src/share/vm/gc_implementation/parallelScavenge/parMarkBitMap.hpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 777
37f87013dfd8
child 1243
353ba4575581
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 2005-2006 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class oopDesc;
    26 class ParMarkBitMapClosure;
    28 class ParMarkBitMap: public CHeapObj
    29 {
    30 public:
    31   typedef BitMap::idx_t idx_t;
    33   // Values returned by the iterate() methods.
    34   enum IterationStatus { incomplete, complete, full, would_overflow };
    36   inline ParMarkBitMap();
    37   inline ParMarkBitMap(MemRegion covered_region);
    38   bool initialize(MemRegion covered_region);
    40   // Atomically mark an object as live.
    41   bool mark_obj(HeapWord* addr, size_t size);
    42   inline bool mark_obj(oop obj, int size);
    43   inline bool mark_obj(oop obj);
    45   // Return whether the specified begin or end bit is set.
    46   inline bool is_obj_beg(idx_t bit) const;
    47   inline bool is_obj_end(idx_t bit) const;
    49   // Traditional interface for testing whether an object is marked or not (these
    50   // test only the begin bits).
    51   inline bool is_marked(idx_t bit)      const;
    52   inline bool is_marked(HeapWord* addr) const;
    53   inline bool is_marked(oop obj)        const;
    55   inline bool is_unmarked(idx_t bit)      const;
    56   inline bool is_unmarked(HeapWord* addr) const;
    57   inline bool is_unmarked(oop obj)        const;
    59   // Convert sizes from bits to HeapWords and back.  An object that is n bits
    60   // long will be bits_to_words(n) words long.  An object that is m words long
    61   // will take up words_to_bits(m) bits in the bitmap.
    62   inline static size_t bits_to_words(idx_t bits);
    63   inline static idx_t  words_to_bits(size_t words);
    65   // Return the size in words of an object given a begin bit and an end bit, or
    66   // the equivalent beg_addr and end_addr.
    67   inline size_t obj_size(idx_t beg_bit, idx_t end_bit) const;
    68   inline size_t obj_size(HeapWord* beg_addr, HeapWord* end_addr) const;
    70   // Return the size in words of the object (a search is done for the end bit).
    71   inline size_t obj_size(idx_t beg_bit)  const;
    72   inline size_t obj_size(HeapWord* addr) const;
    73   inline size_t obj_size(oop obj)        const;
    75   // Synonyms for the above.
    76   size_t obj_size_in_words(oop obj) const { return obj_size((HeapWord*)obj); }
    77   size_t obj_size_in_words(HeapWord* addr) const { return obj_size(addr); }
    79   // Apply live_closure to each live object that lies completely within the
    80   // range [live_range_beg, live_range_end).  This is used to iterate over the
    81   // compacted region of the heap.  Return values:
    82   //
    83   // incomplete         The iteration is not complete.  The last object that
    84   //                    begins in the range does not end in the range;
    85   //                    closure->source() is set to the start of that object.
    86   //
    87   // complete           The iteration is complete.  All objects in the range
    88   //                    were processed and the closure is not full;
    89   //                    closure->source() is set one past the end of the range.
    90   //
    91   // full               The closure is full; closure->source() is set to one
    92   //                    past the end of the last object processed.
    93   //
    94   // would_overflow     The next object in the range would overflow the closure;
    95   //                    closure->source() is set to the start of that object.
    96   IterationStatus iterate(ParMarkBitMapClosure* live_closure,
    97                           idx_t range_beg, idx_t range_end) const;
    98   inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
    99                                  HeapWord* range_beg,
   100                                  HeapWord* range_end) const;
   102   // Apply live closure as above and additionally apply dead_closure to all dead
   103   // space in the range [range_beg, dead_range_end).  Note that dead_range_end
   104   // must be >= range_end.  This is used to iterate over the dense prefix.
   105   //
   106   // This method assumes that if the first bit in the range (range_beg) is not
   107   // marked, then dead space begins at that point and the dead_closure is
   108   // applied.  Thus callers must ensure that range_beg is not in the middle of a
   109   // live object.
