src/share/vm/opto/lcm.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 993
3b5ac9e7e6ea
child 1082
bd441136a5ce
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // Optimization - Graph Style
    27 #include "incls/_precompiled.incl"
    28 #include "incls/_lcm.cpp.incl"
    30 //------------------------------implicit_null_check----------------------------
    31 // Detect implicit-null-check opportunities.  Basically, find NULL checks
    32 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
    33 // I can generate a memory op if there is not one nearby.
    34 // The proj is the control projection for the not-null case.
    35 // The val is the pointer being checked for nullness.
    36 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
    37   // Assume if null check need for 0 offset then always needed
    38   // Intel solaris doesn't support any null checks yet and no
    39   // mechanism exists (yet) to set the switches at an os_cpu level
    40   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
    42   // Make sure the ptr-is-null path appears to be uncommon!
    43   float f = end()->as_MachIf()->_prob;
    44   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
    45   if( f > PROB_UNLIKELY_MAG(4) ) return;
    47   uint bidx = 0;                // Capture index of value into memop
    48   bool was_store;               // Memory op is a store op
    50   // Get the successor block for if the test ptr is non-null
    51   Block* not_null_block;  // this one goes with the proj
    52   Block* null_block;
    53   if (_nodes[_nodes.size()-1] == proj) {
    54     null_block     = _succs[0];
    55     not_null_block = _succs[1];
    56   } else {
    57     assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
    58     not_null_block = _succs[0];
    59     null_block     = _succs[1];
    60   }
    61   while (null_block->is_Empty() == Block::empty_with_goto) {
    62     null_block     = null_block->_succs[0];
    63   }
    65   // Search the exception block for an uncommon trap.
    66   // (See Parse::do_if and Parse::do_ifnull for the reason
    67   // we need an uncommon trap.  Briefly, we need a way to
    68   // detect failure of this optimization, as in 6366351.)
    69   {
    70     bool found_trap = false;
    71     for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
    72       Node* nn = null_block->_nodes[i1];
    73       if (nn->is_MachCall() &&
    74           nn->as_MachCall()->entry_point() ==
    75           SharedRuntime::uncommon_trap_blob()->instructions_begin()) {
    76         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
    77         if (trtype->isa_int() && trtype->is_int()->is_con()) {
    78           jint tr_con = trtype->is_int()->get_con();
    79           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
    80           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
    81           assert((int)reason < (int)BitsPerInt, "recode bit map");
    82           if (is_set_nth_bit(allowed_reasons, (int) reason)
    83               && action != Deoptimization::Action_none) {
    84             // This uncommon trap is sure to recompile, eventually.
    85             // When that happens, C->too_many_traps will prevent
    86             // this transformation from happening again.
    87             found_trap = true;
    88           }
    89         }
    90         break;
    91       }
    92     }
    93     if (!found_trap) {
    94       // We did not find an uncommon trap.
    95       return;
    96     }
    97   }
    99   // Search the successor block for a load or store who's base value is also
   100   // the tested value.  There may be several.
   101   Node_List *out = new Node_List(Thread::current()->resource_area());
   102   MachNode *best = NULL;        // Best found so far
   103   for (DUIterator i = val->outs(); val->has_out(i); i++) {
   104     Node *m = val->out(i);
   105     if( !m->is_Mach() ) continue;
   106     MachNode *mach = m->as_Mach();
   107     was_store = false;
   108     switch( mach->ideal_Opcode() ) {
   109     case Op_LoadB:
   110     case Op_LoadUS:
   111     case Op_LoadD:
   112     case Op_LoadF:
   113     case Op_LoadI:
   114     case Op_LoadL:
   115     case Op_LoadP:
   116     case Op_LoadN:
   117     case Op_LoadS:
   118     case Op_LoadKlass:
   119     case Op_LoadNKlass:
   120     case Op_LoadRange:
   121     case Op_LoadD_unaligned:
   122     case Op_LoadL_unaligned:
   123       break;
   124     case Op_StoreB:
   125     case Op_StoreC:
   126     case Op_StoreCM:
   127     case Op_StoreD:
   128     case Op_StoreF:
   129     case Op_StoreI:
   130     case Op_StoreL:
   131     case Op_StoreP:
   132     case Op_StoreN:
   133       was_store = true;         // Memory op is a store op
   134       // Stores will have their address in slot 2 (memory in slot 1).
