src/share/vm/gc_implementation/parallelScavenge/psYoungGen.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 970
4e400c36026f
child 1844
cff162798819
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_psYoungGen.cpp.incl"
    28 PSYoungGen::PSYoungGen(size_t        initial_size,
    29                        size_t        min_size,
    30                        size_t        max_size) :
    31   _init_gen_size(initial_size),
    32   _min_gen_size(min_size),
    33   _max_gen_size(max_size)
    34 {}
    36 void PSYoungGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) {
    37   assert(_init_gen_size != 0, "Should have a finite size");
    38   _virtual_space = new PSVirtualSpace(rs, alignment);
    39   if (!virtual_space()->expand_by(_init_gen_size)) {
    40     vm_exit_during_initialization("Could not reserve enough space for "
    41                                   "object heap");
    42   }
    43 }
    45 void PSYoungGen::initialize(ReservedSpace rs, size_t alignment) {
    46   initialize_virtual_space(rs, alignment);
    47   initialize_work();
    48 }
    50 void PSYoungGen::initialize_work() {
    52   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
    53                         (HeapWord*)virtual_space()->high_boundary());
    55   MemRegion cmr((HeapWord*)virtual_space()->low(),
    56                 (HeapWord*)virtual_space()->high());
    57   Universe::heap()->barrier_set()->resize_covered_region(cmr);
    59   if (ZapUnusedHeapArea) {
    60     // Mangle newly committed space immediately because it
    61     // can be done here more simply that after the new
    62     // spaces have been computed.
    63     SpaceMangler::mangle_region(cmr);
    64   }
    66   if (UseNUMA) {
    67     _eden_space = new MutableNUMASpace(virtual_space()->alignment());
    68   } else {
    69     _eden_space = new MutableSpace(virtual_space()->alignment());
    70   }
    71   _from_space = new MutableSpace(virtual_space()->alignment());
    72   _to_space   = new MutableSpace(virtual_space()->alignment());
    74   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
    75     vm_exit_during_initialization("Could not allocate a young gen space");
    76   }
    78   // Allocate the mark sweep views of spaces
    79   _eden_mark_sweep =
    80       new PSMarkSweepDecorator(_eden_space, NULL, MarkSweepDeadRatio);
    81   _from_mark_sweep =
    82       new PSMarkSweepDecorator(_from_space, NULL, MarkSweepDeadRatio);
    83   _to_mark_sweep =
    84       new PSMarkSweepDecorator(_to_space, NULL, MarkSweepDeadRatio);
    86   if (_eden_mark_sweep == NULL ||
    87       _from_mark_sweep == NULL ||
    88       _to_mark_sweep == NULL) {
    89     vm_exit_during_initialization("Could not complete allocation"
    90                                   " of the young generation");
    91   }
    93   // Generation Counters - generation 0, 3 subspaces
    94   _gen_counters = new PSGenerationCounters("new", 0, 3, _virtual_space);
    96   // Compute maximum space sizes for performance counters
    97   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
    98   size_t alignment = heap->intra_heap_alignment();
    99   size_t size = virtual_space()->reserved_size();
   101   size_t max_survivor_size;
   102   size_t max_eden_size;
   104   if (UseAdaptiveSizePolicy) {
   105     max_survivor_size = size / MinSurvivorRatio;
   107     // round the survivor space size down to the nearest alignment
   108     // and make sure its size is greater than 0.
   109     max_survivor_size = align_size_down(max_survivor_size, alignment);
   110     max_survivor_size = MAX2(max_survivor_size, alignment);
   112     // set the maximum size of eden to be the size of the young gen
   113     // less two times the minimum survivor size. The minimum survivor
   114     // size for UseAdaptiveSizePolicy is one alignment.
   115     max_eden_size = size - 2 * alignment;
   116   } else {
   117     max_survivor_size = size / InitialSurvivorRatio;
   119     // round the survivor space size down to the nearest alignment
   120     // and make sure its size is greater than 0.
   121     max_survivor_size = align_size_down(max_survivor_size, alignment);
   122     max_survivor_size = MAX2(max_survivor_size, alignment);
   124     // set the maximum size of eden to be the size of the young gen
   125     // less two times the survivor size when the generation is 100%
   126     // committed. The minimum survivor size for -UseAdaptiveSizePolicy
   127     // is dependent on the committed portion (current capacity) of the
   128     // generation - the less space committed, the smaller the survivor
   129     // space, possibly as small as an alignment. However, we are interested
   130     // in the case where the young generation is 100% committed, as this
   131     // is the point where eden reachs its maximum size. At this point,
   132     // the size of a survivor space is max_survivor_size.