   110   IterationStatus iterate(ParMarkBitMapClosure* live_closure,
   111                           ParMarkBitMapClosure* dead_closure,
   112                           idx_t range_beg, idx_t range_end,
   113                           idx_t dead_range_end) const;
   114   inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
   115                                  ParMarkBitMapClosure* dead_closure,
   116                                  HeapWord* range_beg,
   117                                  HeapWord* range_end,
   118                                  HeapWord* dead_range_end) const;
   120   // Return the number of live words in the range [beg_addr, end_addr) due to
   121   // objects that start in the range.  If a live object extends onto the range,
   122   // the caller must detect and account for any live words due to that object.
   123   // If a live object extends beyond the end of the range, only the words within
   124   // the range are included in the result.
   125   size_t live_words_in_range(HeapWord* beg_addr, HeapWord* end_addr) const;
   127   // Same as the above, except the end of the range must be a live object, which
   128   // is the case when updating pointers.  This allows a branch to be removed
   129   // from inside the loop.
   130   size_t live_words_in_range(HeapWord* beg_addr, oop end_obj) const;
   132   inline HeapWord* region_start() const;
   133   inline HeapWord* region_end() const;
   134   inline size_t    region_size() const;
   135   inline size_t    size() const;
   137   // Convert a heap address to/from a bit index.
   138   inline idx_t     addr_to_bit(HeapWord* addr) const;
   139   inline HeapWord* bit_to_addr(idx_t bit) const;
   141   // Return the bit index of the first marked object that begins (or ends,
   142   // respectively) in the range [beg, end).  If no object is found, return end.
   143   inline idx_t find_obj_beg(idx_t beg, idx_t end) const;
   144   inline idx_t find_obj_end(idx_t beg, idx_t end) const;
   146   inline HeapWord* find_obj_beg(HeapWord* beg, HeapWord* end) const;
   147   inline HeapWord* find_obj_end(HeapWord* beg, HeapWord* end) const;
   149   // Clear a range of bits or the entire bitmap (both begin and end bits are
   150   // cleared).
   151   inline void clear_range(idx_t beg, idx_t end);
   152   inline void clear() { clear_range(0, size()); }
   154   // Return the number of bits required to represent the specified number of
   155   // HeapWords, or the specified region.
   156   static inline idx_t bits_required(size_t words);
   157   static inline idx_t bits_required(MemRegion covered_region);
   158   static inline idx_t words_required(MemRegion covered_region);
   160 #ifndef PRODUCT
   161   // CAS statistics.
   162   size_t cas_tries() { return _cas_tries; }
   163   size_t cas_retries() { return _cas_retries; }
   164   size_t cas_by_another() { return _cas_by_another; }
   166   void reset_counters();
   167 #endif  // #ifndef PRODUCT
   169 #ifdef  ASSERT
   170   void verify_clear() const;
   171   inline void verify_bit(idx_t bit) const;
   172   inline void verify_addr(HeapWord* addr) const;
   173 #endif  // #ifdef ASSERT
   175 private:
   176   // Each bit in the bitmap represents one unit of 'object granularity.' Objects
   177   // are double-word aligned in 32-bit VMs, but not in 64-bit VMs, so the 32-bit
   178   // granularity is 2, 64-bit is 1.
