src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 980
58054a18d735
child 1063
7bb995fbd3c0
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    26 // It uses the "Garbage First" heap organization and algorithm, which
    27 // may combine concurrent marking with parallel, incremental compaction of
    28 // heap subsets that will yield large amounts of garbage.
    30 class HeapRegion;
    31 class HeapRegionSeq;
    32 class HeapRegionList;
    33 class PermanentGenerationSpec;
    34 class GenerationSpec;
    35 class OopsInHeapRegionClosure;
    36 class G1ScanHeapEvacClosure;
    37 class ObjectClosure;
    38 class SpaceClosure;
    39 class CompactibleSpaceClosure;
    40 class Space;
    41 class G1CollectorPolicy;
    42 class GenRemSet;
    43 class G1RemSet;
    44 class HeapRegionRemSetIterator;
    45 class ConcurrentMark;
    46 class ConcurrentMarkThread;
    47 class ConcurrentG1Refine;
    48 class ConcurrentZFThread;
    50 // If want to accumulate detailed statistics on work queues
    51 // turn this on.
    52 #define G1_DETAILED_STATS 0
    54 #if G1_DETAILED_STATS
    55 #  define IF_G1_DETAILED_STATS(code) code
    56 #else
    57 #  define IF_G1_DETAILED_STATS(code)
    58 #endif
    60 typedef GenericTaskQueue<oop*>    RefToScanQueue;
    61 typedef GenericTaskQueueSet<oop*> RefToScanQueueSet;
    63 enum G1GCThreadGroups {
    64   G1CRGroup = 0,
    65   G1ZFGroup = 1,
    66   G1CMGroup = 2,
    67   G1CLGroup = 3
    68 };
    70 enum GCAllocPurpose {
    71   GCAllocForTenured,
    72   GCAllocForSurvived,
    73   GCAllocPurposeCount
    74 };
    76 class YoungList : public CHeapObj {
    77 private:
    78   G1CollectedHeap* _g1h;
    80   HeapRegion* _head;
    82   HeapRegion* _scan_only_head;
    83   HeapRegion* _scan_only_tail;
    84   size_t      _length;
    85   size_t      _scan_only_length;
    87   size_t      _last_sampled_rs_lengths;
    88   size_t      _sampled_rs_lengths;
    89   HeapRegion* _curr;
    90   HeapRegion* _curr_scan_only;
    92   HeapRegion* _survivor_head;
    93   HeapRegion* _survivor_tail;
    94   size_t      _survivor_length;
    96   void          empty_list(HeapRegion* list);
    98 public:
    99   YoungList(G1CollectedHeap* g1h);
   101   void          push_region(HeapRegion* hr);
   102   void          add_survivor_region(HeapRegion* hr);
   103   HeapRegion*   pop_region();
   104   void          empty_list();
   105   bool          is_empty() { return _length == 0; }
   106   size_t        length() { return _length; }
   107   size_t        scan_only_length() { return _scan_only_length; }
   108   size_t        survivor_length() { return _survivor_length; }
   110   void rs_length_sampling_init();
   111   bool rs_length_sampling_more();
   112   void rs_length_sampling_next();
   114   void reset_sampled_info() {
   115     _last_sampled_rs_lengths =   0;
   116   }
   117   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   119   // for development purposes
   120   void reset_auxilary_lists();
   121   HeapRegion* first_region() { return _head; }
   122   HeapRegion* first_scan_only_region() { return _scan_only_head; }
   123   HeapRegion* first_survivor_region() { return _survivor_head; }
   124   HeapRegion* last_survivor_region() { return _survivor_tail; }
   125   HeapRegion* par_get_next_scan_only_region() {
   126     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   127     HeapRegion* ret = _curr_scan_only;
   128     if (ret != NULL)
   129       _curr_scan_only = ret->get_next_young_region();
   130     return ret;
   131   }
   133   // debugging
   134   bool          check_list_well_formed();
   135   bool          check_list_empty(bool ignore_scan_only_list,
   136                                  bool check_sample = true);
   137   void          print();
   138 };
   140 class RefineCardTableEntryClosure;
   141 class G1CollectedHeap : public SharedHeap {
   142   friend class VM_G1CollectForAllocation;
   143   friend class VM_GenCollectForPermanentAllocation;
   144   friend class VM_G1CollectFull;
   145   friend class VM_G1IncCollectionPause;
   146   friend class VM_G1PopRegionCollectionPause;
   147   friend class VMStructs;
   149   // Closures used in implementation.
   150   friend class G1ParCopyHelper;
   151   friend class G1IsAliveClosure;
   152   friend class G1EvacuateFollowersClosure;
   153   friend class G1ParScanThreadState;
   154   friend class G1ParScanClosureSuper;
   155   friend class G1ParEvacuateFollowersClosure;
   156   friend class G1ParTask;
   157   friend class G1FreeGarbageRegionClosure;
   158   friend class RefineCardTableEntryClosure;
   159   friend class G1PrepareCompactClosure;
   160   friend class RegionSorter;
   161   friend class CountRCClosure;
   162   friend class EvacPopObjClosure;
   164   // Other related classes.
   165   friend class G1MarkSweep;
   167 private:
   168   enum SomePrivateConstants {
   169     VeryLargeInBytes = HeapRegion::GrainBytes/2,
   170     VeryLargeInWords = VeryLargeInBytes/HeapWordSize,
   171     MinHeapDeltaBytes = 10 * HeapRegion::GrainBytes,      // FIXME
   172     NumAPIs = HeapRegion::MaxAge
   173   };
   176   // The one and only G1CollectedHeap, so static functions can find it.
   177   static G1CollectedHeap* _g1h;
   179   // Storage for the G1 heap (excludes the permanent generation).
   180   VirtualSpace _g1_storage;
   181   MemRegion    _g1_reserved;
   183   // The part of _g1_storage that is currently committed.
   184   MemRegion _g1_committed;
   186   // The maximum part of _g1_storage that has ever been committed.