   133     max_eden_size = size - 2 * max_survivor_size;
   134   }
   136   _eden_counters = new SpaceCounters("eden", 0, max_eden_size, _eden_space,
   137                                      _gen_counters);
   138   _from_counters = new SpaceCounters("s0", 1, max_survivor_size, _from_space,
   139                                      _gen_counters);
   140   _to_counters = new SpaceCounters("s1", 2, max_survivor_size, _to_space,
   141                                    _gen_counters);
   143   compute_initial_space_boundaries();
   144 }
   146 void PSYoungGen::compute_initial_space_boundaries() {
   147   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   148   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   150   // Compute sizes
   151   size_t alignment = heap->intra_heap_alignment();
   152   size_t size = virtual_space()->committed_size();
   154   size_t survivor_size = size / InitialSurvivorRatio;
   155   survivor_size = align_size_down(survivor_size, alignment);
   156   // ... but never less than an alignment
   157   survivor_size = MAX2(survivor_size, alignment);
   159   // Young generation is eden + 2 survivor spaces
   160   size_t eden_size = size - (2 * survivor_size);
   162   // Now go ahead and set 'em.
   163   set_space_boundaries(eden_size, survivor_size);
   164   space_invariants();
   166   if (UsePerfData) {
   167     _eden_counters->update_capacity();
   168     _from_counters->update_capacity();
   169     _to_counters->update_capacity();
   170   }
   171 }
   173 void PSYoungGen::set_space_boundaries(size_t eden_size, size_t survivor_size) {
   174   assert(eden_size < virtual_space()->committed_size(), "just checking");
   175   assert(eden_size > 0  && survivor_size > 0, "just checking");
   177   // Initial layout is Eden, to, from. After swapping survivor spaces,
   178   // that leaves us with Eden, from, to, which is step one in our two
   179   // step resize-with-live-data procedure.
   180   char *eden_start = virtual_space()->low();
   181   char *to_start   = eden_start + eden_size;
   182   char *from_start = to_start   + survivor_size;
   183   char *from_end   = from_start + survivor_size;
   185   assert(from_end == virtual_space()->high(), "just checking");
   186   assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
   187   assert(is_object_aligned((intptr_t)to_start),   "checking alignment");
   188   assert(is_object_aligned((intptr_t)from_start), "checking alignment");
   190   MemRegion eden_mr((HeapWord*)eden_start, (HeapWord*)to_start);
   191   MemRegion to_mr  ((HeapWord*)to_start, (HeapWord*)from_start);
   192   MemRegion from_mr((HeapWord*)from_start, (HeapWord*)from_end);
   194   eden_space()->initialize(eden_mr, true, ZapUnusedHeapArea);
   195     to_space()->initialize(to_mr  , true, ZapUnusedHeapArea);
   196   from_space()->initialize(from_mr, true, ZapUnusedHeapArea);
   197 }
   199 #ifndef PRODUCT
   200 void PSYoungGen::space_invariants() {
   201   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   202   const size_t alignment = heap->intra_heap_alignment();
   204   // Currently, our eden size cannot shrink to zero
   205   guarantee(eden_space()->capacity_in_bytes() >= alignment, "eden too small");
   206   guarantee(from_space()->capacity_in_bytes() >= alignment, "from too small");
   207   guarantee(to_space()->capacity_in_bytes() >= alignment, "to too small");
   209   // Relationship of spaces to each other
   210   char* eden_start = (char*)eden_space()->bottom();
   211   char* eden_end   = (char*)eden_space()->end();
   212   char* from_start = (char*)from_space()->bottom();
   213   char* from_end   = (char*)from_space()->end();
   214   char* to_start   = (char*)to_space()->bottom();
   215   char* to_end     = (char*)to_space()->end();
   217   guarantee(eden_start >= virtual_space()->low(), "eden bottom");
   218   guarantee(eden_start < eden_end, "eden space consistency");
   219   guarantee(from_start < from_end, "from space consistency");
   220   guarantee(to_start < to_end, "to space consistency");
   222   // Check whether from space is below to space
   223   if (from_start < to_start) {
   224     // Eden, from, to
   225     guarantee(eden_end <= from_start, "eden/from boundary");
   226     guarantee(from_end <= to_start,   "from/to boundary");
   227     guarantee(to_end <= virtual_space()->high(), "to end");
   228   } else {
   229     // Eden, to, from
   230     guarantee(eden_end <= to_start, "eden/to boundary");
   231     guarantee(to_end <= from_start, "to/from boundary");
   232     guarantee(from_end <= virtual_space()->high(), "from end");
   233   }
   235   // More checks that the virtual space is consistent with the spaces
   236   assert(virtual_space()->committed_size() >=
   237     (eden_space()->capacity_in_bytes() +
   238      to_space()->capacity_in_bytes() +
   239      from_space()->capacity_in_bytes()), "Committed size is inconsistent");
   240   assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
   241     "Space invariant");
   242   char* eden_top = (char*)eden_space()->top();
   243   char* from_top = (char*)from_space()->top();
   244   char* to_top = (char*)to_space()->top();
   245   assert(eden_top <= virtual_space()->high(), "eden top");
   246   assert(from_top <= virtual_space()->high(), "from top");
   247   assert(to_top <= virtual_space()->high(), "to top");
   249   virtual_space()->verify();
   250 }
   251 #endif
   253 void PSYoungGen::resize(size_t eden_size, size_t survivor_size) {
   254   // Resize the generation if needed. If the generation resize
   255   // reports false, do not attempt to resize the spaces.
