src/share/vm/utilities/taskqueue.hpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 981
05c6d52fa7a9
child 1280
df6caf649ff7
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #ifdef LP64
    26 typedef juint TAG_TYPE;
    27 // for a taskqueue size of 4M
    28 #define LOG_TASKQ_SIZE 22
    29 #else
    30 typedef jushort TAG_TYPE;
    31 // for a taskqueue size of 16K
    32 #define LOG_TASKQ_SIZE 14
    33 #endif
    35 class TaskQueueSuper: public CHeapObj {
    36 protected:
    37   // The first free element after the last one pushed (mod _n).
    38   volatile uint _bottom;
    40   // log2 of the size of the queue.
    41   enum SomeProtectedConstants {
    42     Log_n = LOG_TASKQ_SIZE
    43   };
    44 #undef LOG_TASKQ_SIZE
    46   // Size of the queue.
    47   uint n() { return (1 << Log_n); }
    48   // For computing "x mod n" efficiently.
    49   uint n_mod_mask() { return n() - 1; }
    51   struct Age {
    52     TAG_TYPE _top;
    53     TAG_TYPE _tag;
    55     TAG_TYPE tag() const { return _tag; }
    56     TAG_TYPE top() const { return _top; }
    58     Age() { _tag = 0; _top = 0; }
    60     friend bool operator ==(const Age& a1, const Age& a2) {
    61       return a1.tag() == a2.tag() && a1.top() == a2.top();
    62     }
    63   };
    64   Age _age;
    65   // These make sure we do single atomic reads and writes.
    66   Age get_age() {
    67     uint res = *(volatile uint*)(&_age);
    68     return *(Age*)(&res);
    69   }
    70   void set_age(Age a) {
    71     *(volatile uint*)(&_age) = *(uint*)(&a);
    72   }
    74   TAG_TYPE get_top() {
    75     return get_age().top();
    76   }
    78   // These both operate mod _n.
    79   uint increment_index(uint ind) {
    80     return (ind + 1) & n_mod_mask();
    81   }
    82   uint decrement_index(uint ind) {
    83     return (ind - 1) & n_mod_mask();
    84   }
    86   // Returns a number in the range [0.._n).  If the result is "n-1", it
    87   // should be interpreted as 0.
    88   uint dirty_size(uint bot, uint top) {
    89     return ((int)bot - (int)top) & n_mod_mask();
    90   }
    92   // Returns the size corresponding to the given "bot" and "top".
    93   uint size(uint bot, uint top) {
    94     uint sz = dirty_size(bot, top);
    95     // Has the queue "wrapped", so that bottom is less than top?
    96     // There's a complicated special case here.  A pair of threads could
    97     // perform pop_local and pop_global operations concurrently, starting
    98     // from a state in which _bottom == _top+1.  The pop_local could
    99     // succeed in decrementing _bottom, and the pop_global in incrementing
   100     // _top (in which case the pop_global will be awarded the contested
   101     // queue element.)  The resulting state must be interpreted as an empty
   102     // queue.  (We only need to worry about one such event: only the queue
   103     // owner performs pop_local's, and several concurrent threads
   104     // attempting to perform the pop_global will all perform the same CAS,
   105     // and only one can succeed.  Any stealing thread that reads after
   106     // either the increment or decrement will see an empty queue, and will
   107     // not join the competitors.  The "sz == -1 || sz == _n-1" state will
   108     // not be modified  by concurrent queues, so the owner thread can reset
   109     // the state to _bottom == top so subsequent pushes will be performed
   110     // normally.
   111     if (sz == (n()-1)) return 0;
   112     else return sz;
   113   }
   115 public:
   116   TaskQueueSuper() : _bottom(0), _age() {}
   118   // Return "true" if the TaskQueue contains any tasks.
   119   bool peek();
   121   // Return an estimate of the number of elements in the queue.
   122   // The "careful" version admits the possibility of pop_local/pop_global
   123   // races.
   124   uint size() {
   125     return size(_bottom, get_top());
   126   }
   128   uint dirty_size() {
   129     return dirty_size(_bottom, get_top());
   130   }
   132   void set_empty() {
   133     _bottom = 0;
   134     _age = Age();
   135   }
   137   // Maximum number of elements allowed in the queue.  This is two less
   138   // than the actual queue size, for somewhat complicated reasons.
   139   uint max_elems() { return n() - 2; }
   141 };
   143 template<class E> class GenericTaskQueue: public TaskQueueSuper {
   144 private:
   145   // Slow paths for push, pop_local.  (pop_global has no fast path.)