   187   MemRegion _g1_max_committed;
   189   // The number of regions that are completely free.
   190   size_t _free_regions;
   192   // The number of regions we could create by expansion.
   193   size_t _expansion_regions;
   195   // Return the number of free regions in the heap (by direct counting.)
   196   size_t count_free_regions();
   197   // Return the number of free regions on the free and unclean lists.
   198   size_t count_free_regions_list();
   200   // The block offset table for the G1 heap.
   201   G1BlockOffsetSharedArray* _bot_shared;
   203   // Move all of the regions off the free lists, then rebuild those free
   204   // lists, before and after full GC.
   205   void tear_down_region_lists();
   206   void rebuild_region_lists();
   207   // This sets all non-empty regions to need zero-fill (which they will if
   208   // they are empty after full collection.)
   209   void set_used_regions_to_need_zero_fill();
   211   // The sequence of all heap regions in the heap.
   212   HeapRegionSeq* _hrs;
   214   // The region from which normal-sized objects are currently being
   215   // allocated.  May be NULL.
   216   HeapRegion* _cur_alloc_region;
   218   // Postcondition: cur_alloc_region == NULL.
   219   void abandon_cur_alloc_region();
   221   // The to-space memory regions into which objects are being copied during
   222   // a GC.
   223   HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
   224   size_t _gc_alloc_region_counts[GCAllocPurposeCount];
   226   // A list of the regions that have been set to be alloc regions in the
   227   // current collection.
   228   HeapRegion* _gc_alloc_region_list;
   230   // When called by par thread, require par_alloc_during_gc_lock() to be held.
   231   void push_gc_alloc_region(HeapRegion* hr);
   233   // This should only be called single-threaded.  Undeclares all GC alloc
   234   // regions.
   235   void forget_alloc_region_list();
   237   // Should be used to set an alloc region, because there's other
   238   // associated bookkeeping.
   239   void set_gc_alloc_region(int purpose, HeapRegion* r);
   241   // Check well-formedness of alloc region list.
   242   bool check_gc_alloc_regions();
   244   // Outside of GC pauses, the number of bytes used in all regions other
   245   // than the current allocation region.
   246   size_t _summary_bytes_used;
   248   // Summary information about popular objects; method to print it.
   249   NumberSeq _pop_obj_rc_at_copy;
   250   void print_popularity_summary_info() const;
   252   // This is used for a quick test on whether a reference points into
   253   // the collection set or not. Basically, we have an array, with one
   254   // byte per region, and that byte denotes whether the corresponding
   255   // region is in the collection set or not. The entry corresponding
   256   // the bottom of the heap, i.e., region 0, is pointed to by
   257   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   258   // biased so that it actually points to address 0 of the address
   259   // space, to make the test as fast as possible (we can simply shift
   260   // the address to address into it, instead of having to subtract the
   261   // bottom of the heap from the address before shifting it; basically
   262   // it works in the same way the card table works).
   263   bool* _in_cset_fast_test;
   265   // The allocated array used for the fast test on whether a reference
   266   // points into the collection set or not. This field is also used to
   267   // free the array.
   268   bool* _in_cset_fast_test_base;
   270   // The length of the _in_cset_fast_test_base array.
   271   size_t _in_cset_fast_test_length;
   273   volatile unsigned _gc_time_stamp;
   275   size_t* _surviving_young_words;
   277   void setup_surviving_young_words();
   278   void update_surviving_young_words(size_t* surv_young_words);
   279   void cleanup_surviving_young_words();
   281 protected:
   283   // Returns "true" iff none of the gc alloc regions have any allocations
   284   // since the last call to "save_marks".
   285   bool all_alloc_regions_no_allocs_since_save_marks();
   286   // Perform finalization stuff on all allocation regions.
   287   void retire_all_alloc_regions();
   289   // The number of regions allocated to hold humongous objects.
   290   int         _num_humongous_regions;
   291   YoungList*  _young_list;
   293   // The current policy object for the collector.
   294   G1CollectorPolicy* _g1_policy;
   296   // Parallel allocation lock to protect the current allocation region.
   297   Mutex  _par_alloc_during_gc_lock;
   298   Mutex* par_alloc_during_gc_lock() { return &_par_alloc_during_gc_lock; }
   300   // If possible/desirable, allocate a new HeapRegion for normal object
   301   // allocation sufficient for an allocation of the given "word_size".
   302   // If "do_expand" is true, will attempt to expand the heap if necessary
   303   // to to satisfy the request.  If "zero_filled" is true, requires a
   304   // zero-filled region.
   305   // (Returning NULL will trigger a GC.)
   306   virtual HeapRegion* newAllocRegion_work(size_t word_size,
   307                                           bool do_expand,
   308                                           bool zero_filled);
   310   virtual HeapRegion* newAllocRegion(size_t word_size,
   311                                      bool zero_filled = true) {
   312     return newAllocRegion_work(word_size, false, zero_filled);
   313   }
   314   virtual HeapRegion* newAllocRegionWithExpansion(int purpose,
   315                                                   size_t word_size,
   316                                                   bool zero_filled = true);
   318   // Attempt to allocate an object of the given (very large) "word_size".
   319   // Returns "NULL" on failure.
   320   virtual HeapWord* humongousObjAllocate(size_t word_size);
   322   // If possible, allocate a block of the given word_size, else return "NULL".
   323   // Returning NULL will trigger GC or heap expansion.
   324   // These two methods have rather awkward pre- and
   325   // post-conditions. If they are called outside a safepoint, then
   326   // they assume that the caller is holding the heap lock. Upon return
   327   // they release the heap lock, if they are returning a non-NULL
   328   // value. attempt_allocation_slow() also dirties the cards of a
   329   // newly-allocated young region after it releases the heap
   330   // lock. This change in interface was the neatest way to achieve
   331   // this card dirtying without affecting mem_allocate(), which is a
   332   // more frequently called method. We tried two or three different
   333   // approaches, but they were even more hacky.
