src/share/vm/gc_implementation/parallelScavenge/parallelScavengeHeap.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 809
a4b729f5b611
child 1077
660978a2a31a
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_parallelScavengeHeap.cpp.incl"
    28 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
    29 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
    30 PSPermGen*   ParallelScavengeHeap::_perm_gen = NULL;
    31 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
    32 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
    33 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
    34 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
    36 static void trace_gen_sizes(const char* const str,
    37                             size_t pg_min, size_t pg_max,
    38                             size_t og_min, size_t og_max,
    39                             size_t yg_min, size_t yg_max)
    40 {
    41   if (TracePageSizes) {
    42     tty->print_cr("%s:  " SIZE_FORMAT "," SIZE_FORMAT " "
    43                   SIZE_FORMAT "," SIZE_FORMAT " "
    44                   SIZE_FORMAT "," SIZE_FORMAT " "
    45                   SIZE_FORMAT,
    46                   str, pg_min / K, pg_max / K,
    47                   og_min / K, og_max / K,
    48                   yg_min / K, yg_max / K,
    49                   (pg_max + og_max + yg_max) / K);
    50   }
    51 }
    53 jint ParallelScavengeHeap::initialize() {
    54   // Cannot be initialized until after the flags are parsed
    55   GenerationSizer flag_parser;
    57   size_t yg_min_size = flag_parser.min_young_gen_size();
    58   size_t yg_max_size = flag_parser.max_young_gen_size();
    59   size_t og_min_size = flag_parser.min_old_gen_size();
    60   size_t og_max_size = flag_parser.max_old_gen_size();
    61   // Why isn't there a min_perm_gen_size()?
    62   size_t pg_min_size = flag_parser.perm_gen_size();
    63   size_t pg_max_size = flag_parser.max_perm_gen_size();
    65   trace_gen_sizes("ps heap raw",
    66                   pg_min_size, pg_max_size,
    67                   og_min_size, og_max_size,
    68                   yg_min_size, yg_max_size);
    70   // The ReservedSpace ctor used below requires that the page size for the perm
    71   // gen is <= the page size for the rest of the heap (young + old gens).
    72   const size_t og_page_sz = os::page_size_for_region(yg_min_size + og_min_size,
    73                                                      yg_max_size + og_max_size,
    74                                                      8);
    75   const size_t pg_page_sz = MIN2(os::page_size_for_region(pg_min_size,
    76                                                           pg_max_size, 16),
    77                                  og_page_sz);
    79   const size_t pg_align = set_alignment(_perm_gen_alignment,  pg_page_sz);
    80   const size_t og_align = set_alignment(_old_gen_alignment,   og_page_sz);
    81   const size_t yg_align = set_alignment(_young_gen_alignment, og_page_sz);
    83   // Update sizes to reflect the selected page size(s).
    84   //
    85   // NEEDS_CLEANUP.  The default TwoGenerationCollectorPolicy uses NewRatio; it
    86   // should check UseAdaptiveSizePolicy.  Changes from generationSizer could
    87   // move to the common code.
    88   yg_min_size = align_size_up(yg_min_size, yg_align);
    89   yg_max_size = align_size_up(yg_max_size, yg_align);
    90   size_t yg_cur_size = align_size_up(flag_parser.young_gen_size(), yg_align);
    91   yg_cur_size = MAX2(yg_cur_size, yg_min_size);
    93   og_min_size = align_size_up(og_min_size, og_align);
    94   og_max_size = align_size_up(og_max_size, og_align);
    95   size_t og_cur_size = align_size_up(flag_parser.old_gen_size(), og_align);
    96   og_cur_size = MAX2(og_cur_size, og_min_size);
    98   pg_min_size = align_size_up(pg_min_size, pg_align);
    99   pg_max_size = align_size_up(pg_max_size, pg_align);
   100   size_t pg_cur_size = pg_min_size;
   102   trace_gen_sizes("ps heap rnd",
   103                   pg_min_size, pg_max_size,
   104                   og_min_size, og_max_size,
   105                   yg_min_size, yg_max_size);
   107   // The main part of the heap (old gen + young gen) can often use a larger page
   108   // size than is needed or wanted for the perm gen.  Use the "compound
   109   // alignment" ReservedSpace ctor to avoid having to use the same page size for
   110   // all gens.
