src/share/vm/gc_implementation/g1/concurrentMark.hpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 984
fe3d7c11b4b7
child 1280
df6caf649ff7
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 class G1CollectedHeap;
    26 class CMTask;
    27 typedef GenericTaskQueue<oop> CMTaskQueue;
    28 typedef GenericTaskQueueSet<oop> CMTaskQueueSet;
    30 // A generic CM bit map.  This is essentially a wrapper around the BitMap
    31 // class, with one bit per (1<<_shifter) HeapWords.
    33 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
    34  protected:
    35   HeapWord* _bmStartWord;      // base address of range covered by map
    36   size_t    _bmWordSize;       // map size (in #HeapWords covered)
    37   const int _shifter;          // map to char or bit
    38   VirtualSpace _virtual_space; // underlying the bit map
    39   BitMap    _bm;               // the bit map itself
    41  public:
    42   // constructor
    43   CMBitMapRO(ReservedSpace rs, int shifter);
    45   enum { do_yield = true };
    47   // inquiries
    48   HeapWord* startWord()   const { return _bmStartWord; }
    49   size_t    sizeInWords() const { return _bmWordSize;  }
    50   // the following is one past the last word in space
    51   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    53   // read marks
    55   bool isMarked(HeapWord* addr) const {
    56     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
    57            "outside underlying space?");
    58     return _bm.at(heapWordToOffset(addr));
    59   }
    61   // iteration
    62   bool iterate(BitMapClosure* cl) { return _bm.iterate(cl); }
    63   bool iterate(BitMapClosure* cl, MemRegion mr);
    65   // Return the address corresponding to the next marked bit at or after
    66   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    67   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    68   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
    69                                      HeapWord* limit = NULL) const;
    70   // Return the address corresponding to the next unmarked bit at or after
    71   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    72   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    73   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
    74                                        HeapWord* limit = NULL) const;
    76   // conversion utilities
    77   // XXX Fix these so that offsets are size_t's...
    78   HeapWord* offsetToHeapWord(size_t offset) const {
    79     return _bmStartWord + (offset << _shifter);
    80   }
    81   size_t heapWordToOffset(HeapWord* addr) const {
    82     return pointer_delta(addr, _bmStartWord) >> _shifter;
    83   }
    84   int heapWordDiffToOffsetDiff(size_t diff) const;
    85   HeapWord* nextWord(HeapWord* addr) {
    86     return offsetToHeapWord(heapWordToOffset(addr) + 1);
    87   }
    89   void mostly_disjoint_range_union(BitMap*   from_bitmap,
    90                                    size_t    from_start_index,
    91                                    HeapWord* to_start_word,
    92                                    size_t    word_num);
    94   // debugging
    95   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
    96 };
    98 class CMBitMap : public CMBitMapRO {
   100  public:
   101   // constructor
   102   CMBitMap(ReservedSpace rs, int shifter) :
   103     CMBitMapRO(rs, shifter) {}
   105   // write marks
   106   void mark(HeapWord* addr) {
   107     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   108            "outside underlying space?");
   109     _bm.at_put(heapWordToOffset(addr), true);
   110   }
   111   void clear(HeapWord* addr) {
   112     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   113            "outside underlying space?");
   114     _bm.at_put(heapWordToOffset(addr), false);
   115   }
   116   bool parMark(HeapWord* addr) {
   117     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   118            "outside underlying space?");
   119     return _bm.par_at_put(heapWordToOffset(addr), true);
   120   }
   121   bool parClear(HeapWord* addr) {
   122     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   123            "outside underlying space?");
   124     return _bm.par_at_put(heapWordToOffset(addr), false);
   125   }
   126   void markRange(MemRegion mr);
   127   void clearAll();
   128   void clearRange(MemRegion mr);
   130   // Starting at the bit corresponding to "addr" (inclusive), find the next
   131   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
   132   // the end of this run (stopping at "end_addr").  Return the MemRegion
   133   // covering from the start of the region corresponding to the first bit
   134   // of the run to the end of the region corresponding to the last bit of
   135   // the run.  If there is no "1" bit at or after "addr", return an empty
   136   // MemRegion.
