src/share/vm/gc_implementation/parNew/parGCAllocBuffer.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 916
7d7a7c599c17
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_parGCAllocBuffer.cpp.incl"
    28 ParGCAllocBuffer::ParGCAllocBuffer(size_t desired_plab_sz_) :
    29   _word_sz(desired_plab_sz_), _bottom(NULL), _top(NULL),
    30   _end(NULL), _hard_end(NULL),
    31   _retained(false), _retained_filler(),
    32   _allocated(0), _wasted(0)
    33 {
    34   assert (min_size() > AlignmentReserve, "Inconsistency!");
    35   // arrayOopDesc::header_size depends on command line initialization.
    36   FillerHeaderSize = align_object_size(arrayOopDesc::header_size(T_INT));
    37   AlignmentReserve = oopDesc::header_size() > MinObjAlignment ? FillerHeaderSize : 0;
    38 }
    40 size_t ParGCAllocBuffer::FillerHeaderSize;
    42 // If the minimum object size is greater than MinObjAlignment, we can
    43 // end up with a shard at the end of the buffer that's smaller than
    44 // the smallest object.  We can't allow that because the buffer must
    45 // look like it's full of objects when we retire it, so we make
    46 // sure we have enough space for a filler int array object.
    47 size_t ParGCAllocBuffer::AlignmentReserve;
    49 void ParGCAllocBuffer::retire(bool end_of_gc, bool retain) {
    50   assert(!retain || end_of_gc, "Can only retain at GC end.");
    51   if (_retained) {
    52     // If the buffer had been retained shorten the previous filler object.
    53     assert(_retained_filler.end() <= _top, "INVARIANT");
    54     CollectedHeap::fill_with_object(_retained_filler);
    55     // Wasted space book-keeping, otherwise (normally) done in invalidate()
    56     _wasted += _retained_filler.word_size();
    57     _retained = false;
    58   }
    59   assert(!end_of_gc || !_retained, "At this point, end_of_gc ==> !_retained.");
    60   if (_top < _hard_end) {
    61     CollectedHeap::fill_with_object(_top, _hard_end);
    62     if (!retain) {
    63       invalidate();
    64     } else {
    65       // Is there wasted space we'd like to retain for the next GC?
    66       if (pointer_delta(_end, _top) > FillerHeaderSize) {
    67         _retained = true;
    68         _retained_filler = MemRegion(_top, FillerHeaderSize);
    69         _top = _top + FillerHeaderSize;
    70       } else {
    71         invalidate();
    72       }
    73     }
    74   }
    75 }
    77 void ParGCAllocBuffer::flush_stats(PLABStats* stats) {
    78   assert(ResizePLAB, "Wasted work");
    79   stats->add_allocated(_allocated);
    80   stats->add_wasted(_wasted);
    81   stats->add_unused(pointer_delta(_end, _top));
    82 }
    84 // Compute desired plab size and latch result for later
    85 // use. This should be called once at the end of parallel
    86 // scavenge; it clears the sensor accumulators.