   111   ReservedHeapSpace heap_rs(pg_max_size, pg_align, og_max_size + yg_max_size,
   112                             og_align);
   113   os::trace_page_sizes("ps perm", pg_min_size, pg_max_size, pg_page_sz,
   114                        heap_rs.base(), pg_max_size);
   115   os::trace_page_sizes("ps main", og_min_size + yg_min_size,
   116                        og_max_size + yg_max_size, og_page_sz,
   117                        heap_rs.base() + pg_max_size,
   118                        heap_rs.size() - pg_max_size);
   119   if (!heap_rs.is_reserved()) {
   120     vm_shutdown_during_initialization(
   121       "Could not reserve enough space for object heap");
   122     return JNI_ENOMEM;
   123   }
   125   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   126                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   128   CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
   129   _barrier_set = barrier_set;
   130   oopDesc::set_bs(_barrier_set);
   131   if (_barrier_set == NULL) {
   132     vm_shutdown_during_initialization(
   133       "Could not reserve enough space for barrier set");
   134     return JNI_ENOMEM;
   135   }
   137   // Initial young gen size is 4 Mb
   138   //
   139   // XXX - what about flag_parser.young_gen_size()?
   140   const size_t init_young_size = align_size_up(4 * M, yg_align);
   141   yg_cur_size = MAX2(MIN2(init_young_size, yg_max_size), yg_cur_size);
   143   // Split the reserved space into perm gen and the main heap (everything else).
   144   // The main heap uses a different alignment.
   145   ReservedSpace perm_rs = heap_rs.first_part(pg_max_size);
   146   ReservedSpace main_rs = heap_rs.last_part(pg_max_size, og_align);
   148   // Make up the generations
   149   // Calculate the maximum size that a generation can grow.  This
   150   // includes growth into the other generation.  Note that the
   151   // parameter _max_gen_size is kept as the maximum
   152   // size of the generation as the boundaries currently stand.
   153   // _max_gen_size is still used as that value.
   154   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
   155   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
   157   _gens = new AdjoiningGenerations(main_rs,
   158                                    og_cur_size,
   159                                    og_min_size,
   160                                    og_max_size,
   161                                    yg_cur_size,
   162                                    yg_min_size,
   163                                    yg_max_size,
   164                                    yg_align);
   166   _old_gen = _gens->old_gen();
   167   _young_gen = _gens->young_gen();
   169   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
   170   const size_t old_capacity = _old_gen->capacity_in_bytes();
   171   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
   172   _size_policy =
   173     new PSAdaptiveSizePolicy(eden_capacity,
   174                              initial_promo_size,
   175                              young_gen()->to_space()->capacity_in_bytes(),
   176                              intra_heap_alignment(),
   177                              max_gc_pause_sec,
   178                              max_gc_minor_pause_sec,
   179                              GCTimeRatio
   180                              );
   182   _perm_gen = new PSPermGen(perm_rs,
   183                             pg_align,
   184                             pg_cur_size,
   185                             pg_cur_size,
   186                             pg_max_size,
   187                             "perm", 2);
   189   assert(!UseAdaptiveGCBoundary ||
   190     (old_gen()->virtual_space()->high_boundary() ==
   191      young_gen()->virtual_space()->low_boundary()),
   192     "Boundaries must meet");
   193   // initialize the policy counters - 2 collectors, 3 generations
   194   _gc_policy_counters =
   195     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
   196   _psh = this;
   198   // Set up the GCTaskManager
   199   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
   201   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
   202     return JNI_ENOMEM;
   203   }
   205   return JNI_OK;
   206 }
   208 void ParallelScavengeHeap::post_initialize() {
   209   // Need to init the tenuring threshold
   210   PSScavenge::initialize();
   211   if (UseParallelOldGC) {
   212     PSParallelCompact::post_initialize();
   213   } else {
   214     PSMarkSweep::initialize();
   215   }
   216   PSPromotionManager::initialize();
   217 }
   219 void ParallelScavengeHeap::update_counters() {
   220   young_gen()->update_counters();
   221   old_gen()->update_counters();
   222   perm_gen()->update_counters();
   223 }
   225 size_t ParallelScavengeHeap::capacity() const {
   226   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
   227   return value;
   228 }
   230 size_t ParallelScavengeHeap::used() const {
