                            Node* val,
  1527                            const TypeOopPtr* val_type,
  1528                            Node* pre_val,
  1529                            BasicType bt) {
  1531   BarrierSet* bs = Universe::heap()->barrier_set();
  1532   set_control(ctl);
  1533   switch (bs->kind()) {
  1534     case BarrierSet::G1SATBCT:
  1535     case BarrierSet::G1SATBCTLogging:
  1536       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
  1537       break;
  1539     case BarrierSet::CardTableModRef:
  1540     case BarrierSet::CardTableExtension:
  1541     case BarrierSet::ModRef:
  1542       break;
  1544     case BarrierSet::Other:
  1545     default      :
  1546       ShouldNotReachHere();
  1551 bool GraphKit::can_move_pre_barrier() const {
  1552   BarrierSet* bs = Universe::heap()->barrier_set();
  1553   switch (bs->kind()) {
  1554     case BarrierSet::G1SATBCT:
  1555     case BarrierSet::G1SATBCTLogging:
  1556       return true; // Can move it if no safepoint
  1558     case BarrierSet::CardTableModRef:
  1559     case BarrierSet::CardTableExtension:
  1560     case BarrierSet::ModRef:
  1561       return true; // There is no pre-barrier
  1563     case BarrierSet::Other:
  1564     default      :
  1565       ShouldNotReachHere();
  1567   return false;
  1570 void GraphKit::post_barrier(Node* ctl,
  1571                             Node* store,
  1572                             Node* obj,
  1573                             Node* adr,
  1574                             uint  adr_idx,
  1575                             Node* val,
  1576                             BasicType bt,
  1577                             bool use_precise) {
  1578   BarrierSet* bs = Universe::heap()->barrier_set();
  1579   set_control(ctl);
  1580   switch (bs->kind()) {
  1581     case BarrierSet::G1SATBCT:
  1582     case BarrierSet::G1SATBCTLogging:
  1583       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
  1584       break;
  1586     case BarrierSet::CardTableModRef:
  1587     case BarrierSet::CardTableExtension:
  1588       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
  1589       break;
  1591     case BarrierSet::ModRef:
  1592       break;
  1594     case BarrierSet::Other:
  1595     default      :
  1596       ShouldNotReachHere();
  1601 Node* GraphKit::store_oop(Node* ctl,
  1602                           Node* obj,
  1603                           Node* adr,
  1604                           const TypePtr* adr_type,
  1605                           Node* val,
  1606                           const TypeOopPtr* val_type,
  1607                           BasicType bt,
  1608                           bool use_precise,
  1609                           MemNode::MemOrd mo,
  1610                           bool mismatched) {
  1611   // Transformation of a value which could be NULL pointer (CastPP #NULL)
  1612   // could be delayed during Parse (for example, in adjust_map_after_if()).
  1613   // Execute transformation here to avoid barrier generation in such case.
  1614   if (_gvn.type(val) == TypePtr::NULL_PTR)
  1615     val = _gvn.makecon(TypePtr::NULL_PTR);
  1617   set_control(ctl);
  1618   if (stopped()) return top(); // Dead path ?
  1620   assert(bt == T_OBJECT, "sanity");
  1621   assert(val != NULL, "not dead path");
  1622   uint adr_idx = C->get_alias_index(adr_type);
  1623   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
  1625   pre_barrier(true /* do_load */,
  1626               control(), obj, adr, adr_idx, val, val_type,
  1627               NULL /* pre_val */,
  1628               bt);
  1630   Node* store = store_to_memory(control(), adr, val, bt, adr_idx, mo, mismatched);
  1631   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
  1632   return store;
  1635 // Could be an array or object we don't know at compile time (unsafe ref.)
  1636 Node* GraphKit::store_oop_to_unknown(Node* ctl,
  1637                              Node* obj,   // containing obj
  1638                              Node* adr,  // actual adress to store val at
  1639                              const TypePtr* adr_type,
  1640                              Node* val,
  1641                              BasicType bt,
  1642                              MemNode::MemOrd mo,
  1643                              bool mismatched) {
  1644   Compile::AliasType* at = C->alias_type(adr_type);
  1645   const TypeOopPtr* val_type = NULL;
  1646   if (adr_type->isa_instptr()) {
  1647     if (at->field() != NULL) {
  1648       // known field.  This code is a copy of the do_put_xxx logic.
  1649       ciField* field = at->field();
  1650       if (!field->type()->is_loaded()) {
  1651         val_type = TypeInstPtr::BOTTOM;
  1652       } else {
  1653         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
  1656   } else if (adr_type->isa_aryptr()) {
  1657     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
  1659   if (val_type == NULL) {
  1660     val_type = TypeInstPtr::BOTTOM;
  1662   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, mo, mismatched);
  1666 //-------------------------array_element_address-------------------------
  1667 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
  1668                                       const TypeInt* sizetype, Node* ctrl) {
  1669   uint shift  = exact_log2(type2aelembytes(elembt));
  1670   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
  1672   // short-circuit a common case (saves lots of confusing waste motion)
  1673   jint idx_con = find_int_con(idx, -1);
  1674   if (idx_con >= 0) {
  1675     intptr_t offset = header + ((intptr_t)idx_con << shift);
  1676     return basic_plus_adr(ary, offset);
  1679   // must be correct type for alignment purposes
  1680   Node* base  = basic_plus_adr(ary, header);
  1681 #ifdef _LP64
  1682   // The scaled index operand to AddP must be a clean 64-bit value.
  1683   // Java allows a 32-bit int to be incremented to a negative
  1684   // value, which appears in a 64-bit register as a large
  1685   // positive number.  Using that large positive number as an
  1686   // operand in pointer arithmetic has bad consequences.
  1687   // On the other hand, 32-bit overflow is rare, and the possibility
  1688   // can often be excluded, if we annotate the ConvI2L node with
  1689   // a type assertion that its value is known to be a small positive
  1690   // number.  (The prior range check has ensured this.)
  1691   // This assertion is used by ConvI2LNode::Ideal.
  1692   int index_max = max_jint - 1;  // array size is max_jint, index is one less
  1693   if (sizetype != NULL) index_max = sizetype->_hi - 1;
  1694   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
  1695   idx = C->constrained_convI2L(&_gvn, idx, iidxtype, ctrl);
  1696 #endif
  1697   Node* scale = _gvn.transform( new (C) LShiftXNode(idx, intcon(shift)) );
  1698   return basic_plus_adr(ary, base, scale);
  1701 //-------------------------load_array_element-------------------------
  1702 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
  1703   const Type* elemtype = arytype->elem();
  1704   BasicType elembt = elemtype->array_element_basic_type();
  1705   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
  1706   if (elembt == T_NARROWOOP) {
  1707     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
  1709   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
  1710   return ld;
  1713 //-------------------------set_arguments_for_java_call-------------------------
  1714 // Arguments (pre-popped from the stack) are taken from the JVMS.
  1715 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
  1716   // Add the call arguments:
  1717   uint nargs = call->method()->arg_size();
  1718   for (uint i = 0; i < nargs; i++) {
  1719     Node* arg = argument(i);
  1720     call->init_req(i + TypeFunc::Parms, arg);
  1724 //---------------------------set_edges_for_java_call---------------------------
  1725 // Connect a newly created call into the current JVMS.
  1726 // A return value node (if any) is returned from set_edges_for_java_call.
  1727 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
  1729   // Add the predefined inputs:
  1730   call->init_req( TypeFunc::Control, control() );
  1731   call->init_req( TypeFunc::I_O    , i_o() );
  1732   call->init_req( TypeFunc::Memory , reset_memory() );
  1733   call->init_req( TypeFunc::FramePtr, frameptr() );
  1734   call->init_req( TypeFunc::ReturnAdr, top() );
  1736   add_safepoint_edges(call, must_throw);
  1738   Node* xcall = _gvn.transform(call);
  1740   if (xcall == top()) {
  1741     set_control(top());
  1742     return;
  1744   assert(xcall == call, "call identity is stable");
  1746   // Re-use the current map to produce the result.
  1748   set_control(_gvn.transform(new (C) ProjNode(call, TypeFunc::Control)));
  1749   set_i_o(    _gvn.transform(new (C) ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
  1750   set_all_memory_call(xcall, separate_io_proj);
  1752   //return xcall;   // no need, caller already has it
  1755 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
  1756   if (stopped())  return top();  // maybe the call folded up?
  1758   // Capture the return value, if any.
  1759   Node* ret;
  1760   if (call->method() == NULL ||
  1761       call->method()->return_type()->basic_type() == T_VOID)
  1762         ret = top();
  1763   else  ret = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1765   // Note:  Since any out-of-line call can produce an exception,
  1766   // we always insert an I_O projection from the call into the result.
  1768   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
  1770   if (separate_io_proj) {
  1771     // The caller requested separate projections be used by the fall
  1772     // through and exceptional paths, so replace the projections for
  1773     // the fall through path.
  1774     set_i_o(_gvn.transform( new (C) ProjNode(call, TypeFunc::I_O) ));
  1775     set_all_memory(_gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) ));
  1777   return ret;
  1780 //--------------------set_predefined_input_for_runtime_call--------------------
  1781 // Reading and setting the memory state is way conservative here.
  1782 // The real problem is that I am not doing real Type analysis on memory,
  1783 // so I cannot distinguish card mark stores from other stores.  Across a GC
  1784 // point the Store Barrier and the card mark memory has to agree.  I cannot
  1785 // have a card mark store and its barrier split across the GC point from
  1786 // either above or below.  Here I get that to happen by reading ALL of memory.
  1787 // A better answer would be to separate out card marks from other memory.
  1788 // For now, return the input memory state, so that it can be reused
  1789 // after the call, if this call has restricted memory effects.
  1790 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
  1791   // Set fixed predefined input arguments
  1792   Node* memory = reset_memory();
  1793   call->init_req( TypeFunc::Control,   control()  );
  1794   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
  1795   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
  1796   call->init_req( TypeFunc::FramePtr,  frameptr() );
  1797   call->init_req( TypeFunc::ReturnAdr, top()      );
  1798   return memory;
  1801 //-------------------set_predefined_output_for_runtime_call--------------------
  1802 // Set control and memory (not i_o) from the call.
  1803 // If keep_mem is not NULL, use it for the output state,
  1804 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
  1805 // If hook_mem is NULL, this call produces no memory effects at all.
  1806 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
  1807 // then only that memory slice is taken from the call.
  1808 // In the last case, we must put an appropriate memory barrier before
  1809 // the call, so as to create the correct anti-dependencies on loads
  1810 // preceding the call.
  1811 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
  1812                                                       Node* keep_mem,
  1813                                                       const TypePtr* hook_mem) {
  1814   // no i/o
  1815   set_control(_gvn.transform( new (C) ProjNode(call,TypeFunc::Control) ));
  1816   if (keep_mem) {
  1817     // First clone the existing memory state
  1818     set_all_memory(keep_mem);
  1819     if (hook_mem != NULL) {
  1820       // Make memory for the call
  1821       Node* mem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) );
  1822       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
  1823       // We also use hook_mem to extract specific effects from arraycopy stubs.
  1824       set_memory(mem, hook_mem);
  1826     // ...else the call has NO memory effects.
  1828     // Make sure the call advertises its memory effects precisely.
  1829     // This lets us build accurate anti-dependences in gcm.cpp.
  1830     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
  1831            "call node must be constructed correctly");
  1832   } else {
  1833     assert(hook_mem == NULL, "");
  1834     // This is not a "slow path" call; all memory comes from the call.
  1835     set_all_memory_call(call);
  1840 // Replace the call with the current state of the kit.
