src/share/vm/memory/space.hpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 952
e9be0e04635a
child 1280
df6caf649ff7
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // A space is an abstraction for the "storage units" backing
    26 // up the generation abstraction. It includes specific
    27 // implementations for keeping track of free and used space,
    28 // for iterating over objects and free blocks, etc.
    30 // Here's the Space hierarchy:
    31 //
    32 // - Space               -- an asbtract base class describing a heap area
    33 //   - CompactibleSpace  -- a space supporting compaction
    34 //     - CompactibleFreeListSpace -- (used for CMS generation)
    35 //     - ContiguousSpace -- a compactible space in which all free space
    36 //                          is contiguous
    37 //       - EdenSpace     -- contiguous space used as nursery
    38 //         - ConcEdenSpace -- contiguous space with a 'soft end safe' allocation
    39 //       - OffsetTableContigSpace -- contiguous space with a block offset array
    40 //                          that allows "fast" block_start calls
    41 //         - TenuredSpace -- (used for TenuredGeneration)
    42 //         - ContigPermSpace -- an offset table contiguous space for perm gen
    44 // Forward decls.
    45 class Space;
    46 class BlockOffsetArray;
    47 class BlockOffsetArrayContigSpace;
    48 class Generation;
    49 class CompactibleSpace;
    50 class BlockOffsetTable;
    51 class GenRemSet;
    52 class CardTableRS;
    53 class DirtyCardToOopClosure;
    55 // An oop closure that is circumscribed by a filtering memory region.
    56 class SpaceMemRegionOopsIterClosure: public OopClosure {
    57  private:
    58   OopClosure* _cl;
    59   MemRegion   _mr;
    60  protected:
    61   template <class T> void do_oop_work(T* p) {
    62     if (_mr.contains(p)) {
    63       _cl->do_oop(p);
    64     }
    65   }
    66  public:
    67   SpaceMemRegionOopsIterClosure(OopClosure* cl, MemRegion mr):
    68     _cl(cl), _mr(mr) {}
    69   virtual void do_oop(oop* p);
    70   virtual void do_oop(narrowOop* p);
    71 };
    73 // A Space describes a heap area. Class Space is an abstract
    74 // base class.
    75 //
    76 // Space supports allocation, size computation and GC support is provided.
    77 //
    78 // Invariant: bottom() and end() are on page_size boundaries and
    79 // bottom() <= top() <= end()
    80 // top() is inclusive and end() is exclusive.
    82 class Space: public CHeapObj {
    83   friend class VMStructs;
    84  protected:
    85   HeapWord* _bottom;
    86   HeapWord* _end;
    88   // Used in support of save_marks()
    89   HeapWord* _saved_mark_word;
    91   MemRegionClosure* _preconsumptionDirtyCardClosure;
    93   // A sequential tasks done structure. This supports
    94   // parallel GC, where we have threads dynamically
    95   // claiming sub-tasks from a larger parallel task.
    96   SequentialSubTasksDone _par_seq_tasks;
    98   Space():
    99     _bottom(NULL), _end(NULL), _preconsumptionDirtyCardClosure(NULL) { }
   101  public:
   102   // Accessors
   103   HeapWord* bottom() const         { return _bottom; }
   104   HeapWord* end() const            { return _end;    }
   105   virtual void set_bottom(HeapWord* value) { _bottom = value; }
   106   virtual void set_end(HeapWord* value)    { _end = value; }
   108   virtual HeapWord* saved_mark_word() const  { return _saved_mark_word; }
   109   void set_saved_mark_word(HeapWord* p) { _saved_mark_word = p; }
   111   MemRegionClosure* preconsumptionDirtyCardClosure() const {
   112     return _preconsumptionDirtyCardClosure;
   113   }
   114   void setPreconsumptionDirtyCardClosure(MemRegionClosure* cl) {
   115     _preconsumptionDirtyCardClosure = cl;
   116   }
   118   // Returns a subregion of the space containing all the objects in
   119   // the space.
   120   virtual MemRegion used_region() const { return MemRegion(bottom(), end()); }
   122   // Returns a region that is guaranteed to contain (at least) all objects
   123   // allocated at the time of the last call to "save_marks".  If the space
   124   // initializes its DirtyCardToOopClosure's specifying the "contig" option
   125   // (that is, if the space is contiguous), then this region must contain only
   126   // such objects: the memregion will be from the bottom of the region to the
   127   // saved mark.  Otherwise, the "obj_allocated_since_save_marks" method of
   128   // the space must distiguish between objects in the region allocated before
   129   // and after the call to save marks.
   130   virtual MemRegion used_region_at_save_marks() const {
   131     return MemRegion(bottom(), saved_mark_word());
   132   }
   134   // Initialization.
   135   // "initialize" should be called once on a space, before it is used for
   136   // any purpose.  The "mr" arguments gives the bounds of the space, and
   137   // the "clear_space" argument should be true unless the memory in "mr" is
   138   // known to be zeroed.
   139   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   141   // The "clear" method must be called on a region that may have
   142   // had allocation performed in it, but is now to be considered empty.
   143   virtual void clear(bool mangle_space);
   145   // For detecting GC bugs.  Should only be called at GC boundaries, since
   146   // some unused space may be used as scratch space during GC's.
   147   // Default implementation does nothing. We also call this when expanding
   148   // a space to satisfy an allocation request. See bug #4668531
   149   virtual void mangle_unused_area() {}
   150   virtual void mangle_unused_area_complete() {}
   151   virtual void mangle_region(MemRegion mr) {}
   153   // Testers
   154   bool is_empty() const              { return used() == 0; }
   155   bool not_empty() const             { return used() > 0; }
   157   // Returns true iff the given the space contains the
   158   // given address as part of an allocated object. For
   159   // ceratin kinds of spaces, this might be a potentially
   160   // expensive operation. To prevent performance problems
   161   // on account of its inadvertent use in product jvm's,
   162   // we restrict its use to assertion checks only.