   231   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
   232   return value;
   233 }
   235 bool ParallelScavengeHeap::is_maximal_no_gc() const {
   236   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
   237 }
   240 size_t ParallelScavengeHeap::permanent_capacity() const {
   241   return perm_gen()->capacity_in_bytes();
   242 }
   244 size_t ParallelScavengeHeap::permanent_used() const {
   245   return perm_gen()->used_in_bytes();
   246 }
   248 size_t ParallelScavengeHeap::max_capacity() const {
   249   size_t estimated = reserved_region().byte_size();
   250   estimated -= perm_gen()->reserved().byte_size();
   251   if (UseAdaptiveSizePolicy) {
   252     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
   253   } else {
   254     estimated -= young_gen()->to_space()->capacity_in_bytes();
   255   }
   256   return MAX2(estimated, capacity());
   257 }
   259 bool ParallelScavengeHeap::is_in(const void* p) const {
   260   if (young_gen()->is_in(p)) {
   261     return true;
   262   }
   264   if (old_gen()->is_in(p)) {
   265     return true;
   266   }
   268   if (perm_gen()->is_in(p)) {
   269     return true;
   270   }
   272   return false;
   273 }
   275 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
   276   if (young_gen()->is_in_reserved(p)) {
   277     return true;
   278   }
   280   if (old_gen()->is_in_reserved(p)) {
   281     return true;
   282   }
   284   if (perm_gen()->is_in_reserved(p)) {
   285     return true;
   286   }
   288   return false;
   289 }
   291 // Static method
   292 bool ParallelScavengeHeap::is_in_young(oop* p) {
   293   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   294   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap,
   295                                             "Must be ParallelScavengeHeap");
   297   PSYoungGen* young_gen = heap->young_gen();
   299   if (young_gen->is_in_reserved(p)) {
   300     return true;
   301   }
   303   return false;
   304 }
   306 // Static method
   307 bool ParallelScavengeHeap::is_in_old_or_perm(oop* p) {
   308   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
   309   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap,
   310                                             "Must be ParallelScavengeHeap");
   312   PSOldGen* old_gen = heap->old_gen();
   313   PSPermGen* perm_gen = heap->perm_gen();
   315   if (old_gen->is_in_reserved(p)) {
   316     return true;
   317   }
   319   if (perm_gen->is_in_reserved(p)) {
   320     return true;
   321   }
   323   return false;
   324 }
   326 // There are two levels of allocation policy here.
   327 //
   328 // When an allocation request fails, the requesting thread must invoke a VM
   329 // operation, transfer control to the VM thread, and await the results of a
   330 // garbage collection. That is quite expensive, and we should avoid doing it
   331 // multiple times if possible.
   332 //
   333 // To accomplish this, we have a basic allocation policy, and also a
   334 // failed allocation policy.
   335 //
   336 // The basic allocation policy controls how you allocate memory without
   337 // attempting garbage collection. It is okay to grab locks and
   338 // expand the heap, if that can be done without coming to a safepoint.
   339 // It is likely that the basic allocation policy will not be very
   340 // aggressive.
   341 //
   342 // The failed allocation policy is invoked from the VM thread after
   343 // the basic allocation policy is unable to satisfy a mem_allocate
   344 // request. This policy needs to cover the entire range of collection,
   345 // heap expansion, and out-of-memory conditions. It should make every
   346 // attempt to allocate the requested memory.
   348 // Basic allocation policy. Should never be called at a safepoint, or
   349 // from the VM thread.
   350 //
   351 // This method must handle cases where many mem_allocate requests fail
   352 // simultaneously. When that happens, only one VM operation will succeed,
   353 // and the rest will not be executed. For that reason, this method loops
   354 // during failed allocation attempts. If the java heap becomes exhausted,
   355 // we rely on the size_policy object to force a bail out.
   356 HeapWord* ParallelScavengeHeap::mem_allocate(
   357                                      size_t size,
   358                                      bool is_noref,
   359                                      bool is_tlab,
   360                                      bool* gc_overhead_limit_was_exceeded) {
   361   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
   362   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
   363   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   365   HeapWord* result = young_gen()->allocate(size, is_tlab);
   367   uint loop_count = 0;
   368   uint gc_count = 0;
   370   while (result == NULL) {
   371     // We don't want to have multiple collections for a single filled generation.