   334   HeapWord* attempt_allocation(size_t word_size,
   335                                bool permit_collection_pause = true);
   337   HeapWord* attempt_allocation_slow(size_t word_size,
   338                                     bool permit_collection_pause = true);
   340   // Allocate blocks during garbage collection. Will ensure an
   341   // allocation region, either by picking one or expanding the
   342   // heap, and then allocate a block of the given size. The block
   343   // may not be a humongous - it must fit into a single heap region.
   344   HeapWord* allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   345   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   347   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   348                                     HeapRegion*    alloc_region,
   349                                     bool           par,
   350                                     size_t         word_size);
   352   // Ensure that no further allocations can happen in "r", bearing in mind
   353   // that parallel threads might be attempting allocations.
   354   void par_allocate_remaining_space(HeapRegion* r);
   356   // Retires an allocation region when it is full or at the end of a
   357   // GC pause.
   358   void  retire_alloc_region(HeapRegion* alloc_region, bool par);
   360   // Helper function for two callbacks below.
   361   // "full", if true, indicates that the GC is for a System.gc() request,
   362   // and should collect the entire heap.  If "clear_all_soft_refs" is true,
   363   // all soft references are cleared during the GC.  If "full" is false,
   364   // "word_size" describes the allocation that the GC should
   365   // attempt (at least) to satisfy.
   366   void do_collection(bool full, bool clear_all_soft_refs,
   367                      size_t word_size);
   369   // Callback from VM_G1CollectFull operation.
   370   // Perform a full collection.
   371   void do_full_collection(bool clear_all_soft_refs);
   373   // Resize the heap if necessary after a full collection.  If this is
   374   // after a collect-for allocation, "word_size" is the allocation size,
   375   // and will be considered part of the used portion of the heap.
   376   void resize_if_necessary_after_full_collection(size_t word_size);
   378   // Callback from VM_G1CollectForAllocation operation.
   379   // This function does everything necessary/possible to satisfy a
   380   // failed allocation request (including collection, expansion, etc.)
   381   HeapWord* satisfy_failed_allocation(size_t word_size);
   383   // Attempting to expand the heap sufficiently
   384   // to support an allocation of the given "word_size".  If
   385   // successful, perform the allocation and return the address of the
   386   // allocated block, or else "NULL".
   387   virtual HeapWord* expand_and_allocate(size_t word_size);
   389 public:
   390   // Expand the garbage-first heap by at least the given size (in bytes!).
   391   // (Rounds up to a HeapRegion boundary.)
   392   virtual void expand(size_t expand_bytes);
   394   // Do anything common to GC's.
   395   virtual void gc_prologue(bool full);
   396   virtual void gc_epilogue(bool full);
   398   // We register a region with the fast "in collection set" test. We
   399   // simply set to true the array slot corresponding to this region.
   400   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   401     assert(_in_cset_fast_test_base != NULL, "sanity");
   402     assert(r->in_collection_set(), "invariant");
   403     int index = r->hrs_index();
   404     assert(0 <= (size_t) index && (size_t) index < _in_cset_fast_test_length,
   405            "invariant");
   406     assert(!_in_cset_fast_test_base[index], "invariant");
   407     _in_cset_fast_test_base[index] = true;
   408   }
   410   // This is a fast test on whether a reference points into the
   411   // collection set or not. It does not assume that the reference
   412   // points into the heap; if it doesn't, it will return false.
   413   bool in_cset_fast_test(oop obj) {
   414     assert(_in_cset_fast_test != NULL, "sanity");
   415     if (_g1_committed.contains((HeapWord*) obj)) {
   416       // no need to subtract the bottom of the heap from obj,
   417       // _in_cset_fast_test is biased
   418       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
   419       bool ret = _in_cset_fast_test[index];
   420       // let's make sure the result is consistent with what the slower
   421       // test returns
   422       assert( ret || !obj_in_cs(obj), "sanity");
   423       assert(!ret ||  obj_in_cs(obj), "sanity");
   424       return ret;
   425     } else {
   426       return false;
   427     }
   428   }
   430 protected:
   432   // Shrink the garbage-first heap by at most the given size (in bytes!).
   433   // (Rounds down to a HeapRegion boundary.)
   434   virtual void shrink(size_t expand_bytes);
   435   void shrink_helper(size_t expand_bytes);
   437   // Do an incremental collection: identify a collection set, and evacuate
   438   // its live objects elsewhere.
   439   virtual void do_collection_pause();
   441   // The guts of the incremental collection pause, executed by the vm
   442   // thread.  If "popular_region" is non-NULL, this pause should evacuate
   443   // this single region whose remembered set has gotten large, moving
   444   // any popular objects to one of the popular regions.
   445   virtual void do_collection_pause_at_safepoint(HeapRegion* popular_region);
   447   // Actually do the work of evacuating the collection set.
   448   virtual void evacuate_collection_set();
   450   // If this is an appropriate right time, do a collection pause.
   451   // The "word_size" argument, if non-zero, indicates the size of an
   452   // allocation request that is prompting this query.
   453   void do_collection_pause_if_appropriate(size_t word_size);
   455   // The g1 remembered set of the heap.
   456   G1RemSet* _g1_rem_set;
   457   // And it's mod ref barrier set, used to track updates for the above.
   458   ModRefBarrierSet* _mr_bs;
   460   // The Heap Region Rem Set Iterator.
   461   HeapRegionRemSetIterator** _rem_set_iterator;
   463   // The closure used to refine a single card.
   464   RefineCardTableEntryClosure* _refine_cte_cl;
   466   // A function to check the consistency of dirty card logs.
   467   void check_ct_logs_at_safepoint();
   469   // After a collection pause, make the regions in the CS into free
   470   // regions.
