src/share/vm/gc_interface/collectedHeap.hpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 977
9a25e0c45327
child 1063
7bb995fbd3c0
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
    26 // is an abstract class: there may be many different kinds of heaps.  This
    27 // class defines the functions that a heap must implement, and contains
    28 // infrastructure common to all heaps.
    30 class BarrierSet;
    31 class ThreadClosure;
    32 class AdaptiveSizePolicy;
    33 class Thread;
    35 //
    36 // CollectedHeap
    37 //   SharedHeap
    38 //     GenCollectedHeap
    39 //     G1CollectedHeap
    40 //   ParallelScavengeHeap
    41 //
    42 class CollectedHeap : public CHeapObj {
    43   friend class VMStructs;
    44   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
    45   friend class constantPoolCacheKlass; // allocate() method inserts is_conc_safe
    47 #ifdef ASSERT
    48   static int       _fire_out_of_memory_count;
    49 #endif
    51   // Used for filler objects (static, but initialized in ctor).
    52   static size_t _filler_array_max_size;
    54  protected:
    55   MemRegion _reserved;
    56   BarrierSet* _barrier_set;
    57   bool _is_gc_active;
    58   unsigned int _total_collections;          // ... started
    59   unsigned int _total_full_collections;     // ... started
    60   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
    61   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
    63   // Reason for current garbage collection.  Should be set to
    64   // a value reflecting no collection between collections.
    65   GCCause::Cause _gc_cause;
    66   GCCause::Cause _gc_lastcause;
    67   PerfStringVariable* _perf_gc_cause;
    68   PerfStringVariable* _perf_gc_lastcause;
    70   // Constructor
    71   CollectedHeap();
    73   // Create a new tlab
    74   virtual HeapWord* allocate_new_tlab(size_t size);
    76   // Fix up tlabs to make the heap well-formed again,
    77   // optionally retiring the tlabs.
    78   virtual void fill_all_tlabs(bool retire);
    80   // Accumulate statistics on all tlabs.
    81   virtual void accumulate_statistics_all_tlabs();
    83   // Reinitialize tlabs before resuming mutators.
    84   virtual void resize_all_tlabs();
    86  protected:
    87   // Allocate from the current thread's TLAB, with broken-out slow path.
    88   inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size);
    89   static HeapWord* allocate_from_tlab_slow(Thread* thread, size_t size);
    91   // Allocate an uninitialized block of the given size, or returns NULL if
    92   // this is impossible.
    93   inline static HeapWord* common_mem_allocate_noinit(size_t size, bool is_noref, TRAPS);
    95   // Like allocate_init, but the block returned by a successful allocation
    96   // is guaranteed initialized to zeros.
    97   inline static HeapWord* common_mem_allocate_init(size_t size, bool is_noref, TRAPS);
    99   // Same as common_mem version, except memory is allocated in the permanent area
   100   // If there is no permanent area, revert to common_mem_allocate_noinit
   101   inline static HeapWord* common_permanent_mem_allocate_noinit(size_t size, TRAPS);
   103   // Same as common_mem version, except memory is allocated in the permanent area
   104   // If there is no permanent area, revert to common_mem_allocate_init
   105   inline static HeapWord* common_permanent_mem_allocate_init(size_t size, TRAPS);
   107   // Helper functions for (VM) allocation.
   108   inline static void post_allocation_setup_common(KlassHandle klass,
   109                                                   HeapWord* obj, size_t size);
   110   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
   111                                                             HeapWord* objPtr,
   112                                                             size_t size);
   114   inline static void post_allocation_setup_obj(KlassHandle klass,
   115                                                HeapWord* obj, size_t size);
   117   inline static void post_allocation_setup_array(KlassHandle klass,
   118                                                  HeapWord* obj, size_t size,
   119                                                  int length);
   121   // Clears an allocated object.
   122   inline static void init_obj(HeapWord* obj, size_t size);
   124   // Filler object utilities.
   125   static inline size_t filler_array_hdr_size();
   126   static inline size_t filler_array_min_size();
   127   static inline size_t filler_array_max_size();
   129   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
   130   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words);)
   132   // Fill with a single array; caller must ensure filler_array_min_size() <=
   133   // words <= filler_array_max_size().
   134   static inline void fill_with_array(HeapWord* start, size_t words);
   136   // Fill with a single object (either an int array or a java.lang.Object).
