src/share/vm/memory/cardTableModRefBS.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 924
2494ab195856
child 1063
7bb995fbd3c0
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 2000-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
    26 // enumerate ref fields that have been modified (since the last
    27 // enumeration.)
    29 # include "incls/_precompiled.incl"
    30 # include "incls/_cardTableModRefBS.cpp.incl"
    32 size_t CardTableModRefBS::cards_required(size_t covered_words)
    33 {
    34   // Add one for a guard card, used to detect errors.
    35   const size_t words = align_size_up(covered_words, card_size_in_words);
    36   return words / card_size_in_words + 1;
    37 }
    39 size_t CardTableModRefBS::compute_byte_map_size()
    40 {
    41   assert(_guard_index == cards_required(_whole_heap.word_size()) - 1,
    42                                         "unitialized, check declaration order");
    43   assert(_page_size != 0, "unitialized, check declaration order");
    44   const size_t granularity = os::vm_allocation_granularity();
    45   return align_size_up(_guard_index + 1, MAX2(_page_size, granularity));
    46 }
    48 CardTableModRefBS::CardTableModRefBS(MemRegion whole_heap,
    49                                      int max_covered_regions):
    50   ModRefBarrierSet(max_covered_regions),
    51   _whole_heap(whole_heap),
    52   _guard_index(cards_required(whole_heap.word_size()) - 1),
    53   _last_valid_index(_guard_index - 1),
    54   _page_size(os::vm_page_size()),
    55   _byte_map_size(compute_byte_map_size())
    56 {
    57   _kind = BarrierSet::CardTableModRef;
    59   HeapWord* low_bound  = _whole_heap.start();
    60   HeapWord* high_bound = _whole_heap.end();
    61   assert((uintptr_t(low_bound)  & (card_size - 1))  == 0, "heap must start at card boundary");
    62   assert((uintptr_t(high_bound) & (card_size - 1))  == 0, "heap must end at card boundary");
    64   assert(card_size <= 512, "card_size must be less than 512"); // why?
    66   _covered   = new MemRegion[max_covered_regions];
    67   _committed = new MemRegion[max_covered_regions];
    68   if (_covered == NULL || _committed == NULL)
    69     vm_exit_during_initialization("couldn't alloc card table covered region set.");
    70   int i;
    71   for (i = 0; i < max_covered_regions; i++) {
    72     _covered[i].set_word_size(0);
    73     _committed[i].set_word_size(0);
    74   }
    75   _cur_covered_regions = 0;
    77   const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 :
    78     MAX2(_page_size, (size_t) os::vm_allocation_granularity());
    79   ReservedSpace heap_rs(_byte_map_size, rs_align, false);
    80   os::trace_page_sizes("card table", _guard_index + 1, _guard_index + 1,
    81                        _page_size, heap_rs.base(), heap_rs.size());
    82   if (!heap_rs.is_reserved()) {
    83     vm_exit_during_initialization("Could not reserve enough space for the "
    84                                   "card marking array");
    85   }
    87   // The assember store_check code will do an unsigned shift of the oop,
    88   // then add it to byte_map_base, i.e.
