src/share/vm/opto/type.hpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 990
35ae4dd6c27c
child 1063
7bb995fbd3c0
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Portions of code courtesy of Clifford Click
    27 // Optimization - Graph Style
    30 // This class defines a Type lattice.  The lattice is used in the constant
    31 // propagation algorithms, and for some type-checking of the iloc code.
    32 // Basic types include RSD's (lower bound, upper bound, stride for integers),
    33 // float & double precision constants, sets of data-labels and code-labels.
    34 // The complete lattice is described below.  Subtypes have no relationship to
    35 // up or down in the lattice; that is entirely determined by the behavior of
    36 // the MEET/JOIN functions.
    38 class Dict;
    39 class Type;
    40 class   TypeD;
    41 class   TypeF;
    42 class   TypeInt;
    43 class   TypeLong;
    44 class   TypeNarrowOop;
    45 class   TypeAry;
    46 class   TypeTuple;
    47 class   TypePtr;
    48 class     TypeRawPtr;
    49 class     TypeOopPtr;
    50 class       TypeInstPtr;
    51 class       TypeAryPtr;
    52 class       TypeKlassPtr;
    54 //------------------------------Type-------------------------------------------
    55 // Basic Type object, represents a set of primitive Values.
    56 // Types are hash-cons'd into a private class dictionary, so only one of each
    57 // different kind of Type exists.  Types are never modified after creation, so
    58 // all their interesting fields are constant.
    59 class Type {
    60 public:
    61   enum TYPES {
    62     Bad=0,                      // Type check
    63     Control,                    // Control of code (not in lattice)
    64     Top,                        // Top of the lattice
    65     Int,                        // Integer range (lo-hi)
    66     Long,                       // Long integer range (lo-hi)
    67     Half,                       // Placeholder half of doubleword
    68     NarrowOop,                  // Compressed oop pointer
    70     Tuple,                      // Method signature or object layout
    71     Array,                      // Array types
    73     AnyPtr,                     // Any old raw, klass, inst, or array pointer
    74     RawPtr,                     // Raw (non-oop) pointers
    75     OopPtr,                     // Any and all Java heap entities
    76     InstPtr,                    // Instance pointers (non-array objects)
    77     AryPtr,                     // Array pointers
    78     KlassPtr,                   // Klass pointers
    79     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
    81     Function,                   // Function signature
    82     Abio,                       // Abstract I/O
    83     Return_Address,             // Subroutine return address
    84     Memory,                     // Abstract store
    85     FloatTop,                   // No float value
    86     FloatCon,                   // Floating point constant
    87     FloatBot,                   // Any float value
    88     DoubleTop,                  // No double value
    89     DoubleCon,                  // Double precision constant
    90     DoubleBot,                  // Any double value
    91     Bottom,                     // Bottom of lattice
    92     lastype                     // Bogus ending type (not in lattice)
    93   };
    95   // Signal values for offsets from a base pointer
    96   enum OFFSET_SIGNALS {
    97     OffsetTop = -2000000000,    // undefined offset
    98     OffsetBot = -2000000001     // any possible offset
    99   };
   101   // Min and max WIDEN values.
   102   enum WIDEN {
   103     WidenMin = 0,
   104     WidenMax = 3
   105   };
   107 private:
   108   // Dictionary of types shared among compilations.
   109   static Dict* _shared_type_dict;
   111   static int uhash( const Type *const t );
   112   // Structural equality check.  Assumes that cmp() has already compared
   113   // the _base types and thus knows it can cast 't' appropriately.
   114   virtual bool eq( const Type *t ) const;
   116   // Top-level hash-table of types
   117   static Dict *type_dict() {
   118     return Compile::current()->type_dict();
   119   }
   121   // DUAL operation: reflect around lattice centerline.  Used instead of
   122   // join to ensure my lattice is symmetric up and down.  Dual is computed
   123   // lazily, on demand, and cached in _dual.
   124   const Type *_dual;            // Cached dual value
   125   // Table for efficient dualing of base types
   126   static const TYPES dual_type[lastype];
   128 protected:
   129   // Each class of type is also identified by its base.
   130   const TYPES _base;            // Enum of Types type
   132   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
   133   // ~Type();                   // Use fast deallocation
   134   const Type *hashcons();       // Hash-cons the type
   136 public:
   138   inline void* operator new( size_t x ) {
   139     Compile* compile = Compile::current();
   140     compile->set_type_last_size(x);
   141     void *temp = compile->type_arena()->Amalloc_D(x);
   142     compile->set_type_hwm(temp);
   143     return temp;
   144   }
   145   inline void operator delete( void* ptr ) {
   146     Compile* compile = Compile::current();
   147     compile->type_arena()->Afree(ptr,compile->type_last_size());
   148   }
   150   // Initialize the type system for a particular compilation.
   151   static void Initialize(Compile* compile);
   153   // Initialize the types shared by all compilations.
   154   static void Initialize_shared(Compile* compile);
   156   TYPES base() const {
   157     assert(_base > Bad && _base < lastype, "sanity");
   158     return _base;
   159   }
   161   // Create a new hash-consd type
   162   static const Type *make(enum TYPES);
   163   // Test for equivalence of types
   164   static int cmp( const Type *const t1, const Type *const t2 );
   165   // Test for higher or equal in lattice
   166   int higher_equal( const Type *t ) const { return !cmp(meet(t),t); }
   168   // MEET operation; lower in lattice.