   372     // To prevent this, each thread tracks the total_collections() value, and if
   373     // the count has changed, does not do a new collection.
   374     //
   375     // The collection count must be read only while holding the heap lock. VM
   376     // operations also hold the heap lock during collections. There is a lock
   377     // contention case where thread A blocks waiting on the Heap_lock, while
   378     // thread B is holding it doing a collection. When thread A gets the lock,
   379     // the collection count has already changed. To prevent duplicate collections,
   380     // The policy MUST attempt allocations during the same period it reads the
   381     // total_collections() value!
   382     {
   383       MutexLocker ml(Heap_lock);
   384       gc_count = Universe::heap()->total_collections();
   386       result = young_gen()->allocate(size, is_tlab);
   388       // (1) If the requested object is too large to easily fit in the
   389       //     young_gen, or
   390       // (2) If GC is locked out via GCLocker, young gen is full and
   391       //     the need for a GC already signalled to GCLocker (done
   392       //     at a safepoint),
   393       // ... then, rather than force a safepoint and (a potentially futile)
   394       // collection (attempt) for each allocation, try allocation directly
   395       // in old_gen. For case (2) above, we may in the future allow
   396       // TLAB allocation directly in the old gen.
   397       if (result != NULL) {
   398         return result;
   399       }
   400       if (!is_tlab &&
   401           size >= (young_gen()->eden_space()->capacity_in_words(Thread::current()) / 2)) {
   402         result = old_gen()->allocate(size, is_tlab);
   403         if (result != NULL) {
   404           return result;
   405         }
   406       }
   407       if (GC_locker::is_active_and_needs_gc()) {
   408         // GC is locked out. If this is a TLAB allocation,
   409         // return NULL; the requestor will retry allocation
   410         // of an idividual object at a time.
   411         if (is_tlab) {
   412           return NULL;
   413         }
   415         // If this thread is not in a jni critical section, we stall
   416         // the requestor until the critical section has cleared and
   417         // GC allowed. When the critical section clears, a GC is
   418         // initiated by the last thread exiting the critical section; so
   419         // we retry the allocation sequence from the beginning of the loop,
   420         // rather than causing more, now probably unnecessary, GC attempts.
   421         JavaThread* jthr = JavaThread::current();
   422         if (!jthr->in_critical()) {
   423           MutexUnlocker mul(Heap_lock);
   424           GC_locker::stall_until_clear();
   425           continue;
   426         } else {
   427           if (CheckJNICalls) {
   428             fatal("Possible deadlock due to allocating while"
   429                   " in jni critical section");
   430           }
   431           return NULL;
   432         }
   433       }
   434     }
   436     if (result == NULL) {
   438       // Exit the loop if if the gc time limit has been exceeded.
   439       // The allocation must have failed above (result must be NULL),
   440       // and the most recent collection must have exceeded the
   441       // gc time limit.  Exit the loop so that an out-of-memory
   442       // will be thrown (returning a NULL will do that), but
   443       // clear gc_time_limit_exceeded so that the next collection
   444       // will succeeded if the applications decides to handle the
   445       // out-of-memory and tries to go on.
   446       *gc_overhead_limit_was_exceeded = size_policy()->gc_time_limit_exceeded();
   447       if (size_policy()->gc_time_limit_exceeded()) {
   448         size_policy()->set_gc_time_limit_exceeded(false);
   449         if (PrintGCDetails && Verbose) {
   450         gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
   451           "return NULL because gc_time_limit_exceeded is set");
   452         }
   453         return NULL;
   454       }
   456       // Generate a VM operation
   457       VM_ParallelGCFailedAllocation op(size, is_tlab, gc_count);
   458       VMThread::execute(&op);
   460       // Did the VM operation execute? If so, return the result directly.
   461       // This prevents us from looping until time out on requests that can
   462       // not be satisfied.
   463       if (op.prologue_succeeded()) {
   464         assert(Universe::heap()->is_in_or_null(op.result()),
   465           "result not in heap");
   467         // If GC was locked out during VM operation then retry allocation
   468         // and/or stall as necessary.
   469         if (op.gc_locked()) {
   470           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
   471           continue;  // retry and/or stall as necessary
   472         }
   473         // If a NULL result is being returned, an out-of-memory
   474         // will be thrown now.  Clear the gc_time_limit_exceeded
   475         // flag to avoid the following situation.