  1841 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
  1842   JVMState* ejvms = NULL;
  1843   if (has_exceptions()) {
  1844     ejvms = transfer_exceptions_into_jvms();
  1847   ReplacedNodes replaced_nodes = map()->replaced_nodes();
  1848   ReplacedNodes replaced_nodes_exception;
  1849   Node* ex_ctl = top();
  1851   SafePointNode* final_state = stop();
  1853   // Find all the needed outputs of this call
  1854   CallProjections callprojs;
  1855   call->extract_projections(&callprojs, true);
  1857   Node* init_mem = call->in(TypeFunc::Memory);
  1858   Node* final_mem = final_state->in(TypeFunc::Memory);
  1859   Node* final_ctl = final_state->in(TypeFunc::Control);
  1860   Node* final_io = final_state->in(TypeFunc::I_O);
  1862   // Replace all the old call edges with the edges from the inlining result
  1863   if (callprojs.fallthrough_catchproj != NULL) {
  1864     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
  1866   if (callprojs.fallthrough_memproj != NULL) {
  1867     if (final_mem->is_MergeMem()) {
  1868       // Parser's exits MergeMem was not transformed but may be optimized
  1869       final_mem = _gvn.transform(final_mem);
  1871     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
  1873   if (callprojs.fallthrough_ioproj != NULL) {
  1874     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
  1877   // Replace the result with the new result if it exists and is used
  1878   if (callprojs.resproj != NULL && result != NULL) {
  1879     C->gvn_replace_by(callprojs.resproj, result);
  1882   if (ejvms == NULL) {
  1883     // No exception edges to simply kill off those paths
  1884     if (callprojs.catchall_catchproj != NULL) {
  1885       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
  1887     if (callprojs.catchall_memproj != NULL) {
  1888       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
  1890     if (callprojs.catchall_ioproj != NULL) {
  1891       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
  1893     // Replace the old exception object with top
  1894     if (callprojs.exobj != NULL) {
  1895       C->gvn_replace_by(callprojs.exobj, C->top());
  1897   } else {
  1898     GraphKit ekit(ejvms);
  1900     // Load my combined exception state into the kit, with all phis transformed:
  1901     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
  1902     replaced_nodes_exception = ex_map->replaced_nodes();
  1904     Node* ex_oop = ekit.use_exception_state(ex_map);
  1906     if (callprojs.catchall_catchproj != NULL) {
  1907       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
  1908       ex_ctl = ekit.control();
  1910     if (callprojs.catchall_memproj != NULL) {
  1911       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
  1913     if (callprojs.catchall_ioproj != NULL) {
  1914       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
  1917     // Replace the old exception object with the newly created one
  1918     if (callprojs.exobj != NULL) {
  1919       C->gvn_replace_by(callprojs.exobj, ex_oop);
  1923   // Disconnect the call from the graph
  1924   call->disconnect_inputs(NULL, C);
  1925   C->gvn_replace_by(call, C->top());
  1927   // Clean up any MergeMems that feed other MergeMems since the
  1928   // optimizer doesn't like that.
  1929   if (final_mem->is_MergeMem()) {
  1930     Node_List wl;
  1931     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
  1932       Node* m = i.get();
  1933       if (m->is_MergeMem() && !wl.contains(m)) {
  1934         wl.push(m);
  1937     while (wl.size()  > 0) {
  1938       _gvn.transform(wl.pop());
  1942   if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
  1943     replaced_nodes.apply(C, final_ctl);
  1945   if (!ex_ctl->is_top() && do_replaced_nodes) {
  1946     replaced_nodes_exception.apply(C, ex_ctl);
  1951 //------------------------------increment_counter------------------------------
  1952 // for statistics: increment a VM counter by 1
  1954 void GraphKit::increment_counter(address counter_addr) {
  1955   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
  1956   increment_counter(adr1);
  1959 void GraphKit::increment_counter(Node* counter_addr) {
  1960   int adr_type = Compile::AliasIdxRaw;
  1961   Node* ctrl = control();
  1962   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
  1963   Node* incr = _gvn.transform(new (C) AddINode(cnt, _gvn.intcon(1)));
  1964   store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
  1968 //------------------------------uncommon_trap----------------------------------
  1969 // Bail out to the interpreter in mid-method.  Implemented by calling the
  1970 // uncommon_trap blob.  This helper function inserts a runtime call with the
  1971 // right debug info.
  1972 void GraphKit::uncommon_trap(int trap_request,
  1973                              ciKlass* klass, const char* comment,
  1974                              bool must_throw,
  1975                              bool keep_exact_action) {
  1976   if (failing())  stop();
  1977   if (stopped())  return; // trap reachable?
  1979   // Note:  If ProfileTraps is true, and if a deopt. actually
  1980   // occurs here, the runtime will make sure an MDO exists.  There is
  1981   // no need to call method()->ensure_method_data() at this point.
  1983   // Set the stack pointer to the right value for reexecution:
  1984   set_sp(reexecute_sp());
  1986 #ifdef ASSERT
  1987   if (!must_throw) {
  1988     // Make sure the stack has at least enough depth to execute
  1989     // the current bytecode.
  1990     int inputs, ignored_depth;
  1991     if (compute_stack_effects(inputs, ignored_depth)) {
  1992       assert(sp() >= inputs, err_msg_res("must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
  1993              Bytecodes::name(java_bc()), sp(), inputs));
  1996 #endif
  1998   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
  1999   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
  2001   switch (action) {
  2002   case Deoptimization::Action_maybe_recompile:
  2003   case Deoptimization::Action_reinterpret:
  2004     // Temporary fix for 6529811 to allow virtual calls to be sure they
  2005     // get the chance to go from mono->bi->mega
  2006     if (!keep_exact_action &&
  2007         Deoptimization::trap_request_index(trap_request) < 0 &&
  2008         too_many_recompiles(reason)) {
  2009       // This BCI is causing too many recompilations.
  2010       if (C->log() != NULL) {
  2011         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
  2012                 Deoptimization::trap_reason_name(reason),
  2013                 Deoptimization::trap_action_name(action));
  2015       action = Deoptimization::Action_none;
  2016       trap_request = Deoptimization::make_trap_request(reason, action);
  2017     } else {
  2018       C->set_trap_can_recompile(true);
  2020     break;
  2021   case Deoptimization::Action_make_not_entrant:
  2022     C->set_trap_can_recompile(true);
  2023     break;
  2024 #ifdef ASSERT
  2025   case Deoptimization::Action_none:
  2026   case Deoptimization::Action_make_not_compilable:
  2027     break;
  2028   default:
  2029     fatal(err_msg_res("unknown action %d: %s", action, Deoptimization::trap_action_name(action)));
  2030     break;
  2031 #endif
  2034   if (TraceOptoParse) {
  2035     char buf[100];
  2036     tty->print_cr("Uncommon trap %s at bci:%d",
  2037                   Deoptimization::format_trap_request(buf, sizeof(buf),
  2038                                                       trap_request), bci());
  2041   CompileLog* log = C->log();
  2042   if (log != NULL) {
  2043     int kid = (klass == NULL)? -1: log->identify(klass);
  2044     log->begin_elem("uncommon_trap bci='%d'", bci());
  2045     char buf[100];
  2046     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
  2047                                                           trap_request));
  2048     if (kid >= 0)         log->print(" klass='%d'", kid);
  2049     if (comment != NULL)  log->print(" comment='%s'", comment);
  2050     log->end_elem();
  2053   // Make sure any guarding test views this path as very unlikely
  2054   Node *i0 = control()->in(0);
  2055   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
  2056     IfNode *iff = i0->as_If();
  2057     float f = iff->_prob;   // Get prob
  2058     if (control()->Opcode() == Op_IfTrue) {
  2059       if (f > PROB_UNLIKELY_MAG(4))
  2060         iff->_prob = PROB_MIN;
  2061     } else {
  2062       if (f < PROB_LIKELY_MAG(4))
  2063         iff->_prob = PROB_MAX;
  2067   // Clear out dead values from the debug info.
  2068   kill_dead_locals();
  2070   // Now insert the uncommon trap subroutine call
  2071   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
  2072   const TypePtr* no_memory_effects = NULL;
  2073   // Pass the index of the class to be loaded
  2074   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
  2075                                  (must_throw ? RC_MUST_THROW : 0),
  2076                                  OptoRuntime::uncommon_trap_Type(),
  2077                                  call_addr, "uncommon_trap", no_memory_effects,
  2078                                  intcon(trap_request));
  2079   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
  2080          "must extract request correctly from the graph");
  2081   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
  2083   call->set_req(TypeFunc::ReturnAdr, returnadr());
  2084   // The debug info is the only real input to this call.
  2086   // Halt-and-catch fire here.  The above call should never return!
  2087   HaltNode* halt = new(C) HaltNode(control(), frameptr());
  2088   _gvn.set_type_bottom(halt);
  2089   root()->add_req(halt);
  2091   stop_and_kill_map();
  2095 //--------------------------just_allocated_object------------------------------
  2096 // Report the object that was just allocated.
  2097 // It must be the case that there are no intervening safepoints.
  2098 // We use this to determine if an object is so "fresh" that
  2099 // it does not require card marks.
  2100 Node* GraphKit::just_allocated_object(Node* current_control) {
  2101   if (C->recent_alloc_ctl() == current_control)
  2102     return C->recent_alloc_obj();
  2103   return NULL;
  2107 void GraphKit::round_double_arguments(ciMethod* dest_method) {
  2108   // (Note:  TypeFunc::make has a cache that makes this fast.)
  2109   const TypeFunc* tf    = TypeFunc::make(dest_method);
  2110   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
  2111   for (int j = 0; j < nargs; j++) {
  2112     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
  2113     if( targ->basic_type() == T_DOUBLE ) {
  2114       // If any parameters are doubles, they must be rounded before
  2115       // the call, dstore_rounding does gvn.transform
  2116       Node *arg = argument(j);
  2117       arg = dstore_rounding(arg);
  2118       set_argument(j, arg);
  2123 /**
  2124  * Record profiling data exact_kls for Node n with the type system so
  2125  * that it can propagate it (speculation)
  2127  * @param n          node that the type applies to
  2128  * @param exact_kls  type from profiling
  2130  * @return           node with improved type
  2131  */
  2132 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls) {
  2133   const Type* current_type = _gvn.type(n);
  2134   assert(UseTypeSpeculation, "type speculation must be on");
  2136   const TypeOopPtr* speculative = current_type->speculative();
  2138   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
  2139     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
  2140     const TypeOopPtr* xtype = tklass->as_instance_type();
  2141     assert(xtype->klass_is_exact(), "Should be exact");
  2142     // record the new speculative type's depth
  2143     speculative = xtype->with_inline_depth(jvms()->depth());
  2146   if (speculative != current_type->speculative()) {
  2147     // Build a type with a speculative type (what we think we know
  2148     // about the type but will need a guard when we use it)
  2149     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
  2150     // We're changing the type, we need a new CheckCast node to carry
  2151     // the new type. The new type depends on the control: what
  2152     // profiling tells us is only valid from here as far as we can
  2153     // tell.
  2154     Node* cast = new(C) CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
  2155     cast = _gvn.transform(cast);
  2156     replace_in_map(n, cast);
  2157     n = cast;
  2160   return n;
  2163 /**
  2164  * Record profiling data from receiver profiling at an invoke with the
  2165  * type system so that it can propagate it (speculation)
  2167  * @param n  receiver node
  2169  * @return   node with improved type
  2170  */
  2171 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
  2172   if (!UseTypeSpeculation) {
  2173     return n;
  2175   ciKlass* exact_kls = profile_has_unique_klass();
  2176   return record_profile_for_speculation(n, exact_kls);
  2179 /**
  2180  * Record profiling data from argument profiling at an invoke with the
  2181  * type system so that it can propagate it (speculation)
  2183  * @param dest_method  target method for the call
  2184  * @param bc           what invoke bytecode is this?