   169   const Type *meet( const Type *t ) const;
   170   // WIDEN: 'widens' for Ints and other range types
   171   virtual const Type *widen( const Type *old ) const { return this; }
   172   // NARROW: complement for widen, used by pessimistic phases
   173   virtual const Type *narrow( const Type *old ) const { return this; }
   175   // DUAL operation: reflect around lattice centerline.  Used instead of
   176   // join to ensure my lattice is symmetric up and down.
   177   const Type *dual() const { return _dual; }
   179   // Compute meet dependent on base type
   180   virtual const Type *xmeet( const Type *t ) const;
   181   virtual const Type *xdual() const;    // Compute dual right now.
   183   // JOIN operation; higher in lattice.  Done by finding the dual of the
   184   // meet of the dual of the 2 inputs.
   185   const Type *join( const Type *t ) const {
   186     return dual()->meet(t->dual())->dual(); }
   188   // Modified version of JOIN adapted to the needs Node::Value.
   189   // Normalizes all empty values to TOP.  Does not kill _widen bits.
   190   // Currently, it also works around limitations involving interface types.
   191   virtual const Type *filter( const Type *kills ) const;
   193   // Returns true if this pointer points at memory which contains a
   194   // compressed oop references.
   195   bool is_ptr_to_narrowoop() const;
   197   // Convenience access
   198   float getf() const;
   199   double getd() const;
   201   const TypeInt    *is_int() const;
   202   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
   203   const TypeLong   *is_long() const;
   204   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
   205   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
   206   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
   207   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
   208   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
   209   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
   210   const TypeAry    *is_ary() const;              // Array, NOT array pointer
   211   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
   212   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
   213   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
   214   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
   215   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
   216   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
   217   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
   218   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
   219   const TypeKlassPtr *isa_klassptr() const;      // Returns NULL if not KlassPtr
   220   const TypeKlassPtr *is_klassptr() const;       // assert if not KlassPtr
   221   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
   222   const TypeInstPtr  *is_instptr() const;        // Instance
   223   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
   224   const TypeAryPtr   *is_aryptr() const;         // Array oop
   225   virtual bool      is_finite() const;           // Has a finite value
   226   virtual bool      is_nan()    const;           // Is not a number (NaN)
   228   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
   229   const TypePtr* make_ptr() const;
   230   // Returns this compressed pointer or the equivalent compressed version
   231   // of this pointer type.
   232   const TypeNarrowOop* make_narrowoop() const;
   234   // Special test for register pressure heuristic
   235   bool is_floatingpoint() const;        // True if Float or Double base type
   237   // Do you have memory, directly or through a tuple?
   238   bool has_memory( ) const;
   240   // Are you a pointer type or not?
   241   bool isa_oop_ptr() const;
   243   // TRUE if type is a singleton
   244   virtual bool singleton(void) const;
   246   // TRUE if type is above the lattice centerline, and is therefore vacuous
   247   virtual bool empty(void) const;
   249   // Return a hash for this type.  The hash function is public so ConNode
   250   // (constants) can hash on their constant, which is represented by a Type.
   251   virtual int hash() const;
   253   // Map ideal registers (machine types) to ideal types
   254   static const Type *mreg2type[];
   256   // Printing, statistics
   257   static const char * const msg[lastype]; // Printable strings
   258 #ifndef PRODUCT
   259   void         dump_on(outputStream *st) const;
   260   void         dump() const {
   261     dump_on(tty);
   262   }
   263   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   264   static  void dump_stats();
   265   static  void verify_lastype();          // Check that arrays match type enum
   266 #endif
   267   void typerr(const Type *t) const; // Mixing types error
   269   // Create basic type
   270   static const Type* get_const_basic_type(BasicType type) {
   271     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
   272     return _const_basic_type[type];
   273   }
   275   // Mapping to the array element's basic type.
   276   BasicType array_element_basic_type() const;
   278   // Create standard type for a ciType:
   279   static const Type* get_const_type(ciType* type);
   281   // Create standard zero value:
   282   static const Type* get_zero_type(BasicType type) {
   283     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
   284     return _zero_type[type];
   285   }
   287   // Report if this is a zero value (not top).
   288   bool is_zero_type() const {
   289     BasicType type = basic_type();
   290     if (type == T_VOID || type >= T_CONFLICT)
   291       return false;
   292     else
   293       return (this == _zero_type[type]);
   294   }
   296   // Convenience common pre-built types.
   297   static const Type *ABIO;
   298   static const Type *BOTTOM;
   299   static const Type *CONTROL;
   300   static const Type *DOUBLE;
   301   static const Type *FLOAT;
   302   static const Type *HALF;
   303   static const Type *MEMORY;
   304   static const Type *MULTI;
   305   static const Type *RETURN_ADDRESS;
   306   static const Type *TOP;
   308   // Mapping from compiler type to VM BasicType
   309   BasicType basic_type() const { return _basic_type[_base]; }
   311   // Mapping from CI type system to compiler type:
   312   static const Type* get_typeflow_type(ciType* type);
   314 private:
   315   // support arrays
   316   static const BasicType _basic_type[];
   317   static const Type*        _zero_type[T_CONFLICT+1];
   318   static const Type* _const_basic_type[T_CONFLICT+1];
   319 };
   321 //------------------------------TypeF------------------------------------------
   322 // Class of Float-Constant Types.
   323 class TypeF : public Type {
   324   TypeF( float f ) : Type(FloatCon), _f(f) {};
   325 public:
   326   virtual bool eq( const Type *t ) const;
   327   virtual int  hash() const;             // Type specific hashing
   328   virtual bool singleton(void) const;    // TRUE if type is a singleton
   329   virtual bool empty(void) const;        // TRUE if type is vacuous
   330 public:
   331   const float _f;               // Float constant
   333   static const TypeF *make(float f);
   335   virtual bool        is_finite() const;  // Has a finite value
   336   virtual bool        is_nan()    const;  // Is not a number (NaN)
   338   virtual const Type *xmeet( const Type *t ) const;
   339   virtual const Type *xdual() const;    // Compute dual right now.