   135       // If the value being nul-checked is in another slot, it means we
   136       // are storing the checked value, which does NOT check the value!
   137       if( mach->in(2) != val ) continue;
   138       break;                    // Found a memory op?
   139     case Op_StrComp:
   140     case Op_AryEq:
   141       // Not a legit memory op for implicit null check regardless of
   142       // embedded loads
   143       continue;
   144     default:                    // Also check for embedded loads
   145       if( !mach->needs_anti_dependence_check() )
   146         continue;               // Not an memory op; skip it
   147       break;
   148     }
   149     // check if the offset is not too high for implicit exception
   150     {
   151       intptr_t offset = 0;
   152       const TypePtr *adr_type = NULL;  // Do not need this return value here
   153       const Node* base = mach->get_base_and_disp(offset, adr_type);
   154       if (base == NULL || base == NodeSentinel) {
   155         // Narrow oop address doesn't have base, only index
   156         if( val->bottom_type()->isa_narrowoop() &&
   157             MacroAssembler::needs_explicit_null_check(offset) )
   158           continue;             // Give up if offset is beyond page size
   159         // cannot reason about it; is probably not implicit null exception
   160       } else {
   161         const TypePtr* tptr = base->bottom_type()->is_ptr();
   162         // Give up if offset is not a compile-time constant
   163         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
   164           continue;
   165         offset += tptr->_offset; // correct if base is offseted
   166         if( MacroAssembler::needs_explicit_null_check(offset) )
   167           continue;             // Give up is reference is beyond 4K page size
   168       }
   169     }
   171     // Check ctrl input to see if the null-check dominates the memory op
   172     Block *cb = cfg->_bbs[mach->_idx];
   173     cb = cb->_idom;             // Always hoist at least 1 block
   174     if( !was_store ) {          // Stores can be hoisted only one block
   175       while( cb->_dom_depth > (_dom_depth + 1))
   176         cb = cb->_idom;         // Hoist loads as far as we want
   177       // The non-null-block should dominate the memory op, too. Live
   178       // range spilling will insert a spill in the non-null-block if it is
   179       // needs to spill the memory op for an implicit null check.
   180       if (cb->_dom_depth == (_dom_depth + 1)) {
   181         if (cb != not_null_block) continue;
   182         cb = cb->_idom;
   183       }
   184     }
   185     if( cb != this ) continue;
   187     // Found a memory user; see if it can be hoisted to check-block
   188     uint vidx = 0;              // Capture index of value into memop
   189     uint j;
   190     for( j = mach->req()-1; j > 0; j-- ) {
   191       if( mach->in(j) == val ) vidx = j;
   192       // Block of memory-op input
   193       Block *inb = cfg->_bbs[mach->in(j)->_idx];
   194       Block *b = this;          // Start from nul check
   195       while( b != inb && b->_dom_depth > inb->_dom_depth )
   196         b = b->_idom;           // search upwards for input
   197       // See if input dominates null check
   198       if( b != inb )
   199         break;
   200     }
   201     if( j > 0 )
   202       continue;
   203     Block *mb = cfg->_bbs[mach->_idx];
   204     // Hoisting stores requires more checks for the anti-dependence case.
   205     // Give up hoisting if we have to move the store past any load.
   206     if( was_store ) {
   207       Block *b = mb;            // Start searching here for a local load
   208       // mach use (faulting) trying to hoist
   209       // n might be blocker to hoisting
   210       while( b != this ) {
   211         uint k;
   212         for( k = 1; k < b->_nodes.size(); k++ ) {
   213           Node *n = b->_nodes[k];
   214           if( n->needs_anti_dependence_check() &&
   215               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
   216             break;              // Found anti-dependent load
   217         }
   218         if( k < b->_nodes.size() )
   219           break;                // Found anti-dependent load
   220         // Make sure control does not do a merge (would have to check allpaths)
   221         if( b->num_preds() != 2 ) break;
   222         b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
   223       }
   224       if( b != this ) continue;
   225     }
   227     // Make sure this memory op is not already being used for a NullCheck
   228     Node *e = mb->end();
   229     if( e->is_MachNullCheck() && e->in(1) == mach )
   230       continue;                 // Already being used as a NULL check
   232     // Found a candidate!  Pick one with least dom depth - the highest
   233     // in the dom tree should be closest to the null check.