   146   bool push_slow(E t, uint dirty_n_elems);
   147   bool pop_local_slow(uint localBot, Age oldAge);
   149 public:
   150   // Initializes the queue to empty.
   151   GenericTaskQueue();
   153   void initialize();
   155   // Push the task "t" on the queue.  Returns "false" iff the queue is
   156   // full.
   157   inline bool push(E t);
   159   // If succeeds in claiming a task (from the 'local' end, that is, the
   160   // most recently pushed task), returns "true" and sets "t" to that task.
   161   // Otherwise, the queue is empty and returns false.
   162   inline bool pop_local(E& t);
   164   // If succeeds in claiming a task (from the 'global' end, that is, the
   165   // least recently pushed task), returns "true" and sets "t" to that task.
   166   // Otherwise, the queue is empty and returns false.
   167   bool pop_global(E& t);
   169   // Delete any resource associated with the queue.
   170   ~GenericTaskQueue();
   172   // apply the closure to all elements in the task queue
   173   void oops_do(OopClosure* f);
   175 private:
   176   // Element array.
   177   volatile E* _elems;
   178 };
   180 template<class E>
   181 GenericTaskQueue<E>::GenericTaskQueue():TaskQueueSuper() {
   182   assert(sizeof(Age) == sizeof(int), "Depends on this.");
   183 }
   185 template<class E>
   186 void GenericTaskQueue<E>::initialize() {
   187   _elems = NEW_C_HEAP_ARRAY(E, n());
   188   guarantee(_elems != NULL, "Allocation failed.");
   189 }
   191 template<class E>
   192 void GenericTaskQueue<E>::oops_do(OopClosure* f) {
   193   // tty->print_cr("START OopTaskQueue::oops_do");
   194   uint iters = size();
   195   uint index = _bottom;
   196   for (uint i = 0; i < iters; ++i) {
   197     index = decrement_index(index);
   198     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
   199     //            index, &_elems[index], _elems[index]);
   200     E* t = (E*)&_elems[index];      // cast away volatility
   201     oop* p = (oop*)t;
   202     assert((*t)->is_oop_or_null(), "Not an oop or null");
   203     f->do_oop(p);
   204   }
   205   // tty->print_cr("END OopTaskQueue::oops_do");
   206 }
   209 template<class E>
   210 bool GenericTaskQueue<E>::push_slow(E t, uint dirty_n_elems) {
   211   if (dirty_n_elems == n() - 1) {
   212     // Actually means 0, so do the push.
   213     uint localBot = _bottom;
   214     _elems[localBot] = t;
   215     _bottom = increment_index(localBot);
   216     return true;
   217   } else
   218     return false;
   219 }
   221 template<class E>
   222 bool GenericTaskQueue<E>::
   223 pop_local_slow(uint localBot, Age oldAge) {
   224   // This queue was observed to contain exactly one element; either this
   225   // thread will claim it, or a competing "pop_global".  In either case,
   226   // the queue will be logically empty afterwards.  Create a new Age value
   227   // that represents the empty queue for the given value of "_bottom".  (We
   228   // must also increment "tag" because of the case where "bottom == 1",
   229   // "top == 0".  A pop_global could read the queue element in that case,
   230   // then have the owner thread do a pop followed by another push.  Without
   231   // the incrementing of "tag", the pop_global's CAS could succeed,
   232   // allowing it to believe it has claimed the stale element.)
   233   Age newAge;
   234   newAge._top = localBot;
   235   newAge._tag = oldAge.tag() + 1;
   236   // Perhaps a competing pop_global has already incremented "top", in which
   237   // case it wins the element.
   238   if (localBot == oldAge.top()) {
   239     Age tempAge;
   240     // No competing pop_global has yet incremented "top"; we'll try to
   241     // install new_age, thus claiming the element.
   242     assert(sizeof(Age) == sizeof(int), "Assumption about CAS unit.");
   243     *(uint*)&tempAge = Atomic::cmpxchg(*(uint*)&newAge, (volatile uint*)&_age, *(uint*)&oldAge);
   244     if (tempAge == oldAge) {
   245       // We win.
   246       assert(dirty_size(localBot, get_top()) != n() - 1,
   247              "Shouldn't be possible...");
   248       return true;
   249     }
   250   }
   251   // We fail; a completing pop_global gets the element.  But the queue is
   252   // empty (and top is greater than bottom.)  Fix this representation of
   253   // the empty queue to become the canonical one.