   256   if (resize_generation(eden_size, survivor_size)) {
   257     // Then we lay out the spaces inside the generation
   258     resize_spaces(eden_size, survivor_size);
   260     space_invariants();
   262     if (PrintAdaptiveSizePolicy && Verbose) {
   263       gclog_or_tty->print_cr("Young generation size: "
   264         "desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT
   265         " used: " SIZE_FORMAT " capacity: " SIZE_FORMAT
   266         " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
   267         eden_size, survivor_size, used_in_bytes(), capacity_in_bytes(),
   268         _max_gen_size, min_gen_size());
   269     }
   270   }
   271 }
   274 bool PSYoungGen::resize_generation(size_t eden_size, size_t survivor_size) {
   275   const size_t alignment = virtual_space()->alignment();
   276   size_t orig_size = virtual_space()->committed_size();
   277   bool size_changed = false;
   279   // There used to be this guarantee there.
   280   // guarantee ((eden_size + 2*survivor_size)  <= _max_gen_size, "incorrect input arguments");
   281   // Code below forces this requirement.  In addition the desired eden
   282   // size and disired survivor sizes are desired goals and may
   283   // exceed the total generation size.
   285   assert(min_gen_size() <= orig_size && orig_size <= max_size(), "just checking");
   287   // Adjust new generation size
   288   const size_t eden_plus_survivors =
   289           align_size_up(eden_size + 2 * survivor_size, alignment);
   290   size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_size()),
   291                              min_gen_size());
   292   assert(desired_size <= max_size(), "just checking");
   294   if (desired_size > orig_size) {
   295     // Grow the generation
   296     size_t change = desired_size - orig_size;
   297     assert(change % alignment == 0, "just checking");
   298     HeapWord* prev_high = (HeapWord*) virtual_space()->high();
   299     if (!virtual_space()->expand_by(change)) {
   300       return false; // Error if we fail to resize!
   301     }
   302     if (ZapUnusedHeapArea) {
   303       // Mangle newly committed space immediately because it
   304       // can be done here more simply that after the new
   305       // spaces have been computed.
   306       HeapWord* new_high = (HeapWord*) virtual_space()->high();
   307       MemRegion mangle_region(prev_high, new_high);
   308       SpaceMangler::mangle_region(mangle_region);
   309     }
   310     size_changed = true;
   311   } else if (desired_size < orig_size) {
   312     size_t desired_change = orig_size - desired_size;
   313     assert(desired_change % alignment == 0, "just checking");
   315     desired_change = limit_gen_shrink(desired_change);
   317     if (desired_change > 0) {
   318       virtual_space()->shrink_by(desired_change);
   319       reset_survivors_after_shrink();
   321       size_changed = true;
   322     }
   323   } else {
   324     if (Verbose && PrintGC) {
   325       if (orig_size == gen_size_limit()) {
   326         gclog_or_tty->print_cr("PSYoung generation size at maximum: "
   327           SIZE_FORMAT "K", orig_size/K);
   328       } else if (orig_size == min_gen_size()) {
   329         gclog_or_tty->print_cr("PSYoung generation size at minium: "
   330           SIZE_FORMAT "K", orig_size/K);
   331       }
   332     }
   333   }
   335   if (size_changed) {
   336     post_resize();
   338     if (Verbose && PrintGC) {
   339       size_t current_size  = virtual_space()->committed_size();
   340       gclog_or_tty->print_cr("PSYoung generation size changed: "
   341                              SIZE_FORMAT "K->" SIZE_FORMAT "K",
   342                              orig_size/K, current_size/K);
   343     }
   344   }
   346   guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
   347             virtual_space()->committed_size() == max_size(), "Sanity");
   349   return true;
   350 }
   352 #ifndef PRODUCT
   353 // In the numa case eden is not mangled so a survivor space
   354 // moving into a region previously occupied by a survivor
   355 // may find an unmangled region.  Also in the PS case eden
   356 // to-space and from-space may not touch (i.e., there may be
   357 // gaps between them due to movement while resizing the
   358 // spaces).  Those gaps must be mangled.
   359 void PSYoungGen::mangle_survivors(MutableSpace* s1,
   360                                   MemRegion s1MR,
   361                                   MutableSpace* s2,
   362                                   MemRegion s2MR) {
   363   // Check eden and gap between eden and from-space, in deciding
   364   // what to mangle in from-space.  Check the gap between from-space
   365   // and to-space when deciding what to mangle.