   471   void free_collection_set(HeapRegion* cs_head);
   473   // Applies "scan_non_heap_roots" to roots outside the heap,
   474   // "scan_rs" to roots inside the heap (having done "set_region" to
   475   // indicate the region in which the root resides), and does "scan_perm"
   476   // (setting the generation to the perm generation.)  If "scan_rs" is
   477   // NULL, then this step is skipped.  The "worker_i"
   478   // param is for use with parallel roots processing, and should be
   479   // the "i" of the calling parallel worker thread's work(i) function.
   480   // In the sequential case this param will be ignored.
   481   void g1_process_strong_roots(bool collecting_perm_gen,
   482                                SharedHeap::ScanningOption so,
   483                                OopClosure* scan_non_heap_roots,
   484                                OopsInHeapRegionClosure* scan_rs,
   485                                OopsInHeapRegionClosure* scan_so,
   486                                OopsInGenClosure* scan_perm,
   487                                int worker_i);
   489   void scan_scan_only_set(OopsInHeapRegionClosure* oc,
   490                           int worker_i);
   491   void scan_scan_only_region(HeapRegion* hr,
   492                              OopsInHeapRegionClosure* oc,
   493                              int worker_i);
   495   // Apply "blk" to all the weak roots of the system.  These include
   496   // JNI weak roots, the code cache, system dictionary, symbol table,
   497   // string table, and referents of reachable weak refs.
   498   void g1_process_weak_roots(OopClosure* root_closure,
   499                              OopClosure* non_root_closure);
   501   // Invoke "save_marks" on all heap regions.
   502   void save_marks();
   504   // Free a heap region.
   505   void free_region(HeapRegion* hr);
   506   // A component of "free_region", exposed for 'batching'.
   507   // All the params after "hr" are out params: the used bytes of the freed
   508   // region(s), the number of H regions cleared, the number of regions
   509   // freed, and pointers to the head and tail of a list of freed contig
   510   // regions, linked throught the "next_on_unclean_list" field.
   511   void free_region_work(HeapRegion* hr,
   512                         size_t& pre_used,
   513                         size_t& cleared_h,
   514                         size_t& freed_regions,
   515                         UncleanRegionList* list,
   516                         bool par = false);
   519   // The concurrent marker (and the thread it runs in.)
   520   ConcurrentMark* _cm;
   521   ConcurrentMarkThread* _cmThread;
   522   bool _mark_in_progress;
   524   // The concurrent refiner.
   525   ConcurrentG1Refine* _cg1r;
   527   // The concurrent zero-fill thread.
   528   ConcurrentZFThread* _czft;
   530   // The parallel task queues
   531   RefToScanQueueSet *_task_queues;
   533   // True iff a evacuation has failed in the current collection.
   534   bool _evacuation_failed;
   536   // Set the attribute indicating whether evacuation has failed in the
   537   // current collection.
   538   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   540   // Failed evacuations cause some logical from-space objects to have
   541   // forwarding pointers to themselves.  Reset them.
   542   void remove_self_forwarding_pointers();
   544   // When one is non-null, so is the other.  Together, they each pair is
   545   // an object with a preserved mark, and its mark value.
   546   GrowableArray<oop>*     _objs_with_preserved_marks;
   547   GrowableArray<markOop>* _preserved_marks_of_objs;
   549   // Preserve the mark of "obj", if necessary, in preparation for its mark
   550   // word being overwritten with a self-forwarding-pointer.
   551   void preserve_mark_if_necessary(oop obj, markOop m);
   553   // The stack of evac-failure objects left to be scanned.
   554   GrowableArray<oop>*    _evac_failure_scan_stack;
   555   // The closure to apply to evac-failure objects.
   557   OopsInHeapRegionClosure* _evac_failure_closure;
   558   // Set the field above.
   559   void
   560   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   561     _evac_failure_closure = evac_failure_closure;
   562   }
   564   // Push "obj" on the scan stack.
   565   void push_on_evac_failure_scan_stack(oop obj);
   566   // Process scan stack entries until the stack is empty.
   567   void drain_evac_failure_scan_stack();
   568   // True iff an invocation of "drain_scan_stack" is in progress; to
   569   // prevent unnecessary recursion.
   570   bool _drain_in_progress;
   572   // Do any necessary initialization for evacuation-failure handling.
   573   // "cl" is the closure that will be used to process evac-failure
   574   // objects.
   575   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   576   // Do any necessary cleanup for evacuation-failure handling data
   577   // structures.
   578   void finalize_for_evac_failure();
   580   // An attempt to evacuate "obj" has failed; take necessary steps.
   581   void handle_evacuation_failure(oop obj);
   582   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   583   void handle_evacuation_failure_common(oop obj, markOop m);
   586   // Ensure that the relevant gc_alloc regions are set.
   587   void get_gc_alloc_regions();
   588   // We're done with GC alloc regions; release them, as appropriate.
   589   void release_gc_alloc_regions();
   591   // ("Weak") Reference processing support
   592   ReferenceProcessor* _ref_processor;
   594   enum G1H_process_strong_roots_tasks {
   595     G1H_PS_mark_stack_oops_do,
   596     G1H_PS_refProcessor_oops_do,
   597     // Leave this one last.
   598     G1H_PS_NumElements
   599   };
   601   SubTasksDone* _process_strong_tasks;
   603   // Allocate space to hold a popular object.  Result is guaranteed below
   604   // "popular_object_boundary()".  Note: CURRENTLY halts the system if we
   605   // run out of space to hold popular objects.
   606   HeapWord* allocate_popular_object(size_t word_size);
   608   // The boundary between popular and non-popular objects.
   609   HeapWord* _popular_object_boundary;
   611   HeapRegionList* _popular_regions_to_be_evacuated;
   613   // Compute which objects in "single_region" are popular.  If any are,
   614   // evacuate them to a popular region, leaving behind forwarding pointers,
   615   // and select "popular_region" as the single collection set region.
   616   // Otherwise, leave the collection set null.
   617   void popularity_pause_preamble(HeapRegion* populer_region);
   619   // Compute which objects in "single_region" are popular, and evacuate
   620   // them to a popular region, leaving behind forwarding pointers.