    89   //
    90   //   _byte_map = byte_map_base + (uintptr_t(low_bound) >> card_shift)
    91   _byte_map = (jbyte*) heap_rs.base();
    92   byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
    93   assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map");
    94   assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map");
    96   jbyte* guard_card = &_byte_map[_guard_index];
    97   uintptr_t guard_page = align_size_down((uintptr_t)guard_card, _page_size);
    98   _guard_region = MemRegion((HeapWord*)guard_page, _page_size);
    99   if (!os::commit_memory((char*)guard_page, _page_size, _page_size)) {
   100     // Do better than this for Merlin
   101     vm_exit_out_of_memory(_page_size, "card table last card");
   102   }
   103   *guard_card = last_card;
   105    _lowest_non_clean =
   106     NEW_C_HEAP_ARRAY(CardArr, max_covered_regions);
   107   _lowest_non_clean_chunk_size =
   108     NEW_C_HEAP_ARRAY(size_t, max_covered_regions);
   109   _lowest_non_clean_base_chunk_index =
   110     NEW_C_HEAP_ARRAY(uintptr_t, max_covered_regions);
   111   _last_LNC_resizing_collection =
   112     NEW_C_HEAP_ARRAY(int, max_covered_regions);
   113   if (_lowest_non_clean == NULL
   114       || _lowest_non_clean_chunk_size == NULL
   115       || _lowest_non_clean_base_chunk_index == NULL
   116       || _last_LNC_resizing_collection == NULL)
   117     vm_exit_during_initialization("couldn't allocate an LNC array.");
   118   for (i = 0; i < max_covered_regions; i++) {
   119     _lowest_non_clean[i] = NULL;
   120     _lowest_non_clean_chunk_size[i] = 0;
   121     _last_LNC_resizing_collection[i] = -1;
   122   }
   124   if (TraceCardTableModRefBS) {
   125     gclog_or_tty->print_cr("CardTableModRefBS::CardTableModRefBS: ");
   126     gclog_or_tty->print_cr("  "
   127                   "  &_byte_map[0]: " INTPTR_FORMAT
   128                   "  &_byte_map[_last_valid_index]: " INTPTR_FORMAT,
   129                   &_byte_map[0],
   130                   &_byte_map[_last_valid_index]);
   131     gclog_or_tty->print_cr("  "
   132                   "  byte_map_base: " INTPTR_FORMAT,
   133                   byte_map_base);
   134   }
   135 }
   137 int CardTableModRefBS::find_covering_region_by_base(HeapWord* base) {
   138   int i;
   139   for (i = 0; i < _cur_covered_regions; i++) {
   140     if (_covered[i].start() == base) return i;
   141     if (_covered[i].start() > base) break;
   142   }
   143   // If we didn't find it, create a new one.
   144   assert(_cur_covered_regions < _max_covered_regions,
   145          "too many covered regions");
   146   // Move the ones above up, to maintain sorted order.
   147   for (int j = _cur_covered_regions; j > i; j--) {
   148     _covered[j] = _covered[j-1];
   149     _committed[j] = _committed[j-1];
   150   }
   151   int res = i;
   152   _cur_covered_regions++;
   153   _covered[res].set_start(base);
   154   _covered[res].set_word_size(0);
   155   jbyte* ct_start = byte_for(base);
   156   uintptr_t ct_start_aligned = align_size_down((uintptr_t)ct_start, _page_size);
   157   _committed[res].set_start((HeapWord*)ct_start_aligned);
   158   _committed[res].set_word_size(0);
   159   return res;
   160 }
   162 int CardTableModRefBS::find_covering_region_containing(HeapWord* addr) {
   163   for (int i = 0; i < _cur_covered_regions; i++) {
   164     if (_covered[i].contains(addr)) {
   165       return i;
   166     }
   167   }
   168   assert(0, "address outside of heap?");
   169   return -1;
   170 }
   172 HeapWord* CardTableModRefBS::largest_prev_committed_end(int ind) const {
   173   HeapWord* max_end = NULL;
   174   for (int j = 0; j < ind; j++) {
   175     HeapWord* this_end = _committed[j].end();
   176     if (this_end > max_end) max_end = this_end;
   177   }
   178   return max_end;
   179 }
   181 MemRegion CardTableModRefBS::committed_unique_to_self(int self,
   182                                                       MemRegion mr) const {
   183   MemRegion result = mr;
   184   for (int r = 0; r < _cur_covered_regions; r += 1) {
   185     if (r != self) {
   186       result = result.minus(_committed[r]);
   187     }
   188   }
   189   // Never include the guard page.
   190   result = result.minus(_guard_region);
   191   return result;
   192 }
   194 void CardTableModRefBS::resize_covered_region(MemRegion new_region) {
   195   // We don't change the start of a region, only the end.
   196   assert(_whole_heap.contains(new_region),
   197            "attempt to cover area not in reserved area");
   198   debug_only(verify_guard();)
   199   // collided is true if the expansion would push into another committed region
   200   debug_only(bool collided = false;)
   201   int const ind = find_covering_region_by_base(new_region.start());
   202   MemRegion const old_region = _covered[ind];
   203   assert(old_region.start() == new_region.start(), "just checking");
   204   if (new_region.word_size() != old_region.word_size()) {
   205     // Commit new or uncommit old pages, if necessary.
   206     MemRegion cur_committed = _committed[ind];
   207     // Extend the end of this _commited region
   208     // to cover the end of any lower _committed regions.
   209     // This forms overlapping regions, but never interior regions.