   137   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
   138 };
   140 // Represents a marking stack used by the CM collector.
   141 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
   142 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
   143   ConcurrentMark* _cm;
   144   oop*   _base;      // bottom of stack
   145   jint   _index;     // one more than last occupied index
   146   jint   _capacity;  // max #elements
   147   jint   _oops_do_bound;  // Number of elements to include in next iteration.
   148   NOT_PRODUCT(jint _max_depth;)  // max depth plumbed during run
   150   bool   _overflow;
   151   DEBUG_ONLY(bool _drain_in_progress;)
   152   DEBUG_ONLY(bool _drain_in_progress_yields;)
   154  public:
   155   CMMarkStack(ConcurrentMark* cm);
   156   ~CMMarkStack();
   158   void allocate(size_t size);
   160   oop pop() {
   161     if (!isEmpty()) {
   162       return _base[--_index] ;
   163     }
   164     return NULL;
   165   }
   167   // If overflow happens, don't do the push, and record the overflow.
   168   // *Requires* that "ptr" is already marked.
   169   void push(oop ptr) {
   170     if (isFull()) {
   171       // Record overflow.
   172       _overflow = true;
   173       return;
   174     } else {
   175       _base[_index++] = ptr;
   176       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   177     }
   178   }
   179   // Non-block impl.  Note: concurrency is allowed only with other
   180   // "par_push" operations, not with "pop" or "drain".  We would need
   181   // parallel versions of them if such concurrency was desired.
   182   void par_push(oop ptr);
   184   // Pushes the first "n" elements of "ptr_arr" on the stack.
   185   // Non-block impl.  Note: concurrency is allowed only with other
   186   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
   187   void par_adjoin_arr(oop* ptr_arr, int n);
   189   // Pushes the first "n" elements of "ptr_arr" on the stack.
   190   // Locking impl: concurrency is allowed only with
   191   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
   192   // locking strategy.
   193   void par_push_arr(oop* ptr_arr, int n);
   195   // If returns false, the array was empty.  Otherwise, removes up to "max"
   196   // elements from the stack, and transfers them to "ptr_arr" in an
   197   // unspecified order.  The actual number transferred is given in "n" ("n
   198   // == 0" is deliberately redundant with the return value.)  Locking impl:
   199   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
   200   // operations, which use the same locking strategy.
   201   bool par_pop_arr(oop* ptr_arr, int max, int* n);
   203   // Drain the mark stack, applying the given closure to all fields of
   204   // objects on the stack.  (That is, continue until the stack is empty,
   205   // even if closure applications add entries to the stack.)  The "bm"
   206   // argument, if non-null, may be used to verify that only marked objects
   207   // are on the mark stack.  If "yield_after" is "true", then the
   208   // concurrent marker performing the drain offers to yield after
   209   // processing each object.  If a yield occurs, stops the drain operation
   210   // and returns false.  Otherwise, returns true.
   211   template<class OopClosureClass>
   212   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
   214   bool isEmpty()    { return _index == 0; }
   215   bool isFull()     { return _index == _capacity; }
   216   int maxElems()    { return _capacity; }
   218   bool overflow() { return _overflow; }
   219   void clear_overflow() { _overflow = false; }
   221   int  size() { return _index; }
   223   void setEmpty()   { _index = 0; clear_overflow(); }
   225   // Record the current size; a subsequent "oops_do" will iterate only over
   226   // indices valid at the time of this call.
   227   void set_oops_do_bound(jint bound = -1) {
   228     if (bound == -1) {
   229       _oops_do_bound = _index;
   230     } else {
   231       _oops_do_bound = bound;
   232     }
   233   }
   234   jint oops_do_bound() { return _oops_do_bound; }
   235   // iterate over the oops in the mark stack, up to the bound recorded via
   236   // the call above.