   621   // Returns "true" if at least one popular object is discovered and
   622   // evacuated.  In any case, "*max_rc" is set to the maximum reference
   623   // count of an object in the region.
   624   bool compute_reference_counts_and_evac_popular(HeapRegion* populer_region,
   625                                                  size_t* max_rc);
   626   // Subroutines used in the above.
   627   bool _rc_region_above;
   628   size_t _rc_region_diff;
   629   jint* obj_rc_addr(oop obj) {
   630     uintptr_t obj_addr = (uintptr_t)obj;
   631     if (_rc_region_above) {
   632       jint* res = (jint*)(obj_addr + _rc_region_diff);
   633       assert((uintptr_t)res > obj_addr, "RC region is above.");
   634       return res;
   635     } else {
   636       jint* res = (jint*)(obj_addr - _rc_region_diff);
   637       assert((uintptr_t)res < obj_addr, "RC region is below.");
   638       return res;
   639     }
   640   }
   641   jint obj_rc(oop obj) {
   642     return *obj_rc_addr(obj);
   643   }
   644   void inc_obj_rc(oop obj) {
   645     (*obj_rc_addr(obj))++;
   646   }
   647   void atomic_inc_obj_rc(oop obj);
   650   // Number of popular objects and bytes (latter is cheaper!).
   651   size_t pop_object_used_objs();
   652   size_t pop_object_used_bytes();
   654   // Index of the popular region in which allocation is currently being
   655   // done.
   656   int _cur_pop_hr_index;
   658   // List of regions which require zero filling.
   659   UncleanRegionList _unclean_region_list;
   660   bool _unclean_regions_coming;
   662   bool check_age_cohort_well_formed_work(int a, HeapRegion* hr);
   664 public:
   665   void set_refine_cte_cl_concurrency(bool concurrent);
   667   RefToScanQueue *task_queue(int i);
   669   // Create a G1CollectedHeap with the specified policy.
   670   // Must call the initialize method afterwards.
   671   // May not return if something goes wrong.
   672   G1CollectedHeap(G1CollectorPolicy* policy);
   674   // Initialize the G1CollectedHeap to have the initial and
   675   // maximum sizes, permanent generation, and remembered and barrier sets
   676   // specified by the policy object.
   677   jint initialize();
   679   void ref_processing_init();
   681   void set_par_threads(int t) {
   682     SharedHeap::set_par_threads(t);
   683     _process_strong_tasks->set_par_threads(t);
   684   }
   686   virtual CollectedHeap::Name kind() const {
   687     return CollectedHeap::G1CollectedHeap;
   688   }
   690   // The current policy object for the collector.
   691   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
   693   // Adaptive size policy.  No such thing for g1.
   694   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
   696   // The rem set and barrier set.
   697   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
   698   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
   700   // The rem set iterator.
   701   HeapRegionRemSetIterator* rem_set_iterator(int i) {
   702     return _rem_set_iterator[i];
   703   }
   705   HeapRegionRemSetIterator* rem_set_iterator() {
   706     return _rem_set_iterator[0];
   707   }
   709   unsigned get_gc_time_stamp() {
   710     return _gc_time_stamp;
   711   }
   713   void reset_gc_time_stamp() {
   714     _gc_time_stamp = 0;
   715     OrderAccess::fence();
   716   }
   718   void increment_gc_time_stamp() {
   719     ++_gc_time_stamp;
   720     OrderAccess::fence();
   721   }
   723   void iterate_dirty_card_closure(bool concurrent, int worker_i);
   725   // The shared block offset table array.
   726   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
   728   // Reference Processing accessor
   729   ReferenceProcessor* ref_processor() { return _ref_processor; }
   731   // Reserved (g1 only; super method includes perm), capacity and the used
   732   // portion in bytes.
   733   size_t g1_reserved_obj_bytes() { return _g1_reserved.byte_size(); }
   734   virtual size_t capacity() const;
   735   virtual size_t used() const;
   736   size_t recalculate_used() const;
   737 #ifndef PRODUCT
   738   size_t recalculate_used_regions() const;
   739 #endif // PRODUCT
   741   // These virtual functions do the actual allocation.
   742   virtual HeapWord* mem_allocate(size_t word_size,
   743                                  bool   is_noref,
   744                                  bool   is_tlab,
   745                                  bool* gc_overhead_limit_was_exceeded);
   747   // Some heaps may offer a contiguous region for shared non-blocking
   748   // allocation, via inlined code (by exporting the address of the top and
   749   // end fields defining the extent of the contiguous allocation region.)
   750   // But G1CollectedHeap doesn't yet support this.
   752   // Return an estimate of the maximum allocation that could be performed
   753   // without triggering any collection or expansion activity.  In a
   754   // generational collector, for example, this is probably the largest
   755   // allocation that could be supported (without expansion) in the youngest
   756   // generation.  It is "unsafe" because no locks are taken; the result
   757   // should be treated as an approximation, not a guarantee, for use in
   758   // heuristic resizing decisions.
   759   virtual size_t unsafe_max_alloc();
   761   virtual bool is_maximal_no_gc() const {
   762     return _g1_storage.uncommitted_size() == 0;
   763   }
   765   // The total number of regions in the heap.
   766   size_t n_regions();
   768   // The number of regions that are completely free.
   769   size_t max_regions();
   771   // The number of regions that are completely free.
   772   size_t free_regions();
   774   // The number of regions that are not completely free.
   775   size_t used_regions() { return n_regions() - free_regions(); }
   777   // True iff the ZF thread should run.
   778   bool should_zf();
   780   // The number of regions available for "regular" expansion.