   234     if( !best ||
   235         cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
   236       best = mach;
   237       bidx = vidx;
   239     }
   240   }
   241   // No candidate!
   242   if( !best ) return;
   244   // ---- Found an implicit null check
   245   extern int implicit_null_checks;
   246   implicit_null_checks++;
   248   // Hoist the memory candidate up to the end of the test block.
   249   Block *old_block = cfg->_bbs[best->_idx];
   250   old_block->find_remove(best);
   251   add_inst(best);
   252   cfg->_bbs.map(best->_idx,this);
   254   // Move the control dependence
   255   if (best->in(0) && best->in(0) == old_block->_nodes[0])
   256     best->set_req(0, _nodes[0]);
   258   // Check for flag-killing projections that also need to be hoisted
   259   // Should be DU safe because no edge updates.
   260   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
   261     Node* n = best->fast_out(j);
   262     if( n->Opcode() == Op_MachProj ) {
   263       cfg->_bbs[n->_idx]->find_remove(n);
   264       add_inst(n);
   265       cfg->_bbs.map(n->_idx,this);
   266     }
   267   }
   269   Compile *C = cfg->C;
   270   // proj==Op_True --> ne test; proj==Op_False --> eq test.
   271   // One of two graph shapes got matched:
   272   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
   273   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
   274   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
   275   // then we are replacing a 'ne' test with a 'eq' NULL check test.
   276   // We need to flip the projections to keep the same semantics.
   277   if( proj->Opcode() == Op_IfTrue ) {
   278     // Swap order of projections in basic block to swap branch targets
   279     Node *tmp1 = _nodes[end_idx()+1];
   280     Node *tmp2 = _nodes[end_idx()+2];
   281     _nodes.map(end_idx()+1, tmp2);
   282     _nodes.map(end_idx()+2, tmp1);
   283     Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
   284     tmp1->replace_by(tmp);
   285     tmp2->replace_by(tmp1);
   286     tmp->replace_by(tmp2);
   287     tmp->destruct();
   288   }
   290   // Remove the existing null check; use a new implicit null check instead.
   291   // Since schedule-local needs precise def-use info, we need to correct
   292   // it as well.
   293   Node *old_tst = proj->in(0);
   294   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
   295   _nodes.map(end_idx(),nul_chk);
   296   cfg->_bbs.map(nul_chk->_idx,this);
   297   // Redirect users of old_test to nul_chk
   298   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
   299     old_tst->last_out(i2)->set_req(0, nul_chk);
   300   // Clean-up any dead code
   301   for (uint i3 = 0; i3 < old_tst->req(); i3++)
   302     old_tst->set_req(i3, NULL);
   304   cfg->latency_from_uses(nul_chk);
   305   cfg->latency_from_uses(best);
   306 }
   309 //------------------------------select-----------------------------------------
   310 // Select a nice fellow from the worklist to schedule next. If there is only
   311 // one choice, then use it. Projections take top priority for correctness
   312 // reasons - if I see a projection, then it is next.  There are a number of
   313 // other special cases, for instructions that consume condition codes, et al.
   314 // These are chosen immediately. Some instructions are required to immediately
   315 // precede the last instruction in the block, and these are taken last. Of the
   316 // remaining cases (most), choose the instruction with the greatest latency
   317 // (that is, the most number of pseudo-cycles required to the end of the
   318 // routine). If there is a tie, choose the instruction with the most inputs.
   319 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
   321   // If only a single entry on the stack, use it
   322   uint cnt = worklist.size();
   323   if (cnt == 1) {
   324     Node *n = worklist[0];
   325     worklist.map(0,worklist.pop());
   326     return n;
   327   }
   329   uint choice  = 0; // Bigger is most important
   330   uint latency = 0; // Bigger is scheduled first
   331   uint score   = 0; // Bigger is better
   332   int idx = -1;     // Index in worklist
   334   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
   335     // Order in worklist is used to break ties.
   336     // See caller for how this is used to delay scheduling
   337     // of induction variable increments to after the other
   338     // uses of the phi are scheduled.