   210     HeapWord* const max_prev_end = largest_prev_committed_end(ind);
   211     if (max_prev_end > cur_committed.end()) {
   212       cur_committed.set_end(max_prev_end);
   213     }
   214     // Align the end up to a page size (starts are already aligned).
   215     jbyte* const new_end = byte_after(new_region.last());
   216     HeapWord* new_end_aligned =
   217       (HeapWord*) align_size_up((uintptr_t)new_end, _page_size);
   218     assert(new_end_aligned >= (HeapWord*) new_end,
   219            "align up, but less");
   220     int ri = 0;
   221     for (ri = 0; ri < _cur_covered_regions; ri++) {
   222       if (ri != ind) {
   223         if (_committed[ri].contains(new_end_aligned)) {
   224           assert((new_end_aligned >= _committed[ri].start()) &&
   225                  (_committed[ri].start() > _committed[ind].start()),
   226                  "New end of committed region is inconsistent");
   227           new_end_aligned = _committed[ri].start();
   228           assert(new_end_aligned > _committed[ind].start(),
   229             "New end of committed region is before start");
   230           debug_only(collided = true;)
   231           // Should only collide with 1 region
   232           break;
   233         }
   234       }
   235     }
   236 #ifdef ASSERT
   237     for (++ri; ri < _cur_covered_regions; ri++) {
   238       assert(!_committed[ri].contains(new_end_aligned),
   239         "New end of committed region is in a second committed region");
   240     }
   241 #endif
   242     // The guard page is always committed and should not be committed over.
   243     HeapWord* const new_end_for_commit = MIN2(new_end_aligned,
   244                                               _guard_region.start());
   246     if (new_end_for_commit > cur_committed.end()) {
   247       // Must commit new pages.
   248       MemRegion const new_committed =
   249         MemRegion(cur_committed.end(), new_end_for_commit);
   251       assert(!new_committed.is_empty(), "Region should not be empty here");
   252       if (!os::commit_memory((char*)new_committed.start(),
   253                              new_committed.byte_size(), _page_size)) {
   254         // Do better than this for Merlin
   255         vm_exit_out_of_memory(new_committed.byte_size(),
   256                 "card table expansion");
   257       }
   258     // Use new_end_aligned (as opposed to new_end_for_commit) because
   259     // the cur_committed region may include the guard region.
   260     } else if (new_end_aligned < cur_committed.end()) {
   261       // Must uncommit pages.
   262       MemRegion const uncommit_region =
   263         committed_unique_to_self(ind, MemRegion(new_end_aligned,
   264                                                 cur_committed.end()));
   265       if (!uncommit_region.is_empty()) {
   266         if (!os::uncommit_memory((char*)uncommit_region.start(),
   267                                  uncommit_region.byte_size())) {
   268           assert(false, "Card table contraction failed");
   269           // The call failed so don't change the end of the
   270           // committed region.  This is better than taking the
   271           // VM down.
   272           new_end_aligned = _committed[ind].end();
   273         }
   274       }
   275     }
   276     // In any case, we can reset the end of the current committed entry.
   277     _committed[ind].set_end(new_end_aligned);
   279     // The default of 0 is not necessarily clean cards.
   280     jbyte* entry;
   281     if (old_region.last() < _whole_heap.start()) {
   282       entry = byte_for(_whole_heap.start());
   283     } else {
   284       entry = byte_after(old_region.last());
   285     }
   286     assert(index_for(new_region.last()) <  _guard_index,
   287       "The guard card will be overwritten");
   288     // This line commented out cleans the newly expanded region and
   289     // not the aligned up expanded region.
   290     // jbyte* const end = byte_after(new_region.last());
   291     jbyte* const end = (jbyte*) new_end_for_commit;
   292     assert((end >= byte_after(new_region.last())) || collided,
   293       "Expect to be beyond new region unless impacting another region");
   294     // do nothing if we resized downward.
   295 #ifdef ASSERT
   296     for (int ri = 0; ri < _cur_covered_regions; ri++) {
   297       if (ri != ind) {
   298         // The end of the new committed region should not
   299         // be in any existing region unless it matches
   300         // the start of the next region.