   476         //      gc_time_limit_exceeded is set during a collection
   477         //      the collection fails to return enough space and an OOM is thrown
   478         //      the next GC is skipped because the gc_time_limit_exceeded
   479         //        flag is set and another OOM is thrown
   480         if (op.result() == NULL) {
   481           size_policy()->set_gc_time_limit_exceeded(false);
   482         }
   483         return op.result();
   484       }
   485     }
   487     // The policy object will prevent us from looping forever. If the
   488     // time spent in gc crosses a threshold, we will bail out.
   489     loop_count++;
   490     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
   491         (loop_count % QueuedAllocationWarningCount == 0)) {
   492       warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
   493               " size=%d %s", loop_count, size, is_tlab ? "(TLAB)" : "");
   494     }
   495   }
   497   return result;
   498 }
   500 // Failed allocation policy. Must be called from the VM thread, and
   501 // only at a safepoint! Note that this method has policy for allocation
   502 // flow, and NOT collection policy. So we do not check for gc collection
   503 // time over limit here, that is the responsibility of the heap specific
   504 // collection methods. This method decides where to attempt allocations,
   505 // and when to attempt collections, but no collection specific policy.
   506 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size, bool is_tlab) {
   507   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   508   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   509   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   510   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   512   size_t mark_sweep_invocation_count = total_invocations();
   514   // We assume (and assert!) that an allocation at this point will fail
   515   // unless we collect.
   517   // First level allocation failure, scavenge and allocate in young gen.
   518   GCCauseSetter gccs(this, GCCause::_allocation_failure);
   519   PSScavenge::invoke();
   520   HeapWord* result = young_gen()->allocate(size, is_tlab);
   522   // Second level allocation failure.
   523   //   Mark sweep and allocate in young generation.
   524   if (result == NULL) {
   525     // There is some chance the scavenge method decided to invoke mark_sweep.
   526     // Don't mark sweep twice if so.
   527     if (mark_sweep_invocation_count == total_invocations()) {
   528       invoke_full_gc(false);
   529       result = young_gen()->allocate(size, is_tlab);
   530     }
   531   }
   533   // Third level allocation failure.
   534   //   After mark sweep and young generation allocation failure,
   535   //   allocate in old generation.
   536   if (result == NULL && !is_tlab) {
   537     result = old_gen()->allocate(size, is_tlab);
   538   }
   540   // Fourth level allocation failure. We're running out of memory.
   541   //   More complete mark sweep and allocate in young generation.
   542   if (result == NULL) {
   543     invoke_full_gc(true);
   544     result = young_gen()->allocate(size, is_tlab);
   545   }
   547   // Fifth level allocation failure.
   548   //   After more complete mark sweep, allocate in old generation.
   549   if (result == NULL && !is_tlab) {
   550     result = old_gen()->allocate(size, is_tlab);
   551   }
   553   return result;
   554 }
   556 //
   557 // This is the policy loop for allocating in the permanent generation.
   558 // If the initial allocation fails, we create a vm operation which will
   559 // cause a collection.
   560 HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
   561   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
   562   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
   563   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   565   HeapWord* result;
   567   uint loop_count = 0;
   568   uint gc_count = 0;
   569   uint full_gc_count = 0;
   571   do {
   572     // We don't want to have multiple collections for a single filled generation.
   573     // To prevent this, each thread tracks the total_collections() value, and if
   574     // the count has changed, does not do a new collection.
   575     //
   576     // The collection count must be read only while holding the heap lock. VM
   577     // operations also hold the heap lock during collections. There is a lock
   578     // contention case where thread A blocks waiting on the Heap_lock, while
   579     // thread B is holding it doing a collection. When thread A gets the lock,
   580     // the collection count has already changed. To prevent duplicate collections,
   581     // The policy MUST attempt allocations during the same period it reads the
   582     // total_collections() value!