   340   // Convenience common pre-built types.
   341   static const TypeF *ZERO; // positive zero only
   342   static const TypeF *ONE;
   343 #ifndef PRODUCT
   344   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   345 #endif
   346 };
   348 //------------------------------TypeD------------------------------------------
   349 // Class of Double-Constant Types.
   350 class TypeD : public Type {
   351   TypeD( double d ) : Type(DoubleCon), _d(d) {};
   352 public:
   353   virtual bool eq( const Type *t ) const;
   354   virtual int  hash() const;             // Type specific hashing
   355   virtual bool singleton(void) const;    // TRUE if type is a singleton
   356   virtual bool empty(void) const;        // TRUE if type is vacuous
   357 public:
   358   const double _d;              // Double constant
   360   static const TypeD *make(double d);
   362   virtual bool        is_finite() const;  // Has a finite value
   363   virtual bool        is_nan()    const;  // Is not a number (NaN)
   365   virtual const Type *xmeet( const Type *t ) const;
   366   virtual const Type *xdual() const;    // Compute dual right now.
   367   // Convenience common pre-built types.
   368   static const TypeD *ZERO; // positive zero only
   369   static const TypeD *ONE;
   370 #ifndef PRODUCT
   371   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   372 #endif
   373 };
   375 //------------------------------TypeInt----------------------------------------
   376 // Class of integer ranges, the set of integers between a lower bound and an
   377 // upper bound, inclusive.
   378 class TypeInt : public Type {
   379   TypeInt( jint lo, jint hi, int w );
   380 public:
   381   virtual bool eq( const Type *t ) const;
   382   virtual int  hash() const;             // Type specific hashing
   383   virtual bool singleton(void) const;    // TRUE if type is a singleton
   384   virtual bool empty(void) const;        // TRUE if type is vacuous
   385 public:
   386   const jint _lo, _hi;          // Lower bound, upper bound
   387   const short _widen;           // Limit on times we widen this sucker
   389   static const TypeInt *make(jint lo);
   390   // must always specify w
   391   static const TypeInt *make(jint lo, jint hi, int w);
   393   // Check for single integer
   394   int is_con() const { return _lo==_hi; }
   395   bool is_con(int i) const { return is_con() && _lo == i; }
   396   jint get_con() const { assert( is_con(), "" );  return _lo; }
   398   virtual bool        is_finite() const;  // Has a finite value
   400   virtual const Type *xmeet( const Type *t ) const;
   401   virtual const Type *xdual() const;    // Compute dual right now.
   402   virtual const Type *widen( const Type *t ) const;
   403   virtual const Type *narrow( const Type *t ) const;
   404   // Do not kill _widen bits.
   405   virtual const Type *filter( const Type *kills ) const;
   406   // Convenience common pre-built types.
   407   static const TypeInt *MINUS_1;
   408   static const TypeInt *ZERO;
   409   static const TypeInt *ONE;
   410   static const TypeInt *BOOL;
   411   static const TypeInt *CC;
   412   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
   413   static const TypeInt *CC_GT;  // [1]   == ONE
   414   static const TypeInt *CC_EQ;  // [0]   == ZERO
   415   static const TypeInt *CC_LE;  // [-1,0]
   416   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
   417   static const TypeInt *BYTE;
   418   static const TypeInt *CHAR;
   419   static const TypeInt *SHORT;
   420   static const TypeInt *POS;
   421   static const TypeInt *POS1;
   422   static const TypeInt *INT;
   423   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
   424 #ifndef PRODUCT
   425   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   426 #endif
   427 };
   430 //------------------------------TypeLong---------------------------------------
   431 // Class of long integer ranges, the set of integers between a lower bound and
   432 // an upper bound, inclusive.
   433 class TypeLong : public Type {
   434   TypeLong( jlong lo, jlong hi, int w );
   435 public:
   436   virtual bool eq( const Type *t ) const;
   437   virtual int  hash() const;             // Type specific hashing
   438   virtual bool singleton(void) const;    // TRUE if type is a singleton
   439   virtual bool empty(void) const;        // TRUE if type is vacuous
   440 public:
   441   const jlong _lo, _hi;         // Lower bound, upper bound
   442   const short _widen;           // Limit on times we widen this sucker
   444   static const TypeLong *make(jlong lo);
   445   // must always specify w
   446   static const TypeLong *make(jlong lo, jlong hi, int w);
   448   // Check for single integer
   449   int is_con() const { return _lo==_hi; }
   450   bool is_con(int i) const { return is_con() && _lo == i; }
   451   jlong get_con() const { assert( is_con(), "" ); return _lo; }
   453   virtual bool        is_finite() const;  // Has a finite value
   455   virtual const Type *xmeet( const Type *t ) const;
   456   virtual const Type *xdual() const;    // Compute dual right now.
   457   virtual const Type *widen( const Type *t ) const;
   458   virtual const Type *narrow( const Type *t ) const;
   459   // Do not kill _widen bits.
   460   virtual const Type *filter( const Type *kills ) const;
   461   // Convenience common pre-built types.