   163   virtual bool is_in(const void* p) const;
   165   // Returns true iff the given reserved memory of the space contains the
   166   // given address.
   167   bool is_in_reserved(const void* p) const { return _bottom <= p && p < _end; }
   169   // Returns true iff the given block is not allocated.
   170   virtual bool is_free_block(const HeapWord* p) const = 0;
   172   // Test whether p is double-aligned
   173   static bool is_aligned(void* p) {
   174     return ((intptr_t)p & (sizeof(double)-1)) == 0;
   175   }
   177   // Size computations.  Sizes are in bytes.
   178   size_t capacity()     const { return byte_size(bottom(), end()); }
   179   virtual size_t used() const = 0;
   180   virtual size_t free() const = 0;
   182   // Iterate over all the ref-containing fields of all objects in the
   183   // space, calling "cl.do_oop" on each.  Fields in objects allocated by
   184   // applications of the closure are not included in the iteration.
   185   virtual void oop_iterate(OopClosure* cl);
   187   // Same as above, restricted to the intersection of a memory region and
   188   // the space.  Fields in objects allocated by applications of the closure
   189   // are not included in the iteration.
   190   virtual void oop_iterate(MemRegion mr, OopClosure* cl) = 0;
   192   // Iterate over all objects in the space, calling "cl.do_object" on
   193   // each.  Objects allocated by applications of the closure are not
   194   // included in the iteration.
   195   virtual void object_iterate(ObjectClosure* blk) = 0;
   196   // Similar to object_iterate() except only iterates over
   197   // objects whose internal references point to objects in the space.
   198   virtual void safe_object_iterate(ObjectClosure* blk) = 0;
   200   // Iterate over all objects that intersect with mr, calling "cl->do_object"
   201   // on each.  There is an exception to this: if this closure has already
   202   // been invoked on an object, it may skip such objects in some cases.  This is
   203   // Most likely to happen in an "upwards" (ascending address) iteration of
   204   // MemRegions.
   205   virtual void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
   207   // Iterate over as many initialized objects in the space as possible,
   208   // calling "cl.do_object_careful" on each. Return NULL if all objects
   209   // in the space (at the start of the iteration) were iterated over.
   210   // Return an address indicating the extent of the iteration in the
   211   // event that the iteration had to return because of finding an
   212   // uninitialized object in the space, or if the closure "cl"
   213   // signalled early termination.
   214   virtual HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
   215   virtual HeapWord* object_iterate_careful_m(MemRegion mr,
   216                                              ObjectClosureCareful* cl);
   218   // Create and return a new dirty card to oop closure. Can be
   219   // overriden to return the appropriate type of closure
   220   // depending on the type of space in which the closure will
   221   // operate. ResourceArea allocated.
   222   virtual DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
   223                                              CardTableModRefBS::PrecisionStyle precision,
   224                                              HeapWord* boundary = NULL);
   226   // If "p" is in the space, returns the address of the start of the
   227   // "block" that contains "p".  We say "block" instead of "object" since
   228   // some heaps may not pack objects densely; a chunk may either be an
   229   // object or a non-object.  If "p" is not in the space, return NULL.
   230   virtual HeapWord* block_start_const(const void* p) const = 0;
   232   // The non-const version may have benevolent side effects on the data
   233   // structure supporting these calls, possibly speeding up future calls.
   234   // The default implementation, however, is simply to call the const
   235   // version.
   236   inline virtual HeapWord* block_start(const void* p);
   238   // Requires "addr" to be the start of a chunk, and returns its size.
   239   // "addr + size" is required to be the start of a new chunk, or the end
   240   // of the active area of the heap.
   241   virtual size_t block_size(const HeapWord* addr) const = 0;
   243   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   244   // the block is an object.
   245   virtual bool block_is_obj(const HeapWord* addr) const = 0;
   247   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   248   // the block is an object and the object is alive.
   249   virtual bool obj_is_alive(const HeapWord* addr) const;
   251   // Allocation (return NULL if full).  Assumes the caller has established
   252   // mutually exclusive access to the space.
   253   virtual HeapWord* allocate(size_t word_size) = 0;
   255   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
   256   virtual HeapWord* par_allocate(size_t word_size) = 0;
   258   // Returns true if this object has been allocated since a
   259   // generation's "save_marks" call.
   260   virtual bool obj_allocated_since_save_marks(const oop obj) const = 0;
   262   // Mark-sweep-compact support: all spaces can update pointers to objects
   263   // moving as a part of compaction.
   264   virtual void adjust_pointers();
   266   // PrintHeapAtGC support
   267   virtual void print() const;
   268   virtual void print_on(outputStream* st) const;
   269   virtual void print_short() const;
   270   virtual void print_short_on(outputStream* st) const;
   273   // Accessor for parallel sequential tasks.
   274   SequentialSubTasksDone* par_seq_tasks() { return &_par_seq_tasks; }
   276   // IF "this" is a ContiguousSpace, return it, else return NULL.
   277   virtual ContiguousSpace* toContiguousSpace() {
   278     return NULL;
   279   }
   281   // Debugging
   282   virtual void verify(bool allow_dirty) const = 0;
   283 };
   285 // A MemRegionClosure (ResourceObj) whose "do_MemRegion" function applies an
   286 // OopClosure to (the addresses of) all the ref-containing fields that could
   287 // be modified by virtue of the given MemRegion being dirty. (Note that
   288 // because of the imprecise nature of the write barrier, this may iterate
   289 // over oops beyond the region.)
   290 // This base type for dirty card to oop closures handles memory regions
   291 // in non-contiguous spaces with no boundaries, and should be sub-classed
   292 // to support other space types. See ContiguousDCTOC for a sub-class
   293 // that works with ContiguousSpaces.