   583     {
   584       MutexLocker ml(Heap_lock);
   585       gc_count      = Universe::heap()->total_collections();
   586       full_gc_count = Universe::heap()->total_full_collections();
   588       result = perm_gen()->allocate_permanent(size);
   590       if (result != NULL) {
   591         return result;
   592       }
   594       if (GC_locker::is_active_and_needs_gc()) {
   595         // If this thread is not in a jni critical section, we stall
   596         // the requestor until the critical section has cleared and
   597         // GC allowed. When the critical section clears, a GC is
   598         // initiated by the last thread exiting the critical section; so
   599         // we retry the allocation sequence from the beginning of the loop,
   600         // rather than causing more, now probably unnecessary, GC attempts.
   601         JavaThread* jthr = JavaThread::current();
   602         if (!jthr->in_critical()) {
   603           MutexUnlocker mul(Heap_lock);
   604           GC_locker::stall_until_clear();
   605           continue;
   606         } else {
   607           if (CheckJNICalls) {
   608             fatal("Possible deadlock due to allocating while"
   609                   " in jni critical section");
   610           }
   611           return NULL;
   612         }
   613       }
   614     }
   616     if (result == NULL) {
   618       // Exit the loop if the gc time limit has been exceeded.
   619       // The allocation must have failed above (result must be NULL),
   620       // and the most recent collection must have exceeded the
   621       // gc time limit.  Exit the loop so that an out-of-memory
   622       // will be thrown (returning a NULL will do that), but
   623       // clear gc_time_limit_exceeded so that the next collection
   624       // will succeeded if the applications decides to handle the
   625       // out-of-memory and tries to go on.
   626       if (size_policy()->gc_time_limit_exceeded()) {
   627         size_policy()->set_gc_time_limit_exceeded(false);
   628         if (PrintGCDetails && Verbose) {
   629         gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate: "
   630           "return NULL because gc_time_limit_exceeded is set");
   631         }
   632         assert(result == NULL, "Allocation did not fail");
   633         return NULL;
   634       }
   636       // Generate a VM operation
   637       VM_ParallelGCFailedPermanentAllocation op(size, gc_count, full_gc_count);
   638       VMThread::execute(&op);
   640       // Did the VM operation execute? If so, return the result directly.
   641       // This prevents us from looping until time out on requests that can
   642       // not be satisfied.
   643       if (op.prologue_succeeded()) {
   644         assert(Universe::heap()->is_in_permanent_or_null(op.result()),
   645           "result not in heap");
   646         // If GC was locked out during VM operation then retry allocation
   647         // and/or stall as necessary.
   648         if (op.gc_locked()) {
   649           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
   650           continue;  // retry and/or stall as necessary
   651         }
   652         // If a NULL results is being returned, an out-of-memory
   653         // will be thrown now.  Clear the gc_time_limit_exceeded
   654         // flag to avoid the following situation.
   655         //      gc_time_limit_exceeded is set during a collection
   656         //      the collection fails to return enough space and an OOM is thrown
   657         //      the next GC is skipped because the gc_time_limit_exceeded
   658         //        flag is set and another OOM is thrown
   659         if (op.result() == NULL) {
   660           size_policy()->set_gc_time_limit_exceeded(false);
   661         }
   662         return op.result();
   663       }
   664     }
   666     // The policy object will prevent us from looping forever. If the
   667     // time spent in gc crosses a threshold, we will bail out.
   668     loop_count++;
   669     if ((QueuedAllocationWarningCount > 0) &&
   670         (loop_count % QueuedAllocationWarningCount == 0)) {
   671       warning("ParallelScavengeHeap::permanent_mem_allocate retries %d times \n\t"
   672               " size=%d", loop_count, size);
   673     }
   674   } while (result == NULL);
   676   return result;
   677 }
   679 //
   680 // This is the policy code for permanent allocations which have failed
   681 // and require a collection. Note that just as in failed_mem_allocate,
   682 // we do not set collection policy, only where & when to allocate and
   683 // collect.
   684 HeapWord* ParallelScavengeHeap::failed_permanent_mem_allocate(size_t size) {
   685   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   686   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
   687   assert(!Universe::heap()->is_gc_active(), "not reentrant");
   688   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   689   assert(size > perm_gen()->free_in_words(), "Allocation should fail");
   691   // We assume (and assert!) that an allocation at this point will fail
   692   // unless we collect.
   694   // First level allocation failure.  Mark-sweep and allocate in perm gen.
   695   GCCauseSetter gccs(this, GCCause::_allocation_failure);
   696   invoke_full_gc(false);
   697   HeapWord* result = perm_gen()->allocate_permanent(size);
   699   // Second level allocation failure. We're running out of memory.