   254   set_age(newAge);
   255   assert(dirty_size(localBot, get_top()) != n() - 1,
   256          "Shouldn't be possible...");
   257   return false;
   258 }
   260 template<class E>
   261 bool GenericTaskQueue<E>::pop_global(E& t) {
   262   Age newAge;
   263   Age oldAge = get_age();
   264   uint localBot = _bottom;
   265   uint n_elems = size(localBot, oldAge.top());
   266   if (n_elems == 0) {
   267     return false;
   268   }
   269   t = _elems[oldAge.top()];
   270   newAge = oldAge;
   271   newAge._top = increment_index(newAge.top());
   272   if ( newAge._top == 0 ) newAge._tag++;
   273   Age resAge;
   274   *(uint*)&resAge = Atomic::cmpxchg(*(uint*)&newAge, (volatile uint*)&_age, *(uint*)&oldAge);
   275   // Note that using "_bottom" here might fail, since a pop_local might
   276   // have decremented it.
   277   assert(dirty_size(localBot, newAge._top) != n() - 1,
   278          "Shouldn't be possible...");
   279   return (resAge == oldAge);
   280 }
   282 template<class E>
   283 GenericTaskQueue<E>::~GenericTaskQueue() {
   284   FREE_C_HEAP_ARRAY(E, _elems);
   285 }
   287 // Inherits the typedef of "Task" from above.
   288 class TaskQueueSetSuper: public CHeapObj {
   289 protected:
   290   static int randomParkAndMiller(int* seed0);
   291 public:
   292   // Returns "true" if some TaskQueue in the set contains a task.
   293   virtual bool peek() = 0;
   294 };
   296 template<class E> class GenericTaskQueueSet: public TaskQueueSetSuper {
   297 private:
   298   uint _n;
   299   GenericTaskQueue<E>** _queues;
   301 public:
   302   GenericTaskQueueSet(int n) : _n(n) {
   303     typedef GenericTaskQueue<E>* GenericTaskQueuePtr;
   304     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
   305     guarantee(_queues != NULL, "Allocation failure.");
   306     for (int i = 0; i < n; i++) {
   307       _queues[i] = NULL;
   308     }
   309   }
   311   bool steal_1_random(uint queue_num, int* seed, E& t);
   312   bool steal_best_of_2(uint queue_num, int* seed, E& t);
   313   bool steal_best_of_all(uint queue_num, int* seed, E& t);
   315   void register_queue(uint i, GenericTaskQueue<E>* q);
   317   GenericTaskQueue<E>* queue(uint n);
   319   // The thread with queue number "queue_num" (and whose random number seed
   320   // is at "seed") is trying to steal a task from some other queue.  (It
   321   // may try several queues, according to some configuration parameter.)
   322   // If some steal succeeds, returns "true" and sets "t" the stolen task,
   323   // otherwise returns false.
   324   bool steal(uint queue_num, int* seed, E& t);
   326   bool peek();
   327 };
   329 template<class E>
   330 void GenericTaskQueueSet<E>::register_queue(uint i, GenericTaskQueue<E>* q) {
   331   assert(i < _n, "index out of range.");
   332   _queues[i] = q;
   333 }
   335 template<class E>
   336 GenericTaskQueue<E>* GenericTaskQueueSet<E>::queue(uint i) {
   337   return _queues[i];
   338 }
   340 template<class E>
   341 bool GenericTaskQueueSet<E>::steal(uint queue_num, int* seed, E& t) {
   342   for (uint i = 0; i < 2 * _n; i++)
   343     if (steal_best_of_2(queue_num, seed, t))
   344       return true;
   345   return false;
   346 }
   348 template<class E>
   349 bool GenericTaskQueueSet<E>::steal_best_of_all(uint queue_num, int* seed, E& t) {
   350   if (_n > 2) {
   351     int best_k;
   352     uint best_sz = 0;
   353     for (uint k = 0; k < _n; k++) {
   354       if (k == queue_num) continue;
   355       uint sz = _queues[k]->size();
   356       if (sz > best_sz) {
   357         best_sz = sz;
   358         best_k = k;
   359       }
   360     }
   361     return best_sz > 0 && _queues[best_k]->pop_global(t);
   362   } else if (_n == 2) {
   363     // Just try the other one.