   301         assert(!_committed[ri].contains(end) ||
   302                (_committed[ri].start() == (HeapWord*) end),
   303                "Overlapping committed regions");
   304       }
   305     }
   306 #endif
   307     if (entry < end) {
   308       memset(entry, clean_card, pointer_delta(end, entry, sizeof(jbyte)));
   309     }
   310   }
   311   // In any case, the covered size changes.
   312   _covered[ind].set_word_size(new_region.word_size());
   313   if (TraceCardTableModRefBS) {
   314     gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
   315     gclog_or_tty->print_cr("  "
   316                   "  _covered[%d].start(): " INTPTR_FORMAT
   317                   "  _covered[%d].last(): " INTPTR_FORMAT,
   318                   ind, _covered[ind].start(),
   319                   ind, _covered[ind].last());
   320     gclog_or_tty->print_cr("  "
   321                   "  _committed[%d].start(): " INTPTR_FORMAT
   322                   "  _committed[%d].last(): " INTPTR_FORMAT,
   323                   ind, _committed[ind].start(),
   324                   ind, _committed[ind].last());
   325     gclog_or_tty->print_cr("  "
   326                   "  byte_for(start): " INTPTR_FORMAT
   327                   "  byte_for(last): " INTPTR_FORMAT,
   328                   byte_for(_covered[ind].start()),
   329                   byte_for(_covered[ind].last()));
   330     gclog_or_tty->print_cr("  "
   331                   "  addr_for(start): " INTPTR_FORMAT
   332                   "  addr_for(last): " INTPTR_FORMAT,
   333                   addr_for((jbyte*) _committed[ind].start()),
   334                   addr_for((jbyte*) _committed[ind].last()));
   335   }
   336   debug_only(verify_guard();)
   337 }
   339 // Note that these versions are precise!  The scanning code has to handle the
   340 // fact that the write barrier may be either precise or imprecise.
   342 void CardTableModRefBS::write_ref_field_work(void* field, oop newVal) {
   343   inline_write_ref_field(field, newVal);
   344 }
   347 bool CardTableModRefBS::claim_card(size_t card_index) {
   348   jbyte val = _byte_map[card_index];
   349   if (val != claimed_card_val()) {
   350     jbyte res = Atomic::cmpxchg((jbyte) claimed_card_val(), &_byte_map[card_index], val);
   351     if (res == val)
   352       return true;
   353     else return false;
   354   }
   355   return false;
   356 }
   358 void CardTableModRefBS::non_clean_card_iterate(Space* sp,
   359                                                MemRegion mr,
   360                                                DirtyCardToOopClosure* dcto_cl,
   361                                                MemRegionClosure* cl,
   362                                                bool clear) {
   363   if (!mr.is_empty()) {
   364     int n_threads = SharedHeap::heap()->n_par_threads();
   365     if (n_threads > 0) {
   366 #ifndef SERIALGC
   367       par_non_clean_card_iterate_work(sp, mr, dcto_cl, cl, clear, n_threads);
   368 #else  // SERIALGC
   369       fatal("Parallel gc not supported here.");
   370 #endif // SERIALGC
   371     } else {
   372       non_clean_card_iterate_work(mr, cl, clear);
   373     }
   374   }
   375 }
   377 // NOTE: For this to work correctly, it is important that
   378 // we look for non-clean cards below (so as to catch those
   379 // marked precleaned), rather than look explicitly for dirty
   380 // cards (and miss those marked precleaned). In that sense,
   381 // the name precleaned is currently somewhat of a misnomer.
   382 void CardTableModRefBS::non_clean_card_iterate_work(MemRegion mr,
   383                                                     MemRegionClosure* cl,
   384                                                     bool clear) {
   385   // Figure out whether we have to worry about parallelism.
   386   bool is_par = (SharedHeap::heap()->n_par_threads() > 1);
   387   for (int i = 0; i < _cur_covered_regions; i++) {
   388     MemRegion mri = mr.intersection(_covered[i]);
   389     if (mri.word_size() > 0) {
   390       jbyte* cur_entry = byte_for(mri.last());
   391       jbyte* limit = byte_for(mri.start());
   392       while (cur_entry >= limit) {
   393         jbyte* next_entry = cur_entry - 1;
   394         if (*cur_entry != clean_card) {
   395           size_t non_clean_cards = 1;
   396           // Should the next card be included in this range of dirty cards.