  2185  */
  2186 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
  2187   if (!UseTypeSpeculation) {
  2188     return;
  2190   const TypeFunc* tf    = TypeFunc::make(dest_method);
  2191   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
  2192   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
  2193   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
  2194     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
  2195     if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
  2196       ciKlass* better_type = method()->argument_profiled_type(bci(), i);
  2197       if (better_type != NULL) {
  2198         record_profile_for_speculation(argument(j), better_type);
  2200       i++;
  2205 /**
  2206  * Record profiling data from parameter profiling at an invoke with
  2207  * the type system so that it can propagate it (speculation)
  2208  */
  2209 void GraphKit::record_profiled_parameters_for_speculation() {
  2210   if (!UseTypeSpeculation) {
  2211     return;
  2213   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
  2214     if (_gvn.type(local(i))->isa_oopptr()) {
  2215       ciKlass* better_type = method()->parameter_profiled_type(j);
  2216       if (better_type != NULL) {
  2217         record_profile_for_speculation(local(i), better_type);
  2219       j++;
  2224 void GraphKit::round_double_result(ciMethod* dest_method) {
  2225   // A non-strict method may return a double value which has an extended
  2226   // exponent, but this must not be visible in a caller which is 'strict'
  2227   // If a strict caller invokes a non-strict callee, round a double result
  2229   BasicType result_type = dest_method->return_type()->basic_type();
  2230   assert( method() != NULL, "must have caller context");
  2231   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
  2232     // Destination method's return value is on top of stack
  2233     // dstore_rounding() does gvn.transform
  2234     Node *result = pop_pair();
  2235     result = dstore_rounding(result);
  2236     push_pair(result);
  2240 // rounding for strict float precision conformance
  2241 Node* GraphKit::precision_rounding(Node* n) {
  2242   return UseStrictFP && _method->flags().is_strict()
  2243     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
  2244     ? _gvn.transform( new (C) RoundFloatNode(0, n) )
  2245     : n;
  2248 // rounding for strict double precision conformance
  2249 Node* GraphKit::dprecision_rounding(Node *n) {
  2250   return UseStrictFP && _method->flags().is_strict()
  2251     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
  2252     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
  2253     : n;
  2256 // rounding for non-strict double stores
  2257 Node* GraphKit::dstore_rounding(Node* n) {
  2258   return Matcher::strict_fp_requires_explicit_rounding
  2259     && UseSSE <= 1
  2260     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
  2261     : n;
  2264 //=============================================================================
  2265 // Generate a fast path/slow path idiom.  Graph looks like:
  2266 // [foo] indicates that 'foo' is a parameter
  2267 //
  2268 //              [in]     NULL
  2269 //                 \    /
  2270 //                  CmpP
  2271 //                  Bool ne
  2272 //                   If
  2273 //                  /  \
  2274 //              True    False-<2>
  2275 //              / |
  2276 //             /  cast_not_null
  2277 //           Load  |    |   ^
  2278 //        [fast_test]   |   |
  2279 // gvn to   opt_test    |   |
  2280 //          /    \      |  <1>
  2281 //      True     False  |
  2282 //        |         \\  |
  2283 //   [slow_call]     \[fast_result]
  2284 //    Ctl   Val       \      \
  2285 //     |               \      \
  2286 //    Catch       <1>   \      \
  2287 //   /    \        ^     \      \
  2288 //  Ex    No_Ex    |      \      \
  2289 //  |       \   \  |       \ <2>  \
  2290 //  ...      \  [slow_res] |  |    \   [null_result]
  2291 //            \         \--+--+---  |  |
  2292 //             \           | /    \ | /
  2293 //              --------Region     Phi
  2294 //
  2295 //=============================================================================
  2296 // Code is structured as a series of driver functions all called 'do_XXX' that
  2297 // call a set of helper functions.  Helper functions first, then drivers.
  2299 //------------------------------null_check_oop---------------------------------
  2300 // Null check oop.  Set null-path control into Region in slot 3.
  2301 // Make a cast-not-nullness use the other not-null control.  Return cast.
  2302 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
  2303                                bool never_see_null, bool safe_for_replace) {
  2304   // Initial NULL check taken path
  2305   (*null_control) = top();
  2306   Node* cast = null_check_common(value, T_OBJECT, false, null_control);
  2308   // Generate uncommon_trap:
  2309   if (never_see_null && (*null_control) != top()) {
  2310     // If we see an unexpected null at a check-cast we record it and force a
  2311     // recompile; the offending check-cast will be compiled to handle NULLs.
  2312     // If we see more than one offending BCI, then all checkcasts in the
  2313     // method will be compiled to handle NULLs.
  2314     PreserveJVMState pjvms(this);
  2315     set_control(*null_control);
  2316     replace_in_map(value, null());
  2317     uncommon_trap(Deoptimization::Reason_null_check,
  2318                   Deoptimization::Action_make_not_entrant);
  2319     (*null_control) = top();    // NULL path is dead
  2321   if ((*null_control) == top() && safe_for_replace) {
  2322     replace_in_map(value, cast);
  2325   // Cast away null-ness on the result
  2326   return cast;
  2329 //------------------------------opt_iff----------------------------------------
  2330 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
  2331 // Return slow-path control.
  2332 Node* GraphKit::opt_iff(Node* region, Node* iff) {
  2333   IfNode *opt_iff = _gvn.transform(iff)->as_If();
  2335   // Fast path taken; set region slot 2
  2336   Node *fast_taken = _gvn.transform( new (C) IfFalseNode(opt_iff) );
  2337   region->init_req(2,fast_taken); // Capture fast-control
  2339   // Fast path not-taken, i.e. slow path
  2340   Node *slow_taken = _gvn.transform( new (C) IfTrueNode(opt_iff) );
  2341   return slow_taken;
  2344 //-----------------------------make_runtime_call-------------------------------
  2345 Node* GraphKit::make_runtime_call(int flags,
  2346                                   const TypeFunc* call_type, address call_addr,
  2347                                   const char* call_name,
  2348                                   const TypePtr* adr_type,
  2349                                   // The following parms are all optional.
  2350                                   // The first NULL ends the list.
  2351                                   Node* parm0, Node* parm1,
  2352                                   Node* parm2, Node* parm3,
  2353                                   Node* parm4, Node* parm5,
  2354                                   Node* parm6, Node* parm7) {
  2355   // Slow-path call
  2356   bool is_leaf = !(flags & RC_NO_LEAF);
  2357   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
  2358   if (call_name == NULL) {
  2359     assert(!is_leaf, "must supply name for leaf");
  2360     call_name = OptoRuntime::stub_name(call_addr);
  2362   CallNode* call;
  2363   if (!is_leaf) {
  2364     call = new(C) CallStaticJavaNode(call_type, call_addr, call_name,
  2365                                            bci(), adr_type);
  2366   } else if (flags & RC_NO_FP) {
  2367     call = new(C) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
  2368   } else {
  2369     call = new(C) CallLeafNode(call_type, call_addr, call_name, adr_type);
  2372   // The following is similar to set_edges_for_java_call,
  2373   // except that the memory effects of the call are restricted to AliasIdxRaw.
  2375   // Slow path call has no side-effects, uses few values
  2376   bool wide_in  = !(flags & RC_NARROW_MEM);
  2377   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
  2379   Node* prev_mem = NULL;
  2380   if (wide_in) {
  2381     prev_mem = set_predefined_input_for_runtime_call(call);
  2382   } else {
  2383     assert(!wide_out, "narrow in => narrow out");
  2384     Node* narrow_mem = memory(adr_type);
  2385     prev_mem = reset_memory();
  2386     map()->set_memory(narrow_mem);
  2387     set_predefined_input_for_runtime_call(call);
  2390   // Hook each parm in order.  Stop looking at the first NULL.
  2391   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
  2392   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
  2393   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
  2394   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
  2395   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
  2396   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
  2397   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
  2398   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
  2399     /* close each nested if ===> */  } } } } } } } }
  2400   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
  2402   if (!is_leaf) {
  2403     // Non-leaves can block and take safepoints:
  2404     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
  2406   // Non-leaves can throw exceptions:
  2407   if (has_io) {
  2408     call->set_req(TypeFunc::I_O, i_o());
  2411   if (flags & RC_UNCOMMON) {
  2412     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
  2413     // (An "if" probability corresponds roughly to an unconditional count.
  2414     // Sort of.)
  2415     call->set_cnt(PROB_UNLIKELY_MAG(4));
  2418   Node* c = _gvn.transform(call);
  2419   assert(c == call, "cannot disappear");
  2421   if (wide_out) {
  2422     // Slow path call has full side-effects.
  2423     set_predefined_output_for_runtime_call(call);
  2424   } else {
  2425     // Slow path call has few side-effects, and/or sets few values.
  2426     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
  2429   if (has_io) {
  2430     set_i_o(_gvn.transform(new (C) ProjNode(call, TypeFunc::I_O)));
  2432   return call;
  2436 //------------------------------merge_memory-----------------------------------
  2437 // Merge memory from one path into the current memory state.
  2438 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
  2439   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
  2440     Node* old_slice = mms.force_memory();
  2441     Node* new_slice = mms.memory2();
  2442     if (old_slice != new_slice) {
  2443       PhiNode* phi;
  2444       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
  2445         if (mms.is_empty()) {
  2446           // clone base memory Phi's inputs for this memory slice
  2447           assert(old_slice == mms.base_memory(), "sanity");
  2448           phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C));
  2449           _gvn.set_type(phi, Type::MEMORY);
  2450           for (uint i = 1; i < phi->req(); i++) {
  2451             phi->init_req(i, old_slice->in(i));
  2453         } else {
  2454           phi = old_slice->as_Phi(); // Phi was generated already
  2456       } else {
  2457         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
  2458         _gvn.set_type(phi, Type::MEMORY);
  2460       phi->set_req(new_path, new_slice);
  2461       mms.set_memory(phi);
  2466 //------------------------------make_slow_call_ex------------------------------
  2467 // Make the exception handler hookups for the slow call
  2468 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
  2469   if (stopped())  return;
  2471   // Make a catch node with just two handlers:  fall-through and catch-all
  2472   Node* i_o  = _gvn.transform( new (C) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
  2473   Node* catc = _gvn.transform( new (C) CatchNode(control(), i_o, 2) );
  2474   Node* norm = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
  2475   Node* excp = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
  2477   { PreserveJVMState pjvms(this);
  2478     set_control(excp);
  2479     set_i_o(i_o);
  2481     if (excp != top()) {
  2482       if (deoptimize) {
  2483         // Deoptimize if an exception is caught. Don't construct exception state in this case.
  2484         uncommon_trap(Deoptimization::Reason_unhandled,
  2485                       Deoptimization::Action_none);
  2486       } else {
  2487         // Create an exception state also.
  2488         // Use an exact type if the caller has specified a specific exception.
  2489         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
  2490         Node*       ex_oop  = new (C) CreateExNode(ex_type, control(), i_o);
  2491         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
  2496   // Get the no-exception control from the CatchNode.
  2497   set_control(norm);
  2501 //-------------------------------gen_subtype_check-----------------------------
  2502 // Generate a subtyping check.  Takes as input the subtype and supertype.
  2503 // Returns 2 values: sets the default control() to the true path and returns
  2504 // the false path.  Only reads invariant memory; sets no (visible) memory.
  2505 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
  2506 // but that's not exposed to the optimizer.  This call also doesn't take in an
  2507 // Object; if you wish to check an Object you need to load the Object's class
  2508 // prior to coming here.
  2509 Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
  2510   // Fast check for identical types, perhaps identical constants.
  2511   // The types can even be identical non-constants, in cases
  2512   // involving Array.newInstance, Object.clone, etc.
  2513   if (subklass == superklass)
  2514     return top();             // false path is dead; no test needed.
  2516   if (_gvn.type(superklass)->singleton()) {
  2517     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
  2518     ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
  2520     // In the common case of an exact superklass, try to fold up the
  2521     // test before generating code.  You may ask, why not just generate
  2522     // the code and then let it fold up?  The answer is that the generated
  2523     // code will necessarily include null checks, which do not always
  2524     // completely fold away.  If they are also needless, then they turn
  2525     // into a performance loss.  Example:
  2526     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
  2527     // Here, the type of 'fa' is often exact, so the store check
  2528     // of fa[1]=x will fold up, without testing the nullness of x.
  2529     switch (static_subtype_check(superk, subk)) {
  2530     case SSC_always_false:
  2532         Node* always_fail = control();
  2533         set_control(top());
  2534         return always_fail;
  2536     case SSC_always_true:
  2537       return top();
  2538     case SSC_easy_test:
  2540         // Just do a direct pointer compare and be done.
  2541         Node* cmp = _gvn.transform( new(C) CmpPNode(subklass, superklass) );
  2542         Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
  2543         IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  2544         set_control( _gvn.transform( new(C) IfTrueNode (iff) ) );
  2545         return       _gvn.transform( new(C) IfFalseNode(iff) );
  2547     case SSC_full_test:
  2548       break;
  2549     default:
  2550       ShouldNotReachHere();
  2554   // %%% Possible further optimization:  Even if the superklass is not exact,
  2555   // if the subklass is the unique subtype of the superklass, the check
  2556   // will always succeed.  We could leave a dependency behind to ensure this.
  2558   // First load the super-klass's check-offset
  2559   Node *p1 = basic_plus_adr( superklass, superklass, in_bytes(Klass::super_check_offset_offset()) );
  2560   Node *chk_off = _gvn.transform(new (C) LoadINode(NULL, memory(p1), p1, _gvn.type(p1)->is_ptr(),
  2561                                                    TypeInt::INT, MemNode::unordered));
  2562   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
  2563   bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
  2565   // Load from the sub-klass's super-class display list, or a 1-word cache of
  2566   // the secondary superclass list, or a failing value with a sentinel offset
  2567   // if the super-klass is an interface or exceptionally deep in the Java
  2568   // hierarchy and we have to scan the secondary superclass list the hard way.