   366   //
   367   //      +--------+   +----+    +---+
   368   //      | eden   |   |s1  |    |s2 |
   369   //      +--------+   +----+    +---+
   370   //                 +-------+ +-----+
   371   //                 |s1MR   | |s2MR |
   372   //                 +-------+ +-----+
   373   // All of survivor-space is properly mangled so find the
   374   // upper bound on the mangling for any portion above current s1.
   375   HeapWord* delta_end = MIN2(s1->bottom(), s1MR.end());
   376   MemRegion delta1_left;
   377   if (s1MR.start() < delta_end) {
   378     delta1_left = MemRegion(s1MR.start(), delta_end);
   379     s1->mangle_region(delta1_left);
   380   }
   381   // Find any portion to the right of the current s1.
   382   HeapWord* delta_start = MAX2(s1->end(), s1MR.start());
   383   MemRegion delta1_right;
   384   if (delta_start < s1MR.end()) {
   385     delta1_right = MemRegion(delta_start, s1MR.end());
   386     s1->mangle_region(delta1_right);
   387   }
   389   // Similarly for the second survivor space except that
   390   // any of the new region that overlaps with the current
   391   // region of the first survivor space has already been
   392   // mangled.
   393   delta_end = MIN2(s2->bottom(), s2MR.end());
   394   delta_start = MAX2(s2MR.start(), s1->end());
   395   MemRegion delta2_left;
   396   if (s2MR.start() < delta_end) {
   397     delta2_left = MemRegion(s2MR.start(), delta_end);
   398     s2->mangle_region(delta2_left);
   399   }
   400   delta_start = MAX2(s2->end(), s2MR.start());
   401   MemRegion delta2_right;
   402   if (delta_start < s2MR.end()) {
   403     s2->mangle_region(delta2_right);
   404   }
   406   if (TraceZapUnusedHeapArea) {
   407     // s1
   408     gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
   409       "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
   410       s1->bottom(), s1->end(), s1MR.start(), s1MR.end());
   411     gclog_or_tty->print_cr("    Mangle before: [" PTR_FORMAT ", "
   412       PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
   413       delta1_left.start(), delta1_left.end(), delta1_right.start(),
   414       delta1_right.end());
   416     // s2
   417     gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
   418       "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
   419       s2->bottom(), s2->end(), s2MR.start(), s2MR.end());
   420     gclog_or_tty->print_cr("    Mangle before: [" PTR_FORMAT ", "
   421       PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
   422       delta2_left.start(), delta2_left.end(), delta2_right.start(),
   423       delta2_right.end());
   424   }
   426 }
   427 #endif // NOT PRODUCT
   429 void PSYoungGen::resize_spaces(size_t requested_eden_size,
   430                                size_t requested_survivor_size) {
   431   assert(UseAdaptiveSizePolicy, "sanity check");
   432   assert(requested_eden_size > 0  && requested_survivor_size > 0,
   433          "just checking");
   435   // We require eden and to space to be empty
   436   if ((!eden_space()->is_empty()) || (!to_space()->is_empty())) {
   437     return;
   438   }
   440   if (PrintAdaptiveSizePolicy && Verbose) {
   441     gclog_or_tty->print_cr("PSYoungGen::resize_spaces(requested_eden_size: "
   442                   SIZE_FORMAT
   443                   ", requested_survivor_size: " SIZE_FORMAT ")",
   444                   requested_eden_size, requested_survivor_size);
   445     gclog_or_tty->print_cr("    eden: [" PTR_FORMAT ".." PTR_FORMAT ") "
   446                   SIZE_FORMAT,
   447                   eden_space()->bottom(),
   448                   eden_space()->end(),
   449                   pointer_delta(eden_space()->end(),
   450                                 eden_space()->bottom(),
   451                                 sizeof(char)));
   452     gclog_or_tty->print_cr("    from: [" PTR_FORMAT ".." PTR_FORMAT ") "
   453                   SIZE_FORMAT,
   454                   from_space()->bottom(),
   455                   from_space()->end(),
   456                   pointer_delta(from_space()->end(),
   457                                 from_space()->bottom(),
   458                                 sizeof(char)));
   459     gclog_or_tty->print_cr("      to: [" PTR_FORMAT ".." PTR_FORMAT ") "
   460                   SIZE_FORMAT,
   461                   to_space()->bottom(),
   462                   to_space()->end(),
   463                   pointer_delta(  to_space()->end(),
   464                                   to_space()->bottom(),
   465                                   sizeof(char)));
   466   }
   468   // There's nothing to do if the new sizes are the same as the current
   469   if (requested_survivor_size == to_space()->capacity_in_bytes() &&
   470       requested_survivor_size == from_space()->capacity_in_bytes() &&
   471       requested_eden_size == eden_space()->capacity_in_bytes()) {
   472     if (PrintAdaptiveSizePolicy && Verbose) {
   473       gclog_or_tty->print_cr("    capacities are the right sizes, returning");
   474     }
   475     return;
   476   }
   478   char* eden_start = (char*)eden_space()->bottom();
   479   char* eden_end   = (char*)eden_space()->end();
   480   char* from_start = (char*)from_space()->bottom();
   481   char* from_end   = (char*)from_space()->end();
   482   char* to_start   = (char*)to_space()->bottom();
   483   char* to_end     = (char*)to_space()->end();
   485   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   486   const size_t alignment = heap->intra_heap_alignment();
   487   const bool maintain_minimum =
   488     (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();
   490   bool eden_from_to_order = from_start < to_start;
   491   // Check whether from space is below to space
   492   if (eden_from_to_order) {
   493     // Eden, from, to
   494     eden_from_to_order = true;
   495     if (PrintAdaptiveSizePolicy && Verbose) {
   496       gclog_or_tty->print_cr("  Eden, from, to:");
   497     }
   499     // Set eden
   500     // "requested_eden_size" is a goal for the size of eden
   501     // and may not be attainable.  "eden_size" below is
   502     // calculated based on the location of from-space and
   503     // the goal for the size of eden.  from-space is
   504     // fixed in place because it contains live data.