   397           while (next_entry >= limit && *next_entry != clean_card) {
   398             non_clean_cards++;
   399             cur_entry = next_entry;
   400             next_entry--;
   401           }
   402           // The memory region may not be on a card boundary.  So that
   403           // objects beyond the end of the region are not processed, make
   404           // cur_cards precise with regard to the end of the memory region.
   405           MemRegion cur_cards(addr_for(cur_entry),
   406                               non_clean_cards * card_size_in_words);
   407           MemRegion dirty_region = cur_cards.intersection(mri);
   408           if (clear) {
   409             for (size_t i = 0; i < non_clean_cards; i++) {
   410               // Clean the dirty cards (but leave the other non-clean
   411               // alone.)  If parallel, do the cleaning atomically.
   412               jbyte cur_entry_val = cur_entry[i];
   413               if (card_is_dirty_wrt_gen_iter(cur_entry_val)) {
   414                 if (is_par) {
   415                   jbyte res = Atomic::cmpxchg(clean_card, &cur_entry[i], cur_entry_val);
   416                   assert(res != clean_card,
   417                          "Dirty card mysteriously cleaned");
   418                 } else {
   419                   cur_entry[i] = clean_card;
   420                 }
   421               }
   422             }
   423           }
   424           cl->do_MemRegion(dirty_region);
   425         }
   426         cur_entry = next_entry;
   427       }
   428     }
   429   }
   430 }
   432 void CardTableModRefBS::mod_oop_in_space_iterate(Space* sp,
   433                                                  OopClosure* cl,
   434                                                  bool clear,
   435                                                  bool before_save_marks) {
   436   // Note that dcto_cl is resource-allocated, so there is no
   437   // corresponding "delete".
   438   DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision());
   439   MemRegion used_mr;
   440   if (before_save_marks) {
   441     used_mr = sp->used_region_at_save_marks();
   442   } else {
   443     used_mr = sp->used_region();
   444   }
   445   non_clean_card_iterate(sp, used_mr, dcto_cl, dcto_cl, clear);
   446 }
   448 void CardTableModRefBS::dirty_MemRegion(MemRegion mr) {
   449   jbyte* cur  = byte_for(mr.start());
   450   jbyte* last = byte_after(mr.last());
   451   while (cur < last) {
   452     *cur = dirty_card;
   453     cur++;
   454   }
   455 }
   457 void CardTableModRefBS::invalidate(MemRegion mr, bool whole_heap) {
   458   for (int i = 0; i < _cur_covered_regions; i++) {
   459     MemRegion mri = mr.intersection(_covered[i]);
   460     if (!mri.is_empty()) dirty_MemRegion(mri);
   461   }
   462 }
   464 void CardTableModRefBS::clear_MemRegion(MemRegion mr) {
   465   // Be conservative: only clean cards entirely contained within the
   466   // region.
   467   jbyte* cur;
   468   if (mr.start() == _whole_heap.start()) {
   469     cur = byte_for(mr.start());
   470   } else {
   471     assert(mr.start() > _whole_heap.start(), "mr is not covered.");
   472     cur = byte_after(mr.start() - 1);
   473   }
   474   jbyte* last = byte_after(mr.last());
   475   memset(cur, clean_card, pointer_delta(last, cur, sizeof(jbyte)));
   476 }
   478 void CardTableModRefBS::clear(MemRegion mr) {
   479   for (int i = 0; i < _cur_covered_regions; i++) {
   480     MemRegion mri = mr.intersection(_covered[i]);
   481     if (!mri.is_empty()) clear_MemRegion(mri);
   482   }
   483 }
   485 void CardTableModRefBS::dirty(MemRegion mr) {
   486   jbyte* first = byte_for(mr.start());
   487   jbyte* last  = byte_after(mr.last());
   488   memset(first, dirty_card, last-first);
   489 }
   491 // NOTES:
   492 // (1) Unlike mod_oop_in_space_iterate() above, dirty_card_iterate()
   493 //     iterates over dirty cards ranges in increasing address order.