   339     Node *n = worklist[i];      // Get Node on worklist
   341     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
   342     if( n->is_Proj() ||         // Projections always win
   343         n->Opcode()== Op_Con || // So does constant 'Top'
   344         iop == Op_CreateEx ||   // Create-exception must start block
   345         iop == Op_CheckCastPP
   346         ) {
   347       worklist.map(i,worklist.pop());
   348       return n;
   349     }
   351     // Final call in a block must be adjacent to 'catch'
   352     Node *e = end();
   353     if( e->is_Catch() && e->in(0)->in(0) == n )
   354       continue;
   356     // Memory op for an implicit null check has to be at the end of the block
   357     if( e->is_MachNullCheck() && e->in(1) == n )
   358       continue;
   360     uint n_choice  = 2;
   362     // See if this instruction is consumed by a branch. If so, then (as the
   363     // branch is the last instruction in the basic block) force it to the
   364     // end of the basic block
   365     if ( must_clone[iop] ) {
   366       // See if any use is a branch
   367       bool found_machif = false;
   369       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   370         Node* use = n->fast_out(j);
   372         // The use is a conditional branch, make them adjacent
   373         if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
   374           found_machif = true;
   375           break;
   376         }
   378         // More than this instruction pending for successor to be ready,
   379         // don't choose this if other opportunities are ready
   380         if (ready_cnt[use->_idx] > 1)
   381           n_choice = 1;
   382       }
   384       // loop terminated, prefer not to use this instruction
   385       if (found_machif)
   386         continue;
   387     }
   389     // See if this has a predecessor that is "must_clone", i.e. sets the
   390     // condition code. If so, choose this first
   391     for (uint j = 0; j < n->req() ; j++) {
   392       Node *inn = n->in(j);
   393       if (inn) {
   394         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
   395           n_choice = 3;
   396           break;
   397         }
   398       }
   399     }
   401     // MachTemps should be scheduled last so they are near their uses
   402     if (n->is_MachTemp()) {
   403       n_choice = 1;
   404     }
   406     uint n_latency = cfg->_node_latency.at_grow(n->_idx);
   407     uint n_score   = n->req();   // Many inputs get high score to break ties
   409     // Keep best latency found
   410     if( choice < n_choice ||
   411         ( choice == n_choice &&
   412           ( latency < n_latency ||
   413             ( latency == n_latency &&
   414               ( score < n_score ))))) {
   415       choice  = n_choice;
   416       latency = n_latency;
   417       score   = n_score;
   418       idx     = i;               // Also keep index in worklist
   419     }
   420   } // End of for all ready nodes in worklist
   422   assert(idx >= 0, "index should be set");
   423   Node *n = worklist[(uint)idx];      // Get the winner
   425   worklist.map((uint)idx, worklist.pop());     // Compress worklist
   426   return n;
   427 }
   430 //------------------------------set_next_call----------------------------------
   431 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
   432   if( next_call.test_set(n->_idx) ) return;
   433   for( uint i=0; i<n->len(); i++ ) {
   434     Node *m = n->in(i);
   435     if( !m ) continue;  // must see all nodes in block that precede call
   436     if( bbs[m->_idx] == this )
   437       set_next_call( m, next_call, bbs );
   438   }
   439 }
   441 //------------------------------needed_for_next_call---------------------------
   442 // Set the flag 'next_call' for each Node that is needed for the next call to
   443 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
   444 // next subroutine call get priority - basically it moves things NOT needed
   445 // for the next call till after the call.  This prevents me from trying to
   446 // carry lots of stuff live across a call.
   447 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
   448   // Find the next control-defining Node in this block
   449   Node* call = NULL;
   450   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
   451     Node* m = this_call->fast_out(i);
   452     if( bbs[m->_idx] == this && // Local-block user
   453         m != this_call &&       // Not self-start node
   454         m->is_Call() )
   455       call = m;
   456       break;
   457   }
   458   if (call == NULL)  return;    // No next call (e.g., block end is near)
   459   // Set next-call for all inputs to this call
   460   set_next_call(call, next_call, bbs);
   461 }
   463 //------------------------------sched_call-------------------------------------
   464 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
   465   RegMask regs;
   467   // Schedule all the users of the call right now.  All the users are
   468   // projection Nodes, so they must be scheduled next to the call.
   469   // Collect all the defined registers.