   137   static inline void fill_with_object_impl(HeapWord* start, size_t words);
   139   // Verification functions
   140   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
   141     PRODUCT_RETURN;
   142   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
   143     PRODUCT_RETURN;
   144   debug_only(static void check_for_valid_allocation_state();)
   146  public:
   147   enum Name {
   148     Abstract,
   149     SharedHeap,
   150     GenCollectedHeap,
   151     ParallelScavengeHeap,
   152     G1CollectedHeap
   153   };
   155   virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
   157   /**
   158    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
   159    * and JNI_OK on success.
   160    */
   161   virtual jint initialize() = 0;
   163   // In many heaps, there will be a need to perform some initialization activities
   164   // after the Universe is fully formed, but before general heap allocation is allowed.
   165   // This is the correct place to place such initialization methods.
   166   virtual void post_initialize() = 0;
   168   MemRegion reserved_region() const { return _reserved; }
   169   address base() const { return (address)reserved_region().start(); }
   171   // Future cleanup here. The following functions should specify bytes or
   172   // heapwords as part of their signature.
   173   virtual size_t capacity() const = 0;
   174   virtual size_t used() const = 0;
   176   // Return "true" if the part of the heap that allocates Java
   177   // objects has reached the maximal committed limit that it can
   178   // reach, without a garbage collection.
   179   virtual bool is_maximal_no_gc() const = 0;
   181   virtual size_t permanent_capacity() const = 0;
   182   virtual size_t permanent_used() const = 0;
   184   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
   185   // memory that the vm could make available for storing 'normal' java objects.
   186   // This is based on the reserved address space, but should not include space
   187   // that the vm uses internally for bookkeeping or temporary storage (e.g.,
   188   // perm gen space or, in the case of the young gen, one of the survivor
   189   // spaces).
   190   virtual size_t max_capacity() const = 0;
   192   // Returns "TRUE" if "p" points into the reserved area of the heap.
   193   bool is_in_reserved(const void* p) const {
   194     return _reserved.contains(p);
   195   }
   197   bool is_in_reserved_or_null(const void* p) const {
   198     return p == NULL || is_in_reserved(p);
   199   }
   201   // Returns "TRUE" if "p" points to the head of an allocated object in the
   202   // heap. Since this method can be expensive in general, we restrict its
   203   // use to assertion checking only.
   204   virtual bool is_in(const void* p) const = 0;
   206   bool is_in_or_null(const void* p) const {
   207     return p == NULL || is_in(p);
   208   }
   210   // Let's define some terms: a "closed" subset of a heap is one that
   211   //
   212   // 1) contains all currently-allocated objects, and
   213   //
   214   // 2) is closed under reference: no object in the closed subset
   215   //    references one outside the closed subset.
   216   //
   217   // Membership in a heap's closed subset is useful for assertions.
   218   // Clearly, the entire heap is a closed subset, so the default
   219   // implementation is to use "is_in_reserved".  But this may not be too
   220   // liberal to perform useful checking.  Also, the "is_in" predicate
   221   // defines a closed subset, but may be too expensive, since "is_in"
   222   // verifies that its argument points to an object head.  The
   223   // "closed_subset" method allows a heap to define an intermediate
   224   // predicate, allowing more precise checking than "is_in_reserved" at
   225   // lower cost than "is_in."
   227   // One important case is a heap composed of disjoint contiguous spaces,
   228   // such as the Garbage-First collector.  Such heaps have a convenient
   229   // closed subset consisting of the allocated portions of those
   230   // contiguous spaces.
   232   // Return "TRUE" iff the given pointer points into the heap's defined
   233   // closed subset (which defaults to the entire heap).
   234   virtual bool is_in_closed_subset(const void* p) const {
   235     return is_in_reserved(p);
   236   }
   238   bool is_in_closed_subset_or_null(const void* p) const {
   239     return p == NULL || is_in_closed_subset(p);
   240   }
   242   // Returns "TRUE" if "p" is allocated as "permanent" data.
   243   // If the heap does not use "permanent" data, returns the same
   244   // value is_in_reserved() would return.
   245   // NOTE: this actually returns true if "p" is in reserved space
   246   // for the space not that it is actually allocated (i.e. in committed
   247   // space). If you need the more conservative answer use is_permanent().
   248   virtual bool is_in_permanent(const void *p) const = 0;
   250   // Returns "TRUE" if "p" is in the committed area of  "permanent" data.
   251   // If the heap does not use "permanent" data, returns the same
   252   // value is_in() would return.
   253   virtual bool is_permanent(const void *p) const = 0;
   255   bool is_in_permanent_or_null(const void *p) const {
   256     return p == NULL || is_in_permanent(p);
   257   }
   259   // Returns "TRUE" if "p" is a method oop in the
   260   // current heap, with high probability. This predicate
   261   // is not stable, in general.