   462   static const TypeLong *MINUS_1;
   463   static const TypeLong *ZERO;
   464   static const TypeLong *ONE;
   465   static const TypeLong *POS;
   466   static const TypeLong *LONG;
   467   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
   468   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
   469 #ifndef PRODUCT
   470   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
   471 #endif
   472 };
   474 //------------------------------TypeTuple--------------------------------------
   475 // Class of Tuple Types, essentially type collections for function signatures
   476 // and class layouts.  It happens to also be a fast cache for the HotSpot
   477 // signature types.
   478 class TypeTuple : public Type {
   479   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
   480 public:
   481   virtual bool eq( const Type *t ) const;
   482   virtual int  hash() const;             // Type specific hashing
   483   virtual bool singleton(void) const;    // TRUE if type is a singleton
   484   virtual bool empty(void) const;        // TRUE if type is vacuous
   486 public:
   487   const uint          _cnt;              // Count of fields
   488   const Type ** const _fields;           // Array of field types
   490   // Accessors:
   491   uint cnt() const { return _cnt; }
   492   const Type* field_at(uint i) const {
   493     assert(i < _cnt, "oob");
   494     return _fields[i];
   495   }
   496   void set_field_at(uint i, const Type* t) {
   497     assert(i < _cnt, "oob");
   498     _fields[i] = t;
   499   }
   501   static const TypeTuple *make( uint cnt, const Type **fields );
   502   static const TypeTuple *make_range(ciSignature *sig);
   503   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
   505   // Subroutine call type with space allocated for argument types
   506   static const Type **fields( uint arg_cnt );
   508   virtual const Type *xmeet( const Type *t ) const;
   509   virtual const Type *xdual() const;    // Compute dual right now.
   510   // Convenience common pre-built types.
   511   static const TypeTuple *IFBOTH;
   512   static const TypeTuple *IFFALSE;
   513   static const TypeTuple *IFTRUE;
   514   static const TypeTuple *IFNEITHER;
   515   static const TypeTuple *LOOPBODY;
   516   static const TypeTuple *MEMBAR;
   517   static const TypeTuple *STORECONDITIONAL;
   518   static const TypeTuple *START_I2C;
   519   static const TypeTuple *INT_PAIR;
   520   static const TypeTuple *LONG_PAIR;
   521 #ifndef PRODUCT
   522   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   523 #endif
   524 };
   526 //------------------------------TypeAry----------------------------------------
   527 // Class of Array Types
   528 class TypeAry : public Type {
   529   TypeAry( const Type *elem, const TypeInt *size) : Type(Array),
   530     _elem(elem), _size(size) {}
   531 public:
   532   virtual bool eq( const Type *t ) const;
   533   virtual int  hash() const;             // Type specific hashing
   534   virtual bool singleton(void) const;    // TRUE if type is a singleton
   535   virtual bool empty(void) const;        // TRUE if type is vacuous
   537 private:
   538   const Type *_elem;            // Element type of array
   539   const TypeInt *_size;         // Elements in array
   540   friend class TypeAryPtr;
   542 public:
   543   static const TypeAry *make(  const Type *elem, const TypeInt *size);
   545   virtual const Type *xmeet( const Type *t ) const;
   546   virtual const Type *xdual() const;    // Compute dual right now.
   547   bool ary_must_be_exact() const;  // true if arrays of such are never generic
   548 #ifndef PRODUCT
   549   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
   550 #endif
   551 };
   553 //------------------------------TypePtr----------------------------------------
   554 // Class of machine Pointer Types: raw data, instances or arrays.
   555 // If the _base enum is AnyPtr, then this refers to all of the above.
   556 // Otherwise the _base will indicate which subset of pointers is affected,
   557 // and the class will be inherited from.
   558 class TypePtr : public Type {
   559   friend class TypeNarrowOop;
   560 public:
   561   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
   562 protected:
   563   TypePtr( TYPES t, PTR ptr, int offset ) : Type(t), _ptr(ptr), _offset(offset) {}
   564   virtual bool eq( const Type *t ) const;
   565   virtual int  hash() const;             // Type specific hashing
   566   static const PTR ptr_meet[lastPTR][lastPTR];
   567   static const PTR ptr_dual[lastPTR];
   568   static const char * const ptr_msg[lastPTR];
   570 public:
   571   const int _offset;            // Offset into oop, with TOP & BOT
   572   const PTR _ptr;               // Pointer equivalence class
   574   const int offset() const { return _offset; }
   575   const PTR ptr()    const { return _ptr; }
   577   static const TypePtr *make( TYPES t, PTR ptr, int offset );
   579   // Return a 'ptr' version of this type
   580   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   582   virtual intptr_t get_con() const;
   584   int xadd_offset( intptr_t offset ) const;
   585   virtual const TypePtr *add_offset( intptr_t offset ) const;
   587   virtual bool singleton(void) const;    // TRUE if type is a singleton
   588   virtual bool empty(void) const;        // TRUE if type is vacuous
   589   virtual const Type *xmeet( const Type *t ) const;
   590   int meet_offset( int offset ) const;
   591   int dual_offset( ) const;
   592   virtual const Type *xdual() const;    // Compute dual right now.
   594   // meet, dual and join over pointer equivalence sets
   595   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
   596   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
   598   // This is textually confusing unless one recalls that
   599   // join(t) == dual()->meet(t->dual())->dual().
   600   PTR join_ptr( const PTR in_ptr ) const {
   601     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
   602   }
   604   // Tests for relation to centerline of type lattice:
   605   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
   606   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
   607   // Convenience common pre-built types.
   608   static const TypePtr *NULL_PTR;
   609   static const TypePtr *NOTNULL;
   610   static const TypePtr *BOTTOM;
   611 #ifndef PRODUCT
   612   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   613 #endif
   614 };
   616 //------------------------------TypeRawPtr-------------------------------------
   617 // Class of raw pointers, pointers to things other than Oops.  Examples
   618 // include the stack pointer, top of heap, card-marking area, handles, etc.