   781   size_t expansion_regions() { return _expansion_regions; }
   783 #ifndef PRODUCT
   784   bool regions_accounted_for();
   785   bool print_region_accounting_info();
   786   void print_region_counts();
   787 #endif
   789   HeapRegion* alloc_region_from_unclean_list(bool zero_filled);
   790   HeapRegion* alloc_region_from_unclean_list_locked(bool zero_filled);
   792   void put_region_on_unclean_list(HeapRegion* r);
   793   void put_region_on_unclean_list_locked(HeapRegion* r);
   795   void prepend_region_list_on_unclean_list(UncleanRegionList* list);
   796   void prepend_region_list_on_unclean_list_locked(UncleanRegionList* list);
   798   void set_unclean_regions_coming(bool b);
   799   void set_unclean_regions_coming_locked(bool b);
   800   // Wait for cleanup to be complete.
   801   void wait_for_cleanup_complete();
   802   // Like above, but assumes that the calling thread owns the Heap_lock.
   803   void wait_for_cleanup_complete_locked();
   805   // Return the head of the unclean list.
   806   HeapRegion* peek_unclean_region_list_locked();
   807   // Remove and return the head of the unclean list.
   808   HeapRegion* pop_unclean_region_list_locked();
   810   // List of regions which are zero filled and ready for allocation.
   811   HeapRegion* _free_region_list;
   812   // Number of elements on the free list.
   813   size_t _free_region_list_size;
   815   // If the head of the unclean list is ZeroFilled, move it to the free
   816   // list.
   817   bool move_cleaned_region_to_free_list_locked();
   818   bool move_cleaned_region_to_free_list();
   820   void put_free_region_on_list_locked(HeapRegion* r);
   821   void put_free_region_on_list(HeapRegion* r);
   823   // Remove and return the head element of the free list.
   824   HeapRegion* pop_free_region_list_locked();
   826   // If "zero_filled" is true, we first try the free list, then we try the
   827   // unclean list, zero-filling the result.  If "zero_filled" is false, we
   828   // first try the unclean list, then the zero-filled list.
   829   HeapRegion* alloc_free_region_from_lists(bool zero_filled);
   831   // Verify the integrity of the region lists.
   832   void remove_allocated_regions_from_lists();
   833   bool verify_region_lists();
   834   bool verify_region_lists_locked();
   835   size_t unclean_region_list_length();
   836   size_t free_region_list_length();
   838   // Perform a collection of the heap; intended for use in implementing
   839   // "System.gc".  This probably implies as full a collection as the
   840   // "CollectedHeap" supports.
   841   virtual void collect(GCCause::Cause cause);
   843   // The same as above but assume that the caller holds the Heap_lock.
   844   void collect_locked(GCCause::Cause cause);
   846   // This interface assumes that it's being called by the
   847   // vm thread. It collects the heap assuming that the
   848   // heap lock is already held and that we are executing in
   849   // the context of the vm thread.
   850   virtual void collect_as_vm_thread(GCCause::Cause cause);
   852   // True iff a evacuation has failed in the most-recent collection.
   853   bool evacuation_failed() { return _evacuation_failed; }
   855   // Free a region if it is totally full of garbage.  Returns the number of
   856   // bytes freed (0 ==> didn't free it).
   857   size_t free_region_if_totally_empty(HeapRegion *hr);
   858   void free_region_if_totally_empty_work(HeapRegion *hr,
   859                                          size_t& pre_used,
   860                                          size_t& cleared_h_regions,
   861                                          size_t& freed_regions,
   862                                          UncleanRegionList* list,
   863                                          bool par = false);
   865   // If we've done free region work that yields the given changes, update
   866   // the relevant global variables.
   867   void finish_free_region_work(size_t pre_used,
   868                                size_t cleared_h_regions,
   869                                size_t freed_regions,
   870                                UncleanRegionList* list);
   873   // Returns "TRUE" iff "p" points into the allocated area of the heap.
   874   virtual bool is_in(const void* p) const;
   876   // Return "TRUE" iff the given object address is within the collection
   877   // set.
   878   inline bool obj_in_cs(oop obj);
   880   // Return "TRUE" iff the given object address is in the reserved
   881   // region of g1 (excluding the permanent generation).
   882   bool is_in_g1_reserved(const void* p) const {
   883     return _g1_reserved.contains(p);
   884   }
   886   // Returns a MemRegion that corresponds to the space that  has been
   887   // committed in the heap
   888   MemRegion g1_committed() {
   889     return _g1_committed;
   890   }
   892   NOT_PRODUCT( bool is_in_closed_subset(const void* p) const; )
   894   // Dirty card table entries covering a list of young regions.
   895   void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
   897   // This resets the card table to all zeros.  It is used after
   898   // a collection pause which used the card table to claim cards.
   899   void cleanUpCardTable();
   901   // Iteration functions.
   903   // Iterate over all the ref-containing fields of all objects, calling
   904   // "cl.do_oop" on each.
   905   virtual void oop_iterate(OopClosure* cl);
   907   // Same as above, restricted to a memory region.
   908   virtual void oop_iterate(MemRegion mr, OopClosure* cl);
   910   // Iterate over all objects, calling "cl.do_object" on each.
   911   virtual void object_iterate(ObjectClosure* cl);
   912   virtual void safe_object_iterate(ObjectClosure* cl) { object_iterate(cl); }
   914   // Iterate over all objects allocated since the last collection, calling
   915   // "cl.do_object" on each.  The heap must have been initialized properly
   916   // to support this function, or else this call will fail.
   917   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
   919   // Iterate over all spaces in use in the heap, in ascending address order.
   920   virtual void space_iterate(SpaceClosure* cl);
   922   // Iterate over heap regions, in address order, terminating the
   923   // iteration early if the "doHeapRegion" method returns "true".
   924   void heap_region_iterate(HeapRegionClosure* blk);
   926   // Iterate over heap regions starting with r (or the first region if "r"
   927   // is NULL), in address order, terminating early if the "doHeapRegion"
   928   // method returns "true".
   929   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk);
   931   // As above but starting from the region at index idx.