   262   bool is_valid_method(oop p) const;
   264   void set_gc_cause(GCCause::Cause v) {
   265      if (UsePerfData) {
   266        _gc_lastcause = _gc_cause;
   267        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
   268        _perf_gc_cause->set_value(GCCause::to_string(v));
   269      }
   270     _gc_cause = v;
   271   }
   272   GCCause::Cause gc_cause() { return _gc_cause; }
   274   // Preload classes into the shared portion of the heap, and then dump
   275   // that data to a file so that it can be loaded directly by another
   276   // VM (then terminate).
   277   virtual void preload_and_dump(TRAPS) { ShouldNotReachHere(); }
   279   // General obj/array allocation facilities.
   280   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
   281   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
   282   inline static oop large_typearray_allocate(KlassHandle klass, int size, int length, TRAPS);
   284   // Special obj/array allocation facilities.
   285   // Some heaps may want to manage "permanent" data uniquely. These default
   286   // to the general routines if the heap does not support such handling.
   287   inline static oop permanent_obj_allocate(KlassHandle klass, int size, TRAPS);
   288   // permanent_obj_allocate_no_klass_install() does not do the installation of
   289   // the klass pointer in the newly created object (as permanent_obj_allocate()
   290   // above does).  This allows for a delay in the installation of the klass
   291   // pointer that is needed during the create of klassKlass's.  The
   292   // method post_allocation_install_obj_klass() is used to install the
   293   // klass pointer.
   294   inline static oop permanent_obj_allocate_no_klass_install(KlassHandle klass,
   295                                                             int size,
   296                                                             TRAPS);
   297   inline static void post_allocation_install_obj_klass(KlassHandle klass,
   298                                                        oop obj,
   299                                                        int size);
   300   inline static oop permanent_array_allocate(KlassHandle klass, int size, int length, TRAPS);
   302   // Raw memory allocation facilities
   303   // The obj and array allocate methods are covers for these methods.
   304   // The permanent allocation method should default to mem_allocate if
   305   // permanent memory isn't supported.
   306   virtual HeapWord* mem_allocate(size_t size,
   307                                  bool is_noref,
   308                                  bool is_tlab,
   309                                  bool* gc_overhead_limit_was_exceeded) = 0;
   310   virtual HeapWord* permanent_mem_allocate(size_t size) = 0;
   312   // The boundary between a "large" and "small" array of primitives, in words.
   313   virtual size_t large_typearray_limit() = 0;
   315   // Utilities for turning raw memory into filler objects.
   316   //
   317   // min_fill_size() is the smallest region that can be filled.
   318   // fill_with_objects() can fill arbitrary-sized regions of the heap using
   319   // multiple objects.  fill_with_object() is for regions known to be smaller
   320   // than the largest array of integers; it uses a single object to fill the
   321   // region and has slightly less overhead.
   322   static size_t min_fill_size() {
   323     return size_t(align_object_size(oopDesc::header_size()));
   324   }
   326   static void fill_with_objects(HeapWord* start, size_t words);
   328   static void fill_with_object(HeapWord* start, size_t words);
   329   static void fill_with_object(MemRegion region) {
   330     fill_with_object(region.start(), region.word_size());
   331   }
   332   static void fill_with_object(HeapWord* start, HeapWord* end) {
   333     fill_with_object(start, pointer_delta(end, start));
   334   }
   336   // Some heaps may offer a contiguous region for shared non-blocking
   337   // allocation, via inlined code (by exporting the address of the top and
   338   // end fields defining the extent of the contiguous allocation region.)
   340   // This function returns "true" iff the heap supports this kind of
   341   // allocation.  (Default is "no".)
   342   virtual bool supports_inline_contig_alloc() const {
   343     return false;
   344   }
   345   // These functions return the addresses of the fields that define the
   346   // boundaries of the contiguous allocation area.  (These fields should be
   347   // physically near to one another.)
   348   virtual HeapWord** top_addr() const {
   349     guarantee(false, "inline contiguous allocation not supported");
   350     return NULL;
   351   }
   352   virtual HeapWord** end_addr() const {
   353     guarantee(false, "inline contiguous allocation not supported");
   354     return NULL;
   355   }
   357   // Some heaps may be in an unparseable state at certain times between
   358   // collections. This may be necessary for efficient implementation of
   359   // certain allocation-related activities. Calling this function before
   360   // attempting to parse a heap ensures that the heap is in a parsable
   361   // state (provided other concurrent activity does not introduce
   362   // unparsability). It is normally expected, therefore, that this
   363   // method is invoked with the world stopped.