  2569   // Worst-case type is a little odd: NULL is allowed as a result (usually
  2570   // klass loads can never produce a NULL).
  2571   Node *chk_off_X = ConvI2X(chk_off);
  2572   Node *p2 = _gvn.transform( new (C) AddPNode(subklass,subklass,chk_off_X) );
  2573   // For some types like interfaces the following loadKlass is from a 1-word
  2574   // cache which is mutable so can't use immutable memory.  Other
  2575   // types load from the super-class display table which is immutable.
  2576   Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
  2577   Node* nkls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL));
  2579   // Compile speed common case: ARE a subtype and we canNOT fail
  2580   if( superklass == nkls )
  2581     return top();             // false path is dead; no test needed.
  2583   // See if we get an immediate positive hit.  Happens roughly 83% of the
  2584   // time.  Test to see if the value loaded just previously from the subklass
  2585   // is exactly the superklass.
  2586   Node *cmp1 = _gvn.transform( new (C) CmpPNode( superklass, nkls ) );
  2587   Node *bol1 = _gvn.transform( new (C) BoolNode( cmp1, BoolTest::eq ) );
  2588   IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
  2589   Node *iftrue1 = _gvn.transform( new (C) IfTrueNode ( iff1 ) );
  2590   set_control(    _gvn.transform( new (C) IfFalseNode( iff1 ) ) );
  2592   // Compile speed common case: Check for being deterministic right now.  If
  2593   // chk_off is a constant and not equal to cacheoff then we are NOT a
  2594   // subklass.  In this case we need exactly the 1 test above and we can
  2595   // return those results immediately.
  2596   if (!might_be_cache) {
  2597     Node* not_subtype_ctrl = control();
  2598     set_control(iftrue1); // We need exactly the 1 test above
  2599     return not_subtype_ctrl;
  2602   // Gather the various success & failures here
  2603   RegionNode *r_ok_subtype = new (C) RegionNode(4);
  2604   record_for_igvn(r_ok_subtype);
  2605   RegionNode *r_not_subtype = new (C) RegionNode(3);
  2606   record_for_igvn(r_not_subtype);
  2608   r_ok_subtype->init_req(1, iftrue1);
  2610   // Check for immediate negative hit.  Happens roughly 11% of the time (which
  2611   // is roughly 63% of the remaining cases).  Test to see if the loaded
  2612   // check-offset points into the subklass display list or the 1-element
  2613   // cache.  If it points to the display (and NOT the cache) and the display
  2614   // missed then it's not a subtype.
  2615   Node *cacheoff = _gvn.intcon(cacheoff_con);
  2616   Node *cmp2 = _gvn.transform( new (C) CmpINode( chk_off, cacheoff ) );
  2617   Node *bol2 = _gvn.transform( new (C) BoolNode( cmp2, BoolTest::ne ) );
  2618   IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
  2619   r_not_subtype->init_req(1, _gvn.transform( new (C) IfTrueNode (iff2) ) );
  2620   set_control(                _gvn.transform( new (C) IfFalseNode(iff2) ) );
  2622   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
  2623   // No performance impact (too rare) but allows sharing of secondary arrays
  2624   // which has some footprint reduction.
  2625   Node *cmp3 = _gvn.transform( new (C) CmpPNode( subklass, superklass ) );
  2626   Node *bol3 = _gvn.transform( new (C) BoolNode( cmp3, BoolTest::eq ) );
  2627   IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
  2628   r_ok_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode ( iff3 ) ) );
  2629   set_control(               _gvn.transform( new (C) IfFalseNode( iff3 ) ) );
  2631   // -- Roads not taken here: --
  2632   // We could also have chosen to perform the self-check at the beginning
  2633   // of this code sequence, as the assembler does.  This would not pay off
  2634   // the same way, since the optimizer, unlike the assembler, can perform
  2635   // static type analysis to fold away many successful self-checks.
  2636   // Non-foldable self checks work better here in second position, because
  2637   // the initial primary superclass check subsumes a self-check for most
  2638   // types.  An exception would be a secondary type like array-of-interface,
  2639   // which does not appear in its own primary supertype display.
  2640   // Finally, we could have chosen to move the self-check into the
  2641   // PartialSubtypeCheckNode, and from there out-of-line in a platform
  2642   // dependent manner.  But it is worthwhile to have the check here,
  2643   // where it can be perhaps be optimized.  The cost in code space is
  2644   // small (register compare, branch).
  2646   // Now do a linear scan of the secondary super-klass array.  Again, no real
  2647   // performance impact (too rare) but it's gotta be done.
  2648   // Since the code is rarely used, there is no penalty for moving it
  2649   // out of line, and it can only improve I-cache density.
  2650   // The decision to inline or out-of-line this final check is platform
  2651   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
  2652   Node* psc = _gvn.transform(
  2653     new (C) PartialSubtypeCheckNode(control(), subklass, superklass) );
  2655   Node *cmp4 = _gvn.transform( new (C) CmpPNode( psc, null() ) );
  2656   Node *bol4 = _gvn.transform( new (C) BoolNode( cmp4, BoolTest::ne ) );
  2657   IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
  2658   r_not_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode (iff4) ) );
  2659   r_ok_subtype ->init_req(3, _gvn.transform( new (C) IfFalseNode(iff4) ) );
  2661   // Return false path; set default control to true path.
  2662   set_control( _gvn.transform(r_ok_subtype) );
  2663   return _gvn.transform(r_not_subtype);
  2666 //----------------------------static_subtype_check-----------------------------
  2667 // Shortcut important common cases when superklass is exact:
  2668 // (0) superklass is java.lang.Object (can occur in reflective code)
  2669 // (1) subklass is already limited to a subtype of superklass => always ok
  2670 // (2) subklass does not overlap with superklass => always fail
  2671 // (3) superklass has NO subtypes and we can check with a simple compare.
  2672 int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
  2673   if (StressReflectiveCode) {
  2674     return SSC_full_test;       // Let caller generate the general case.
  2677   if (superk == env()->Object_klass()) {
  2678     return SSC_always_true;     // (0) this test cannot fail
  2681   ciType* superelem = superk;
  2682   if (superelem->is_array_klass())
  2683     superelem = superelem->as_array_klass()->base_element_type();
  2685   if (!subk->is_interface()) {  // cannot trust static interface types yet
  2686     if (subk->is_subtype_of(superk)) {
  2687       return SSC_always_true;   // (1) false path dead; no dynamic test needed
  2689     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
  2690         !superk->is_subtype_of(subk)) {
  2691       return SSC_always_false;
  2695   // If casting to an instance klass, it must have no subtypes
  2696   if (superk->is_interface()) {
  2697     // Cannot trust interfaces yet.
  2698     // %%% S.B. superk->nof_implementors() == 1
  2699   } else if (superelem->is_instance_klass()) {
  2700     ciInstanceKlass* ik = superelem->as_instance_klass();
  2701     if (!ik->has_subklass() && !ik->is_interface()) {
  2702       if (!ik->is_final()) {
  2703         // Add a dependency if there is a chance of a later subclass.
  2704         C->dependencies()->assert_leaf_type(ik);
  2706       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
  2708   } else {
  2709     // A primitive array type has no subtypes.
  2710     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
  2713   return SSC_full_test;
  2716 // Profile-driven exact type check:
  2717 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
  2718                                     float prob,
  2719                                     Node* *casted_receiver) {
  2720   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
  2721   Node* recv_klass = load_object_klass(receiver);
  2722   Node* want_klass = makecon(tklass);
  2723   Node* cmp = _gvn.transform( new(C) CmpPNode(recv_klass, want_klass) );
  2724   Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
  2725   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
  2726   set_control( _gvn.transform( new(C) IfTrueNode (iff) ));
  2727   Node* fail = _gvn.transform( new(C) IfFalseNode(iff) );
  2729   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
  2730   assert(recv_xtype->klass_is_exact(), "");
  2732   // Subsume downstream occurrences of receiver with a cast to
  2733   // recv_xtype, since now we know what the type will be.
  2734   Node* cast = new(C) CheckCastPPNode(control(), receiver, recv_xtype);
  2735   (*casted_receiver) = _gvn.transform(cast);
  2736   // (User must make the replace_in_map call.)
  2738   return fail;
  2742 //------------------------------seems_never_null-------------------------------
  2743 // Use null_seen information if it is available from the profile.
  2744 // If we see an unexpected null at a type check we record it and force a
  2745 // recompile; the offending check will be recompiled to handle NULLs.
  2746 // If we see several offending BCIs, then all checks in the
  2747 // method will be recompiled.
  2748 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data) {
  2749   if (UncommonNullCast               // Cutout for this technique
  2750       && obj != null()               // And not the -Xcomp stupid case?
  2751       && !too_many_traps(Deoptimization::Reason_null_check)
  2752       ) {
  2753     if (data == NULL)
  2754       // Edge case:  no mature data.  Be optimistic here.
  2755       return true;
  2756     // If the profile has not seen a null, assume it won't happen.
  2757     assert(java_bc() == Bytecodes::_checkcast ||
  2758            java_bc() == Bytecodes::_instanceof ||
  2759            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
  2760     return !data->as_BitData()->null_seen();
  2762   return false;
  2765 //------------------------maybe_cast_profiled_receiver-------------------------
  2766 // If the profile has seen exactly one type, narrow to exactly that type.
  2767 // Subsequent type checks will always fold up.
  2768 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
  2769                                              ciKlass* require_klass,
  2770                                              ciKlass* spec_klass,
  2771                                              bool safe_for_replace) {
  2772   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
  2774   Deoptimization::DeoptReason reason = spec_klass == NULL ? Deoptimization::Reason_class_check : Deoptimization::Reason_speculate_class_check;
  2776   // Make sure we haven't already deoptimized from this tactic.
  2777   if (too_many_traps(reason) || too_many_recompiles(reason))
  2778     return NULL;
  2780   // (No, this isn't a call, but it's enough like a virtual call
  2781   // to use the same ciMethod accessor to get the profile info...)
  2782   // If we have a speculative type use it instead of profiling (which
  2783   // may not help us)
  2784   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
  2785   if (exact_kls != NULL) {// no cast failures here
  2786     if (require_klass == NULL ||
  2787         static_subtype_check(require_klass, exact_kls) == SSC_always_true) {
  2788       // If we narrow the type to match what the type profile sees or
  2789       // the speculative type, we can then remove the rest of the
  2790       // cast.
  2791       // This is a win, even if the exact_kls is very specific,
  2792       // because downstream operations, such as method calls,
  2793       // will often benefit from the sharper type.
  2794       Node* exact_obj = not_null_obj; // will get updated in place...
  2795       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
  2796                                             &exact_obj);
  2797       { PreserveJVMState pjvms(this);
  2798         set_control(slow_ctl);
  2799         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
  2801       if (safe_for_replace) {
  2802         replace_in_map(not_null_obj, exact_obj);
  2804       return exact_obj;
  2806     // assert(ssc == SSC_always_true)... except maybe the profile lied to us.
  2809   return NULL;
  2812 /**
  2813  * Cast obj to type and emit guard unless we had too many traps here
  2814  * already
  2816  * @param obj       node being casted
  2817  * @param type      type to cast the node to
  2818  * @param not_null  true if we know node cannot be null
  2819  */
  2820 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
  2821                                         ciKlass* type,
  2822                                         bool not_null) {
  2823   // type == NULL if profiling tells us this object is always null
  2824   if (type != NULL) {
  2825     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
  2826     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_null_check;
  2827     if (!too_many_traps(null_reason) && !too_many_recompiles(null_reason) &&
  2828         !too_many_traps(class_reason) && !too_many_recompiles(class_reason)) {
  2829       Node* not_null_obj = NULL;
  2830       // not_null is true if we know the object is not null and
  2831       // there's no need for a null check
  2832       if (!not_null) {
  2833         Node* null_ctl = top();
  2834         not_null_obj = null_check_oop(obj, &null_ctl, true, true);
  2835         assert(null_ctl->is_top(), "no null control here");
  2836       } else {
  2837         not_null_obj = obj;
  2840       Node* exact_obj = not_null_obj;
  2841       ciKlass* exact_kls = type;
  2842       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
  2843                                             &exact_obj);
  2845         PreserveJVMState pjvms(this);
  2846         set_control(slow_ctl);
  2847         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
  2849       replace_in_map(not_null_obj, exact_obj);
  2850       obj = exact_obj;
  2852   } else {
  2853     if (!too_many_traps(Deoptimization::Reason_null_assert) &&
  2854         !too_many_recompiles(Deoptimization::Reason_null_assert)) {
  2855       Node* exact_obj = null_assert(obj);
  2856       replace_in_map(obj, exact_obj);
  2857       obj = exact_obj;
  2860   return obj;
  2863 //-------------------------------gen_instanceof--------------------------------
  2864 // Generate an instance-of idiom.  Used by both the instance-of bytecode
  2865 // and the reflective instance-of call.