   179   static inline size_t obj_granularity() { return size_t(MinObjAlignment); }
   181   HeapWord*       _region_start;
   182   size_t          _region_size;
   183   BitMap          _beg_bits;
   184   BitMap          _end_bits;
   185   PSVirtualSpace* _virtual_space;
   187 #ifndef PRODUCT
   188   size_t _cas_tries;
   189   size_t _cas_retries;
   190   size_t _cas_by_another;
   191 #endif  // #ifndef PRODUCT
   192 };
   194 inline ParMarkBitMap::ParMarkBitMap():
   195   _beg_bits(),
   196   _end_bits()
   197 {
   198   _region_start = 0;
   199   _virtual_space = 0;
   200 }
   202 inline ParMarkBitMap::ParMarkBitMap(MemRegion covered_region):
   203   _beg_bits(),
   204   _end_bits()
   205 {
   206   initialize(covered_region);
   207 }
   209 inline void ParMarkBitMap::clear_range(idx_t beg, idx_t end)
   210 {
   211   _beg_bits.clear_range(beg, end);
   212   _end_bits.clear_range(beg, end);
   213 }
   215 inline ParMarkBitMap::idx_t
   216 ParMarkBitMap::bits_required(size_t words)
   217 {
   218   // Need two bits (one begin bit, one end bit) for each unit of 'object
   219   // granularity' in the heap.
   220   return words_to_bits(words * 2);
   221 }
   223 inline ParMarkBitMap::idx_t
   224 ParMarkBitMap::bits_required(MemRegion covered_region)
   225 {
   226   return bits_required(covered_region.word_size());
   227 }
   229 inline ParMarkBitMap::idx_t
   230 ParMarkBitMap::words_required(MemRegion covered_region)
   231 {
   232   return bits_required(covered_region) / BitsPerWord;
   233 }
   235 inline HeapWord*
   236 ParMarkBitMap::region_start() const
   237 {
   238   return _region_start;
   239 }
   241 inline HeapWord*
   242 ParMarkBitMap::region_end() const
   243 {
   244   return region_start() + region_size();
   245 }
   247 inline size_t
   248 ParMarkBitMap::region_size() const
   249 {
   250   return _region_size;
   251 }
   253 inline size_t
   254 ParMarkBitMap::size() const
   255 {
   256   return _beg_bits.size();
   257 }
   259 inline bool ParMarkBitMap::is_obj_beg(idx_t bit) const
   260 {
   261   return _beg_bits.at(bit);
   262 }
   264 inline bool ParMarkBitMap::is_obj_end(idx_t bit) const
   265 {
   266   return _end_bits.at(bit);
   267 }
   269 inline bool ParMarkBitMap::is_marked(idx_t bit) const
   270 {
   271   return is_obj_beg(bit);
   272 }
   274 inline bool ParMarkBitMap::is_marked(HeapWord* addr) const
   275 {
   276   return is_marked(addr_to_bit(addr));
   277 }
   279 inline bool ParMarkBitMap::is_marked(oop obj) const
   280 {
   281   return is_marked((HeapWord*)obj);
   282 }
   284 inline bool ParMarkBitMap::is_unmarked(idx_t bit) const
   285 {
   286   return !is_marked(bit);
   287 }
   289 inline bool ParMarkBitMap::is_unmarked(HeapWord* addr) const
   290 {
   291   return !is_marked(addr);
   292 }
   294 inline bool ParMarkBitMap::is_unmarked(oop obj) const
   295 {
   296   return !is_marked(obj);
   297 }
   299 inline size_t
   300 ParMarkBitMap::bits_to_words(idx_t bits)
   301 {
   302   return bits * obj_granularity();
   303 }
   305 inline ParMarkBitMap::idx_t
   306 ParMarkBitMap::words_to_bits(size_t words)
   307 {
   308   return words / obj_granularity();
   309 }
   311 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit, idx_t end_bit) const
   312 {
   313   DEBUG_ONLY(verify_bit(beg_bit);)
   314   DEBUG_ONLY(verify_bit(end_bit);)
   315   return bits_to_words(end_bit - beg_bit + 1);
   316 }
   318 inline size_t
   319 ParMarkBitMap::obj_size(HeapWord* beg_addr, HeapWord* end_addr) const
   320 {
   321   DEBUG_ONLY(verify_addr(beg_addr);)
   322   DEBUG_ONLY(verify_addr(end_addr);)
   323   return pointer_delta(end_addr, beg_addr) + obj_granularity();