   470   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
   471     Node* n = mcall->fast_out(i);
   472     assert( n->Opcode()==Op_MachProj, "" );
   473     --ready_cnt[n->_idx];
   474     assert( !ready_cnt[n->_idx], "" );
   475     // Schedule next to call
   476     _nodes.map(node_cnt++, n);
   477     // Collect defined registers
   478     regs.OR(n->out_RegMask());
   479     // Check for scheduling the next control-definer
   480     if( n->bottom_type() == Type::CONTROL )
   481       // Warm up next pile of heuristic bits
   482       needed_for_next_call(n, next_call, bbs);
   484     // Children of projections are now all ready
   485     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   486       Node* m = n->fast_out(j); // Get user
   487       if( bbs[m->_idx] != this ) continue;
   488       if( m->is_Phi() ) continue;
   489       if( !--ready_cnt[m->_idx] )
   490         worklist.push(m);
   491     }
   493   }
   495   // Act as if the call defines the Frame Pointer.
   496   // Certainly the FP is alive and well after the call.
   497   regs.Insert(matcher.c_frame_pointer());
   499   // Set all registers killed and not already defined by the call.
   500   uint r_cnt = mcall->tf()->range()->cnt();
   501   int op = mcall->ideal_Opcode();
   502   MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
   503   bbs.map(proj->_idx,this);
   504   _nodes.insert(node_cnt++, proj);
   506   // Select the right register save policy.
   507   const char * save_policy;
   508   switch (op) {
   509     case Op_CallRuntime:
   510     case Op_CallLeaf:
   511     case Op_CallLeafNoFP:
   512       // Calling C code so use C calling convention
   513       save_policy = matcher._c_reg_save_policy;
   514       break;
   516     case Op_CallStaticJava:
   517     case Op_CallDynamicJava:
   518       // Calling Java code so use Java calling convention
   519       save_policy = matcher._register_save_policy;
   520       break;
   522     default:
   523       ShouldNotReachHere();
   524   }
   526   // When using CallRuntime mark SOE registers as killed by the call
   527   // so values that could show up in the RegisterMap aren't live in a
   528   // callee saved register since the register wouldn't know where to
   529   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
   530   // have debug info on them.  Strictly speaking this only needs to be
   531   // done for oops since idealreg2debugmask takes care of debug info
   532   // references but there no way to handle oops differently than other
   533   // pointers as far as the kill mask goes.
   534   bool exclude_soe = op == Op_CallRuntime;
   536   // Fill in the kill mask for the call
   537   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
   538     if( !regs.Member(r) ) {     // Not already defined by the call
   539       // Save-on-call register?
   540       if ((save_policy[r] == 'C') ||
   541           (save_policy[r] == 'A') ||
   542           ((save_policy[r] == 'E') && exclude_soe)) {
   543         proj->_rout.Insert(r);
   544       }
   545     }
   546   }
   548   return node_cnt;
   549 }
   552 //------------------------------schedule_local---------------------------------
   553 // Topological sort within a block.  Someday become a real scheduler.
   554 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
   555   // Already "sorted" are the block start Node (as the first entry), and
   556   // the block-ending Node and any trailing control projections.  We leave
   557   // these alone.  PhiNodes and ParmNodes are made to follow the block start
   558   // Node.  Everything else gets topo-sorted.
   560 #ifndef PRODUCT
   561     if (cfg->trace_opto_pipelining()) {
   562       tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
   563       for (uint i = 0;i < _nodes.size();i++) {
   564         tty->print("# ");
   565         _nodes[i]->fast_dump();
   566       }
   567       tty->print_cr("#");
   568     }
   569 #endif
   571   // RootNode is already sorted
   572   if( _nodes.size() == 1 ) return true;
   574   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
   575   uint node_cnt = end_idx();
   576   uint phi_cnt = 1;
   577   uint i;
   578   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
   579     Node *n = _nodes[i];
   580     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
   581         (n->is_Proj()  && n->in(0) == head()) ) {
   582       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
   583       _nodes.map(i,_nodes[phi_cnt]);
   584       _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
   585     } else {                    // All others
   586       // Count block-local inputs to 'n'
   587       uint cnt = n->len();      // Input count
   588       uint local = 0;
   589       for( uint j=0; j<cnt; j++ ) {
   590         Node *m = n->in(j);
   591         if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
   592           local++;              // One more block-local input
   593       }
   594       ready_cnt[n->_idx] = local; // Count em up
   596       // A few node types require changing a required edge to a precedence edge
   597       // before allocation.