   364   // NOTE: if you override this method, make sure you call
   365   // super::ensure_parsability so that the non-generational
   366   // part of the work gets done. See implementation of
   367   // CollectedHeap::ensure_parsability and, for instance,
   368   // that of GenCollectedHeap::ensure_parsability().
   369   // The argument "retire_tlabs" controls whether existing TLABs
   370   // are merely filled or also retired, thus preventing further
   371   // allocation from them and necessitating allocation of new TLABs.
   372   virtual void ensure_parsability(bool retire_tlabs);
   374   // Return an estimate of the maximum allocation that could be performed
   375   // without triggering any collection or expansion activity.  In a
   376   // generational collector, for example, this is probably the largest
   377   // allocation that could be supported (without expansion) in the youngest
   378   // generation.  It is "unsafe" because no locks are taken; the result
   379   // should be treated as an approximation, not a guarantee, for use in
   380   // heuristic resizing decisions.
   381   virtual size_t unsafe_max_alloc() = 0;
   383   // Section on thread-local allocation buffers (TLABs)
   384   // If the heap supports thread-local allocation buffers, it should override
   385   // the following methods:
   386   // Returns "true" iff the heap supports thread-local allocation buffers.
   387   // The default is "no".
   388   virtual bool supports_tlab_allocation() const {
   389     return false;
   390   }
   391   // The amount of space available for thread-local allocation buffers.
   392   virtual size_t tlab_capacity(Thread *thr) const {
   393     guarantee(false, "thread-local allocation buffers not supported");
   394     return 0;
   395   }
   396   // An estimate of the maximum allocation that could be performed
   397   // for thread-local allocation buffers without triggering any
   398   // collection or expansion activity.
   399   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
   400     guarantee(false, "thread-local allocation buffers not supported");
   401     return 0;
   402   }
   403   // Can a compiler initialize a new object without store barriers?
   404   // This permission only extends from the creation of a new object
   405   // via a TLAB up to the first subsequent safepoint.
   406   virtual bool can_elide_tlab_store_barriers() const = 0;
   408   // If a compiler is eliding store barriers for TLAB-allocated objects,
   409   // there is probably a corresponding slow path which can produce
   410   // an object allocated anywhere.  The compiler's runtime support
   411   // promises to call this function on such a slow-path-allocated
   412   // object before performing initializations that have elided
   413   // store barriers.  Returns new_obj, or maybe a safer copy thereof.
   414   virtual oop new_store_barrier(oop new_obj);
   416   // Can a compiler elide a store barrier when it writes
   417   // a permanent oop into the heap?  Applies when the compiler
   418   // is storing x to the heap, where x->is_perm() is true.
   419   virtual bool can_elide_permanent_oop_store_barriers() const = 0;
   421   // Does this heap support heap inspection (+PrintClassHistogram?)
   422   virtual bool supports_heap_inspection() const = 0;
   424   // Perform a collection of the heap; intended for use in implementing
   425   // "System.gc".  This probably implies as full a collection as the
   426   // "CollectedHeap" supports.
   427   virtual void collect(GCCause::Cause cause) = 0;
   429   // This interface assumes that it's being called by the
   430   // vm thread. It collects the heap assuming that the
   431   // heap lock is already held and that we are executing in
   432   // the context of the vm thread.
   433   virtual void collect_as_vm_thread(GCCause::Cause cause) = 0;
   435   // Returns the barrier set for this heap
   436   BarrierSet* barrier_set() { return _barrier_set; }
   438   // Returns "true" iff there is a stop-world GC in progress.  (I assume
   439   // that it should answer "false" for the concurrent part of a concurrent
   440   // collector -- dld).
   441   bool is_gc_active() const { return _is_gc_active; }
   443   // Total number of GC collections (started)
   444   unsigned int total_collections() const { return _total_collections; }
   445   unsigned int total_full_collections() const { return _total_full_collections;}
   447   // Increment total number of GC collections (started)
   448   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
   449   void increment_total_collections(bool full = false) {
   450     _total_collections++;
   451     if (full) {
   452       increment_total_full_collections();
   453     }
   454   }
   456   void increment_total_full_collections() { _total_full_collections++; }
   458   // Return the AdaptiveSizePolicy for the heap.