    87 void PLABStats::adjust_desired_plab_sz() {
    88   assert(ResizePLAB, "Not set");
    89   if (_allocated == 0) {
    90     assert(_unused == 0, "Inconsistency in PLAB stats");
    91     _allocated = 1;
    92   }
    93   double wasted_frac    = (double)_unused/(double)_allocated;
    94   size_t target_refills = (size_t)((wasted_frac*TargetSurvivorRatio)/
    95                                    TargetPLABWastePct);
    96   if (target_refills == 0) {
    97     target_refills = 1;
    98   }
    99   _used = _allocated - _wasted - _unused;
   100   size_t plab_sz = _used/(target_refills*ParallelGCThreads);
   101   if (PrintPLAB) gclog_or_tty->print(" (plab_sz = %d ", plab_sz);
   102   // Take historical weighted average
   103   _filter.sample(plab_sz);
   104   // Clip from above and below, and align to object boundary
   105   plab_sz = MAX2(min_size(), (size_t)_filter.average());
   106   plab_sz = MIN2(max_size(), plab_sz);
   107   plab_sz = align_object_size(plab_sz);
   108   // Latch the result
   109   if (PrintPLAB) gclog_or_tty->print(" desired_plab_sz = %d) ", plab_sz);
   110   if (ResizePLAB) {
   111     _desired_plab_sz = plab_sz;
   112   }
   113   // Now clear the accumulators for next round:
   114   // note this needs to be fixed in the case where we
   115   // are retaining across scavenges. FIX ME !!! XXX
   116   _allocated = 0;
   117   _wasted    = 0;
   118   _unused    = 0;
   119 }
   121 #ifndef PRODUCT
   122 void ParGCAllocBuffer::print() {
   123   gclog_or_tty->print("parGCAllocBuffer: _bottom: %p  _top: %p  _end: %p  _hard_end: %p"
   124              "_retained: %c _retained_filler: [%p,%p)\n",
   125              _bottom, _top, _end, _hard_end,
   126              "FT"[_retained], _retained_filler.start(), _retained_filler.end());
   127 }
   128 #endif // !PRODUCT
   130 const size_t ParGCAllocBufferWithBOT::ChunkSizeInWords =
   131 MIN2(CardTableModRefBS::par_chunk_heapword_alignment(),
   132      ((size_t)Generation::GenGrain)/HeapWordSize);
   133 const size_t ParGCAllocBufferWithBOT::ChunkSizeInBytes =
   134 MIN2(CardTableModRefBS::par_chunk_heapword_alignment() * HeapWordSize,
   135      (size_t)Generation::GenGrain);
   137 ParGCAllocBufferWithBOT::ParGCAllocBufferWithBOT(size_t word_sz,
   138                                                  BlockOffsetSharedArray* bsa) :
   139   ParGCAllocBuffer(word_sz),
   140   _bsa(bsa),
   141   _bt(bsa, MemRegion(_bottom, _hard_end)),
   142   _true_end(_hard_end)
   143 {}
   145 // The buffer comes with its own BOT, with a shared (obviously) underlying
   146 // BlockOffsetSharedArray. We manipulate this BOT in the normal way
   147 // as we would for any contiguous space. However, on accasion we
   148 // need to do some buffer surgery at the extremities before we
   149 // start using the body of the buffer for allocations. Such surgery
   150 // (as explained elsewhere) is to prevent allocation on a card that
   151 // is in the process of being walked concurrently by another GC thread.
   152 // When such surgery happens at a point that is far removed (to the
   153 // right of the current allocation point, top), we use the "contig"
   154 // parameter below to directly manipulate the shared array without
   155 // modifying the _next_threshold state in the BOT.
   156 void ParGCAllocBufferWithBOT::fill_region_with_block(MemRegion mr,
   157                                                      bool contig) {
   158   CollectedHeap::fill_with_object(mr);
   159   if (contig) {
   160     _bt.alloc_block(mr.start(), mr.end());
   161   } else {
   162     _bt.BlockOffsetArray::alloc_block(mr.start(), mr.end());
   163   }
   164 }
   166 HeapWord* ParGCAllocBufferWithBOT::allocate_slow(size_t word_sz) {
   167   HeapWord* res = NULL;
   168   if (_true_end > _hard_end) {
   169     assert((HeapWord*)align_size_down(intptr_t(_hard_end),
   170                                       ChunkSizeInBytes) == _hard_end,
   171            "or else _true_end should be equal to _hard_end");
   172     assert(_retained, "or else _true_end should be equal to _hard_end");
   173     assert(_retained_filler.end() <= _top, "INVARIANT");
   174     CollectedHeap::fill_with_object(_retained_filler);
   175     if (_top < _hard_end) {
   176       fill_region_with_block(MemRegion(_top, _hard_end), true);
   177     }
   178     HeapWord* next_hard_end = MIN2(_true_end, _hard_end + ChunkSizeInWords);
   179     _retained_filler = MemRegion(_hard_end, FillerHeaderSize);
   180     _bt.alloc_block(_retained_filler.start(), _retained_filler.word_size());
   181     _top      = _retained_filler.end();
   182     _hard_end = next_hard_end;
   183     _end      = _hard_end - AlignmentReserve;
   184     res       = ParGCAllocBuffer::allocate(word_sz);
   185     if (res != NULL) {
   186       _bt.alloc_block(res, word_sz);
   187     }
   188   }
   189   return res;
   190 }
   192 void
   193 ParGCAllocBufferWithBOT::undo_allocation(HeapWord* obj, size_t word_sz) {
   194   ParGCAllocBuffer::undo_allocation(obj, word_sz);
   195   // This may back us up beyond the previous threshold, so reset.