   237   void oops_do(OopClosure* f);
   238 };
   240 class CMRegionStack VALUE_OBJ_CLASS_SPEC {
   241   MemRegion* _base;
   242   jint _capacity;
   243   jint _index;
   244   jint _oops_do_bound;
   245   bool _overflow;
   246 public:
   247   CMRegionStack();
   248   ~CMRegionStack();
   249   void allocate(size_t size);
   251   // This is lock-free; assumes that it will only be called in parallel
   252   // with other "push" operations (no pops).
   253   void push(MemRegion mr);
   255   // Lock-free; assumes that it will only be called in parallel
   256   // with other "pop" operations (no pushes).
   257   MemRegion pop();
   259   bool isEmpty()    { return _index == 0; }
   260   bool isFull()     { return _index == _capacity; }
   262   bool overflow() { return _overflow; }
   263   void clear_overflow() { _overflow = false; }
   265   int  size() { return _index; }
   267   // It iterates over the entries in the region stack and it
   268   // invalidates (i.e. assigns MemRegion()) the ones that point to
   269   // regions in the collection set.
   270   bool invalidate_entries_into_cset();
   272   // This gives an upper bound up to which the iteration in
   273   // invalidate_entries_into_cset() will reach. This prevents
   274   // newly-added entries to be unnecessarily scanned.
   275   void set_oops_do_bound() {
   276     _oops_do_bound = _index;
   277   }
   279   void setEmpty()   { _index = 0; clear_overflow(); }
   280 };
   282 // this will enable a variety of different statistics per GC task
   283 #define _MARKING_STATS_       0
   284 // this will enable the higher verbose levels
   285 #define _MARKING_VERBOSE_     0
   287 #if _MARKING_STATS_
   288 #define statsOnly(statement)  \
   289 do {                          \
   290   statement ;                 \
   291 } while (0)
   292 #else // _MARKING_STATS_
   293 #define statsOnly(statement)  \
   294 do {                          \
   295 } while (0)
   296 #endif // _MARKING_STATS_
   298 // Some extra guarantees that I like to also enable in optimised mode
   299 // when debugging. If you want to enable them, comment out the assert
   300 // macro and uncomment out the guaratee macro
   301 // #define tmp_guarantee_CM(expr, str) guarantee(expr, str)
   302 #define tmp_guarantee_CM(expr, str) assert(expr, str)
   304 typedef enum {
   305   no_verbose  = 0,   // verbose turned off
   306   stats_verbose,     // only prints stats at the end of marking
   307   low_verbose,       // low verbose, mostly per region and per major event
   308   medium_verbose,    // a bit more detailed than low
   309   high_verbose       // per object verbose
   310 } CMVerboseLevel;
   313 class ConcurrentMarkThread;
   315 class ConcurrentMark: public CHeapObj {
   316   friend class ConcurrentMarkThread;
   317   friend class CMTask;
   318   friend class CMBitMapClosure;
   319   friend class CSMarkOopClosure;
   320   friend class CMGlobalObjectClosure;
   321   friend class CMRemarkTask;
   322   friend class CMConcurrentMarkingTask;
   323   friend class G1ParNoteEndTask;
   324   friend class CalcLiveObjectsClosure;
   326 protected:
   327   ConcurrentMarkThread* _cmThread;   // the thread doing the work
   328   G1CollectedHeap*      _g1h;        // the heap.
   329   size_t                _parallel_marking_threads; // the number of marking
   330                                                    // threads we'll use
   331   double                _sleep_factor; // how much we have to sleep, with
   332                                        // respect to the work we just did, to
   333                                        // meet the marking overhead goal
   334   double                _marking_task_overhead; // marking target overhead for
   335                                                 // a single task
   337   // same as the two above, but for the cleanup task
   338   double                _cleanup_sleep_factor;
   339   double                _cleanup_task_overhead;
   341   // Stuff related to age cohort processing.