   295 class DirtyCardToOopClosure: public MemRegionClosureRO {
   296 protected:
   297   OopClosure* _cl;
   298   Space* _sp;
   299   CardTableModRefBS::PrecisionStyle _precision;
   300   HeapWord* _boundary;          // If non-NULL, process only non-NULL oops
   301                                 // pointing below boundary.
   302   HeapWord* _min_done;          // ObjHeadPreciseArray precision requires
   303                                 // a downwards traversal; this is the
   304                                 // lowest location already done (or,
   305                                 // alternatively, the lowest address that
   306                                 // shouldn't be done again.  NULL means infinity.)
   307   NOT_PRODUCT(HeapWord* _last_bottom;)
   308   NOT_PRODUCT(HeapWord* _last_explicit_min_done;)
   310   // Get the actual top of the area on which the closure will
   311   // operate, given where the top is assumed to be (the end of the
   312   // memory region passed to do_MemRegion) and where the object
   313   // at the top is assumed to start. For example, an object may
   314   // start at the top but actually extend past the assumed top,
   315   // in which case the top becomes the end of the object.
   316   virtual HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
   318   // Walk the given memory region from bottom to (actual) top
   319   // looking for objects and applying the oop closure (_cl) to
   320   // them. The base implementation of this treats the area as
   321   // blocks, where a block may or may not be an object. Sub-
   322   // classes should override this to provide more accurate
   323   // or possibly more efficient walking.
   324   virtual void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
   326 public:
   327   DirtyCardToOopClosure(Space* sp, OopClosure* cl,
   328                         CardTableModRefBS::PrecisionStyle precision,
   329                         HeapWord* boundary) :
   330     _sp(sp), _cl(cl), _precision(precision), _boundary(boundary),
   331     _min_done(NULL) {
   332     NOT_PRODUCT(_last_bottom = NULL);
   333     NOT_PRODUCT(_last_explicit_min_done = NULL);
   334   }
   336   void do_MemRegion(MemRegion mr);
   338   void set_min_done(HeapWord* min_done) {
   339     _min_done = min_done;
   340     NOT_PRODUCT(_last_explicit_min_done = _min_done);
   341   }
   342 #ifndef PRODUCT
   343   void set_last_bottom(HeapWord* last_bottom) {
   344     _last_bottom = last_bottom;
   345   }
   346 #endif
   347 };
   349 // A structure to represent a point at which objects are being copied
   350 // during compaction.
   351 class CompactPoint : public StackObj {
   352 public:
   353   Generation* gen;
   354   CompactibleSpace* space;
   355   HeapWord* threshold;
   356   CompactPoint(Generation* _gen, CompactibleSpace* _space,
   357                HeapWord* _threshold) :
   358     gen(_gen), space(_space), threshold(_threshold) {}
   359 };
   362 // A space that supports compaction operations.  This is usually, but not
   363 // necessarily, a space that is normally contiguous.  But, for example, a
   364 // free-list-based space whose normal collection is a mark-sweep without
   365 // compaction could still support compaction in full GC's.
   367 class CompactibleSpace: public Space {
   368   friend class VMStructs;
   369   friend class CompactibleFreeListSpace;
   370   friend class CompactingPermGenGen;
   371   friend class CMSPermGenGen;
   372 private:
   373   HeapWord* _compaction_top;
   374   CompactibleSpace* _next_compaction_space;
   376 public:
   377   CompactibleSpace() :
   378    _compaction_top(NULL), _next_compaction_space(NULL) {}
   380   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   381   virtual void clear(bool mangle_space);
   383   // Used temporarily during a compaction phase to hold the value
   384   // top should have when compaction is complete.
   385   HeapWord* compaction_top() const { return _compaction_top;    }
   387   void set_compaction_top(HeapWord* value) {
   388     assert(value == NULL || (value >= bottom() && value <= end()),
   389       "should point inside space");
   390     _compaction_top = value;
   391   }
   393   // Perform operations on the space needed after a compaction
   394   // has been performed.
   395   virtual void reset_after_compaction() {}
   397   // Returns the next space (in the current generation) to be compacted in
   398   // the global compaction order.  Also is used to select the next
   399   // space into which to compact.
   401   virtual CompactibleSpace* next_compaction_space() const {
   402     return _next_compaction_space;
   403   }
   405   void set_next_compaction_space(CompactibleSpace* csp) {
   406     _next_compaction_space = csp;
   407   }
   409   // MarkSweep support phase2
   411   // Start the process of compaction of the current space: compute
   412   // post-compaction addresses, and insert forwarding pointers.  The fields
   413   // "cp->gen" and "cp->compaction_space" are the generation and space into
   414   // which we are currently compacting.  This call updates "cp" as necessary,
   415   // and leaves the "compaction_top" of the final value of
   416   // "cp->compaction_space" up-to-date.  Offset tables may be updated in
   417   // this phase as if the final copy had occurred; if so, "cp->threshold"
   418   // indicates when the next such action should be taken.
   419   virtual void prepare_for_compaction(CompactPoint* cp);
   420   // MarkSweep support phase3
   421   virtual void adjust_pointers();
   422   // MarkSweep support phase4
   423   virtual void compact();
   425   // The maximum percentage of objects that can be dead in the compacted
   426   // live part of a compacted space ("deadwood" support.)
   427   virtual size_t allowed_dead_ratio() const { return 0; };
   429   // Some contiguous spaces may maintain some data structures that should
   430   // be updated whenever an allocation crosses a boundary.  This function
   431   // returns the first such boundary.
   432   // (The default implementation returns the end of the space, so the
   433   // boundary is never crossed.)
   434   virtual HeapWord* initialize_threshold() { return end(); }
   436   // "q" is an object of the given "size" that should be forwarded;
   437   // "cp" names the generation ("gen") and containing "this" (which must
   438   // also equal "cp->space").  "compact_top" is where in "this" the
   439   // next object should be forwarded to.  If there is room in "this" for
   440   // the object, insert an appropriate forwarding pointer in "q".