  2866 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
  2867   kill_dead_locals();           // Benefit all the uncommon traps
  2868   assert( !stopped(), "dead parse path should be checked in callers" );
  2869   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
  2870          "must check for not-null not-dead klass in callers");
  2872   // Make the merge point
  2873   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
  2874   RegionNode* region = new(C) RegionNode(PATH_LIMIT);
  2875   Node*       phi    = new(C) PhiNode(region, TypeInt::BOOL);
  2876   C->set_has_split_ifs(true); // Has chance for split-if optimization
  2878   ciProfileData* data = NULL;
  2879   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
  2880     data = method()->method_data()->bci_to_data(bci());
  2882   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
  2883                          && seems_never_null(obj, data));
  2885   // Null check; get casted pointer; set region slot 3
  2886   Node* null_ctl = top();
  2887   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);
  2889   // If not_null_obj is dead, only null-path is taken
  2890   if (stopped()) {              // Doing instance-of on a NULL?
  2891     set_control(null_ctl);
  2892     return intcon(0);
  2894   region->init_req(_null_path, null_ctl);
  2895   phi   ->init_req(_null_path, intcon(0)); // Set null path value
  2896   if (null_ctl == top()) {
  2897     // Do this eagerly, so that pattern matches like is_diamond_phi
  2898     // will work even during parsing.
  2899     assert(_null_path == PATH_LIMIT-1, "delete last");
  2900     region->del_req(_null_path);
  2901     phi   ->del_req(_null_path);
  2904   // Do we know the type check always succeed?
  2905   bool known_statically = false;
  2906   if (_gvn.type(superklass)->singleton()) {
  2907     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
  2908     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
  2909     if (subk != NULL && subk->is_loaded()) {
  2910       int static_res = static_subtype_check(superk, subk);
  2911       known_statically = (static_res == SSC_always_true || static_res == SSC_always_false);
  2915   if (known_statically && UseTypeSpeculation) {
  2916     // If we know the type check always succeeds then we don't use the
  2917     // profiling data at this bytecode. Don't lose it, feed it to the
  2918     // type system as a speculative type.
  2919     not_null_obj = record_profiled_receiver_for_speculation(not_null_obj);
  2920   } else {
  2921     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
  2922     // We may not have profiling here or it may not help us. If we
  2923     // have a speculative type use it to perform an exact cast.
  2924     ciKlass* spec_obj_type = obj_type->speculative_type();
  2925     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
  2926       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
  2927       if (stopped()) {            // Profile disagrees with this path.
  2928         set_control(null_ctl);    // Null is the only remaining possibility.
  2929         return intcon(0);
  2931       if (cast_obj != NULL) {
  2932         not_null_obj = cast_obj;
  2937   // Load the object's klass
  2938   Node* obj_klass = load_object_klass(not_null_obj);
  2940   // Generate the subtype check
  2941   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
  2943   // Plug in the success path to the general merge in slot 1.
  2944   region->init_req(_obj_path, control());
  2945   phi   ->init_req(_obj_path, intcon(1));
  2947   // Plug in the failing path to the general merge in slot 2.
  2948   region->init_req(_fail_path, not_subtype_ctrl);
  2949   phi   ->init_req(_fail_path, intcon(0));
  2951   // Return final merged results
  2952   set_control( _gvn.transform(region) );
  2953   record_for_igvn(region);
  2954   return _gvn.transform(phi);
  2957 //-------------------------------gen_checkcast---------------------------------
  2958 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
  2959 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
  2960 // uncommon-trap paths work.  Adjust stack after this call.
  2961 // If failure_control is supplied and not null, it is filled in with
  2962 // the control edge for the cast failure.  Otherwise, an appropriate
  2963 // uncommon trap or exception is thrown.
  2964 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
  2965                               Node* *failure_control) {
  2966   kill_dead_locals();           // Benefit all the uncommon traps
  2967   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
  2968   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
  2970   // Fast cutout:  Check the case that the cast is vacuously true.
  2971   // This detects the common cases where the test will short-circuit
  2972   // away completely.  We do this before we perform the null check,
  2973   // because if the test is going to turn into zero code, we don't
  2974   // want a residual null check left around.  (Causes a slowdown,
  2975   // for example, in some objArray manipulations, such as a[i]=a[j].)
  2976   if (tk->singleton()) {
  2977     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
  2978     if (objtp != NULL && objtp->klass() != NULL) {
  2979       switch (static_subtype_check(tk->klass(), objtp->klass())) {
  2980       case SSC_always_true:
  2981         // If we know the type check always succeed then we don't use
  2982         // the profiling data at this bytecode. Don't lose it, feed it
  2983         // to the type system as a speculative type.
  2984         return record_profiled_receiver_for_speculation(obj);
  2985       case SSC_always_false:
  2986         // It needs a null check because a null will *pass* the cast check.
  2987         // A non-null value will always produce an exception.
  2988         return null_assert(obj);
  2993   ciProfileData* data = NULL;
  2994   bool safe_for_replace = false;
  2995   if (failure_control == NULL) {        // use MDO in regular case only
  2996     assert(java_bc() == Bytecodes::_aastore ||
  2997            java_bc() == Bytecodes::_checkcast,
  2998            "interpreter profiles type checks only for these BCs");
  2999     data = method()->method_data()->bci_to_data(bci());
  3000     safe_for_replace = true;
  3003   // Make the merge point
  3004   enum { _obj_path = 1, _null_path, PATH_LIMIT };
  3005   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3006   Node*       phi    = new (C) PhiNode(region, toop);
  3007   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3009   // Use null-cast information if it is available
  3010   bool never_see_null = ((failure_control == NULL)  // regular case only
  3011                          && seems_never_null(obj, data));
  3013   // Null check; get casted pointer; set region slot 3
  3014   Node* null_ctl = top();
  3015   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace);
  3017   // If not_null_obj is dead, only null-path is taken
  3018   if (stopped()) {              // Doing instance-of on a NULL?
  3019     set_control(null_ctl);
  3020     return null();
  3022   region->init_req(_null_path, null_ctl);
  3023   phi   ->init_req(_null_path, null());  // Set null path value
  3024   if (null_ctl == top()) {
  3025     // Do this eagerly, so that pattern matches like is_diamond_phi
  3026     // will work even during parsing.
  3027     assert(_null_path == PATH_LIMIT-1, "delete last");
  3028     region->del_req(_null_path);
  3029     phi   ->del_req(_null_path);
  3032   Node* cast_obj = NULL;
  3033   if (tk->klass_is_exact()) {
  3034     // The following optimization tries to statically cast the speculative type of the object
  3035     // (for example obtained during profiling) to the type of the superklass and then do a
  3036     // dynamic check that the type of the object is what we expect. To work correctly
  3037     // for checkcast and aastore the type of superklass should be exact.
  3038     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
  3039     // We may not have profiling here or it may not help us. If we have
  3040     // a speculative type use it to perform an exact cast.
  3041     ciKlass* spec_obj_type = obj_type->speculative_type();
  3042     if (spec_obj_type != NULL ||
  3043         (data != NULL &&
  3044          // Counter has never been decremented (due to cast failure).
  3045          // ...This is a reasonable thing to expect.  It is true of
  3046          // all casts inserted by javac to implement generic types.
  3047          data->as_CounterData()->count() >= 0)) {
  3048       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
  3049       if (cast_obj != NULL) {
  3050         if (failure_control != NULL) // failure is now impossible
  3051           (*failure_control) = top();
  3052         // adjust the type of the phi to the exact klass:
  3053         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
  3058   if (cast_obj == NULL) {
  3059     // Load the object's klass
  3060     Node* obj_klass = load_object_klass(not_null_obj);
  3062     // Generate the subtype check
  3063     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
  3065     // Plug in success path into the merge
  3066     cast_obj = _gvn.transform(new (C) CheckCastPPNode(control(),
  3067                                                          not_null_obj, toop));
  3068     // Failure path ends in uncommon trap (or may be dead - failure impossible)
  3069     if (failure_control == NULL) {
  3070       if (not_subtype_ctrl != top()) { // If failure is possible
  3071         PreserveJVMState pjvms(this);
  3072         set_control(not_subtype_ctrl);
  3073         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
  3075     } else {
  3076       (*failure_control) = not_subtype_ctrl;
  3080   region->init_req(_obj_path, control());
  3081   phi   ->init_req(_obj_path, cast_obj);
  3083   // A merge of NULL or Casted-NotNull obj
  3084   Node* res = _gvn.transform(phi);
  3086   // Note I do NOT always 'replace_in_map(obj,result)' here.
  3087   //  if( tk->klass()->can_be_primary_super()  )
  3088     // This means that if I successfully store an Object into an array-of-String
  3089     // I 'forget' that the Object is really now known to be a String.  I have to
  3090     // do this because we don't have true union types for interfaces - if I store
  3091     // a Baz into an array-of-Interface and then tell the optimizer it's an
  3092     // Interface, I forget that it's also a Baz and cannot do Baz-like field
  3093     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
  3094   //  replace_in_map( obj, res );
  3096   // Return final merged results
  3097   set_control( _gvn.transform(region) );
  3098   record_for_igvn(region);
  3099   return res;
  3102 //------------------------------next_monitor-----------------------------------
  3103 // What number should be given to the next monitor?
  3104 int GraphKit::next_monitor() {
  3105   int current = jvms()->monitor_depth()* C->sync_stack_slots();
  3106   int next = current + C->sync_stack_slots();
  3107   // Keep the toplevel high water mark current:
  3108   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
  3109   return current;
  3112 //------------------------------insert_mem_bar---------------------------------
  3113 // Memory barrier to avoid floating things around
  3114 // The membar serves as a pinch point between both control and all memory slices.
  3115 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
  3116   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
  3117   mb->init_req(TypeFunc::Control, control());
  3118   mb->init_req(TypeFunc::Memory,  reset_memory());
  3119   Node* membar = _gvn.transform(mb);
  3120   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
  3121   set_all_memory_call(membar);
  3122   return membar;
  3125 //-------------------------insert_mem_bar_volatile----------------------------
  3126 // Memory barrier to avoid floating things around
  3127 // The membar serves as a pinch point between both control and memory(alias_idx).
  3128 // If you want to make a pinch point on all memory slices, do not use this
  3129 // function (even with AliasIdxBot); use insert_mem_bar() instead.
  3130 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
  3131   // When Parse::do_put_xxx updates a volatile field, it appends a series
  3132   // of MemBarVolatile nodes, one for *each* volatile field alias category.
  3133   // The first membar is on the same memory slice as the field store opcode.
  3134   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
  3135   // All the other membars (for other volatile slices, including AliasIdxBot,
  3136   // which stands for all unknown volatile slices) are control-dependent
  3137   // on the first membar.  This prevents later volatile loads or stores
  3138   // from sliding up past the just-emitted store.
  3140   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
  3141   mb->set_req(TypeFunc::Control,control());
  3142   if (alias_idx == Compile::AliasIdxBot) {
  3143     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
  3144   } else {
  3145     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
  3146     mb->set_req(TypeFunc::Memory, memory(alias_idx));
  3148   Node* membar = _gvn.transform(mb);
  3149   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
  3150   if (alias_idx == Compile::AliasIdxBot) {
  3151     merged_memory()->set_base_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)));
  3152   } else {
  3153     set_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)),alias_idx);
  3155   return membar;
  3158 //------------------------------shared_lock------------------------------------
  3159 // Emit locking code.
  3160 FastLockNode* GraphKit::shared_lock(Node* obj) {
  3161   // bci is either a monitorenter bc or InvocationEntryBci
  3162   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
  3163   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
  3165   if( !GenerateSynchronizationCode )
  3166     return NULL;                // Not locking things?
  3167   if (stopped())                // Dead monitor?
  3168     return NULL;
  3170   assert(dead_locals_are_killed(), "should kill locals before sync. point");
  3172   // Box the stack location
  3173   Node* box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
  3174   Node* mem = reset_memory();
  3176   FastLockNode * flock = _gvn.transform(new (C) FastLockNode(0, obj, box) )->as_FastLock();
  3177   if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
  3178     // Create the counters for this fast lock.