   196   _bt.set_region(MemRegion(_top, _hard_end));
   197   _bt.initialize_threshold();
   198 }
   200 void ParGCAllocBufferWithBOT::retire(bool end_of_gc, bool retain) {
   201   assert(!retain || end_of_gc, "Can only retain at GC end.");
   202   if (_retained) {
   203     // We're about to make the retained_filler into a block.
   204     _bt.BlockOffsetArray::alloc_block(_retained_filler.start(),
   205                                       _retained_filler.end());
   206   }
   207   // Reset _hard_end to _true_end (and update _end)
   208   if (retain && _hard_end != NULL) {
   209     assert(_hard_end <= _true_end, "Invariant.");
   210     _hard_end = _true_end;
   211     _end      = MAX2(_top, _hard_end - AlignmentReserve);
   212     assert(_end <= _hard_end, "Invariant.");
   213   }
   214   _true_end = _hard_end;
   215   HeapWord* pre_top = _top;
   217   ParGCAllocBuffer::retire(end_of_gc, retain);
   218   // Now any old _retained_filler is cut back to size, the free part is
   219   // filled with a filler object, and top is past the header of that
   220   // object.
   222   if (retain && _top < _end) {
   223     assert(end_of_gc && retain, "Or else retain should be false.");
   224     // If the lab does not start on a card boundary, we don't want to
   225     // allocate onto that card, since that might lead to concurrent
   226     // allocation and card scanning, which we don't support.  So we fill
   227     // the first card with a garbage object.
   228     size_t first_card_index = _bsa->index_for(pre_top);
   229     HeapWord* first_card_start = _bsa->address_for_index(first_card_index);
   230     if (first_card_start < pre_top) {
   231       HeapWord* second_card_start =
   232         _bsa->inc_by_region_size(first_card_start);
   234       // Ensure enough room to fill with the smallest block
   235       second_card_start = MAX2(second_card_start, pre_top + AlignmentReserve);
   237       // If the end is already in the first card, don't go beyond it!
   238       // Or if the remainder is too small for a filler object, gobble it up.
   239       if (_hard_end < second_card_start ||
   240           pointer_delta(_hard_end, second_card_start) < AlignmentReserve) {
   241         second_card_start = _hard_end;
   242       }
   243       if (pre_top < second_card_start) {
   244         MemRegion first_card_suffix(pre_top, second_card_start);
   245         fill_region_with_block(first_card_suffix, true);
   246       }
   247       pre_top = second_card_start;
   248       _top = pre_top;
   249       _end = MAX2(_top, _hard_end - AlignmentReserve);
   250     }
   252     // If the lab does not end on a card boundary, we don't want to
   253     // allocate onto that card, since that might lead to concurrent
   254     // allocation and card scanning, which we don't support.  So we fill
   255     // the last card with a garbage object.