   441   // If not, go to the next compaction space (there must
   442   // be one, since compaction must succeed -- we go to the first space of
   443   // the previous generation if necessary, updating "cp"), reset compact_top
   444   // and then forward.  In either case, returns the new value of "compact_top".
   445   // If the forwarding crosses "cp->threshold", invokes the "cross_threhold"
   446   // function of the then-current compaction space, and updates "cp->threshold
   447   // accordingly".
   448   virtual HeapWord* forward(oop q, size_t size, CompactPoint* cp,
   449                     HeapWord* compact_top);
   451   // Return a size with adjusments as required of the space.
   452   virtual size_t adjust_object_size_v(size_t size) const { return size; }
   454 protected:
   455   // Used during compaction.
   456   HeapWord* _first_dead;
   457   HeapWord* _end_of_live;
   459   // Minimum size of a free block.
   460   virtual size_t minimum_free_block_size() const = 0;
   462   // This the function is invoked when an allocation of an object covering
   463   // "start" to "end occurs crosses the threshold; returns the next
   464   // threshold.  (The default implementation does nothing.)
   465   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* the_end) {
   466     return end();
   467   }
   469   // Requires "allowed_deadspace_words > 0", that "q" is the start of a
   470   // free block of the given "word_len", and that "q", were it an object,
   471   // would not move if forwared.  If the size allows, fill the free
   472   // block with an object, to prevent excessive compaction.  Returns "true"
   473   // iff the free region was made deadspace, and modifies
   474   // "allowed_deadspace_words" to reflect the number of available deadspace
   475   // words remaining after this operation.
   476   bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q,
   477                         size_t word_len);
   478 };
   480 #define SCAN_AND_FORWARD(cp,scan_limit,block_is_obj,block_size) {            \
   481   /* Compute the new addresses for the live objects and store it in the mark \
   482    * Used by universe::mark_sweep_phase2()                                   \
   483    */                                                                        \
   484   HeapWord* compact_top; /* This is where we are currently compacting to. */ \
   485                                                                              \
   486   /* We're sure to be here before any objects are compacted into this        \
   487    * space, so this is a good time to initialize this:                       \
   488    */                                                                        \
   489   set_compaction_top(bottom());                                              \
   490                                                                              \
   491   if (cp->space == NULL) {                                                   \
   492     assert(cp->gen != NULL, "need a generation");                            \
   493     assert(cp->threshold == NULL, "just checking");                          \
   494     assert(cp->gen->first_compaction_space() == this, "just checking");      \
   495     cp->space = cp->gen->first_compaction_space();                           \
   496     compact_top = cp->space->bottom();                                       \
   497     cp->space->set_compaction_top(compact_top);                              \
   498     cp->threshold = cp->space->initialize_threshold();                       \
   499   } else {                                                                   \
   500     compact_top = cp->space->compaction_top();                               \
   501   }                                                                          \
   502                                                                              \
   503   /* We allow some amount of garbage towards the bottom of the space, so     \
   504    * we don't start compacting before there is a significant gain to be made.\
   505    * Occasionally, we want to ensure a full compaction, which is determined  \
   506    * by the MarkSweepAlwaysCompactCount parameter.                           \
   507    */                                                                        \
   508   int invocations = SharedHeap::heap()->perm_gen()->stat_record()->invocations;\
   509   bool skip_dead = ((invocations % MarkSweepAlwaysCompactCount) != 0);       \
   510                                                                              \
   511   size_t allowed_deadspace = 0;                                              \
   512   if (skip_dead) {                                                           \
   513     const size_t ratio = allowed_dead_ratio();                               \
   514     allowed_deadspace = (capacity() * ratio / 100) / HeapWordSize;           \
   515   }                                                                          \
   516                                                                              \
   517   HeapWord* q = bottom();                                                    \
   518   HeapWord* t = scan_limit();                                                \
   519                                                                              \
   520   HeapWord*  end_of_live= q;    /* One byte beyond the last byte of the last \
   521                                    live object. */                           \
   522   HeapWord*  first_dead = end();/* The first dead object. */                 \
   523   LiveRange* liveRange  = NULL; /* The current live range, recorded in the   \
   524                                    first header of preceding free area. */   \
   525   _first_dead = first_dead;                                                  \
   526                                                                              \
   527   const intx interval = PrefetchScanIntervalInBytes;                         \
   528                                                                              \
   529   while (q < t) {                                                            \
   530     assert(!block_is_obj(q) ||                                               \
   531            oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() ||   \
   532            oop(q)->mark()->has_bias_pattern(),                               \
   533            "these are the only valid states during a mark sweep");           \
   534     if (block_is_obj(q) && oop(q)->is_gc_marked()) {                         \
   535       /* prefetch beyond q */                                                \
   536       Prefetch::write(q, interval);                                          \
   537       /* size_t size = oop(q)->size();  changing this for cms for perm gen */\
   538       size_t size = block_size(q);                                           \
   539       compact_top = cp->space->forward(oop(q), size, cp, compact_top);       \
   540       q += size;                                                             \
   541       end_of_live = q;                                                       \
   542     } else {                                                                 \
   543       /* run over all the contiguous dead objects */                         \
   544       HeapWord* end = q;                                                     \
   545       do {                                                                   \
   546         /* prefetch beyond end */                                            \
   547         Prefetch::write(end, interval);                                      \
   548         end += block_size(end);                                              \
   549       } while (end < t && (!block_is_obj(end) || !oop(end)->is_gc_marked()));\
   550                                                                              \
   551       /* see if we might want to pretend this object is alive so that        \
   552        * we don't have to compact quite as often.                            \
   553        */                                                                    \
   554       if (allowed_deadspace > 0 && q == compact_top) {                       \
   555         size_t sz = pointer_delta(end, q);                                   \
   556         if (insert_deadspace(allowed_deadspace, q, sz)) {                    \
   557           compact_top = cp->space->forward(oop(q), sz, cp, compact_top);     \
   558           q = end;                                                           \
   559           end_of_live = end;                                                 \
   560           continue;                                                          \
   561         }                                                                    \
   562       }                                                                      \
   563                                                                              \
   564       /* otherwise, it really is a free region. */                           \
   565                                                                              \
   566       /* for the previous LiveRange, record the end of the live objects. */  \