   324 }
   326 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit) const
   327 {
   328   const idx_t end_bit = _end_bits.get_next_one_offset_inline(beg_bit, size());
   329   assert(is_marked(beg_bit), "obj not marked");
   330   assert(end_bit < size(), "end bit missing");
   331   return obj_size(beg_bit, end_bit);
   332 }
   334 inline size_t ParMarkBitMap::obj_size(HeapWord* addr) const
   335 {
   336   return obj_size(addr_to_bit(addr));
   337 }
   339 inline size_t ParMarkBitMap::obj_size(oop obj) const
   340 {
   341   return obj_size((HeapWord*)obj);
   342 }
   344 inline ParMarkBitMap::IterationStatus
   345 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
   346                        HeapWord* range_beg,
   347                        HeapWord* range_end) const
   348 {
   349   return iterate(live_closure, addr_to_bit(range_beg), addr_to_bit(range_end));
   350 }
   352 inline ParMarkBitMap::IterationStatus
   353 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
   354                        ParMarkBitMapClosure* dead_closure,
   355                        HeapWord* range_beg,
   356                        HeapWord* range_end,
   357                        HeapWord* dead_range_end) const
   358 {
   359   return iterate(live_closure, dead_closure,
   360                  addr_to_bit(range_beg), addr_to_bit(range_end),
   361                  addr_to_bit(dead_range_end));
   362 }
   364 inline bool
   365 ParMarkBitMap::mark_obj(oop obj, int size)
   366 {
   367   return mark_obj((HeapWord*)obj, (size_t)size);
   368 }
   370 inline BitMap::idx_t
   371 ParMarkBitMap::addr_to_bit(HeapWord* addr) const
   372 {
   373   DEBUG_ONLY(verify_addr(addr);)
   374   return words_to_bits(pointer_delta(addr, region_start()));
   375 }
   377 inline HeapWord*
   378 ParMarkBitMap::bit_to_addr(idx_t bit) const
   379 {
   380   DEBUG_ONLY(verify_bit(bit);)
   381   return region_start() + bits_to_words(bit);
   382 }
   384 inline ParMarkBitMap::idx_t
   385 ParMarkBitMap::find_obj_beg(idx_t beg, idx_t end) const
   386 {
   387   return _beg_bits.get_next_one_offset_inline_aligned_right(beg, end);
   388 }
   390 inline ParMarkBitMap::idx_t
   391 ParMarkBitMap::find_obj_end(idx_t beg, idx_t end) const
   392 {
   393   return _end_bits.get_next_one_offset_inline_aligned_right(beg, end);
   394 }
   396 inline HeapWord*
   397 ParMarkBitMap::find_obj_beg(HeapWord* beg, HeapWord* end) const
   398 {
   399   const idx_t beg_bit = addr_to_bit(beg);
   400   const idx_t end_bit = addr_to_bit(end);
   401   const idx_t search_end = BitMap::word_align_up(end_bit);
   402   const idx_t res_bit = MIN2(find_obj_beg(beg_bit, search_end), end_bit);
   403   return bit_to_addr(res_bit);
   404 }
   406 inline HeapWord*
   407 ParMarkBitMap::find_obj_end(HeapWord* beg, HeapWord* end) const
   408 {
   409   const idx_t beg_bit = addr_to_bit(beg);
   410   const idx_t end_bit = addr_to_bit(end);
   411   const idx_t search_end = BitMap::word_align_up(end_bit);
   412   const idx_t res_bit = MIN2(find_obj_end(beg_bit, search_end), end_bit);
   413   return bit_to_addr(res_bit);
   414 }
   416 #ifdef  ASSERT
   417 inline void ParMarkBitMap::verify_bit(idx_t bit) const {
   418   // Allow one past the last valid bit; useful for loop bounds.
   419   assert(bit <= _beg_bits.size(), "bit out of range");
   420 }
   422 inline void ParMarkBitMap::verify_addr(HeapWord* addr) const {
   423   // Allow one past the last valid address; useful for loop bounds.
   424   assert(addr >= region_start(), "addr too small");
   425   assert(addr <= region_start() + region_size(), "addr too big");
   426 }
   427 #endif  // #ifdef ASSERT

mercurial