   619 class TypeRawPtr : public TypePtr {
   620 protected:
   621   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
   622 public:
   623   virtual bool eq( const Type *t ) const;
   624   virtual int  hash() const;     // Type specific hashing
   626   const address _bits;          // Constant value, if applicable
   628   static const TypeRawPtr *make( PTR ptr );
   629   static const TypeRawPtr *make( address bits );
   631   // Return a 'ptr' version of this type
   632   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   634   virtual intptr_t get_con() const;
   636   virtual const TypePtr *add_offset( intptr_t offset ) const;
   638   virtual const Type *xmeet( const Type *t ) const;
   639   virtual const Type *xdual() const;    // Compute dual right now.
   640   // Convenience common pre-built types.
   641   static const TypeRawPtr *BOTTOM;
   642   static const TypeRawPtr *NOTNULL;
   643 #ifndef PRODUCT
   644   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
   645 #endif
   646 };
   648 //------------------------------TypeOopPtr-------------------------------------
   649 // Some kind of oop (Java pointer), either klass or instance or array.
   650 class TypeOopPtr : public TypePtr {
   651 protected:
   652   TypeOopPtr( TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   653 public:
   654   virtual bool eq( const Type *t ) const;
   655   virtual int  hash() const;             // Type specific hashing
   656   virtual bool singleton(void) const;    // TRUE if type is a singleton
   657   enum {
   658    InstanceTop = -1,   // undefined instance
   659    InstanceBot = 0     // any possible instance
   660   };
   661 protected:
   663   // Oop is NULL, unless this is a constant oop.
   664   ciObject*     _const_oop;   // Constant oop
   665   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
   666   ciKlass*      _klass;       // Klass object
   667   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
   668   bool          _klass_is_exact;
   669   bool          _is_ptr_to_narrowoop;
   671   // If not InstanceTop or InstanceBot, indicates that this is
   672   // a particular instance of this type which is distinct.
   673   // This is the the node index of the allocation node creating this instance.
   674   int           _instance_id;
   676   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
   678   int dual_instance_id() const;
   679   int meet_instance_id(int uid) const;
   681 public:
   682   // Creates a type given a klass. Correctly handles multi-dimensional arrays
   683   // Respects UseUniqueSubclasses.
   684   // If the klass is final, the resulting type will be exact.
   685   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
   686     return make_from_klass_common(klass, true, false);
   687   }
   688   // Same as before, but will produce an exact type, even if
   689   // the klass is not final, as long as it has exactly one implementation.
   690   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
   691     return make_from_klass_common(klass, true, true);
   692   }
   693   // Same as before, but does not respects UseUniqueSubclasses.
   694   // Use this only for creating array element types.
   695   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
   696     return make_from_klass_common(klass, false, false);
   697   }
   698   // Creates a singleton type given an object.
   699   static const TypeOopPtr* make_from_constant(ciObject* o);
   701   // Make a generic (unclassed) pointer to an oop.
   702   static const TypeOopPtr* make(PTR ptr, int offset);
   704   ciObject* const_oop()    const { return _const_oop; }
   705   virtual ciKlass* klass() const { return _klass;     }
   706   bool klass_is_exact()    const { return _klass_is_exact; }
   708   // Returns true if this pointer points at memory which contains a
   709   // compressed oop references.
   710   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
   712   bool is_known_instance()       const { return _instance_id > 0; }
   713   int  instance_id()             const { return _instance_id; }
   714   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
   716   virtual intptr_t get_con() const;
   718   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   720   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   722   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   724   // corresponding pointer to klass, for a given instance
   725   const TypeKlassPtr* as_klass_type() const;
   727   virtual const TypePtr *add_offset( intptr_t offset ) const;
   729   virtual const Type *xmeet( const Type *t ) const;
   730   virtual const Type *xdual() const;    // Compute dual right now.
   732   // Do not allow interface-vs.-noninterface joins to collapse to top.
   733   virtual const Type *filter( const Type *kills ) const;
   735   // Convenience common pre-built type.
   736   static const TypeOopPtr *BOTTOM;
   737 #ifndef PRODUCT
   738   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   739 #endif
   740 };
   742 //------------------------------TypeInstPtr------------------------------------
   743 // Class of Java object pointers, pointing either to non-array Java instances
   744 // or to a klassOop (including array klasses).
   745 class TypeInstPtr : public TypeOopPtr {
   746   TypeInstPtr( PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id );
   747   virtual bool eq( const Type *t ) const;
   748   virtual int  hash() const;             // Type specific hashing
   750   ciSymbol*  _name;        // class name
   752  public:
   753   ciSymbol* name()         const { return _name; }
   755   bool  is_loaded() const { return _klass->is_loaded(); }
   757   // Make a pointer to a constant oop.
   758   static const TypeInstPtr *make(ciObject* o) {
   759     return make(TypePtr::Constant, o->klass(), true, o, 0);
   760   }
   762   // Make a pointer to a constant oop with offset.
   763   static const TypeInstPtr *make(ciObject* o, int offset) {
   764     return make(TypePtr::Constant, o->klass(), true, o, offset);
   765   }
   767   // Make a pointer to some value of type klass.
   768   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
   769     return make(ptr, klass, false, NULL, 0);
   770   }
   772   // Make a pointer to some non-polymorphic value of exactly type klass.
   773   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
   774     return make(ptr, klass, true, NULL, 0);
   775   }
   777   // Make a pointer to some value of type klass with offset.