   932   void heap_region_iterate_from(int idx, HeapRegionClosure* blk);
   934   HeapRegion* region_at(size_t idx);
   936   // Divide the heap region sequence into "chunks" of some size (the number
   937   // of regions divided by the number of parallel threads times some
   938   // overpartition factor, currently 4).  Assumes that this will be called
   939   // in parallel by ParallelGCThreads worker threads with discinct worker
   940   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
   941   // calls will use the same "claim_value", and that that claim value is
   942   // different from the claim_value of any heap region before the start of
   943   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
   944   // attempting to claim the first region in each chunk, and, if
   945   // successful, applying the closure to each region in the chunk (and
   946   // setting the claim value of the second and subsequent regions of the
   947   // chunk.)  For now requires that "doHeapRegion" always returns "false",
   948   // i.e., that a closure never attempt to abort a traversal.
   949   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
   950                                        int worker,
   951                                        jint claim_value);
   953   // It resets all the region claim values to the default.
   954   void reset_heap_region_claim_values();
   956 #ifdef ASSERT
   957   bool check_heap_region_claim_values(jint claim_value);
   958 #endif // ASSERT
   960   // Iterate over the regions (if any) in the current collection set.
   961   void collection_set_iterate(HeapRegionClosure* blk);
   963   // As above but starting from region r
   964   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
   966   // Returns the first (lowest address) compactible space in the heap.
   967   virtual CompactibleSpace* first_compactible_space();
   969   // A CollectedHeap will contain some number of spaces.  This finds the
   970   // space containing a given address, or else returns NULL.
   971   virtual Space* space_containing(const void* addr) const;
   973   // A G1CollectedHeap will contain some number of heap regions.  This
   974   // finds the region containing a given address, or else returns NULL.
   975   HeapRegion* heap_region_containing(const void* addr) const;
   977   // Like the above, but requires "addr" to be in the heap (to avoid a
   978   // null-check), and unlike the above, may return an continuing humongous
   979   // region.
   980   HeapRegion* heap_region_containing_raw(const void* addr) const;
   982   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
   983   // each address in the (reserved) heap is a member of exactly
   984   // one block.  The defining characteristic of a block is that it is
   985   // possible to find its size, and thus to progress forward to the next
   986   // block.  (Blocks may be of different sizes.)  Thus, blocks may
   987   // represent Java objects, or they might be free blocks in a
   988   // free-list-based heap (or subheap), as long as the two kinds are
   989   // distinguishable and the size of each is determinable.
   991   // Returns the address of the start of the "block" that contains the
   992   // address "addr".  We say "blocks" instead of "object" since some heaps
   993   // may not pack objects densely; a chunk may either be an object or a
   994   // non-object.
   995   virtual HeapWord* block_start(const void* addr) const;
   997   // Requires "addr" to be the start of a chunk, and returns its size.
   998   // "addr + size" is required to be the start of a new chunk, or the end
   999   // of the active area of the heap.
  1000   virtual size_t block_size(const HeapWord* addr) const;
  1002   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1003   // the block is an object.
  1004   virtual bool block_is_obj(const HeapWord* addr) const;
  1006   // Does this heap support heap inspection? (+PrintClassHistogram)
  1007   virtual bool supports_heap_inspection() const { return true; }
  1009   // Section on thread-local allocation buffers (TLABs)
  1010   // See CollectedHeap for semantics.
  1012   virtual bool supports_tlab_allocation() const;
  1013   virtual size_t tlab_capacity(Thread* thr) const;
  1014   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1015   virtual HeapWord* allocate_new_tlab(size_t size);
  1017   // Can a compiler initialize a new object without store barriers?
  1018   // This permission only extends from the creation of a new object
  1019   // via a TLAB up to the first subsequent safepoint.
  1020   virtual bool can_elide_tlab_store_barriers() const {
  1021     // Since G1's TLAB's may, on occasion, come from non-young regions
  1022     // as well. (Is there a flag controlling that? XXX)
  1023     return false;
  1026   // Can a compiler elide a store barrier when it writes
  1027   // a permanent oop into the heap?  Applies when the compiler
  1028   // is storing x to the heap, where x->is_perm() is true.
  1029   virtual bool can_elide_permanent_oop_store_barriers() const {
  1030     // At least until perm gen collection is also G1-ified, at
  1031     // which point this should return false.
  1032     return true;
  1035   virtual bool allocs_are_zero_filled();
  1037   // The boundary between a "large" and "small" array of primitives, in
  1038   // words.
  1039   virtual size_t large_typearray_limit();
  1041   // All popular objects are guaranteed to have addresses below this
  1042   // boundary.
  1043   HeapWord* popular_object_boundary() {
  1044     return _popular_object_boundary;
  1047   // Declare the region as one that should be evacuated because its
  1048   // remembered set is too large.
  1049   void schedule_popular_region_evac(HeapRegion* r);
  1050   // If there is a popular region to evacuate it, remove it from the list
  1051   // and return it.
  1052   HeapRegion* popular_region_to_evac();
  1053   // Evacuate the given popular region.
  1054   void evac_popular_region(HeapRegion* r);
  1056   // Returns "true" iff the given word_size is "very large".
  1057   static bool isHumongous(size_t word_size) {
  1058     return word_size >= VeryLargeInWords;
  1061   // Update mod union table with the set of dirty cards.
  1062   void updateModUnion();
  1064   // Set the mod union bits corresponding to the given memRegion.  Note
  1065   // that this is always a safe operation, since it doesn't clear any
  1066   // bits.
  1067   void markModUnionRange(MemRegion mr);
  1069   // Records the fact that a marking phase is no longer in progress.
  1070   void set_marking_complete() {
  1071     _mark_in_progress = false;
  1073   void set_marking_started() {
  1074     _mark_in_progress = true;
  1076   bool mark_in_progress() {
  1077     return _mark_in_progress;
  1080   // Print the maximum heap capacity.
  1081   virtual size_t max_capacity() const;
  1083   virtual jlong millis_since_last_gc();
  1085   // Perform any cleanup actions necessary before allowing a verification.
  1086   virtual void prepare_for_verify();
  1088   // Perform verification.