   459   virtual AdaptiveSizePolicy* size_policy() = 0;
   461   // Iterate over all the ref-containing fields of all objects, calling
   462   // "cl.do_oop" on each. This includes objects in permanent memory.
   463   virtual void oop_iterate(OopClosure* cl) = 0;
   465   // Iterate over all objects, calling "cl.do_object" on each.
   466   // This includes objects in permanent memory.
   467   virtual void object_iterate(ObjectClosure* cl) = 0;
   469   // Similar to object_iterate() except iterates only
   470   // over live objects.
   471   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
   473   // Behaves the same as oop_iterate, except only traverses
   474   // interior pointers contained in permanent memory. If there
   475   // is no permanent memory, does nothing.
   476   virtual void permanent_oop_iterate(OopClosure* cl) = 0;
   478   // Behaves the same as object_iterate, except only traverses
   479   // object contained in permanent memory. If there is no
   480   // permanent memory, does nothing.
   481   virtual void permanent_object_iterate(ObjectClosure* cl) = 0;
   483   // NOTE! There is no requirement that a collector implement these
   484   // functions.
   485   //
   486   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   487   // each address in the (reserved) heap is a member of exactly
   488   // one block.  The defining characteristic of a block is that it is
   489   // possible to find its size, and thus to progress forward to the next
   490   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   491   // represent Java objects, or they might be free blocks in a
   492   // free-list-based heap (or subheap), as long as the two kinds are
   493   // distinguishable and the size of each is determinable.
   495   // Returns the address of the start of the "block" that contains the
   496   // address "addr".  We say "blocks" instead of "object" since some heaps
   497   // may not pack objects densely; a chunk may either be an object or a
   498   // non-object.
   499   virtual HeapWord* block_start(const void* addr) const = 0;
   501   // Requires "addr" to be the start of a chunk, and returns its size.
   502   // "addr + size" is required to be the start of a new chunk, or the end
   503   // of the active area of the heap.
   504   virtual size_t block_size(const HeapWord* addr) const = 0;
   506   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   507   // the block is an object.
   508   virtual bool block_is_obj(const HeapWord* addr) const = 0;
   510   // Returns the longest time (in ms) that has elapsed since the last
   511   // time that any part of the heap was examined by a garbage collection.
   512   virtual jlong millis_since_last_gc() = 0;
   514   // Perform any cleanup actions necessary before allowing a verification.
   515   virtual void prepare_for_verify() = 0;
   517   virtual void print() const = 0;
   518   virtual void print_on(outputStream* st) const = 0;
   520   // Print all GC threads (other than the VM thread)
   521   // used by this heap.
   522   virtual void print_gc_threads_on(outputStream* st) const = 0;
   523   void print_gc_threads() { print_gc_threads_on(tty); }
   524   // Iterator for all GC threads (other than VM thread)
   525   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
   527   // Print any relevant tracing info that flags imply.
   528   // Default implementation does nothing.
   529   virtual void print_tracing_info() const = 0;
   531   // Heap verification
   532   virtual void verify(bool allow_dirty, bool silent) = 0;
   534   // Non product verification and debugging.
   535 #ifndef PRODUCT
   536   // Support for PromotionFailureALot.  Return true if it's time to cause a
   537   // promotion failure.  The no-argument version uses
   538   // this->_promotion_failure_alot_count as the counter.
   539   inline bool promotion_should_fail(volatile size_t* count);
   540   inline bool promotion_should_fail();
   542   // Reset the PromotionFailureALot counters.  Should be called at the end of a
   543   // GC in which promotion failure ocurred.
   544   inline void reset_promotion_should_fail(volatile size_t* count);
   545   inline void reset_promotion_should_fail();
   546 #endif  // #ifndef PRODUCT
   548 #ifdef ASSERT
   549   static int fired_fake_oom() {
   550     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
   551   }
   552 #endif
   553 };
   555 // Class to set and reset the GC cause for a CollectedHeap.
   557 class GCCauseSetter : StackObj {
   558   CollectedHeap* _heap;
   559   GCCause::Cause _previous_cause;
   560  public:
   561   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
   562     assert(SafepointSynchronize::is_at_safepoint(),
   563            "This method manipulates heap state without locking");
   564     _heap = heap;
   565     _previous_cause = _heap->gc_cause();
   566     _heap->set_gc_cause(cause);
   567   }
   569   ~GCCauseSetter() {
   570     assert(SafepointSynchronize::is_at_safepoint(),
   571           "This method manipulates heap state without locking");
   572     _heap->set_gc_cause(_previous_cause);
   573   }
   574 };

mercurial