   778   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
   779     return make(ptr, klass, false, NULL, offset);
   780   }
   782   // Make a pointer to an oop.
   783   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot );
   785   // If this is a java.lang.Class constant, return the type for it or NULL.
   786   // Pass to Type::get_const_type to turn it to a type, which will usually
   787   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
   788   ciType* java_mirror_type() const;
   790   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   792   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   794   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   796   virtual const TypePtr *add_offset( intptr_t offset ) const;
   798   virtual const Type *xmeet( const Type *t ) const;
   799   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
   800   virtual const Type *xdual() const;    // Compute dual right now.
   802   // Convenience common pre-built types.
   803   static const TypeInstPtr *NOTNULL;
   804   static const TypeInstPtr *BOTTOM;
   805   static const TypeInstPtr *MIRROR;
   806   static const TypeInstPtr *MARK;
   807   static const TypeInstPtr *KLASS;
   808 #ifndef PRODUCT
   809   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   810 #endif
   811 };
   813 //------------------------------TypeAryPtr-------------------------------------
   814 // Class of Java array pointers
   815 class TypeAryPtr : public TypeOopPtr {
   816   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id ) : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id), _ary(ary) {};
   817   virtual bool eq( const Type *t ) const;
   818   virtual int hash() const;     // Type specific hashing
   819   const TypeAry *_ary;          // Array we point into
   821 public:
   822   // Accessors
   823   ciKlass* klass() const;
   824   const TypeAry* ary() const  { return _ary; }
   825   const Type*    elem() const { return _ary->_elem; }
   826   const TypeInt* size() const { return _ary->_size; }
   828   static const TypeAryPtr *make( PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
   829   // Constant pointer to array
   830   static const TypeAryPtr *make( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, int instance_id = InstanceBot);
   832   // Convenience
   833   static const TypeAryPtr *make(ciObject* o);
   835   // Return a 'ptr' version of this type
   836   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   838   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   840   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
   842   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
   843   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
   845   virtual bool empty(void) const;        // TRUE if type is vacuous
   846   virtual const TypePtr *add_offset( intptr_t offset ) const;
   848   virtual const Type *xmeet( const Type *t ) const;
   849   virtual const Type *xdual() const;    // Compute dual right now.
   851   // Convenience common pre-built types.
   852   static const TypeAryPtr *RANGE;
   853   static const TypeAryPtr *OOPS;
   854   static const TypeAryPtr *NARROWOOPS;
   855   static const TypeAryPtr *BYTES;
   856   static const TypeAryPtr *SHORTS;
   857   static const TypeAryPtr *CHARS;
   858   static const TypeAryPtr *INTS;
   859   static const TypeAryPtr *LONGS;
   860   static const TypeAryPtr *FLOATS;
   861   static const TypeAryPtr *DOUBLES;
   862   // selects one of the above:
   863   static const TypeAryPtr *get_array_body_type(BasicType elem) {
   864     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
   865     return _array_body_type[elem];
   866   }
   867   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
   868   // sharpen the type of an int which is used as an array size
   869 #ifndef PRODUCT
   870   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   871 #endif
   872 };
   874 //------------------------------TypeKlassPtr-----------------------------------
   875 // Class of Java Klass pointers
   876 class TypeKlassPtr : public TypeOopPtr {
   877   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
   879   virtual bool eq( const Type *t ) const;
   880   virtual int hash() const;             // Type specific hashing
   882 public:
   883   ciSymbol* name()  const { return _klass->name(); }
   885   bool  is_loaded() const { return _klass->is_loaded(); }
   887   // ptr to klass 'k'
   888   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
   889   // ptr to klass 'k' with offset
   890   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
   891   // ptr to klass 'k' or sub-klass
   892   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
   894   virtual const Type *cast_to_ptr_type(PTR ptr) const;
   896   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
   898   // corresponding pointer to instance, for a given class
   899   const TypeOopPtr* as_instance_type() const;
   901   virtual const TypePtr *add_offset( intptr_t offset ) const;
   902   virtual const Type    *xmeet( const Type *t ) const;
   903   virtual const Type    *xdual() const;      // Compute dual right now.
   905   // Convenience common pre-built types.
   906   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
   907   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
   908 #ifndef PRODUCT
   909   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   910 #endif
   911 };
   913 //------------------------------TypeNarrowOop----------------------------------
   914 // A compressed reference to some kind of Oop.  This type wraps around
   915 // a preexisting TypeOopPtr and forwards most of it's operations to
   916 // the underlying type.  It's only real purpose is to track the
   917 // oopness of the compressed oop value when we expose the conversion
   918 // between the normal and the compressed form.
   919 class TypeNarrowOop : public Type {
   920 protected:
   921   const TypePtr* _ooptype; // Could be TypePtr::NULL_PTR
   923   TypeNarrowOop( const TypePtr* ooptype): Type(NarrowOop),
   924     _ooptype(ooptype) {
   925     assert(ooptype->offset() == 0 ||
   926            ooptype->offset() == OffsetBot ||
   927            ooptype->offset() == OffsetTop, "no real offsets");
   928   }
   929 public:
   930   virtual bool eq( const Type *t ) const;
   931   virtual int  hash() const;             // Type specific hashing
   932   virtual bool singleton(void) const;    // TRUE if type is a singleton
   934   virtual const Type *xmeet( const Type *t ) const;
   935   virtual const Type *xdual() const;    // Compute dual right now.
   937   virtual intptr_t get_con() const;
   939   // Do not allow interface-vs.-noninterface joins to collapse to top.