   700   if (result == NULL) {
   701     invoke_full_gc(true);
   702     result = perm_gen()->allocate_permanent(size);
   703   }
   705   return result;
   706 }
   708 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
   709   CollectedHeap::ensure_parsability(retire_tlabs);
   710   young_gen()->eden_space()->ensure_parsability();
   711 }
   713 size_t ParallelScavengeHeap::unsafe_max_alloc() {
   714   return young_gen()->eden_space()->free_in_bytes();
   715 }
   717 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
   718   return young_gen()->eden_space()->tlab_capacity(thr);
   719 }
   721 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
   722   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
   723 }
   725 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
   726   return young_gen()->allocate(size, true);
   727 }
   729 void ParallelScavengeHeap::fill_all_tlabs(bool retire) {
   730   CollectedHeap::fill_all_tlabs(retire);
   731 }
   733 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
   734   CollectedHeap::accumulate_statistics_all_tlabs();
   735 }
   737 void ParallelScavengeHeap::resize_all_tlabs() {
   738   CollectedHeap::resize_all_tlabs();
   739 }
   741 // This method is used by System.gc() and JVMTI.
   742 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
   743   assert(!Heap_lock->owned_by_self(),
   744     "this thread should not own the Heap_lock");
   746   unsigned int gc_count      = 0;
   747   unsigned int full_gc_count = 0;
   748   {
   749     MutexLocker ml(Heap_lock);
   750     // This value is guarded by the Heap_lock
   751     gc_count      = Universe::heap()->total_collections();
   752     full_gc_count = Universe::heap()->total_full_collections();
   753   }
   755   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
   756   VMThread::execute(&op);
   757 }
   759 // This interface assumes that it's being called by the
   760 // vm thread. It collects the heap assuming that the
   761 // heap lock is already held and that we are executing in
   762 // the context of the vm thread.
   763 void ParallelScavengeHeap::collect_as_vm_thread(GCCause::Cause cause) {
   764   assert(Thread::current()->is_VM_thread(), "Precondition#1");
   765   assert(Heap_lock->is_locked(), "Precondition#2");
   766   GCCauseSetter gcs(this, cause);
   767   switch (cause) {
   768     case GCCause::_heap_inspection:
   769     case GCCause::_heap_dump: {
   770       HandleMark hm;
   771       invoke_full_gc(false);
   772       break;
   773     }
   774     default: // XXX FIX ME
   775       ShouldNotReachHere();
   776   }
   777 }
   780 void ParallelScavengeHeap::oop_iterate(OopClosure* cl) {
   781   Unimplemented();
   782 }
   784 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
   785   young_gen()->object_iterate(cl);
   786   old_gen()->object_iterate(cl);
   787   perm_gen()->object_iterate(cl);
   788 }
   790 void ParallelScavengeHeap::permanent_oop_iterate(OopClosure* cl) {
   791   Unimplemented();
   792 }
   794 void ParallelScavengeHeap::permanent_object_iterate(ObjectClosure* cl) {
   795   perm_gen()->object_iterate(cl);
   796 }
   798 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
   799   if (young_gen()->is_in_reserved(addr)) {
   800     assert(young_gen()->is_in(addr),
   801            "addr should be in allocated part of young gen");
   802     Unimplemented();
   803   } else if (old_gen()->is_in_reserved(addr)) {
   804     assert(old_gen()->is_in(addr),
   805            "addr should be in allocated part of old gen");
   806     return old_gen()->start_array()->object_start((HeapWord*)addr);
   807   } else if (perm_gen()->is_in_reserved(addr)) {
   808     assert(perm_gen()->is_in(addr),
   809            "addr should be in allocated part of perm gen");
   810     return perm_gen()->start_array()->object_start((HeapWord*)addr);
   811   }
   812   return 0;
   813 }
   815 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
   816   return oop(addr)->size();
   817 }
   819 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
   820   return block_start(addr) == addr;
   821 }
   823 jlong ParallelScavengeHeap::millis_since_last_gc() {
   824   return UseParallelOldGC ?