   342   struct ParCleanupThreadState {
   343     char _pre[64];
   344     UncleanRegionList list;
   345     char _post[64];
   346   };
   347   ParCleanupThreadState** _par_cleanup_thread_state;
   349   // CMS marking support structures
   350   CMBitMap                _markBitMap1;
   351   CMBitMap                _markBitMap2;
   352   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
   353   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
   354   bool                    _at_least_one_mark_complete;
   356   BitMap                  _region_bm;
   357   BitMap                  _card_bm;
   359   // Heap bounds
   360   HeapWord*               _heap_start;
   361   HeapWord*               _heap_end;
   363   // For gray objects
   364   CMMarkStack             _markStack; // Grey objects behind global finger.
   365   CMRegionStack           _regionStack; // Grey regions behind global finger.
   366   HeapWord* volatile      _finger;  // the global finger, region aligned,
   367                                     // always points to the end of the
   368                                     // last claimed region
   370   // marking tasks
   371   size_t                  _max_task_num; // maximum task number
   372   size_t                  _active_tasks; // task num currently active
   373   CMTask**                _tasks;        // task queue array (max_task_num len)
   374   CMTaskQueueSet*         _task_queues;  // task queue set
   375   ParallelTaskTerminator  _terminator;   // for termination
   377   // Two sync barriers that are used to synchronise tasks when an
   378   // overflow occurs. The algorithm is the following. All tasks enter
   379   // the first one to ensure that they have all stopped manipulating
   380   // the global data structures. After they exit it, they re-initialise
   381   // their data structures and task 0 re-initialises the global data
   382   // structures. Then, they enter the second sync barrier. This
   383   // ensure, that no task starts doing work before all data
   384   // structures (local and global) have been re-initialised. When they
   385   // exit it, they are free to start working again.
   386   WorkGangBarrierSync     _first_overflow_barrier_sync;
   387   WorkGangBarrierSync     _second_overflow_barrier_sync;
   390   // this is set by any task, when an overflow on the global data
   391   // structures is detected.
   392   volatile bool           _has_overflown;
   393   // true: marking is concurrent, false: we're in remark
   394   volatile bool           _concurrent;
   395   // set at the end of a Full GC so that marking aborts
   396   volatile bool           _has_aborted;
   397   // used when remark aborts due to an overflow to indicate that
   398   // another concurrent marking phase should start
   399   volatile bool           _restart_for_overflow;
   401   // This is true from the very start of concurrent marking until the
   402   // point when all the tasks complete their work. It is really used
   403   // to determine the points between the end of concurrent marking and
   404   // time of remark.
   405   volatile bool           _concurrent_marking_in_progress;
   407   // verbose level
   408   CMVerboseLevel          _verbose_level;
   410   COTracker               _cleanup_co_tracker;
   412   // These two fields are used to implement the optimisation that
   413   // avoids pushing objects on the global/region stack if there are
   414   // no collection set regions above the lowest finger.
   416   // This is the lowest finger (among the global and local fingers),
   417   // which is calculated before a new collection set is chosen.
   418   HeapWord* _min_finger;
   419   // If this flag is true, objects/regions that are marked below the
   420   // finger should be pushed on the stack(s). If this is flag is
   421   // false, it is safe not to push them on the stack(s).
   422   bool      _should_gray_objects;
   424   // All of these times are in ms.
   425   NumberSeq _init_times;
   426   NumberSeq _remark_times;
   427   NumberSeq   _remark_mark_times;
   428   NumberSeq   _remark_weak_ref_times;
   429   NumberSeq _cleanup_times;
   430   double    _total_counting_time;
   431   double    _total_rs_scrub_time;
   433   double*   _accum_task_vtime;   // accumulated task vtime
   435   WorkGang* _parallel_workers;
   437   void weakRefsWork(bool clear_all_soft_refs);
   439   void swapMarkBitMaps();
   441   // It resets the global marking data structures, as well as the
   442   // task local ones; should be called during initial mark.