  3179     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
  3182   // Create the rtm counters for this fast lock if needed.
  3183   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
  3185   // Add monitor to debug info for the slow path.  If we block inside the
  3186   // slow path and de-opt, we need the monitor hanging around
  3187   map()->push_monitor( flock );
  3189   const TypeFunc *tf = LockNode::lock_type();
  3190   LockNode *lock = new (C) LockNode(C, tf);
  3192   lock->init_req( TypeFunc::Control, control() );
  3193   lock->init_req( TypeFunc::Memory , mem );
  3194   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  3195   lock->init_req( TypeFunc::FramePtr, frameptr() );
  3196   lock->init_req( TypeFunc::ReturnAdr, top() );
  3198   lock->init_req(TypeFunc::Parms + 0, obj);
  3199   lock->init_req(TypeFunc::Parms + 1, box);
  3200   lock->init_req(TypeFunc::Parms + 2, flock);
  3201   add_safepoint_edges(lock);
  3203   lock = _gvn.transform( lock )->as_Lock();
  3205   // lock has no side-effects, sets few values
  3206   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
  3208   insert_mem_bar(Op_MemBarAcquireLock);
  3210   // Add this to the worklist so that the lock can be eliminated
  3211   record_for_igvn(lock);
  3213 #ifndef PRODUCT
  3214   if (PrintLockStatistics) {
  3215     // Update the counter for this lock.  Don't bother using an atomic
  3216     // operation since we don't require absolute accuracy.
  3217     lock->create_lock_counter(map()->jvms());
  3218     increment_counter(lock->counter()->addr());
  3220 #endif
  3222   return flock;
  3226 //------------------------------shared_unlock----------------------------------
  3227 // Emit unlocking code.
  3228 void GraphKit::shared_unlock(Node* box, Node* obj) {
  3229   // bci is either a monitorenter bc or InvocationEntryBci
  3230   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
  3231   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
  3233   if( !GenerateSynchronizationCode )
  3234     return;
  3235   if (stopped()) {               // Dead monitor?
  3236     map()->pop_monitor();        // Kill monitor from debug info
  3237     return;
  3240   // Memory barrier to avoid floating things down past the locked region
  3241   insert_mem_bar(Op_MemBarReleaseLock);
  3243   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
  3244   UnlockNode *unlock = new (C) UnlockNode(C, tf);
  3245 #ifdef ASSERT
  3246   unlock->set_dbg_jvms(sync_jvms());
  3247 #endif
  3248   uint raw_idx = Compile::AliasIdxRaw;
  3249   unlock->init_req( TypeFunc::Control, control() );
  3250   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
  3251   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
  3252   unlock->init_req( TypeFunc::FramePtr, frameptr() );
  3253   unlock->init_req( TypeFunc::ReturnAdr, top() );
  3255   unlock->init_req(TypeFunc::Parms + 0, obj);
  3256   unlock->init_req(TypeFunc::Parms + 1, box);
  3257   unlock = _gvn.transform(unlock)->as_Unlock();
  3259   Node* mem = reset_memory();
  3261   // unlock has no side-effects, sets few values
  3262   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
  3264   // Kill monitor from debug info
  3265   map()->pop_monitor( );
  3268 //-------------------------------get_layout_helper-----------------------------
  3269 // If the given klass is a constant or known to be an array,
  3270 // fetch the constant layout helper value into constant_value
  3271 // and return (Node*)NULL.  Otherwise, load the non-constant
  3272 // layout helper value, and return the node which represents it.
  3273 // This two-faced routine is useful because allocation sites
  3274 // almost always feature constant types.
  3275 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
  3276   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
  3277   if (!StressReflectiveCode && inst_klass != NULL) {
  3278     ciKlass* klass = inst_klass->klass();
  3279     bool    xklass = inst_klass->klass_is_exact();
  3280     if (xklass || klass->is_array_klass()) {
  3281       jint lhelper = klass->layout_helper();
  3282       if (lhelper != Klass::_lh_neutral_value) {
  3283         constant_value = lhelper;
  3284         return (Node*) NULL;
  3288   constant_value = Klass::_lh_neutral_value;  // put in a known value
  3289   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
  3290   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
  3293 // We just put in an allocate/initialize with a big raw-memory effect.
  3294 // Hook selected additional alias categories on the initialization.
  3295 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
  3296                                 MergeMemNode* init_in_merge,
  3297                                 Node* init_out_raw) {
  3298   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
  3299   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
  3301   Node* prevmem = kit.memory(alias_idx);
  3302   init_in_merge->set_memory_at(alias_idx, prevmem);
  3303   kit.set_memory(init_out_raw, alias_idx);
  3306 //---------------------------set_output_for_allocation-------------------------
  3307 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
  3308                                           const TypeOopPtr* oop_type,
  3309                                           bool deoptimize_on_exception) {
  3310   int rawidx = Compile::AliasIdxRaw;
  3311   alloc->set_req( TypeFunc::FramePtr, frameptr() );
  3312   add_safepoint_edges(alloc);
  3313   Node* allocx = _gvn.transform(alloc);
  3314   set_control( _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Control) ) );
  3315   // create memory projection for i_o
  3316   set_memory ( _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
  3317   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
  3319   // create a memory projection as for the normal control path
  3320   Node* malloc = _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Memory));
  3321   set_memory(malloc, rawidx);
  3323   // a normal slow-call doesn't change i_o, but an allocation does
  3324   // we create a separate i_o projection for the normal control path
  3325   set_i_o(_gvn.transform( new (C) ProjNode(allocx, TypeFunc::I_O, false) ) );
  3326   Node* rawoop = _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Parms) );
  3328   // put in an initialization barrier
  3329   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
  3330                                                  rawoop)->as_Initialize();
  3331   assert(alloc->initialization() == init,  "2-way macro link must work");
  3332   assert(init ->allocation()     == alloc, "2-way macro link must work");
  3334     // Extract memory strands which may participate in the new object's
  3335     // initialization, and source them from the new InitializeNode.
  3336     // This will allow us to observe initializations when they occur,
  3337     // and link them properly (as a group) to the InitializeNode.
  3338     assert(init->in(InitializeNode::Memory) == malloc, "");
  3339     MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
  3340     init->set_req(InitializeNode::Memory, minit_in);
  3341     record_for_igvn(minit_in); // fold it up later, if possible
  3342     Node* minit_out = memory(rawidx);
  3343     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
  3344     if (oop_type->isa_aryptr()) {
  3345       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
  3346       int            elemidx  = C->get_alias_index(telemref);
  3347       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
  3348     } else if (oop_type->isa_instptr()) {
  3349       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
  3350       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
  3351         ciField* field = ik->nonstatic_field_at(i);
  3352         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
  3353           continue;  // do not bother to track really large numbers of fields
  3354         // Find (or create) the alias category for this field:
  3355         int fieldidx = C->alias_type(field)->index();
  3356         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
  3361   // Cast raw oop to the real thing...
  3362   Node* javaoop = new (C) CheckCastPPNode(control(), rawoop, oop_type);
  3363   javaoop = _gvn.transform(javaoop);
  3364   C->set_recent_alloc(control(), javaoop);
  3365   assert(just_allocated_object(control()) == javaoop, "just allocated");
  3367 #ifdef ASSERT
  3368   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
  3369     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
  3370            "Ideal_allocation works");
  3371     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
  3372            "Ideal_allocation works");
  3373     if (alloc->is_AllocateArray()) {
  3374       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
  3375              "Ideal_allocation works");
  3376       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
  3377              "Ideal_allocation works");
  3378     } else {
  3379       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
  3382 #endif //ASSERT
  3384   return javaoop;
  3387 //---------------------------new_instance--------------------------------------
  3388 // This routine takes a klass_node which may be constant (for a static type)
  3389 // or may be non-constant (for reflective code).  It will work equally well
  3390 // for either, and the graph will fold nicely if the optimizer later reduces
  3391 // the type to a constant.
  3392 // The optional arguments are for specialized use by intrinsics:
  3393 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
  3394 //  - If 'return_size_val', report the the total object size to the caller.
  3395 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
  3396 Node* GraphKit::new_instance(Node* klass_node,
  3397                              Node* extra_slow_test,
  3398                              Node* *return_size_val,
  3399                              bool deoptimize_on_exception) {
  3400   // Compute size in doublewords
  3401   // The size is always an integral number of doublewords, represented
  3402   // as a positive bytewise size stored in the klass's layout_helper.
  3403   // The layout_helper also encodes (in a low bit) the need for a slow path.
  3404   jint  layout_con = Klass::_lh_neutral_value;
  3405   Node* layout_val = get_layout_helper(klass_node, layout_con);
  3406   int   layout_is_con = (layout_val == NULL);
  3408   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
  3409   // Generate the initial go-slow test.  It's either ALWAYS (return a
  3410   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
  3411   // case) a computed value derived from the layout_helper.
  3412   Node* initial_slow_test = NULL;
  3413   if (layout_is_con) {
  3414     assert(!StressReflectiveCode, "stress mode does not use these paths");
  3415     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
  3416     initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
  3418   } else {   // reflective case
  3419     // This reflective path is used by Unsafe.allocateInstance.
  3420     // (It may be stress-tested by specifying StressReflectiveCode.)
  3421     // Basically, we want to get into the VM is there's an illegal argument.
  3422     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
  3423     initial_slow_test = _gvn.transform( new (C) AndINode(layout_val, bit) );
  3424     if (extra_slow_test != intcon(0)) {
  3425       initial_slow_test = _gvn.transform( new (C) OrINode(initial_slow_test, extra_slow_test) );
  3427     // (Macro-expander will further convert this to a Bool, if necessary.)
  3430   // Find the size in bytes.  This is easy; it's the layout_helper.
  3431   // The size value must be valid even if the slow path is taken.
  3432   Node* size = NULL;
  3433   if (layout_is_con) {
  3434     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
  3435   } else {   // reflective case
  3436     // This reflective path is used by clone and Unsafe.allocateInstance.
  3437     size = ConvI2X(layout_val);
  3439     // Clear the low bits to extract layout_helper_size_in_bytes:
  3440     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
  3441     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
  3442     size = _gvn.transform( new (C) AndXNode(size, mask) );
  3444   if (return_size_val != NULL) {
  3445     (*return_size_val) = size;
  3448   // This is a precise notnull oop of the klass.
  3449   // (Actually, it need not be precise if this is a reflective allocation.)
  3450   // It's what we cast the result to.
  3451   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
  3452   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
  3453   const TypeOopPtr* oop_type = tklass->as_instance_type();
  3455   // Now generate allocation code
  3457   // The entire memory state is needed for slow path of the allocation
  3458   // since GC and deoptimization can happened.
  3459   Node *mem = reset_memory();
  3460   set_all_memory(mem); // Create new memory state
  3462   AllocateNode* alloc
  3463     = new (C) AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
  3464                            control(), mem, i_o(),
  3465                            size, klass_node,
  3466                            initial_slow_test);
  3468   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
  3471 //-------------------------------new_array-------------------------------------
  3472 // helper for both newarray and anewarray
  3473 // The 'length' parameter is (obviously) the length of the array.
  3474 // See comments on new_instance for the meaning of the other arguments.
  3475 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
  3476                           Node* length,         // number of array elements
  3477                           int   nargs,          // number of arguments to push back for uncommon trap
  3478                           Node* *return_size_val,
  3479                           bool deoptimize_on_exception) {
  3480   jint  layout_con = Klass::_lh_neutral_value;
  3481   Node* layout_val = get_layout_helper(klass_node, layout_con);
  3482   int   layout_is_con = (layout_val == NULL);
  3484   if (!layout_is_con && !StressReflectiveCode &&
  3485       !too_many_traps(Deoptimization::Reason_class_check)) {
  3486     // This is a reflective array creation site.
  3487     // Optimistically assume that it is a subtype of Object[],
  3488     // so that we can fold up all the address arithmetic.
  3489     layout_con = Klass::array_layout_helper(T_OBJECT);
  3490     Node* cmp_lh = _gvn.transform( new(C) CmpINode(layout_val, intcon(layout_con)) );
  3491     Node* bol_lh = _gvn.transform( new(C) BoolNode(cmp_lh, BoolTest::eq) );
  3492     { BuildCutout unless(this, bol_lh, PROB_MAX);
  3493       inc_sp(nargs);
  3494       uncommon_trap(Deoptimization::Reason_class_check,
  3495                     Deoptimization::Action_maybe_recompile);
  3497     layout_val = NULL;
  3498     layout_is_con = true;
  3501   // Generate the initial go-slow test.  Make sure we do not overflow
  3502   // if length is huge (near 2Gig) or negative!  We do not need
  3503   // exact double-words here, just a close approximation of needed
  3504   // double-words.  We can't add any offset or rounding bits, lest we
  3505   // take a size -1 of bytes and make it positive.  Use an unsigned
  3506   // compare, so negative sizes look hugely positive.