   256     size_t last_card_index = _bsa->index_for(_hard_end);
   257     HeapWord* last_card_start = _bsa->address_for_index(last_card_index);
   258     if (last_card_start < _hard_end) {
   260       // Ensure enough room to fill with the smallest block
   261       last_card_start = MIN2(last_card_start, _hard_end - AlignmentReserve);
   263       // If the top is already in the last card, don't go back beyond it!
   264       // Or if the remainder is too small for a filler object, gobble it up.
   265       if (_top > last_card_start ||
   266           pointer_delta(last_card_start, _top) < AlignmentReserve) {
   267         last_card_start = _top;
   268       }
   269       if (last_card_start < _hard_end) {
   270         MemRegion last_card_prefix(last_card_start, _hard_end);
   271         fill_region_with_block(last_card_prefix, false);
   272       }
   273       _hard_end = last_card_start;
   274       _end      = MAX2(_top, _hard_end - AlignmentReserve);
   275       _true_end = _hard_end;
   276       assert(_end <= _hard_end, "Invariant.");
   277     }
   279     // At this point:
   280     //   1) we had a filler object from the original top to hard_end.
   281     //   2) We've filled in any partial cards at the front and back.
   282     if (pre_top < _hard_end) {
   283       // Now we can reset the _bt to do allocation in the given area.
   284       MemRegion new_filler(pre_top, _hard_end);
   285       fill_region_with_block(new_filler, false);
   286       _top = pre_top + ParGCAllocBuffer::FillerHeaderSize;
   287       // If there's no space left, don't retain.
   288       if (_top >= _end) {
   289         _retained = false;
   290         invalidate();
   291         return;
   292       }
   293       _retained_filler = MemRegion(pre_top, _top);
   294       _bt.set_region(MemRegion(_top, _hard_end));
   295       _bt.initialize_threshold();
   296       assert(_bt.threshold() > _top, "initialize_threshold failed!");
   298       // There may be other reasons for queries into the middle of the
   299       // filler object.  When such queries are done in parallel with
   300       // allocation, bad things can happen, if the query involves object
   301       // iteration.  So we ensure that such queries do not involve object
   302       // iteration, by putting another filler object on the boundaries of
   303       // such queries.  One such is the object spanning a parallel card
   304       // chunk boundary.
   306       // "chunk_boundary" is the address of the first chunk boundary less
   307       // than "hard_end".
   308       HeapWord* chunk_boundary =
   309         (HeapWord*)align_size_down(intptr_t(_hard_end-1), ChunkSizeInBytes);
   310       assert(chunk_boundary < _hard_end, "Or else above did not work.");
   311       assert(pointer_delta(_true_end, chunk_boundary) >= AlignmentReserve,
   312              "Consequence of last card handling above.");
   314       if (_top <= chunk_boundary) {
   315         assert(_true_end == _hard_end, "Invariant.");
   316         while (_top <= chunk_boundary) {
   317           assert(pointer_delta(_hard_end, chunk_boundary) >= AlignmentReserve,
   318                  "Consequence of last card handling above.");
   319           _bt.BlockOffsetArray::alloc_block(chunk_boundary, _hard_end);
   320           CollectedHeap::fill_with_object(chunk_boundary, _hard_end);
   321           _hard_end = chunk_boundary;
   322           chunk_boundary -= ChunkSizeInWords;
   323         }
   324         _end = _hard_end - AlignmentReserve;
   325         assert(_top <= _end, "Invariant.");
   326         // Now reset the initial filler chunk so it doesn't overlap with
   327         // the one(s) inserted above.
   328         MemRegion new_filler(pre_top, _hard_end);
   329         fill_region_with_block(new_filler, false);
   330       }
   331     } else {
   332       _retained = false;
   333       invalidate();
   334     }
   335   } else {
   336     assert(!end_of_gc ||
   337            (!_retained && _true_end == _hard_end), "Checking.");
   338   }
   339   assert(_end <= _hard_end, "Invariant.");
   340   assert(_top < _end || _top == _hard_end, "Invariant");
   341 }

mercurial