   598       if( UseConcMarkSweepGC || UseG1GC ) {
   599         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
   600           // Note: Required edges with an index greater than oper_input_base
   601           // are not supported by the allocator.
   602           // Note2: Can only depend on unmatched edge being last,
   603           // can not depend on its absolute position.
   604           Node *oop_store = n->in(n->req() - 1);
   605           n->del_req(n->req() - 1);
   606           n->add_prec(oop_store);
   607           assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
   608         }
   609       }
   610       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire &&
   611           n->req() > TypeFunc::Parms ) {
   612         // MemBarAcquire could be created without Precedent edge.
   613         // del_req() replaces the specified edge with the last input edge
   614         // and then removes the last edge. If the specified edge > number of
   615         // edges the last edge will be moved outside of the input edges array
   616         // and the edge will be lost. This is why this code should be
   617         // executed only when Precedent (== TypeFunc::Parms) edge is present.
   618         Node *x = n->in(TypeFunc::Parms);
   619         n->del_req(TypeFunc::Parms);
   620         n->add_prec(x);
   621       }
   622     }
   623   }
   624   for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
   625     ready_cnt[_nodes[i2]->_idx] = 0;
   627   // All the prescheduled guys do not hold back internal nodes
   628   uint i3;
   629   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
   630     Node *n = _nodes[i3];       // Get pre-scheduled
   631     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   632       Node* m = n->fast_out(j);
   633       if( cfg->_bbs[m->_idx] ==this ) // Local-block user
   634         ready_cnt[m->_idx]--;   // Fix ready count
   635     }
   636   }
   638   Node_List delay;
   639   // Make a worklist
   640   Node_List worklist;
   641   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
   642     Node *m = _nodes[i4];
   643     if( !ready_cnt[m->_idx] ) {   // Zero ready count?
   644       if (m->is_iteratively_computed()) {
   645         // Push induction variable increments last to allow other uses
   646         // of the phi to be scheduled first. The select() method breaks
   647         // ties in scheduling by worklist order.
   648         delay.push(m);
   649       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
   650         // Force the CreateEx to the top of the list so it's processed
   651         // first and ends up at the start of the block.
   652         worklist.insert(0, m);
   653       } else {
   654         worklist.push(m);         // Then on to worklist!
   655       }
   656     }
   657   }
   658   while (delay.size()) {
   659     Node* d = delay.pop();
   660     worklist.push(d);
   661   }
   663   // Warm up the 'next_call' heuristic bits
   664   needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
   666 #ifndef PRODUCT
   667     if (cfg->trace_opto_pipelining()) {
   668       for (uint j=0; j<_nodes.size(); j++) {
   669         Node     *n = _nodes[j];
   670         int     idx = n->_idx;
   671         tty->print("#   ready cnt:%3d  ", ready_cnt[idx]);
   672         tty->print("latency:%3d  ", cfg->_node_latency.at_grow(idx));
   673         tty->print("%4d: %s\n", idx, n->Name());
   674       }
   675     }
   676 #endif
   678   // Pull from worklist and schedule
   679   while( worklist.size() ) {    // Worklist is not ready
   681 #ifndef PRODUCT
   682     if (cfg->trace_opto_pipelining()) {
   683       tty->print("#   ready list:");
   684       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   685         Node *n = worklist[i];      // Get Node on worklist
   686         tty->print(" %d", n->_idx);
   687       }
   688       tty->cr();
   689     }
   690 #endif
   692     // Select and pop a ready guy from worklist
   693     Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
   694     _nodes.map(phi_cnt++,n);    // Schedule him next
   696 #ifndef PRODUCT
   697     if (cfg->trace_opto_pipelining()) {
   698       tty->print("#    select %d: %s", n->_idx, n->Name());
   699       tty->print(", latency:%d", cfg->_node_latency.at_grow(n->_idx));
   700       n->dump();
   701       if (Verbose) {
   702         tty->print("#   ready list:");
   703         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   704           Node *n = worklist[i];      // Get Node on worklist
   705           tty->print(" %d", n->_idx);
   706         }
   707         tty->cr();
   708       }
   709     }
   711 #endif
   712     if( n->is_MachCall() ) {
   713       MachCallNode *mcall = n->as_MachCall();
   714       phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
   715       continue;
   716     }
   717     // Children are now all ready
   718     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
   719       Node* m = n->fast_out(i5); // Get user
   720       if( cfg->_bbs[m->_idx] != this ) continue;
   721       if( m->is_Phi() ) continue;
   722       if( !--ready_cnt[m->_idx] )
   723         worklist.push(m);
   724     }
   725   }
   727   if( phi_cnt != end_idx() ) {
   728     // did not schedule all.  Retry, Bailout, or Die
   729     Compile* C = matcher.C;
   730     if (C->subsume_loads() == true && !C->failing()) {
   731       // Retry with subsume_loads == false
   732       // If this is the first failure, the sentinel string will "stick"
   733       // to the Compile object, and the C2Compiler will see it and retry.