   494 void CardTableModRefBS::dirty_card_iterate(MemRegion mr,
   495                                            MemRegionClosure* cl) {
   496   for (int i = 0; i < _cur_covered_regions; i++) {
   497     MemRegion mri = mr.intersection(_covered[i]);
   498     if (!mri.is_empty()) {
   499       jbyte *cur_entry, *next_entry, *limit;
   500       for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
   501            cur_entry <= limit;
   502            cur_entry  = next_entry) {
   503         next_entry = cur_entry + 1;
   504         if (*cur_entry == dirty_card) {
   505           size_t dirty_cards;
   506           // Accumulate maximal dirty card range, starting at cur_entry
   507           for (dirty_cards = 1;
   508                next_entry <= limit && *next_entry == dirty_card;
   509                dirty_cards++, next_entry++);
   510           MemRegion cur_cards(addr_for(cur_entry),
   511                               dirty_cards*card_size_in_words);
   512           cl->do_MemRegion(cur_cards);
   513         }
   514       }
   515     }
   516   }
   517 }
   519 MemRegion CardTableModRefBS::dirty_card_range_after_reset(MemRegion mr,
   520                                                           bool reset,
   521                                                           int reset_val) {
   522   for (int i = 0; i < _cur_covered_regions; i++) {
   523     MemRegion mri = mr.intersection(_covered[i]);
   524     if (!mri.is_empty()) {
   525       jbyte* cur_entry, *next_entry, *limit;
   526       for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
   527            cur_entry <= limit;
   528            cur_entry  = next_entry) {
   529         next_entry = cur_entry + 1;
   530         if (*cur_entry == dirty_card) {
   531           size_t dirty_cards;
   532           // Accumulate maximal dirty card range, starting at cur_entry
   533           for (dirty_cards = 1;
   534                next_entry <= limit && *next_entry == dirty_card;
   535                dirty_cards++, next_entry++);
   536           MemRegion cur_cards(addr_for(cur_entry),
   537                               dirty_cards*card_size_in_words);
   538           if (reset) {
   539             for (size_t i = 0; i < dirty_cards; i++) {
   540               cur_entry[i] = reset_val;
   541             }
   542           }
   543           return cur_cards;
   544         }
   545       }
   546     }
   547   }
   548   return MemRegion(mr.end(), mr.end());
   549 }
   551 // Set all the dirty cards in the given region to "precleaned" state.
   552 void CardTableModRefBS::preclean_dirty_cards(MemRegion mr) {
   553   for (int i = 0; i < _cur_covered_regions; i++) {
   554     MemRegion mri = mr.intersection(_covered[i]);
   555     if (!mri.is_empty()) {
   556       jbyte *cur_entry, *limit;
   557       for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
   558            cur_entry <= limit;
   559            cur_entry++) {
   560         if (*cur_entry == dirty_card) {
   561           *cur_entry = precleaned_card;
   562         }
   563       }
   564     }
   565   }
   566 }
   568 uintx CardTableModRefBS::ct_max_alignment_constraint() {
   569   return card_size * os::vm_page_size();
   570 }
   572 void CardTableModRefBS::verify_guard() {
   573   // For product build verification
   574   guarantee(_byte_map[_guard_index] == last_card,
   575             "card table guard has been modified");
   576 }
   578 void CardTableModRefBS::verify() {
   579   verify_guard();
   580 }
   582 #ifndef PRODUCT
   583 class GuaranteeNotModClosure: public MemRegionClosure {
   584   CardTableModRefBS* _ct;
   585 public:
   586   GuaranteeNotModClosure(CardTableModRefBS* ct) : _ct(ct) {}
   587   void do_MemRegion(MemRegion mr) {
   588     jbyte* entry = _ct->byte_for(mr.start());
   589     guarantee(*entry != CardTableModRefBS::clean_card,
   590               "Dirty card in region that should be clean");
   591   }
   592 };
   594 void CardTableModRefBS::verify_clean_region(MemRegion mr) {
   595   GuaranteeNotModClosure blk(this);
   596   non_clean_card_iterate_work(mr, &blk, false);
   597 }
   598 #endif
   600 bool CardTableModRefBSForCTRS::card_will_be_scanned(jbyte cv) {
   601   return
   602     CardTableModRefBS::card_will_be_scanned(cv) ||
   603     _rs->is_prev_nonclean_card_val(cv);
   604 };
   606 bool CardTableModRefBSForCTRS::card_may_have_been_dirty(jbyte cv) {
   607   return
   608     cv != clean_card &&
   609     (CardTableModRefBS::card_may_have_been_dirty(cv) ||
   610      CardTableRS::youngergen_may_have_been_dirty(cv));
   611 };

mercurial