   505     // The calculation is done this way to avoid 32bit
   506     // overflow (i.e., eden_start + requested_eden_size
   507     // may too large for representation in 32bits).
   508     size_t eden_size;
   509     if (maintain_minimum) {
   510       // Only make eden larger than the requested size if
   511       // the minimum size of the generation has to be maintained.
   512       // This could be done in general but policy at a higher
   513       // level is determining a requested size for eden and that
   514       // should be honored unless there is a fundamental reason.
   515       eden_size = pointer_delta(from_start,
   516                                 eden_start,
   517                                 sizeof(char));
   518     } else {
   519       eden_size = MIN2(requested_eden_size,
   520                        pointer_delta(from_start, eden_start, sizeof(char)));
   521     }
   523     eden_end = eden_start + eden_size;
   524     assert(eden_end >= eden_start, "addition overflowed")
   526     // To may resize into from space as long as it is clear of live data.
   527     // From space must remain page aligned, though, so we need to do some
   528     // extra calculations.
   530     // First calculate an optimal to-space
   531     to_end   = (char*)virtual_space()->high();
   532     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
   533                                     sizeof(char));
   535     // Does the optimal to-space overlap from-space?
   536     if (to_start < (char*)from_space()->end()) {
   537       assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   539       // Calculate the minimum offset possible for from_end
   540       size_t from_size = pointer_delta(from_space()->top(), from_start, sizeof(char));
   542       // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
   543       if (from_size == 0) {
   544         from_size = alignment;
   545       } else {
   546         from_size = align_size_up(from_size, alignment);
   547       }
   549       from_end = from_start + from_size;
   550       assert(from_end > from_start, "addition overflow or from_size problem");
   552       guarantee(from_end <= (char*)from_space()->end(), "from_end moved to the right");
   554       // Now update to_start with the new from_end
   555       to_start = MAX2(from_end, to_start);
   556     }
   558     guarantee(to_start != to_end, "to space is zero sized");
   560     if (PrintAdaptiveSizePolicy && Verbose) {
   561       gclog_or_tty->print_cr("    [eden_start .. eden_end): "
   562                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
   563                     eden_start,
   564                     eden_end,
   565                     pointer_delta(eden_end, eden_start, sizeof(char)));
   566       gclog_or_tty->print_cr("    [from_start .. from_end): "
   567                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
   568                     from_start,
   569                     from_end,
   570                     pointer_delta(from_end, from_start, sizeof(char)));
   571       gclog_or_tty->print_cr("    [  to_start ..   to_end): "
   572                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
   573                     to_start,
   574                     to_end,
   575                     pointer_delta(  to_end,   to_start, sizeof(char)));
   576     }
   577   } else {
   578     // Eden, to, from
   579     if (PrintAdaptiveSizePolicy && Verbose) {
   580       gclog_or_tty->print_cr("  Eden, to, from:");
   581     }
   583     // To space gets priority over eden resizing. Note that we position
   584     // to space as if we were able to resize from space, even though from
   585     // space is not modified.
   586     // Giving eden priority was tried and gave poorer performance.
   587     to_end   = (char*)pointer_delta(virtual_space()->high(),
   588                                     (char*)requested_survivor_size,
   589                                     sizeof(char));
   590     to_end   = MIN2(to_end, from_start);
   591     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
   592                                     sizeof(char));
   593     // if the space sizes are to be increased by several times then
   594     // 'to_start' will point beyond the young generation. In this case
   595     // 'to_start' should be adjusted.