  1089   virtual void verify(bool allow_dirty, bool silent);
  1090   virtual void print() const;
  1091   virtual void print_on(outputStream* st) const;
  1093   virtual void print_gc_threads_on(outputStream* st) const;
  1094   virtual void gc_threads_do(ThreadClosure* tc) const;
  1096   // Override
  1097   void print_tracing_info() const;
  1099   // If "addr" is a pointer into the (reserved?) heap, returns a positive
  1100   // number indicating the "arena" within the heap in which "addr" falls.
  1101   // Or else returns 0.
  1102   virtual int addr_to_arena_id(void* addr) const;
  1104   // Convenience function to be used in situations where the heap type can be
  1105   // asserted to be this type.
  1106   static G1CollectedHeap* heap();
  1108   void empty_young_list();
  1109   bool should_set_young_locked();
  1111   void set_region_short_lived_locked(HeapRegion* hr);
  1112   // add appropriate methods for any other surv rate groups
  1114   void young_list_rs_length_sampling_init() {
  1115     _young_list->rs_length_sampling_init();
  1117   bool young_list_rs_length_sampling_more() {
  1118     return _young_list->rs_length_sampling_more();
  1120   void young_list_rs_length_sampling_next() {
  1121     _young_list->rs_length_sampling_next();
  1123   size_t young_list_sampled_rs_lengths() {
  1124     return _young_list->sampled_rs_lengths();
  1127   size_t young_list_length()   { return _young_list->length(); }
  1128   size_t young_list_scan_only_length() {
  1129                                       return _young_list->scan_only_length(); }
  1131   HeapRegion* pop_region_from_young_list() {
  1132     return _young_list->pop_region();
  1135   HeapRegion* young_list_first_region() {
  1136     return _young_list->first_region();
  1139   // debugging
  1140   bool check_young_list_well_formed() {
  1141     return _young_list->check_list_well_formed();
  1143   bool check_young_list_empty(bool ignore_scan_only_list,
  1144                               bool check_sample = true);
  1146   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1147   // many of these need to be public.
  1149   // The functions below are helper functions that a subclass of
  1150   // "CollectedHeap" can use in the implementation of its virtual
  1151   // functions.
  1152   // This performs a concurrent marking of the live objects in a
  1153   // bitmap off to the side.
  1154   void doConcurrentMark();
  1156   // This is called from the marksweep collector which then does
  1157   // a concurrent mark and verifies that the results agree with
  1158   // the stop the world marking.
  1159   void checkConcurrentMark();
  1160   void do_sync_mark();
  1162   bool isMarkedPrev(oop obj) const;
  1163   bool isMarkedNext(oop obj) const;
  1165   // Determine if an object is dead, given the object and also
  1166   // the region to which the object belongs. An object is dead
  1167   // iff a) it was not allocated since the last mark and b) it
  1168   // is not marked.
  1170   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1171     return
  1172       !hr->obj_allocated_since_prev_marking(obj) &&
  1173       !isMarkedPrev(obj);
  1176   // This is used when copying an object to survivor space.
  1177   // If the object is marked live, then we mark the copy live.
  1178   // If the object is allocated since the start of this mark
  1179   // cycle, then we mark the copy live.
  1180   // If the object has been around since the previous mark
  1181   // phase, and hasn't been marked yet during this phase,
  1182   // then we don't mark it, we just wait for the
  1183   // current marking cycle to get to it.
  1185   // This function returns true when an object has been
  1186   // around since the previous marking and hasn't yet
  1187   // been marked during this marking.
  1189   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1190     return
  1191       !hr->obj_allocated_since_next_marking(obj) &&
  1192       !isMarkedNext(obj);
  1195   // Determine if an object is dead, given only the object itself.
  1196   // This will find the region to which the object belongs and
  1197   // then call the region version of the same function.
  1199   // Added if it is in permanent gen it isn't dead.
  1200   // Added if it is NULL it isn't dead.
  1202   bool is_obj_dead(oop obj) {
  1203     HeapRegion* hr = heap_region_containing(obj);
  1204     if (hr == NULL) {
  1205       if (Universe::heap()->is_in_permanent(obj))
  1206         return false;
  1207       else if (obj == NULL) return false;
  1208       else return true;
  1210     else return is_obj_dead(obj, hr);
  1213   bool is_obj_ill(oop obj) {
  1214     HeapRegion* hr = heap_region_containing(obj);
  1215     if (hr == NULL) {
  1216       if (Universe::heap()->is_in_permanent(obj))
  1217         return false;
  1218       else if (obj == NULL) return false;
  1219       else return true;
  1221     else return is_obj_ill(obj, hr);
  1224   // The following is just to alert the verification code
  1225   // that a full collection has occurred and that the
  1226   // remembered sets are no longer up to date.
  1227   bool _full_collection;
  1228   void set_full_collection() { _full_collection = true;}
  1229   void clear_full_collection() {_full_collection = false;}
  1230   bool full_collection() {return _full_collection;}
  1232   ConcurrentMark* concurrent_mark() const { return _cm; }
  1233   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1235 public:
  1236   void stop_conc_gc_threads();
  1238   // <NEW PREDICTION>
  1240   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  1241   void check_if_region_is_too_expensive(double predicted_time_ms);
  1242   size_t pending_card_num();
  1243   size_t max_pending_card_num();
  1244   size_t cards_scanned();
  1246   // </NEW PREDICTION>
  1248 protected:
  1249   size_t _max_heap_capacity;
  1251 //  debug_only(static void check_for_valid_allocation_state();)
  1253 public:
  1254   // Temporary: call to mark things unimplemented for the G1 heap (e.g.,
  1255   // MemoryService).  In productization, we can make this assert false
  1256   // to catch such places (as well as searching for calls to this...)
  1257   static void g1_unimplemented();
  1259 };
  1261 // Local Variables: ***
  1262 // c-indentation-style: gnu ***
  1263 // End: ***

mercurial