  3507   int fast_size_limit = FastAllocateSizeLimit;
  3508   if (layout_is_con) {
  3509     assert(!StressReflectiveCode, "stress mode does not use these paths");
  3510     // Increase the size limit if we have exact knowledge of array type.
  3511     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
  3512     fast_size_limit <<= (LogBytesPerLong - log2_esize);
  3515   Node* initial_slow_cmp  = _gvn.transform( new (C) CmpUNode( length, intcon( fast_size_limit ) ) );
  3516   Node* initial_slow_test = _gvn.transform( new (C) BoolNode( initial_slow_cmp, BoolTest::gt ) );
  3518   // --- Size Computation ---
  3519   // array_size = round_to_heap(array_header + (length << elem_shift));
  3520   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
  3521   // and round_to(x, y) == ((x + y-1) & ~(y-1))
  3522   // The rounding mask is strength-reduced, if possible.
  3523   int round_mask = MinObjAlignmentInBytes - 1;
  3524   Node* header_size = NULL;
  3525   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
  3526   // (T_BYTE has the weakest alignment and size restrictions...)
  3527   if (layout_is_con) {
  3528     int       hsize  = Klass::layout_helper_header_size(layout_con);
  3529     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
  3530     BasicType etype  = Klass::layout_helper_element_type(layout_con);
  3531     if ((round_mask & ~right_n_bits(eshift)) == 0)
  3532       round_mask = 0;  // strength-reduce it if it goes away completely
  3533     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
  3534     assert(header_size_min <= hsize, "generic minimum is smallest");
  3535     header_size_min = hsize;
  3536     header_size = intcon(hsize + round_mask);
  3537   } else {
  3538     Node* hss   = intcon(Klass::_lh_header_size_shift);
  3539     Node* hsm   = intcon(Klass::_lh_header_size_mask);
  3540     Node* hsize = _gvn.transform( new(C) URShiftINode(layout_val, hss) );
  3541     hsize       = _gvn.transform( new(C) AndINode(hsize, hsm) );
  3542     Node* mask  = intcon(round_mask);
  3543     header_size = _gvn.transform( new(C) AddINode(hsize, mask) );
  3546   Node* elem_shift = NULL;
  3547   if (layout_is_con) {
  3548     int eshift = Klass::layout_helper_log2_element_size(layout_con);
  3549     if (eshift != 0)
  3550       elem_shift = intcon(eshift);
  3551   } else {
  3552     // There is no need to mask or shift this value.
  3553     // The semantics of LShiftINode include an implicit mask to 0x1F.
  3554     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
  3555     elem_shift = layout_val;
  3558   // Transition to native address size for all offset calculations:
  3559   Node* lengthx = ConvI2X(length);
  3560   Node* headerx = ConvI2X(header_size);
  3561 #ifdef _LP64
  3562   { const TypeInt* tilen = _gvn.find_int_type(length);
  3563     if (tilen != NULL && tilen->_lo < 0) {
  3564       // Add a manual constraint to a positive range.  Cf. array_element_address.
  3565       jlong size_max = fast_size_limit;
  3566       if (size_max > tilen->_hi)  size_max = tilen->_hi;
  3567       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
  3569       // Only do a narrow I2L conversion if the range check passed.
  3570       IfNode* iff = new (C) IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
  3571       _gvn.transform(iff);
  3572       RegionNode* region = new (C) RegionNode(3);
  3573       _gvn.set_type(region, Type::CONTROL);
  3574       lengthx = new (C) PhiNode(region, TypeLong::LONG);
  3575       _gvn.set_type(lengthx, TypeLong::LONG);
  3577       // Range check passed. Use ConvI2L node with narrow type.
  3578       Node* passed = IfFalse(iff);
  3579       region->init_req(1, passed);
  3580       // Make I2L conversion control dependent to prevent it from
  3581       // floating above the range check during loop optimizations.
  3582       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
  3584       // Range check failed. Use ConvI2L with wide type because length may be invalid.
  3585       region->init_req(2, IfTrue(iff));
  3586       lengthx->init_req(2, ConvI2X(length));
  3588       set_control(region);
  3589       record_for_igvn(region);
  3590       record_for_igvn(lengthx);
  3593 #endif
  3595   // Combine header size (plus rounding) and body size.  Then round down.
  3596   // This computation cannot overflow, because it is used only in two
  3597   // places, one where the length is sharply limited, and the other
  3598   // after a successful allocation.
  3599   Node* abody = lengthx;
  3600   if (elem_shift != NULL)
  3601     abody     = _gvn.transform( new(C) LShiftXNode(lengthx, elem_shift) );
  3602   Node* size  = _gvn.transform( new(C) AddXNode(headerx, abody) );
  3603   if (round_mask != 0) {
  3604     Node* mask = MakeConX(~round_mask);
  3605     size       = _gvn.transform( new(C) AndXNode(size, mask) );
  3607   // else if round_mask == 0, the size computation is self-rounding
  3609   if (return_size_val != NULL) {
  3610     // This is the size
  3611     (*return_size_val) = size;
  3614   // Now generate allocation code
  3616   // The entire memory state is needed for slow path of the allocation
  3617   // since GC and deoptimization can happened.
  3618   Node *mem = reset_memory();
  3619   set_all_memory(mem); // Create new memory state
  3621   if (initial_slow_test->is_Bool()) {
  3622     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
  3623     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
  3626   // Create the AllocateArrayNode and its result projections
  3627   AllocateArrayNode* alloc
  3628     = new (C) AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
  3629                                 control(), mem, i_o(),
  3630                                 size, klass_node,
  3631                                 initial_slow_test,
  3632                                 length);
  3634   // Cast to correct type.  Note that the klass_node may be constant or not,
  3635   // and in the latter case the actual array type will be inexact also.
  3636   // (This happens via a non-constant argument to inline_native_newArray.)
  3637   // In any case, the value of klass_node provides the desired array type.
  3638   const TypeInt* length_type = _gvn.find_int_type(length);
  3639   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
  3640   if (ary_type->isa_aryptr() && length_type != NULL) {
  3641     // Try to get a better type than POS for the size
  3642     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
  3645   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
  3647   // Cast length on remaining path to be as narrow as possible
  3648   if (map()->find_edge(length) >= 0) {
  3649     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
  3650     if (ccast != length) {
  3651       _gvn.set_type_bottom(ccast);
  3652       record_for_igvn(ccast);
  3653       replace_in_map(length, ccast);
  3657   return javaoop;
  3660 // The following "Ideal_foo" functions are placed here because they recognize
  3661 // the graph shapes created by the functions immediately above.
  3663 //---------------------------Ideal_allocation----------------------------------
  3664 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
  3665 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
  3666   if (ptr == NULL) {     // reduce dumb test in callers
  3667     return NULL;
  3669   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
  3670     ptr = ptr->in(1);
  3671     if (ptr == NULL) return NULL;
  3673   // Return NULL for allocations with several casts:
  3674   //   j.l.reflect.Array.newInstance(jobject, jint)
  3675   //   Object.clone()
  3676   // to keep more precise type from last cast.
  3677   if (ptr->is_Proj()) {
  3678     Node* allo = ptr->in(0);
  3679     if (allo != NULL && allo->is_Allocate()) {
  3680       return allo->as_Allocate();
  3683   // Report failure to match.
  3684   return NULL;
  3687 // Fancy version which also strips off an offset (and reports it to caller).
  3688 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
  3689                                              intptr_t& offset) {
  3690   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
  3691   if (base == NULL)  return NULL;
  3692   return Ideal_allocation(base, phase);
  3695 // Trace Initialize <- Proj[Parm] <- Allocate
  3696 AllocateNode* InitializeNode::allocation() {
  3697   Node* rawoop = in(InitializeNode::RawAddress);
  3698   if (rawoop->is_Proj()) {
  3699     Node* alloc = rawoop->in(0);
  3700     if (alloc->is_Allocate()) {
  3701       return alloc->as_Allocate();
  3704   return NULL;
  3707 // Trace Allocate -> Proj[Parm] -> Initialize
  3708 InitializeNode* AllocateNode::initialization() {
  3709   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
  3710   if (rawoop == NULL)  return NULL;
  3711   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
  3712     Node* init = rawoop->fast_out(i);
  3713     if (init->is_Initialize()) {
  3714       assert(init->as_Initialize()->allocation() == this, "2-way link");
  3715       return init->as_Initialize();
  3718   return NULL;
  3721 //----------------------------- loop predicates ---------------------------
  3723 //------------------------------add_predicate_impl----------------------------
  3724 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
  3725   // Too many traps seen?
  3726   if (too_many_traps(reason)) {
  3727 #ifdef ASSERT
  3728     if (TraceLoopPredicate) {
  3729       int tc = C->trap_count(reason);
  3730       tty->print("too many traps=%s tcount=%d in ",
  3731                     Deoptimization::trap_reason_name(reason), tc);
  3732       method()->print(); // which method has too many predicate traps
  3733       tty->cr();
  3735 #endif
  3736     // We cannot afford to take more traps here,
  3737     // do not generate predicate.
  3738     return;
  3741   Node *cont    = _gvn.intcon(1);
  3742   Node* opq     = _gvn.transform(new (C) Opaque1Node(C, cont));
  3743   Node *bol     = _gvn.transform(new (C) Conv2BNode(opq));
  3744   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  3745   Node* iffalse = _gvn.transform(new (C) IfFalseNode(iff));
  3746   C->add_predicate_opaq(opq);
  3748     PreserveJVMState pjvms(this);
  3749     set_control(iffalse);
  3750     inc_sp(nargs);
  3751     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
  3753   Node* iftrue = _gvn.transform(new (C) IfTrueNode(iff));
  3754   set_control(iftrue);
  3757 //------------------------------add_predicate---------------------------------
  3758 void GraphKit::add_predicate(int nargs) {
  3759   if (UseLoopPredicate) {
  3760     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
  3762   // loop's limit check predicate should be near the loop.
  3763   if (LoopLimitCheck) {
  3764     add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
  3768 //----------------------------- store barriers ----------------------------
  3769 #define __ ideal.
  3771 void GraphKit::sync_kit(IdealKit& ideal) {
  3772   set_all_memory(__ merged_memory());
  3773   set_i_o(__ i_o());
  3774   set_control(__ ctrl());
  3777 void GraphKit::final_sync(IdealKit& ideal) {
  3778   // Final sync IdealKit and graphKit.
  3779   sync_kit(ideal);
  3782 // vanilla/CMS post barrier
  3783 // Insert a write-barrier store.  This is to let generational GC work; we have
  3784 // to flag all oop-stores before the next GC point.
  3785 void GraphKit::write_barrier_post(Node* oop_store,
  3786                                   Node* obj,
  3787                                   Node* adr,
  3788                                   uint  adr_idx,
  3789                                   Node* val,
  3790                                   bool use_precise) {
  3791   // No store check needed if we're storing a NULL or an old object
  3792   // (latter case is probably a string constant). The concurrent
  3793   // mark sweep garbage collector, however, needs to have all nonNull
  3794   // oop updates flagged via card-marks.
  3795   if (val != NULL && val->is_Con()) {
  3796     // must be either an oop or NULL
  3797     const Type* t = val->bottom_type();
  3798     if (t == TypePtr::NULL_PTR || t == Type::TOP)
  3799       // stores of null never (?) need barriers
  3800       return;
  3803   if (use_ReduceInitialCardMarks()
  3804       && obj == just_allocated_object(control())) {
  3805     // We can skip marks on a freshly-allocated object in Eden.
  3806     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
  3807     // That routine informs GC to take appropriate compensating steps,
  3808     // upon a slow-path allocation, so as to make this card-mark
  3809     // elision safe.
  3810     return;
  3813   if (!use_precise) {
  3814     // All card marks for a (non-array) instance are in one place:
  3815     adr = obj;
  3817   // (Else it's an array (or unknown), and we want more precise card marks.)