   596     to_start = MAX2(to_start, eden_start + alignment);
   598     // Compute how big eden can be, then adjust end.
   599     // See  comments above on calculating eden_end.
   600     size_t eden_size;
   601     if (maintain_minimum) {
   602       eden_size = pointer_delta(to_start, eden_start, sizeof(char));
   603     } else {
   604       eden_size = MIN2(requested_eden_size,
   605                        pointer_delta(to_start, eden_start, sizeof(char)));
   606     }
   607     eden_end = eden_start + eden_size;
   608     assert(eden_end >= eden_start, "addition overflowed")
   610     // Could choose to not let eden shrink
   611     // to_start = MAX2(to_start, eden_end);
   613     // Don't let eden shrink down to 0 or less.
   614     eden_end = MAX2(eden_end, eden_start + alignment);
   615     to_start = MAX2(to_start, eden_end);
   617     if (PrintAdaptiveSizePolicy && Verbose) {
   618       gclog_or_tty->print_cr("    [eden_start .. eden_end): "
   619                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
   620                     eden_start,
   621                     eden_end,
   622                     pointer_delta(eden_end, eden_start, sizeof(char)));
   623       gclog_or_tty->print_cr("    [  to_start ..   to_end): "
   624                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
   625                     to_start,
   626                     to_end,
   627                     pointer_delta(  to_end,   to_start, sizeof(char)));
   628       gclog_or_tty->print_cr("    [from_start .. from_end): "
   629                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
   630                     from_start,
   631                     from_end,
   632                     pointer_delta(from_end, from_start, sizeof(char)));
   633     }
   634   }
   637   guarantee((HeapWord*)from_start <= from_space()->bottom(),
   638             "from start moved to the right");
   639   guarantee((HeapWord*)from_end >= from_space()->top(),
   640             "from end moved into live data");
   641   assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
   642   assert(is_object_aligned((intptr_t)from_start), "checking alignment");
   643   assert(is_object_aligned((intptr_t)to_start), "checking alignment");
   645   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
   646   MemRegion toMR  ((HeapWord*)to_start,   (HeapWord*)to_end);
   647   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);
   649   // Let's make sure the call to initialize doesn't reset "top"!
   650   HeapWord* old_from_top = from_space()->top();
   652   // For PrintAdaptiveSizePolicy block  below
   653   size_t old_from = from_space()->capacity_in_bytes();
   654   size_t old_to   = to_space()->capacity_in_bytes();
   656   if (ZapUnusedHeapArea) {
   657     // NUMA is a special case because a numa space is not mangled
   658     // in order to not prematurely bind its address to memory to
   659     // the wrong memory (i.e., don't want the GC thread to first
   660     // touch the memory).  The survivor spaces are not numa
   661     // spaces and are mangled.
   662     if (UseNUMA) {
   663       if (eden_from_to_order) {
   664         mangle_survivors(from_space(), fromMR, to_space(), toMR);
   665       } else {
   666         mangle_survivors(to_space(), toMR, from_space(), fromMR);
   667       }
   668     }
   670     // If not mangling the spaces, do some checking to verify that
   671     // the spaces are already mangled.
   672     // The spaces should be correctly mangled at this point so
   673     // do some checking here. Note that they are not being mangled
   674     // in the calls to initialize().
   675     // Must check mangling before the spaces are reshaped.  Otherwise,
   676     // the bottom or end of one space may have moved into an area
   677     // covered by another space and a failure of the check may
   678     // not correctly indicate which space is not properly mangled.
   679     HeapWord* limit = (HeapWord*) virtual_space()->high();
   680     eden_space()->check_mangled_unused_area(limit);
   681     from_space()->check_mangled_unused_area(limit);
   682       to_space()->check_mangled_unused_area(limit);
   683   }
   684   // When an existing space is being initialized, it is not
   685   // mangled because the space has been previously mangled.
   686   eden_space()->initialize(edenMR,
   687                            SpaceDecorator::Clear,
   688                            SpaceDecorator::DontMangle);
   689     to_space()->initialize(toMR,
   690                            SpaceDecorator::Clear,
   691                            SpaceDecorator::DontMangle);
   692   from_space()->initialize(fromMR,
   693                            SpaceDecorator::DontClear,
   694                            SpaceDecorator::DontMangle);
   696   assert(from_space()->top() == old_from_top, "from top changed!");
   698   if (PrintAdaptiveSizePolicy) {
   699     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   700     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
   702     gclog_or_tty->print("AdaptiveSizePolicy::survivor space sizes: "
   703                   "collection: %d "
   704                   "(" SIZE_FORMAT ", " SIZE_FORMAT ") -> "
   705                   "(" SIZE_FORMAT ", " SIZE_FORMAT ") ",
   706                   heap->total_collections(),
   707                   old_from, old_to,
   708                   from_space()->capacity_in_bytes(),
   709                   to_space()->capacity_in_bytes());
   710     gclog_or_tty->cr();
   711   }
   712 }
   714 void PSYoungGen::swap_spaces() {
   715   MutableSpace* s    = from_space();
   716   _from_space        = to_space();
   717   _to_space          = s;
   719   // Now update the decorators.