   567       if (liveRange) {                                                       \
   568         liveRange->set_end(q);                                               \
   569       }                                                                      \
   570                                                                              \
   571       /* record the current LiveRange object.                                \
   572        * liveRange->start() is overlaid on the mark word.                    \
   573        */                                                                    \
   574       liveRange = (LiveRange*)q;                                             \
   575       liveRange->set_start(end);                                             \
   576       liveRange->set_end(end);                                               \
   577                                                                              \
   578       /* see if this is the first dead region. */                            \
   579       if (q < first_dead) {                                                  \
   580         first_dead = q;                                                      \
   581       }                                                                      \
   582                                                                              \
   583       /* move on to the next object */                                       \
   584       q = end;                                                               \
   585     }                                                                        \
   586   }                                                                          \
   587                                                                              \
   588   assert(q == t, "just checking");                                           \
   589   if (liveRange != NULL) {                                                   \
   590     liveRange->set_end(q);                                                   \
   591   }                                                                          \
   592   _end_of_live = end_of_live;                                                \
   593   if (end_of_live < first_dead) {                                            \
   594     first_dead = end_of_live;                                                \
   595   }                                                                          \
   596   _first_dead = first_dead;                                                  \
   597                                                                              \
   598   /* save the compaction_top of the compaction space. */                     \
   599   cp->space->set_compaction_top(compact_top);                                \
   600 }
   602 #define SCAN_AND_ADJUST_POINTERS(adjust_obj_size) {                             \
   603   /* adjust all the interior pointers to point at the new locations of objects  \
   604    * Used by MarkSweep::mark_sweep_phase3() */                                  \
   605                                                                                 \
   606   HeapWord* q = bottom();                                                       \
   607   HeapWord* t = _end_of_live;  /* Established by "prepare_for_compaction". */   \
   608                                                                                 \
   609   assert(_first_dead <= _end_of_live, "Stands to reason, no?");                 \
   610                                                                                 \
   611   if (q < t && _first_dead > q &&                                               \
   612       !oop(q)->is_gc_marked()) {                                                \
   613     /* we have a chunk of the space which hasn't moved and we've                \
   614      * reinitialized the mark word during the previous pass, so we can't        \
   615      * use is_gc_marked for the traversal. */                                   \
   616     HeapWord* end = _first_dead;                                                \
   617                                                                                 \
   618     while (q < end) {                                                           \
   619       /* I originally tried to conjoin "block_start(q) == q" to the             \
   620        * assertion below, but that doesn't work, because you can't              \
   621        * accurately traverse previous objects to get to the current one         \
   622        * after their pointers (including pointers into permGen) have been       \
   623        * updated, until the actual compaction is done.  dld, 4/00 */            \
   624       assert(block_is_obj(q),                                                   \
   625              "should be at block boundaries, and should be looking at objs");   \
   626                                                                                 \
   627       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));     \
   628                                                                                 \
   629       /* point all the oops to the new location */                              \
   630       size_t size = oop(q)->adjust_pointers();                                  \
   631       size = adjust_obj_size(size);                                             \
   632                                                                                 \
   633       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());           \
   634                                                                                 \
   635       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));     \
   636                                                                                 \
   637       q += size;                                                                \
   638     }                                                                           \
   639                                                                                 \
   640     if (_first_dead == t) {                                                     \
   641       q = t;                                                                    \
   642     } else {                                                                    \
   643       /* $$$ This is funky.  Using this to read the previously written          \
   644        * LiveRange.  See also use below. */                                     \
   645       q = (HeapWord*)oop(_first_dead)->mark()->decode_pointer();                \
   646     }                                                                           \
   647   }                                                                             \
   648                                                                                 \
   649   const intx interval = PrefetchScanIntervalInBytes;                            \
   650                                                                                 \
   651   debug_only(HeapWord* prev_q = NULL);                                          \
   652   while (q < t) {                                                               \
   653     /* prefetch beyond q */                                                     \
   654     Prefetch::write(q, interval);                                               \
   655     if (oop(q)->is_gc_marked()) {                                               \
   656       /* q is alive */                                                          \
   657       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));     \
   658       /* point all the oops to the new location */                              \
   659       size_t size = oop(q)->adjust_pointers();                                  \
   660       size = adjust_obj_size(size);                                             \
   661       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());           \
   662       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));     \
   663       debug_only(prev_q = q);                                                   \
   664       q += size;                                                                \
   665     } else {                                                                    \
   666       /* q is not a live object, so its mark should point at the next           \
   667        * live object */                                                         \
   668       debug_only(prev_q = q);                                                   \
   669       q = (HeapWord*) oop(q)->mark()->decode_pointer();                         \
   670       assert(q > prev_q, "we should be moving forward through memory");         \
   671     }                                                                           \
   672   }                                                                             \
   673                                                                                 \
   674   assert(q == t, "just checking");                                              \
   675 }
   677 #define SCAN_AND_COMPACT(obj_size) {                                            \