   364     int k = (queue_num + 1) % 2;
   365     return _queues[k]->pop_global(t);
   366   } else {
   367     assert(_n == 1, "can't be zero.");
   368     return false;
   369   }
   370 }
   372 template<class E>
   373 bool GenericTaskQueueSet<E>::steal_1_random(uint queue_num, int* seed, E& t) {
   374   if (_n > 2) {
   375     uint k = queue_num;
   376     while (k == queue_num) k = randomParkAndMiller(seed) % _n;
   377     return _queues[2]->pop_global(t);
   378   } else if (_n == 2) {
   379     // Just try the other one.
   380     int k = (queue_num + 1) % 2;
   381     return _queues[k]->pop_global(t);
   382   } else {
   383     assert(_n == 1, "can't be zero.");
   384     return false;
   385   }
   386 }
   388 template<class E>
   389 bool GenericTaskQueueSet<E>::steal_best_of_2(uint queue_num, int* seed, E& t) {
   390   if (_n > 2) {
   391     uint k1 = queue_num;
   392     while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
   393     uint k2 = queue_num;
   394     while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
   395     // Sample both and try the larger.
   396     uint sz1 = _queues[k1]->size();
   397     uint sz2 = _queues[k2]->size();
   398     if (sz2 > sz1) return _queues[k2]->pop_global(t);
   399     else return _queues[k1]->pop_global(t);
   400   } else if (_n == 2) {
   401     // Just try the other one.
   402     uint k = (queue_num + 1) % 2;
   403     return _queues[k]->pop_global(t);
   404   } else {
   405     assert(_n == 1, "can't be zero.");
   406     return false;
   407   }
   408 }
   410 template<class E>
   411 bool GenericTaskQueueSet<E>::peek() {
   412   // Try all the queues.
   413   for (uint j = 0; j < _n; j++) {
   414     if (_queues[j]->peek())
   415       return true;
   416   }
   417   return false;
   418 }
   420 // When to terminate from the termination protocol.
   421 class TerminatorTerminator: public CHeapObj {
   422 public:
   423   virtual bool should_exit_termination() = 0;
   424 };
   426 // A class to aid in the termination of a set of parallel tasks using
   427 // TaskQueueSet's for work stealing.
   429 #undef TRACESPINNING
   431 class ParallelTaskTerminator: public StackObj {
   432 private:
   433   int _n_threads;
   434   TaskQueueSetSuper* _queue_set;
   435   int _offered_termination;
   437 #ifdef TRACESPINNING
   438   static uint _total_yields;
   439   static uint _total_spins;
   440   static uint _total_peeks;
   441 #endif
   443   bool peek_in_queue_set();
   444 protected:
   445   virtual void yield();
   446   void sleep(uint millis);
   448 public:
   450   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
   451   // queue sets of work queues of other threads.
   452   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
   454   // The current thread has no work, and is ready to terminate if everyone
   455   // else is.  If returns "true", all threads are terminated.  If returns
   456   // "false", available work has been observed in one of the task queues,
   457   // so the global task is not complete.
   458   bool offer_termination() {
   459     return offer_termination(NULL);
   460   }
   462   // As above, but it also terminates of the should_exit_termination()
   463   // method of the terminator parameter returns true. If terminator is
   464   // NULL, then it is ignored.
   465   bool offer_termination(TerminatorTerminator* terminator);
   467   // Reset the terminator, so that it may be reused again.
   468   // The caller is responsible for ensuring that this is done
   469   // in an MT-safe manner, once the previous round of use of
   470   // the terminator is finished.
   471   void reset_for_reuse();
   473 #ifdef TRACESPINNING
   474   static uint total_yields() { return _total_yields; }
   475   static uint total_spins() { return _total_spins; }
   476   static uint total_peeks() { return _total_peeks; }
   477   static void print_termination_counts();
   478 #endif
   479 };
   481 #define SIMPLE_STACK 0
   483 template<class E> inline bool GenericTaskQueue<E>::push(E t) {
   484 #if SIMPLE_STACK
   485   uint localBot = _bottom;
   486   if (_bottom < max_elems()) {
   487     _elems[localBot] = t;
   488     _bottom = localBot + 1;
   489     return true;
   490   } else {
   491     return false;
   492   }
   493 #else
   494   uint localBot = _bottom;
   495   assert((localBot >= 0) && (localBot < n()), "_bottom out of range.");
   496   TAG_TYPE top = get_top();
   497   uint dirty_n_elems = dirty_size(localBot, top);
   498   assert((dirty_n_elems >= 0) && (dirty_n_elems < n()),
   499          "n_elems out of range.");
   500   if (dirty_n_elems < max_elems()) {
   501     _elems[localBot] = t;
   502     _bottom = increment_index(localBot);
   503     return true;
   504   } else {
   505     return push_slow(t, dirty_n_elems);
   506   }
   507 #endif
   508 }
   510 template<class E> inline bool GenericTaskQueue<E>::pop_local(E& t) {
   511 #if SIMPLE_STACK
   512   uint localBot = _bottom;
   513   assert(localBot > 0, "precondition.");
   514   localBot--;
   515   t = _elems[localBot];
   516   _bottom = localBot;
   517   return true;
   518 #else
   519   uint localBot = _bottom;
   520   // This value cannot be n-1.  That can only occur as a result of
   521   // the assignment to bottom in this method.  If it does, this method
   522   // resets the size( to 0 before the next call (which is sequential,
   523   // since this is pop_local.)