   720   PSMarkSweepDecorator* md = from_mark_sweep();
   721   _from_mark_sweep           = to_mark_sweep();
   722   _to_mark_sweep             = md;
   724   assert(from_mark_sweep()->space() == from_space(), "Sanity");
   725   assert(to_mark_sweep()->space() == to_space(), "Sanity");
   726 }
   728 size_t PSYoungGen::capacity_in_bytes() const {
   729   return eden_space()->capacity_in_bytes()
   730        + from_space()->capacity_in_bytes();  // to_space() is only used during scavenge
   731 }
   734 size_t PSYoungGen::used_in_bytes() const {
   735   return eden_space()->used_in_bytes()
   736        + from_space()->used_in_bytes();      // to_space() is only used during scavenge
   737 }
   740 size_t PSYoungGen::free_in_bytes() const {
   741   return eden_space()->free_in_bytes()
   742        + from_space()->free_in_bytes();      // to_space() is only used during scavenge
   743 }
   745 size_t PSYoungGen::capacity_in_words() const {
   746   return eden_space()->capacity_in_words()
   747        + from_space()->capacity_in_words();  // to_space() is only used during scavenge
   748 }
   751 size_t PSYoungGen::used_in_words() const {
   752   return eden_space()->used_in_words()
   753        + from_space()->used_in_words();      // to_space() is only used during scavenge
   754 }
   757 size_t PSYoungGen::free_in_words() const {
   758   return eden_space()->free_in_words()
   759        + from_space()->free_in_words();      // to_space() is only used during scavenge
   760 }
   762 void PSYoungGen::object_iterate(ObjectClosure* blk) {
   763   eden_space()->object_iterate(blk);
   764   from_space()->object_iterate(blk);
   765   to_space()->object_iterate(blk);
   766 }
   768 void PSYoungGen::precompact() {
   769   eden_mark_sweep()->precompact();
   770   from_mark_sweep()->precompact();
   771   to_mark_sweep()->precompact();
   772 }
   774 void PSYoungGen::adjust_pointers() {
   775   eden_mark_sweep()->adjust_pointers();
   776   from_mark_sweep()->adjust_pointers();
   777   to_mark_sweep()->adjust_pointers();
   778 }
   780 void PSYoungGen::compact() {
   781   eden_mark_sweep()->compact(ZapUnusedHeapArea);
   782   from_mark_sweep()->compact(ZapUnusedHeapArea);
   783   // Mark sweep stores preserved markOops in to space, don't disturb!
   784   to_mark_sweep()->compact(false);
   785 }
   787 void PSYoungGen::move_and_update(ParCompactionManager* cm) {
   788   PSParallelCompact::move_and_update(cm, PSParallelCompact::eden_space_id);
   789   PSParallelCompact::move_and_update(cm, PSParallelCompact::from_space_id);
   790   PSParallelCompact::move_and_update(cm, PSParallelCompact::to_space_id);
   791 }
   793 void PSYoungGen::print() const { print_on(tty); }
   794 void PSYoungGen::print_on(outputStream* st) const {
   795   st->print(" %-15s", "PSYoungGen");
   796   if (PrintGCDetails && Verbose) {
   797     st->print(" total " SIZE_FORMAT ", used " SIZE_FORMAT,
   798                capacity_in_bytes(), used_in_bytes());
   799   } else {
   800     st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
   801                capacity_in_bytes()/K, used_in_bytes()/K);
   802   }
   803   virtual_space()->print_space_boundaries_on(st);
   804   st->print("  eden"); eden_space()->print_on(st);
   805   st->print("  from"); from_space()->print_on(st);
   806   st->print("  to  "); to_space()->print_on(st);
   807 }
   809 void PSYoungGen::print_used_change(size_t prev_used) const {
   810   gclog_or_tty->print(" [%s:", name());
   811   gclog_or_tty->print(" "  SIZE_FORMAT "K"
   812                       "->" SIZE_FORMAT "K"
   813                       "("  SIZE_FORMAT "K)",
   814                       prev_used / K, used_in_bytes() / K,
   815                       capacity_in_bytes() / K);
   816   gclog_or_tty->print("]");
   817 }
   819 size_t PSYoungGen::available_for_expansion() {
   820   ShouldNotReachHere();
   821   return 0;
   822 }
   824 size_t PSYoungGen::available_for_contraction() {
   825   ShouldNotReachHere();
   826   return 0;
   827 }
   829 size_t PSYoungGen::available_to_min_gen() {
   830   assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant");
   831   return virtual_space()->committed_size() - min_gen_size();
   832 }
   834 // This method assumes that from-space has live data and that
   835 // any shrinkage of the young gen is limited by location of
   836 // from-space.