   940   virtual const Type *filter( const Type *kills ) const;
   942   virtual bool empty(void) const;        // TRUE if type is vacuous
   944   static const TypeNarrowOop *make( const TypePtr* type);
   946   static const TypeNarrowOop* make_from_constant(ciObject* con) {
   947     return make(TypeOopPtr::make_from_constant(con));
   948   }
   950   // returns the equivalent ptr type for this compressed pointer
   951   const TypePtr *make_oopptr() const {
   952     return _ooptype;
   953   }
   955   static const TypeNarrowOop *BOTTOM;
   956   static const TypeNarrowOop *NULL_PTR;
   958 #ifndef PRODUCT
   959   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
   960 #endif
   961 };
   963 //------------------------------TypeFunc---------------------------------------
   964 // Class of Array Types
   965 class TypeFunc : public Type {
   966   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
   967   virtual bool eq( const Type *t ) const;
   968   virtual int  hash() const;             // Type specific hashing
   969   virtual bool singleton(void) const;    // TRUE if type is a singleton
   970   virtual bool empty(void) const;        // TRUE if type is vacuous
   971 public:
   972   // Constants are shared among ADLC and VM
   973   enum { Control    = AdlcVMDeps::Control,
   974          I_O        = AdlcVMDeps::I_O,
   975          Memory     = AdlcVMDeps::Memory,
   976          FramePtr   = AdlcVMDeps::FramePtr,
   977          ReturnAdr  = AdlcVMDeps::ReturnAdr,
   978          Parms      = AdlcVMDeps::Parms
   979   };
   981   const TypeTuple* const _domain;     // Domain of inputs
   982   const TypeTuple* const _range;      // Range of results
   984   // Accessors:
   985   const TypeTuple* domain() const { return _domain; }
   986   const TypeTuple* range()  const { return _range; }
   988   static const TypeFunc *make(ciMethod* method);
   989   static const TypeFunc *make(ciSignature signature, const Type* extra);
   990   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
   992   virtual const Type *xmeet( const Type *t ) const;
   993   virtual const Type *xdual() const;    // Compute dual right now.
   995   BasicType return_type() const;
   997 #ifndef PRODUCT
   998   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
   999   void print_flattened() const; // Print a 'flattened' signature
  1000 #endif
  1001   // Convenience common pre-built types.
  1002 };
  1004 //------------------------------accessors--------------------------------------
  1005 inline bool Type::is_ptr_to_narrowoop() const {
  1006 #ifdef _LP64
  1007   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
  1008 #else
  1009   return false;
  1010 #endif
  1013 inline float Type::getf() const {
  1014   assert( _base == FloatCon, "Not a FloatCon" );
  1015   return ((TypeF*)this)->_f;
  1018 inline double Type::getd() const {
  1019   assert( _base == DoubleCon, "Not a DoubleCon" );
  1020   return ((TypeD*)this)->_d;
  1023 inline const TypeF *Type::is_float_constant() const {
  1024   assert( _base == FloatCon, "Not a Float" );
  1025   return (TypeF*)this;
  1028 inline const TypeF *Type::isa_float_constant() const {
  1029   return ( _base == FloatCon ? (TypeF*)this : NULL);
  1032 inline const TypeD *Type::is_double_constant() const {
  1033   assert( _base == DoubleCon, "Not a Double" );
  1034   return (TypeD*)this;
  1037 inline const TypeD *Type::isa_double_constant() const {
  1038   return ( _base == DoubleCon ? (TypeD*)this : NULL);
  1041 inline const TypeInt *Type::is_int() const {
  1042   assert( _base == Int, "Not an Int" );
  1043   return (TypeInt*)this;
  1046 inline const TypeInt *Type::isa_int() const {
  1047   return ( _base == Int ? (TypeInt*)this : NULL);
  1050 inline const TypeLong *Type::is_long() const {
  1051   assert( _base == Long, "Not a Long" );
  1052   return (TypeLong*)this;
  1055 inline const TypeLong *Type::isa_long() const {
  1056   return ( _base == Long ? (TypeLong*)this : NULL);
  1059 inline const TypeTuple *Type::is_tuple() const {
  1060   assert( _base == Tuple, "Not a Tuple" );
  1061   return (TypeTuple*)this;
  1064 inline const TypeAry *Type::is_ary() const {
  1065   assert( _base == Array , "Not an Array" );
  1066   return (TypeAry*)this;
  1069 inline const TypePtr *Type::is_ptr() const {
  1070   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1071   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
  1072   return (TypePtr*)this;
  1075 inline const TypePtr *Type::isa_ptr() const {
  1076   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
  1077   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
  1080 inline const TypeOopPtr *Type::is_oopptr() const {
  1081   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1082   assert(_base >= OopPtr && _base <= KlassPtr, "Not a Java pointer" ) ;
  1083   return (TypeOopPtr*)this;
  1086 inline const TypeOopPtr *Type::isa_oopptr() const {
  1087   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1088   return (_base >= OopPtr && _base <= KlassPtr) ? (TypeOopPtr*)this : NULL;
  1091 inline const TypeRawPtr *Type::isa_rawptr() const {
  1092   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
  1095 inline const TypeRawPtr *Type::is_rawptr() const {
  1096   assert( _base == RawPtr, "Not a raw pointer" );
  1097   return (TypeRawPtr*)this;
  1100 inline const TypeInstPtr *Type::isa_instptr() const {
  1101   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
  1104 inline const TypeInstPtr *Type::is_instptr() const {
  1105   assert( _base == InstPtr, "Not an object pointer" );
  1106   return (TypeInstPtr*)this;
  1109 inline const TypeAryPtr *Type::isa_aryptr() const {
  1110   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
  1113 inline const TypeAryPtr *Type::is_aryptr() const {
  1114   assert( _base == AryPtr, "Not an array pointer" );
  1115   return (TypeAryPtr*)this;
  1118 inline const TypeNarrowOop *Type::is_narrowoop() const {
  1119   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1120   assert(_base == NarrowOop, "Not a narrow oop" ) ;
  1121   return (TypeNarrowOop*)this;
  1124 inline const TypeNarrowOop *Type::isa_narrowoop() const {
  1125   // OopPtr is the first and KlassPtr the last, with no non-oops between.