   443   void reset();
   444   // It resets all the marking data structures.
   445   void clear_marking_state();
   447   // It should be called to indicate which phase we're in (concurrent
   448   // mark or remark) and how many threads are currently active.
   449   void set_phase(size_t active_tasks, bool concurrent);
   450   // We do this after we're done with marking so that the marking data
   451   // structures are initialised to a sensible and predictable state.
   452   void set_non_marking_state();
   454   // prints all gathered CM-related statistics
   455   void print_stats();
   457   // accessor methods
   458   size_t parallel_marking_threads() { return _parallel_marking_threads; }
   459   double sleep_factor()             { return _sleep_factor; }
   460   double marking_task_overhead()    { return _marking_task_overhead;}
   461   double cleanup_sleep_factor()     { return _cleanup_sleep_factor; }
   462   double cleanup_task_overhead()    { return _cleanup_task_overhead;}
   464   HeapWord*               finger()        { return _finger;   }
   465   bool                    concurrent()    { return _concurrent; }
   466   size_t                  active_tasks()  { return _active_tasks; }
   467   ParallelTaskTerminator* terminator()    { return &_terminator; }
   469   // It claims the next available region to be scanned by a marking
   470   // task. It might return NULL if the next region is empty or we have
   471   // run out of regions. In the latter case, out_of_regions()
   472   // determines whether we've really run out of regions or the task
   473   // should call claim_region() again.  This might seem a bit
   474   // awkward. Originally, the code was written so that claim_region()
   475   // either successfully returned with a non-empty region or there
   476   // were no more regions to be claimed. The problem with this was
   477   // that, in certain circumstances, it iterated over large chunks of
   478   // the heap finding only empty regions and, while it was working, it
   479   // was preventing the calling task to call its regular clock
   480   // method. So, this way, each task will spend very little time in
   481   // claim_region() and is allowed to call the regular clock method
   482   // frequently.
   483   HeapRegion* claim_region(int task);
   485   // It determines whether we've run out of regions to scan.
   486   bool        out_of_regions() { return _finger == _heap_end; }
   488   // Returns the task with the given id
   489   CMTask* task(int id) {
   490     guarantee( 0 <= id && id < (int) _active_tasks, "task id not within "
   491                "active bounds" );
   492     return _tasks[id];
   493   }
   495   // Returns the task queue with the given id
   496   CMTaskQueue* task_queue(int id) {
   497     guarantee( 0 <= id && id < (int) _active_tasks, "task queue id not within "
   498                "active bounds" );
   499     return (CMTaskQueue*) _task_queues->queue(id);
   500   }
   502   // Returns the task queue set
   503   CMTaskQueueSet* task_queues()  { return _task_queues; }
   505   // Access / manipulation of the overflow flag which is set to
   506   // indicate that the global stack or region stack has overflown
   507   bool has_overflown()           { return _has_overflown; }
   508   void set_has_overflown()       { _has_overflown = true; }
   509   void clear_has_overflown()     { _has_overflown = false; }
   511   bool has_aborted()             { return _has_aborted; }
   512   bool restart_for_overflow()    { return _restart_for_overflow; }
   514   // Methods to enter the two overflow sync barriers
   515   void enter_first_sync_barrier(int task_num);
   516   void enter_second_sync_barrier(int task_num);
   518 public:
   519   // Manipulation of the global mark stack.
   520   // Notice that the first mark_stack_push is CAS-based, whereas the
   521   // two below are Mutex-based. This is OK since the first one is only
   522   // called during evacuation pauses and doesn't compete with the
   523   // other two (which are called by the marking tasks during
   524   // concurrent marking or remark).