   837 size_t PSYoungGen::available_to_live() {
   838   size_t delta_in_survivor = 0;
   839   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   840   const size_t space_alignment = heap->intra_heap_alignment();
   841   const size_t gen_alignment = heap->young_gen_alignment();
   843   MutableSpace* space_shrinking = NULL;
   844   if (from_space()->end() > to_space()->end()) {
   845     space_shrinking = from_space();
   846   } else {
   847     space_shrinking = to_space();
   848   }
   850   // Include any space that is committed but not included in
   851   // the survivor spaces.
   852   assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(),
   853     "Survivor space beyond high end");
   854   size_t unused_committed = pointer_delta(virtual_space()->high(),
   855     space_shrinking->end(), sizeof(char));
   857   if (space_shrinking->is_empty()) {
   858     // Don't let the space shrink to 0
   859     assert(space_shrinking->capacity_in_bytes() >= space_alignment,
   860       "Space is too small");
   861     delta_in_survivor = space_shrinking->capacity_in_bytes() - space_alignment;
   862   } else {
   863     delta_in_survivor = pointer_delta(space_shrinking->end(),
   864                                       space_shrinking->top(),
   865                                       sizeof(char));
   866   }
   868   size_t delta_in_bytes = unused_committed + delta_in_survivor;
   869   delta_in_bytes = align_size_down(delta_in_bytes, gen_alignment);
   870   return delta_in_bytes;
   871 }
   873 // Return the number of bytes available for resizing down the young
   874 // generation.  This is the minimum of
   875 //      input "bytes"
   876 //      bytes to the minimum young gen size
   877 //      bytes to the size currently being used + some small extra
   878 size_t PSYoungGen::limit_gen_shrink(size_t bytes) {
   879   // Allow shrinkage into the current eden but keep eden large enough
   880   // to maintain the minimum young gen size
   881   bytes = MIN3(bytes, available_to_min_gen(), available_to_live());
   882   return align_size_down(bytes, virtual_space()->alignment());
   883 }
   885 void PSYoungGen::reset_after_change() {
   886   ShouldNotReachHere();
   887 }
   889 void PSYoungGen::reset_survivors_after_shrink() {
   890   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
   891                         (HeapWord*)virtual_space()->high_boundary());
   892   PSScavenge::reference_processor()->set_span(_reserved);
   894   MutableSpace* space_shrinking = NULL;
   895   if (from_space()->end() > to_space()->end()) {
   896     space_shrinking = from_space();
   897   } else {
   898     space_shrinking = to_space();
   899   }
   901   HeapWord* new_end = (HeapWord*)virtual_space()->high();
   902   assert(new_end >= space_shrinking->bottom(), "Shrink was too large");
   903   // Was there a shrink of the survivor space?
   904   if (new_end < space_shrinking->end()) {
   905     MemRegion mr(space_shrinking->bottom(), new_end);
   906     space_shrinking->initialize(mr,
   907                                 SpaceDecorator::DontClear,
   908                                 SpaceDecorator::Mangle);
   909   }
   910 }
   912 // This method currently does not expect to expand into eden (i.e.,
   913 // the virtual space boundaries is expected to be consistent
   914 // with the eden boundaries..
   915 void PSYoungGen::post_resize() {
   916   assert_locked_or_safepoint(Heap_lock);
   917   assert((eden_space()->bottom() < to_space()->bottom()) &&
   918          (eden_space()->bottom() < from_space()->bottom()),
   919          "Eden is assumed to be below the survivor spaces");
   921   MemRegion cmr((HeapWord*)virtual_space()->low(),
   922                 (HeapWord*)virtual_space()->high());
   923   Universe::heap()->barrier_set()->resize_covered_region(cmr);
   924   space_invariants();
   925 }
   929 void PSYoungGen::update_counters() {
   930   if (UsePerfData) {
   931     _eden_counters->update_all();
   932     _from_counters->update_all();
   933     _to_counters->update_all();
   934     _gen_counters->update_all();
   935   }
   936 }
   938 void PSYoungGen::verify(bool allow_dirty) {
   939   eden_space()->verify(allow_dirty);
   940   from_space()->verify(allow_dirty);
   941   to_space()->verify(allow_dirty);
   942 }
   944 #ifndef PRODUCT
   945 void PSYoungGen::record_spaces_top() {
   946   assert(ZapUnusedHeapArea, "Not mangling unused space");
   947   eden_space()->set_top_for_allocations();
   948   from_space()->set_top_for_allocations();
   949   to_space()->set_top_for_allocations();
   950 }
   951 #endif

mercurial