   734       C->record_failure(C2Compiler::retry_no_subsuming_loads());
   735     }
   736     // assert( phi_cnt == end_idx(), "did not schedule all" );
   737     return false;
   738   }
   740 #ifndef PRODUCT
   741   if (cfg->trace_opto_pipelining()) {
   742     tty->print_cr("#");
   743     tty->print_cr("# after schedule_local");
   744     for (uint i = 0;i < _nodes.size();i++) {
   745       tty->print("# ");
   746       _nodes[i]->fast_dump();
   747     }
   748     tty->cr();
   749   }
   750 #endif
   753   return true;
   754 }
   756 //--------------------------catch_cleanup_fix_all_inputs-----------------------
   757 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
   758   for (uint l = 0; l < use->len(); l++) {
   759     if (use->in(l) == old_def) {
   760       if (l < use->req()) {
   761         use->set_req(l, new_def);
   762       } else {
   763         use->rm_prec(l);
   764         use->add_prec(new_def);
   765         l--;
   766       }
   767     }
   768   }
   769 }
   771 //------------------------------catch_cleanup_find_cloned_def------------------
   772 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
   773   assert( use_blk != def_blk, "Inter-block cleanup only");
   775   // The use is some block below the Catch.  Find and return the clone of the def
   776   // that dominates the use. If there is no clone in a dominating block, then
   777   // create a phi for the def in a dominating block.
   779   // Find which successor block dominates this use.  The successor
   780   // blocks must all be single-entry (from the Catch only; I will have
   781   // split blocks to make this so), hence they all dominate.
   782   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
   783     use_blk = use_blk->_idom;
   785   // Find the successor
   786   Node *fixup = NULL;
   788   uint j;
   789   for( j = 0; j < def_blk->_num_succs; j++ )
   790     if( use_blk == def_blk->_succs[j] )
   791       break;
   793   if( j == def_blk->_num_succs ) {
   794     // Block at same level in dom-tree is not a successor.  It needs a
   795     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
   796     Node_Array inputs = new Node_List(Thread::current()->resource_area());
   797     for(uint k = 1; k < use_blk->num_preds(); k++) {
   798       inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
   799     }
   801     // Check to see if the use_blk already has an identical phi inserted.
   802     // If it exists, it will be at the first position since all uses of a
   803     // def are processed together.
   804     Node *phi = use_blk->_nodes[1];
   805     if( phi->is_Phi() ) {
   806       fixup = phi;
   807       for (uint k = 1; k < use_blk->num_preds(); k++) {
   808         if (phi->in(k) != inputs[k]) {
   809           // Not a match
   810           fixup = NULL;
   811           break;
   812         }
   813       }
   814     }
   816     // If an existing PhiNode was not found, make a new one.
   817     if (fixup == NULL) {
   818       Node *new_phi = PhiNode::make(use_blk->head(), def);
   819       use_blk->_nodes.insert(1, new_phi);
   820       bbs.map(new_phi->_idx, use_blk);
   821       for (uint k = 1; k < use_blk->num_preds(); k++) {
   822         new_phi->set_req(k, inputs[k]);
   823       }
   824       fixup = new_phi;
   825     }
   827   } else {
   828     // Found the use just below the Catch.  Make it use the clone.
   829     fixup = use_blk->_nodes[n_clone_idx];
   830   }
   832   return fixup;
   833 }
   835 //--------------------------catch_cleanup_intra_block--------------------------
   836 // Fix all input edges in use that reference "def".  The use is in the same
   837 // block as the def and both have been cloned in each successor block.
   838 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
   840   // Both the use and def have been cloned. For each successor block,
   841   // get the clone of the use, and make its input the clone of the def
   842   // found in that block.