  1126   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
  1129 inline const TypeKlassPtr *Type::isa_klassptr() const {
  1130   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
  1133 inline const TypeKlassPtr *Type::is_klassptr() const {
  1134   assert( _base == KlassPtr, "Not a klass pointer" );
  1135   return (TypeKlassPtr*)this;
  1138 inline const TypePtr* Type::make_ptr() const {
  1139   return (_base == NarrowOop) ? is_narrowoop()->make_oopptr() :
  1140                                 (isa_ptr() ? is_ptr() : NULL);
  1143 inline const TypeNarrowOop* Type::make_narrowoop() const {
  1144   return (_base == NarrowOop) ? is_narrowoop() :
  1145                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
  1148 inline bool Type::is_floatingpoint() const {
  1149   if( (_base == FloatCon)  || (_base == FloatBot) ||
  1150       (_base == DoubleCon) || (_base == DoubleBot) )
  1151     return true;
  1152   return false;
  1156 // ===============================================================
  1157 // Things that need to be 64-bits in the 64-bit build but
  1158 // 32-bits in the 32-bit build.  Done this way to get full
  1159 // optimization AND strong typing.
  1160 #ifdef _LP64
  1162 // For type queries and asserts
  1163 #define is_intptr_t  is_long
  1164 #define isa_intptr_t isa_long
  1165 #define find_intptr_t_type find_long_type
  1166 #define find_intptr_t_con  find_long_con
  1167 #define TypeX        TypeLong
  1168 #define Type_X       Type::Long
  1169 #define TypeX_X      TypeLong::LONG
  1170 #define TypeX_ZERO   TypeLong::ZERO
  1171 // For 'ideal_reg' machine registers
  1172 #define Op_RegX      Op_RegL
  1173 // For phase->intcon variants
  1174 #define MakeConX     longcon
  1175 #define ConXNode     ConLNode
  1176 // For array index arithmetic
  1177 #define MulXNode     MulLNode
  1178 #define AndXNode     AndLNode
  1179 #define OrXNode      OrLNode
  1180 #define CmpXNode     CmpLNode
  1181 #define SubXNode     SubLNode
  1182 #define LShiftXNode  LShiftLNode
  1183 // For object size computation:
  1184 #define AddXNode     AddLNode
  1185 #define RShiftXNode  RShiftLNode
  1186 // For card marks and hashcodes
  1187 #define URShiftXNode URShiftLNode
  1188 // UseOptoBiasInlining
  1189 #define XorXNode     XorLNode
  1190 #define StoreXConditionalNode StoreLConditionalNode
  1191 // Opcodes
  1192 #define Op_LShiftX   Op_LShiftL
  1193 #define Op_AndX      Op_AndL
  1194 #define Op_AddX      Op_AddL
  1195 #define Op_SubX      Op_SubL
  1196 // conversions
  1197 #define ConvI2X(x)   ConvI2L(x)
  1198 #define ConvL2X(x)   (x)
  1199 #define ConvX2I(x)   ConvL2I(x)
  1200 #define ConvX2L(x)   (x)
  1202 #else
  1204 // For type queries and asserts
  1205 #define is_intptr_t  is_int
  1206 #define isa_intptr_t isa_int
  1207 #define find_intptr_t_type find_int_type
  1208 #define find_intptr_t_con  find_int_con
  1209 #define TypeX        TypeInt
  1210 #define Type_X       Type::Int
  1211 #define TypeX_X      TypeInt::INT
  1212 #define TypeX_ZERO   TypeInt::ZERO
  1213 // For 'ideal_reg' machine registers
  1214 #define Op_RegX      Op_RegI
  1215 // For phase->intcon variants
  1216 #define MakeConX     intcon
  1217 #define ConXNode     ConINode
  1218 // For array index arithmetic
  1219 #define MulXNode     MulINode
  1220 #define AndXNode     AndINode
  1221 #define OrXNode      OrINode
  1222 #define CmpXNode     CmpINode
  1223 #define SubXNode     SubINode
  1224 #define LShiftXNode  LShiftINode
  1225 // For object size computation:
  1226 #define AddXNode     AddINode
  1227 #define RShiftXNode  RShiftINode
  1228 // For card marks and hashcodes
  1229 #define URShiftXNode URShiftINode
  1230 // UseOptoBiasInlining
  1231 #define XorXNode     XorINode
  1232 #define StoreXConditionalNode StoreIConditionalNode
  1233 // Opcodes
  1234 #define Op_LShiftX   Op_LShiftI
  1235 #define Op_AndX      Op_AndI
  1236 #define Op_AddX      Op_AddI
  1237 #define Op_SubX      Op_SubI
  1238 // conversions
  1239 #define ConvI2X(x)   (x)
  1240 #define ConvL2X(x)   ConvL2I(x)
  1241 #define ConvX2I(x)   (x)
  1242 #define ConvX2L(x)   ConvI2L(x)
  1244 #endif

mercurial