   524   uint dirty_n_elems = dirty_size(localBot, get_top());
   525   assert(dirty_n_elems != n() - 1, "Shouldn't be possible...");
   526   if (dirty_n_elems == 0) return false;
   527   localBot = decrement_index(localBot);
   528   _bottom = localBot;
   529   // This is necessary to prevent any read below from being reordered
   530   // before the store just above.
   531   OrderAccess::fence();
   532   t = _elems[localBot];
   533   // This is a second read of "age"; the "size()" above is the first.
   534   // If there's still at least one element in the queue, based on the
   535   // "_bottom" and "age" we've read, then there can be no interference with
   536   // a "pop_global" operation, and we're done.
   537   TAG_TYPE tp = get_top();    // XXX
   538   if (size(localBot, tp) > 0) {
   539     assert(dirty_size(localBot, tp) != n() - 1,
   540            "Shouldn't be possible...");
   541     return true;
   542   } else {
   543     // Otherwise, the queue contained exactly one element; we take the slow
   544     // path.
   545     return pop_local_slow(localBot, get_age());
   546   }
   547 #endif
   548 }
   550 typedef oop Task;
   551 typedef GenericTaskQueue<Task>         OopTaskQueue;
   552 typedef GenericTaskQueueSet<Task>      OopTaskQueueSet;
   555 #define COMPRESSED_OOP_MASK  1
   557 // This is a container class for either an oop* or a narrowOop*.
   558 // Both are pushed onto a task queue and the consumer will test is_narrow()
   559 // to determine which should be processed.
   560 class StarTask {
   561   void*  _holder;        // either union oop* or narrowOop*
   562  public:
   563   StarTask(narrowOop *p) { _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK); }
   564   StarTask(oop *p)       { _holder = (void*)p; }
   565   StarTask()             { _holder = NULL; }
   566   operator oop*()        { return (oop*)_holder; }
   567   operator narrowOop*()  {
   568     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
   569   }
   571   // Operators to preserve const/volatile in assignments required by gcc
   572   void operator=(const volatile StarTask& t) volatile { _holder = t._holder; }
   574   bool is_narrow() const {
   575     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
   576   }
   577 };
   579 typedef GenericTaskQueue<StarTask>     OopStarTaskQueue;
   580 typedef GenericTaskQueueSet<StarTask>  OopStarTaskQueueSet;
   582 typedef size_t RegionTask;  // index for region
   583 typedef GenericTaskQueue<RegionTask>    RegionTaskQueue;
   584 typedef GenericTaskQueueSet<RegionTask> RegionTaskQueueSet;
   586 class RegionTaskQueueWithOverflow: public CHeapObj {
   587  protected:
   588   RegionTaskQueue              _region_queue;
   589   GrowableArray<RegionTask>*   _overflow_stack;
   591  public:
   592   RegionTaskQueueWithOverflow() : _overflow_stack(NULL) {}
   593   // Initialize both stealable queue and overflow
   594   void initialize();
   595   // Save first to stealable queue and then to overflow
   596   void save(RegionTask t);
   597   // Retrieve first from overflow and then from stealable queue
   598   bool retrieve(RegionTask& region_index);
   599   // Retrieve from stealable queue
   600   bool retrieve_from_stealable_queue(RegionTask& region_index);
   601   // Retrieve from overflow
   602   bool retrieve_from_overflow(RegionTask& region_index);
   603   bool is_empty();
   604   bool stealable_is_empty();
   605   bool overflow_is_empty();
   606   uint stealable_size() { return _region_queue.size(); }
   607   RegionTaskQueue* task_queue() { return &_region_queue; }
   608 };
   610 #define USE_RegionTaskQueueWithOverflow

mercurial