   844   uint use_idx = blk->find_node(use);
   845   uint offset_idx = use_idx - beg;
   846   for( uint k = 0; k < blk->_num_succs; k++ ) {
   847     // Get clone in each successor block
   848     Block *sb = blk->_succs[k];
   849     Node *clone = sb->_nodes[offset_idx+1];
   850     assert( clone->Opcode() == use->Opcode(), "" );
   852     // Make use-clone reference the def-clone
   853     catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
   854   }
   855 }
   857 //------------------------------catch_cleanup_inter_block---------------------
   858 // Fix all input edges in use that reference "def".  The use is in a different
   859 // block than the def.
   860 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
   861   if( !use_blk ) return;        // Can happen if the use is a precedence edge
   863   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
   864   catch_cleanup_fix_all_inputs(use, def, new_def);
   865 }
   867 //------------------------------call_catch_cleanup-----------------------------
   868 // If we inserted any instructions between a Call and his CatchNode,
   869 // clone the instructions on all paths below the Catch.
   870 void Block::call_catch_cleanup(Block_Array &bbs) {
   872   // End of region to clone
   873   uint end = end_idx();
   874   if( !_nodes[end]->is_Catch() ) return;
   875   // Start of region to clone
   876   uint beg = end;
   877   while( _nodes[beg-1]->Opcode() != Op_MachProj ||
   878         !_nodes[beg-1]->in(0)->is_Call() ) {
   879     beg--;
   880     assert(beg > 0,"Catch cleanup walking beyond block boundary");
   881   }
   882   // Range of inserted instructions is [beg, end)
   883   if( beg == end ) return;
   885   // Clone along all Catch output paths.  Clone area between the 'beg' and
   886   // 'end' indices.
   887   for( uint i = 0; i < _num_succs; i++ ) {
   888     Block *sb = _succs[i];
   889     // Clone the entire area; ignoring the edge fixup for now.
   890     for( uint j = end; j > beg; j-- ) {
   891       Node *clone = _nodes[j-1]->clone();
   892       sb->_nodes.insert( 1, clone );
   893       bbs.map(clone->_idx,sb);
   894     }
   895   }
   898   // Fixup edges.  Check the def-use info per cloned Node
   899   for(uint i2 = beg; i2 < end; i2++ ) {
   900     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
   901     Node *n = _nodes[i2];        // Node that got cloned
   902     // Need DU safe iterator because of edge manipulation in calls.
   903     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
   904     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
   905       out->push(n->fast_out(j1));
   906     }
   907     uint max = out->size();
   908     for (uint j = 0; j < max; j++) {// For all users
   909       Node *use = out->pop();
   910       Block *buse = bbs[use->_idx];
   911       if( use->is_Phi() ) {
   912         for( uint k = 1; k < use->req(); k++ )
   913           if( use->in(k) == n ) {
   914             Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
   915             use->set_req(k, fixup);
   916           }
   917       } else {
   918         if (this == buse) {
   919           catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
   920         } else {
   921           catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
   922         }
   923       }
   924     } // End for all users
   926   } // End of for all Nodes in cloned area
   928   // Remove the now-dead cloned ops
   929   for(uint i3 = beg; i3 < end; i3++ ) {
   930     _nodes[beg]->disconnect_inputs(NULL);
   931     _nodes.remove(beg);
   932   }
   934   // If the successor blocks have a CreateEx node, move it back to the top
   935   for(uint i4 = 0; i4 < _num_succs; i4++ ) {
   936     Block *sb = _succs[i4];
   937     uint new_cnt = end - beg;
   938     // Remove any newly created, but dead, nodes.
   939     for( uint j = new_cnt; j > 0; j-- ) {
   940       Node *n = sb->_nodes[j];
   941       if (n->outcnt() == 0 &&
   942           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
   943         n->disconnect_inputs(NULL);
   944         sb->_nodes.remove(j);
   945         new_cnt--;
   946       }
   947     }
   948     // If any newly created nodes remain, move the CreateEx node to the top
   949     if (new_cnt > 0) {
   950       Node *cex = sb->_nodes[1+new_cnt];
   951       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
   952         sb->_nodes.remove(1+new_cnt);
   953         sb->_nodes.insert(1,cex);
   954       }
   955     }
   956   }
   957 }

mercurial