   678   /* Copy all live objects to their new location                                \
   679    * Used by MarkSweep::mark_sweep_phase4() */                                  \
   680                                                                                 \
   681   HeapWord*       q = bottom();                                                 \
   682   HeapWord* const t = _end_of_live;                                             \
   683   debug_only(HeapWord* prev_q = NULL);                                          \
   684                                                                                 \
   685   if (q < t && _first_dead > q &&                                               \
   686       !oop(q)->is_gc_marked()) {                                                \
   687     debug_only(                                                                 \
   688     /* we have a chunk of the space which hasn't moved and we've reinitialized  \
   689      * the mark word during the previous pass, so we can't use is_gc_marked for \
   690      * the traversal. */                                                        \
   691     HeapWord* const end = _first_dead;                                          \
   692                                                                                 \
   693     while (q < end) {                                                           \
   694       size_t size = obj_size(q);                                                \
   695       assert(!oop(q)->is_gc_marked(),                                           \
   696              "should be unmarked (special dense prefix handling)");             \
   697       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::live_oop_moved_to(q, size, q));       \
   698       debug_only(prev_q = q);                                                   \
   699       q += size;                                                                \
   700     }                                                                           \
   701     )  /* debug_only */                                                         \
   702                                                                                 \
   703     if (_first_dead == t) {                                                     \
   704       q = t;                                                                    \
   705     } else {                                                                    \
   706       /* $$$ Funky */                                                           \
   707       q = (HeapWord*) oop(_first_dead)->mark()->decode_pointer();               \
   708     }                                                                           \
   709   }                                                                             \
   710                                                                                 \
   711   const intx scan_interval = PrefetchScanIntervalInBytes;                       \
   712   const intx copy_interval = PrefetchCopyIntervalInBytes;                       \
   713   while (q < t) {                                                               \
   714     if (!oop(q)->is_gc_marked()) {                                              \
   715       /* mark is pointer to next marked oop */                                  \
   716       debug_only(prev_q = q);                                                   \
   717       q = (HeapWord*) oop(q)->mark()->decode_pointer();                         \
   718       assert(q > prev_q, "we should be moving forward through memory");         \
   719     } else {                                                                    \
   720       /* prefetch beyond q */                                                   \
   721       Prefetch::read(q, scan_interval);                                         \
   722                                                                                 \
   723       /* size and destination */                                                \
   724       size_t size = obj_size(q);                                                \
   725       HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee();                \
   726                                                                                 \
   727       /* prefetch beyond compaction_top */                                      \
   728       Prefetch::write(compaction_top, copy_interval);                           \
   729                                                                                 \
   730       /* copy object and reinit its mark */                                     \
   731       VALIDATE_MARK_SWEEP_ONLY(MarkSweep::live_oop_moved_to(q, size,            \
   732                                                             compaction_top));   \
   733       assert(q != compaction_top, "everything in this pass should be moving");  \
   734       Copy::aligned_conjoint_words(q, compaction_top, size);                    \
   735       oop(compaction_top)->init_mark();                                         \
   736       assert(oop(compaction_top)->klass() != NULL, "should have a class");      \
   737                                                                                 \
   738       debug_only(prev_q = q);                                                   \
   739       q += size;                                                                \
   740     }                                                                           \
   741   }                                                                             \
   742                                                                                 \
   743   /* Let's remember if we were empty before we did the compaction. */           \
   744   bool was_empty = used_region().is_empty();                                    \
   745   /* Reset space after compaction is complete */                                \
   746   reset_after_compaction();                                                     \
   747   /* We do this clear, below, since it has overloaded meanings for some */      \
   748   /* space subtypes.  For example, OffsetTableContigSpace's that were   */      \
   749   /* compacted into will have had their offset table thresholds updated */      \
   750   /* continuously, but those that weren't need to have their thresholds */      \
   751   /* re-initialized.  Also mangles unused area for debugging.           */      \
   752   if (used_region().is_empty()) {                                               \
   753     if (!was_empty) clear(SpaceDecorator::Mangle);                              \
   754   } else {                                                                      \
   755     if (ZapUnusedHeapArea) mangle_unused_area();                                \
   756   }                                                                             \
   757 }
   759 class GenSpaceMangler;
   761 // A space in which the free area is contiguous.  It therefore supports
   762 // faster allocation, and compaction.
   763 class ContiguousSpace: public CompactibleSpace {
   764   friend class OneContigSpaceCardGeneration;
   765   friend class VMStructs;
   766  protected:
   767   HeapWord* _top;
   768   HeapWord* _concurrent_iteration_safe_limit;
   769   // A helper for mangling the unused area of the space in debug builds.
   770   GenSpaceMangler* _mangler;
   772   GenSpaceMangler* mangler() { return _mangler; }
   774   // Allocation helpers (return NULL if full).
   775   inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
   776   inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
   778  public:
   779   ContiguousSpace();
   780   ~ContiguousSpace();
   782   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   783   virtual void clear(bool mangle_space);
   785   // Accessors
   786   HeapWord* top() const            { return _top;    }
   787   void set_top(HeapWord* value)    { _top = value; }
   789   virtual void set_saved_mark()    { _saved_mark_word = top();    }
   790   void reset_saved_mark()          { _saved_mark_word = bottom(); }
   792   WaterMark bottom_mark()     { return WaterMark(this, bottom()); }
   793   WaterMark top_mark()        { return WaterMark(this, top()); }
   794   WaterMark saved_mark()      { return WaterMark(this, saved_mark_word()); }
   795   bool saved_mark_at_top() const { return saved_mark_word() == top(); }
   797   // In debug mode mangle (write it with a particular bit
   798   // pattern) the unused part of a space.
   800   // Used to save the an address in a space for later use during mangling.
   801   void set_top_for_allocations(HeapWord* v) PRODUCT_RETURN;
   802   // Used to save the space's current top for later use during mangling.
   803   void set_top_for_allocations() PRODUCT_RETURN;
   805   // Mangle regions in the space from the current top up to the
   806   // previously mangled part of the space.
   807   void mangle_unused_area() PRODUCT_RETURN;
   808   // Mangle [top, end)
   809   void mangle_unused_area_complete() PRODUCT_RETURN;
   810   // Mangle the given MemRegion.
   811   void mangle_region(MemRegion mr) PRODUCT_RETURN;
   813   // Do some sparse checking on the area that should have been mangled.