   825     PSParallelCompact::millis_since_last_gc() :
   826     PSMarkSweep::millis_since_last_gc();
   827 }
   829 void ParallelScavengeHeap::prepare_for_verify() {
   830   ensure_parsability(false);  // no need to retire TLABs for verification
   831 }
   833 void ParallelScavengeHeap::print() const { print_on(tty); }
   835 void ParallelScavengeHeap::print_on(outputStream* st) const {
   836   young_gen()->print_on(st);
   837   old_gen()->print_on(st);
   838   perm_gen()->print_on(st);
   839 }
   841 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
   842   PSScavenge::gc_task_manager()->threads_do(tc);
   843 }
   845 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
   846   PSScavenge::gc_task_manager()->print_threads_on(st);
   847 }
   849 void ParallelScavengeHeap::print_tracing_info() const {
   850   if (TraceGen0Time) {
   851     double time = PSScavenge::accumulated_time()->seconds();
   852     tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
   853   }
   854   if (TraceGen1Time) {
   855     double time = PSMarkSweep::accumulated_time()->seconds();
   856     tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
   857   }
   858 }
   861 void ParallelScavengeHeap::verify(bool allow_dirty, bool silent) {
   862   // Why do we need the total_collections()-filter below?
   863   if (total_collections() > 0) {
   864     if (!silent) {
   865       gclog_or_tty->print("permanent ");
   866     }
   867     perm_gen()->verify(allow_dirty);
   869     if (!silent) {
   870       gclog_or_tty->print("tenured ");
   871     }
   872     old_gen()->verify(allow_dirty);
   874     if (!silent) {
   875       gclog_or_tty->print("eden ");
   876     }
   877     young_gen()->verify(allow_dirty);
   878   }
   879   if (!silent) {
   880     gclog_or_tty->print("ref_proc ");
   881   }
   882   ReferenceProcessor::verify();
   883 }
   885 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
   886   if (PrintGCDetails && Verbose) {
   887     gclog_or_tty->print(" "  SIZE_FORMAT
   888                         "->" SIZE_FORMAT
   889                         "("  SIZE_FORMAT ")",
   890                         prev_used, used(), capacity());
   891   } else {
   892     gclog_or_tty->print(" "  SIZE_FORMAT "K"
   893                         "->" SIZE_FORMAT "K"
   894                         "("  SIZE_FORMAT "K)",
   895                         prev_used / K, used() / K, capacity() / K);
   896   }
   897 }
   899 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
   900   assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
   901   assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
   902   return _psh;
   903 }
   905 // Before delegating the resize to the young generation,
   906 // the reserved space for the young and old generations
   907 // may be changed to accomodate the desired resize.
   908 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
   909     size_t survivor_size) {
   910   if (UseAdaptiveGCBoundary) {
   911     if (size_policy()->bytes_absorbed_from_eden() != 0) {
   912       size_policy()->reset_bytes_absorbed_from_eden();
   913       return;  // The generation changed size already.
   914     }
   915     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
   916   }
   918   // Delegate the resize to the generation.
   919   _young_gen->resize(eden_size, survivor_size);
   920 }
   922 // Before delegating the resize to the old generation,
   923 // the reserved space for the young and old generations
   924 // may be changed to accomodate the desired resize.
   925 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
   926   if (UseAdaptiveGCBoundary) {
   927     if (size_policy()->bytes_absorbed_from_eden() != 0) {
   928       size_policy()->reset_bytes_absorbed_from_eden();
   929       return;  // The generation changed size already.
   930     }
   931     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
   932   }
   934   // Delegate the resize to the generation.
   935   _old_gen->resize(desired_free_space);
   936 }
   938 #ifndef PRODUCT
   939 void ParallelScavengeHeap::record_gen_tops_before_GC() {
   940   if (ZapUnusedHeapArea) {
   941     young_gen()->record_spaces_top();
   942     old_gen()->record_spaces_top();
   943     perm_gen()->record_spaces_top();
   944   }
   945 }
   947 void ParallelScavengeHeap::gen_mangle_unused_area() {
   948   if (ZapUnusedHeapArea) {
   949     young_gen()->eden_space()->mangle_unused_area();
   950     young_gen()->to_space()->mangle_unused_area();
   951     young_gen()->from_space()->mangle_unused_area();
   952     old_gen()->object_space()->mangle_unused_area();
   953     perm_gen()->object_space()->mangle_unused_area();
   954   }
   955 }
   956 #endif

mercurial