  3818   assert(adr != NULL, "");
  3820   IdealKit ideal(this, true);
  3822   // Convert the pointer to an int prior to doing math on it
  3823   Node* cast = __ CastPX(__ ctrl(), adr);
  3825   // Divide by card size
  3826   assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
  3827          "Only one we handle so far.");
  3828   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
  3830   // Combine card table base and card offset
  3831   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
  3833   // Get the alias_index for raw card-mark memory
  3834   int adr_type = Compile::AliasIdxRaw;
  3835   Node*   zero = __ ConI(0); // Dirty card value
  3836   BasicType bt = T_BYTE;
  3838   if (UseCondCardMark) {
  3839     // The classic GC reference write barrier is typically implemented
  3840     // as a store into the global card mark table.  Unfortunately
  3841     // unconditional stores can result in false sharing and excessive
  3842     // coherence traffic as well as false transactional aborts.
  3843     // UseCondCardMark enables MP "polite" conditional card mark
  3844     // stores.  In theory we could relax the load from ctrl() to
  3845     // no_ctrl, but that doesn't buy much latitude.
  3846     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
  3847     __ if_then(card_val, BoolTest::ne, zero);
  3850   // Smash zero into card
  3851   if( !UseConcMarkSweepGC ) {
  3852     __ store(__ ctrl(), card_adr, zero, bt, adr_type, MemNode::release);
  3853   } else {
  3854     // Specialized path for CM store barrier
  3855     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
  3858   if (UseCondCardMark) {
  3859     __ end_if();
  3862   // Final sync IdealKit and GraphKit.
  3863   final_sync(ideal);
  3866 // G1 pre/post barriers
  3867 void GraphKit::g1_write_barrier_pre(bool do_load,
  3868                                     Node* obj,
  3869                                     Node* adr,
  3870                                     uint alias_idx,
  3871                                     Node* val,
  3872                                     const TypeOopPtr* val_type,
  3873                                     Node* pre_val,
  3874                                     BasicType bt) {
  3876   // Some sanity checks
  3877   // Note: val is unused in this routine.
  3879   if (do_load) {
  3880     // We need to generate the load of the previous value
  3881     assert(obj != NULL, "must have a base");
  3882     assert(adr != NULL, "where are loading from?");
  3883     assert(pre_val == NULL, "loaded already?");
  3884     assert(val_type != NULL, "need a type");
  3885   } else {
  3886     // In this case both val_type and alias_idx are unused.
  3887     assert(pre_val != NULL, "must be loaded already");
  3888     // Nothing to be done if pre_val is null.
  3889     if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
  3890     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
  3892   assert(bt == T_OBJECT, "or we shouldn't be here");
  3894   IdealKit ideal(this, true);
  3896   Node* tls = __ thread(); // ThreadLocalStorage
  3898   Node* no_ctrl = NULL;
  3899   Node* no_base = __ top();
  3900   Node* zero  = __ ConI(0);
  3901   Node* zeroX = __ ConX(0);
  3903   float likely  = PROB_LIKELY(0.999);
  3904   float unlikely  = PROB_UNLIKELY(0.999);
  3906   BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
  3907   assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
  3909   // Offsets into the thread
  3910   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
  3911                                           PtrQueue::byte_offset_of_active());
  3912   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
  3913                                           PtrQueue::byte_offset_of_index());
  3914   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
  3915                                           PtrQueue::byte_offset_of_buf());
  3917   // Now the actual pointers into the thread
  3918   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
  3919   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
  3920   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
  3922   // Now some of the values
  3923   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
  3925   // if (!marking)
  3926   __ if_then(marking, BoolTest::ne, zero, unlikely); {
  3927     BasicType index_bt = TypeX_X->basic_type();
  3928     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 PtrQueue::_index with wrong size.");
  3929     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
  3931     if (do_load) {
  3932       // load original value
  3933       // alias_idx correct??
  3934       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
  3937     // if (pre_val != NULL)
  3938     __ if_then(pre_val, BoolTest::ne, null()); {
  3939       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
  3941       // is the queue for this thread full?
  3942       __ if_then(index, BoolTest::ne, zeroX, likely); {
  3944         // decrement the index
  3945         Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
  3947         // Now get the buffer location we will log the previous value into and store it
  3948         Node *log_addr = __ AddP(no_base, buffer, next_index);
  3949         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, MemNode::unordered);
  3950         // update the index
  3951         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw, MemNode::unordered);
  3953       } __ else_(); {
  3955         // logging buffer is full, call the runtime
  3956         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
  3957         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
  3958       } __ end_if();  // (!index)
  3959     } __ end_if();  // (pre_val != NULL)
  3960   } __ end_if();  // (!marking)
  3962   // Final sync IdealKit and GraphKit.
  3963   final_sync(ideal);
  3966 //
  3967 // Update the card table and add card address to the queue
  3968 //
  3969 void GraphKit::g1_mark_card(IdealKit& ideal,
  3970                             Node* card_adr,
  3971                             Node* oop_store,
  3972                             uint oop_alias_idx,
  3973                             Node* index,
  3974                             Node* index_adr,
  3975                             Node* buffer,
  3976                             const TypeFunc* tf) {
  3978   Node* zero  = __ ConI(0);
  3979   Node* zeroX = __ ConX(0);
  3980   Node* no_base = __ top();
  3981   BasicType card_bt = T_BYTE;
  3982   // Smash zero into card. MUST BE ORDERED WRT TO STORE
  3983   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
  3985   //  Now do the queue work
  3986   __ if_then(index, BoolTest::ne, zeroX); {
  3988     Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
  3989     Node* log_addr = __ AddP(no_base, buffer, next_index);
  3991     // Order, see storeCM.
  3992     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered);
  3993     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, MemNode::unordered);
  3995   } __ else_(); {
  3996     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
  3997   } __ end_if();
  4001 void GraphKit::g1_write_barrier_post(Node* oop_store,
  4002                                      Node* obj,
  4003                                      Node* adr,
  4004                                      uint alias_idx,
  4005                                      Node* val,
  4006                                      BasicType bt,
  4007                                      bool use_precise) {
  4008   // If we are writing a NULL then we need no post barrier
  4010   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
  4011     // Must be NULL
  4012     const Type* t = val->bottom_type();
  4013     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
  4014     // No post barrier if writing NULLx
  4015     return;
  4018   if (!use_precise) {
  4019     // All card marks for a (non-array) instance are in one place:
  4020     adr = obj;
  4022   // (Else it's an array (or unknown), and we want more precise card marks.)
  4023   assert(adr != NULL, "");
  4025   IdealKit ideal(this, true);
  4027   Node* tls = __ thread(); // ThreadLocalStorage
  4029   Node* no_base = __ top();
  4030   float likely  = PROB_LIKELY(0.999);
  4031   float unlikely  = PROB_UNLIKELY(0.999);
  4032   Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val());
  4033   Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val());
  4034   Node* zeroX = __ ConX(0);
  4036   // Get the alias_index for raw card-mark memory
  4037   const TypePtr* card_type = TypeRawPtr::BOTTOM;
  4039   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
  4041   // Offsets into the thread
  4042   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
  4043                                      PtrQueue::byte_offset_of_index());
  4044   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
  4045                                      PtrQueue::byte_offset_of_buf());
  4047   // Pointers into the thread
  4049   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
  4050   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
  4052   // Now some values
  4053   // Use ctrl to avoid hoisting these values past a safepoint, which could
  4054   // potentially reset these fields in the JavaThread.
  4055   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
  4056   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
  4058   // Convert the store obj pointer to an int prior to doing math on it
  4059   // Must use ctrl to prevent "integerized oop" existing across safepoint
  4060   Node* cast =  __ CastPX(__ ctrl(), adr);
  4062   // Divide pointer by card size
  4063   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
  4065   // Combine card table base and card offset
  4066   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
  4068   // If we know the value being stored does it cross regions?
  4070   if (val != NULL) {
  4071     // Does the store cause us to cross regions?
  4073     // Should be able to do an unsigned compare of region_size instead of
  4074     // and extra shift. Do we have an unsigned compare??
  4075     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
  4076     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
  4078     // if (xor_res == 0) same region so skip
  4079     __ if_then(xor_res, BoolTest::ne, zeroX); {
  4081       // No barrier if we are storing a NULL
  4082       __ if_then(val, BoolTest::ne, null(), unlikely); {
  4084         // Ok must mark the card if not already dirty
  4086         // load the original value of the card
  4087         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
  4089         __ if_then(card_val, BoolTest::ne, young_card); {
  4090           sync_kit(ideal);
  4091           // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
  4092           insert_mem_bar(Op_MemBarVolatile, oop_store);
  4093           __ sync_kit(this);
  4095           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
  4096           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
  4097             g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
  4098           } __ end_if();
  4099         } __ end_if();
  4100       } __ end_if();
  4101     } __ end_if();
  4102   } else {
  4103     // Object.clone() instrinsic uses this path.
  4104     g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
  4107   // Final sync IdealKit and GraphKit.
  4108   final_sync(ideal);
  4110 #undef __
  4114 Node* GraphKit::load_String_offset(Node* ctrl, Node* str) {
  4115   if (java_lang_String::has_offset_field()) {
  4116     int offset_offset = java_lang_String::offset_offset_in_bytes();
  4117     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
  4118                                                        false, NULL, 0);
  4119     const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
  4120     int offset_field_idx = C->get_alias_index(offset_field_type);
  4121     return make_load(ctrl,
  4122                      basic_plus_adr(str, str, offset_offset),
  4123                      TypeInt::INT, T_INT, offset_field_idx, MemNode::unordered);
  4124   } else {
  4125     return intcon(0);
  4129 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
  4130   if (java_lang_String::has_count_field()) {
  4131     int count_offset = java_lang_String::count_offset_in_bytes();
  4132     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
  4133                                                        false, NULL, 0);
  4134     const TypePtr* count_field_type = string_type->add_offset(count_offset);
  4135     int count_field_idx = C->get_alias_index(count_field_type);
  4136     return make_load(ctrl,
  4137                      basic_plus_adr(str, str, count_offset),
  4138                      TypeInt::INT, T_INT, count_field_idx, MemNode::unordered);
  4139   } else {
  4140     return load_array_length(load_String_value(ctrl, str));
  4144 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
  4145   int value_offset = java_lang_String::value_offset_in_bytes();
  4146   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
  4147                                                      false, NULL, 0);
  4148   const TypePtr* value_field_type = string_type->add_offset(value_offset);
  4149   const TypeAryPtr*  value_type = TypeAryPtr::make(TypePtr::NotNull,
  4150                                                    TypeAry::make(TypeInt::CHAR,TypeInt::POS),
  4151                                                    ciTypeArrayKlass::make(T_CHAR), true, 0);
  4152   int value_field_idx = C->get_alias_index(value_field_type);
  4153   Node* load = make_load(ctrl, basic_plus_adr(str, str, value_offset),
  4154                          value_type, T_OBJECT, value_field_idx, MemNode::unordered);
  4155   // String.value field is known to be @Stable.
  4156   if (UseImplicitStableValues) {
  4157     load = cast_array_to_stable(load, value_type);
  4159   return load;
  4162 void GraphKit::store_String_offset(Node* ctrl, Node* str, Node* value) {
  4163   int offset_offset = java_lang_String::offset_offset_in_bytes();
  4164   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
  4165                                                      false, NULL, 0);
  4166   const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
  4167   int offset_field_idx = C->get_alias_index(offset_field_type);
  4168   store_to_memory(ctrl, basic_plus_adr(str, offset_offset),
  4169                   value, T_INT, offset_field_idx, MemNode::unordered);
  4172 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
  4173   int value_offset = java_lang_String::value_offset_in_bytes();
  4174   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
  4175                                                      false, NULL, 0);
  4176   const TypePtr* value_field_type = string_type->add_offset(value_offset);
  4178   store_oop_to_object(ctrl, str,  basic_plus_adr(str, value_offset), value_field_type,
  4179       value, TypeAryPtr::CHARS, T_OBJECT, MemNode::unordered);
  4182 void GraphKit::store_String_length(Node* ctrl, Node* str, Node* value) {
  4183   int count_offset = java_lang_String::count_offset_in_bytes();
  4184   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
  4185                                                      false, NULL, 0);
  4186   const TypePtr* count_field_type = string_type->add_offset(count_offset);
  4187   int count_field_idx = C->get_alias_index(count_field_type);
  4188   store_to_memory(ctrl, basic_plus_adr(str, count_offset),
  4189                   value, T_INT, count_field_idx, MemNode::unordered);
  4192 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
  4193   // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
  4194   // assumption of CCP analysis.
  4195   return _gvn.transform(new(C) CastPPNode(ary, ary_type->cast_to_stable(true)));

mercurial