   814   void check_mangled_unused_area(HeapWord* limit) PRODUCT_RETURN;
   815   // Check the complete area that should have been mangled.
   816   // This code may be NULL depending on the macro DEBUG_MANGLING.
   817   void check_mangled_unused_area_complete() PRODUCT_RETURN;
   819   // Size computations: sizes in bytes.
   820   size_t capacity() const        { return byte_size(bottom(), end()); }
   821   size_t used() const            { return byte_size(bottom(), top()); }
   822   size_t free() const            { return byte_size(top(),    end()); }
   824   // Override from space.
   825   bool is_in(const void* p) const;
   827   virtual bool is_free_block(const HeapWord* p) const;
   829   // In a contiguous space we have a more obvious bound on what parts
   830   // contain objects.
   831   MemRegion used_region() const { return MemRegion(bottom(), top()); }
   833   MemRegion used_region_at_save_marks() const {
   834     return MemRegion(bottom(), saved_mark_word());
   835   }
   837   // Allocation (return NULL if full)
   838   virtual HeapWord* allocate(size_t word_size);
   839   virtual HeapWord* par_allocate(size_t word_size);
   841   virtual bool obj_allocated_since_save_marks(const oop obj) const {
   842     return (HeapWord*)obj >= saved_mark_word();
   843   }
   845   // Iteration
   846   void oop_iterate(OopClosure* cl);
   847   void oop_iterate(MemRegion mr, OopClosure* cl);
   848   void object_iterate(ObjectClosure* blk);
   849   // For contiguous spaces this method will iterate safely over objects
   850   // in the space (i.e., between bottom and top) when at a safepoint.
   851   void safe_object_iterate(ObjectClosure* blk);
   852   void object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl);
   853   // iterates on objects up to the safe limit
   854   HeapWord* object_iterate_careful(ObjectClosureCareful* cl);
   855   inline HeapWord* concurrent_iteration_safe_limit();
   856   // changes the safe limit, all objects from bottom() to the new
   857   // limit should be properly initialized
   858   inline void set_concurrent_iteration_safe_limit(HeapWord* new_limit);
   860 #ifndef SERIALGC
   861   // In support of parallel oop_iterate.
   862   #define ContigSpace_PAR_OOP_ITERATE_DECL(OopClosureType, nv_suffix)  \
   863     void par_oop_iterate(MemRegion mr, OopClosureType* blk);
   865     ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DECL)
   866   #undef ContigSpace_PAR_OOP_ITERATE_DECL
   867 #endif // SERIALGC
   869   // Compaction support
   870   virtual void reset_after_compaction() {
   871     assert(compaction_top() >= bottom() && compaction_top() <= end(), "should point inside space");
   872     set_top(compaction_top());
   873     // set new iteration safe limit
   874     set_concurrent_iteration_safe_limit(compaction_top());
   875   }
   876   virtual size_t minimum_free_block_size() const { return 0; }
   878   // Override.
   879   DirtyCardToOopClosure* new_dcto_cl(OopClosure* cl,
   880                                      CardTableModRefBS::PrecisionStyle precision,
   881                                      HeapWord* boundary = NULL);
   883   // Apply "blk->do_oop" to the addresses of all reference fields in objects
   884   // starting with the _saved_mark_word, which was noted during a generation's
   885   // save_marks and is required to denote the head of an object.
   886   // Fields in objects allocated by applications of the closure
   887   // *are* included in the iteration.
   888   // Updates _saved_mark_word to point to just after the last object
   889   // iterated over.
   890 #define ContigSpace_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   891   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk);
   893   ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DECL)
   894 #undef ContigSpace_OOP_SINCE_SAVE_MARKS_DECL
   896   // Same as object_iterate, but starting from "mark", which is required
   897   // to denote the start of an object.  Objects allocated by
   898   // applications of the closure *are* included in the iteration.
   899   virtual void object_iterate_from(WaterMark mark, ObjectClosure* blk);
   901   // Very inefficient implementation.
   902   virtual HeapWord* block_start_const(const void* p) const;
   903   size_t block_size(const HeapWord* p) const;
   904   // If a block is in the allocated area, it is an object.
   905   bool block_is_obj(const HeapWord* p) const { return p < top(); }
   907   // Addresses for inlined allocation
   908   HeapWord** top_addr() { return &_top; }
   909   HeapWord** end_addr() { return &_end; }
   911   // Overrides for more efficient compaction support.
   912   void prepare_for_compaction(CompactPoint* cp);
   914   // PrintHeapAtGC support.
   915   virtual void print_on(outputStream* st) const;
   917   // Checked dynamic downcasts.
   918   virtual ContiguousSpace* toContiguousSpace() {
   919     return this;
   920   }
   922   // Debugging
   923   virtual void verify(bool allow_dirty) const;
   925   // Used to increase collection frequency.  "factor" of 0 means entire
   926   // space.
   927   void allocate_temporary_filler(int factor);
   929 };
   932 // A dirty card to oop closure that does filtering.
   933 // It knows how to filter out objects that are outside of the _boundary.
   934 class Filtering_DCTOC : public DirtyCardToOopClosure {
   935 protected:
   936   // Override.
   937   void walk_mem_region(MemRegion mr,
   938                        HeapWord* bottom, HeapWord* top);
   940   // Walk the given memory region, from bottom to top, applying
   941   // the given oop closure to (possibly) all objects found. The
   942   // given oop closure may or may not be the same as the oop
   943   // closure with which this closure was created, as it may
   944   // be a filtering closure which makes use of the _boundary.
   945   // We offer two signatures, so the FilteringClosure static type is
   946   // apparent.
   947   virtual void walk_mem_region_with_cl(MemRegion mr,
   948                                        HeapWord* bottom, HeapWord* top,
   949                                        OopClosure* cl) = 0;
   950   virtual void walk_mem_region_with_cl(MemRegion mr,
   951                                        HeapWord* bottom, HeapWord* top,
   952                                        FilteringClosure* cl) = 0;
   954 public:
   955   Filtering_DCTOC(Space* sp, OopClosure* cl,
   956                   CardTableModRefBS::PrecisionStyle precision,
   957                   HeapWord* boundary) :
   958     DirtyCardToOopClosure(sp, cl, precision, boundary) {}
   959 };
   961 // A dirty card to oop closure for contiguous spaces
   962 // (ContiguousSpace and sub-classes).
   963 // It is a FilteringClosure, as defined above, and it knows:
   964 //
   965 // 1. That the actual top of any area in a memory region
   966 //    contained by the space is bounded by the end of the contiguous
   967 //    region of the space.
   968 // 2. That the space is really made up of objects and not just
   969 //    blocks.
   971 class ContiguousSpaceDCTOC : public Filtering_DCTOC {
   972 protected:
   973   // Overrides.
   974   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj);
   976   virtual void walk_mem_region_with_cl(MemRegion mr,
   977                                        HeapWord* bottom, HeapWord* top,
   978                                        OopClosure* cl);
   979   virtual void walk_mem_region_with_cl(MemRegion mr,
   980                                        HeapWord* bottom, HeapWord* top,
   981                                        FilteringClosure* cl);
   983 public:
   984   ContiguousSpaceDCTOC(ContiguousSpace* sp, OopClosure* cl,
   985                        CardTableModRefBS::PrecisionStyle precision,
   986                        HeapWord* boundary) :
   987     Filtering_DCTOC(sp, cl, precision, boundary)
   988   {}
   989 };
   992 // Class EdenSpace describes eden-space in new generation.
   994 class DefNewGeneration;
   996 class EdenSpace : public ContiguousSpace {
   997   friend class VMStructs;
   998  private:
   999   DefNewGeneration* _gen;
  1001   // _soft_end is used as a soft limit on allocation.  As soft limits are
  1002   // reached, the slow-path allocation code can invoke other actions and then
  1003   // adjust _soft_end up to a new soft limit or to end().
  1004   HeapWord* _soft_end;
  1006  public:
  1007   EdenSpace(DefNewGeneration* gen) :
  1008    _gen(gen), _soft_end(NULL) {}
  1010   // Get/set just the 'soft' limit.
  1011   HeapWord* soft_end()               { return _soft_end; }
  1012   HeapWord** soft_end_addr()         { return &_soft_end; }
  1013   void set_soft_end(HeapWord* value) { _soft_end = value; }
  1015   // Override.
  1016   void clear(bool mangle_space);
  1018   // Set both the 'hard' and 'soft' limits (_end and _soft_end).
  1019   void set_end(HeapWord* value) {
  1020     set_soft_end(value);
  1021     ContiguousSpace::set_end(value);
  1024   // Allocation (return NULL if full)
  1025   HeapWord* allocate(size_t word_size);
  1026   HeapWord* par_allocate(size_t word_size);
  1027 };
  1029 // Class ConcEdenSpace extends EdenSpace for the sake of safe
  1030 // allocation while soft-end is being modified concurrently
  1032 class ConcEdenSpace : public EdenSpace {
  1033  public:
  1034   ConcEdenSpace(DefNewGeneration* gen) : EdenSpace(gen) { }
  1036   // Allocation (return NULL if full)
  1037   HeapWord* par_allocate(size_t word_size);
  1038 };
  1041 // A ContigSpace that Supports an efficient "block_start" operation via
  1042 // a BlockOffsetArray (whose BlockOffsetSharedArray may be shared with
  1043 // other spaces.)  This is the abstract base class for old generation
  1044 // (tenured, perm) spaces.
  1046 class OffsetTableContigSpace: public ContiguousSpace {
  1047   friend class VMStructs;
  1048  protected:
  1049   BlockOffsetArrayContigSpace _offsets;
  1050   Mutex _par_alloc_lock;
  1052  public:
  1053   // Constructor
  1054   OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
  1055                          MemRegion mr);
  1057   void set_bottom(HeapWord* value);
  1058   void set_end(HeapWord* value);
  1060   void clear(bool mangle_space);
  1062   inline HeapWord* block_start_const(const void* p) const;
  1064   // Add offset table update.
  1065   virtual inline HeapWord* allocate(size_t word_size);
  1066   inline HeapWord* par_allocate(size_t word_size);
  1068   // MarkSweep support phase3
  1069   virtual HeapWord* initialize_threshold();
  1070   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
  1072   virtual void print_on(outputStream* st) const;
  1074   // Debugging
  1075   void verify(bool allow_dirty) const;
  1077   // Shared space support
  1078   void serialize_block_offset_array_offsets(SerializeOopClosure* soc);
  1079 };
  1082 // Class TenuredSpace is used by TenuredGeneration
  1084 class TenuredSpace: public OffsetTableContigSpace {
  1085   friend class VMStructs;
  1086  protected:
  1087   // Mark sweep support
  1088   size_t allowed_dead_ratio() const;
  1089  public:
  1090   // Constructor
  1091   TenuredSpace(BlockOffsetSharedArray* sharedOffsetArray,
  1092                MemRegion mr) :
  1093     OffsetTableContigSpace(sharedOffsetArray, mr) {}
  1094 };
  1097 // Class ContigPermSpace is used by CompactingPermGen
  1099 class ContigPermSpace: public OffsetTableContigSpace {
  1100   friend class VMStructs;
  1101  protected:
  1102   // Mark sweep support
  1103   size_t allowed_dead_ratio() const;
  1104  public:
  1105   // Constructor
  1106   ContigPermSpace(BlockOffsetSharedArray* sharedOffsetArray, MemRegion mr) :
  1107     OffsetTableContigSpace(sharedOffsetArray, mr) {}
  1108 };

mercurial