   525   bool mark_stack_push(oop p) {
   526     _markStack.par_push(p);
   527     if (_markStack.overflow()) {
   528       set_has_overflown();
   529       return false;
   530     }
   531     return true;
   532   }
   533   bool mark_stack_push(oop* arr, int n) {
   534     _markStack.par_push_arr(arr, n);
   535     if (_markStack.overflow()) {
   536       set_has_overflown();
   537       return false;
   538     }
   539     return true;
   540   }
   541   void mark_stack_pop(oop* arr, int max, int* n) {
   542     _markStack.par_pop_arr(arr, max, n);
   543   }
   544   size_t mark_stack_size()              { return _markStack.size(); }
   545   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
   546   bool mark_stack_overflow()            { return _markStack.overflow(); }
   547   bool mark_stack_empty()               { return _markStack.isEmpty(); }
   549   // Manipulation of the region stack
   550   bool region_stack_push(MemRegion mr) {
   551     _regionStack.push(mr);
   552     if (_regionStack.overflow()) {
   553       set_has_overflown();
   554       return false;
   555     }
   556     return true;
   557   }
   558   MemRegion region_stack_pop()          { return _regionStack.pop(); }
   559   int region_stack_size()               { return _regionStack.size(); }
   560   bool region_stack_overflow()          { return _regionStack.overflow(); }
   561   bool region_stack_empty()             { return _regionStack.isEmpty(); }
   563   bool concurrent_marking_in_progress() {
   564     return _concurrent_marking_in_progress;
   565   }
   566   void set_concurrent_marking_in_progress() {
   567     _concurrent_marking_in_progress = true;
   568   }
   569   void clear_concurrent_marking_in_progress() {
   570     _concurrent_marking_in_progress = false;
   571   }
   573   void update_accum_task_vtime(int i, double vtime) {
   574     _accum_task_vtime[i] += vtime;
   575   }
   577   double all_task_accum_vtime() {
   578     double ret = 0.0;
   579     for (int i = 0; i < (int)_max_task_num; ++i)
   580       ret += _accum_task_vtime[i];
   581     return ret;
   582   }
   584   // Attempts to steal an object from the task queues of other tasks
   585   bool try_stealing(int task_num, int* hash_seed, oop& obj) {
   586     return _task_queues->steal(task_num, hash_seed, obj);
   587   }
   589   // It grays an object by first marking it. Then, if it's behind the
   590   // global finger, it also pushes it on the global stack.
   591   void deal_with_reference(oop obj);
   593   ConcurrentMark(ReservedSpace rs, int max_regions);
   594   ~ConcurrentMark();
   595   ConcurrentMarkThread* cmThread() { return _cmThread; }
   597   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
   598   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
   600   // The following three are interaction between CM and
   601   // G1CollectedHeap
   603   // This notifies CM that a root during initial-mark needs to be
   604   // grayed and it's MT-safe. Currently, we just mark it. But, in the
   605   // future, we can experiment with pushing it on the stack and we can
   606   // do this without changing G1CollectedHeap.
   607   void grayRoot(oop p);
   608   // It's used during evacuation pauses to gray a region, if
   609   // necessary, and it's MT-safe. It assumes that the caller has
   610   // marked any objects on that region. If _should_gray_objects is
   611   // true and we're still doing concurrent marking, the region is
   612   // pushed on the region stack, if it is located below the global
   613   // finger, otherwise we do nothing.
   614   void grayRegionIfNecessary(MemRegion mr);
   615   // It's used during evacuation pauses to mark and, if necessary,
   616   // gray a single object and it's MT-safe. It assumes the caller did
   617   // not mark the object. If _should_gray_objects is true and we're
   618   // still doing concurrent marking, the objects is pushed on the
   619   // global stack, if it is located below the global finger, otherwise
   620   // we do nothing.
   621   void markAndGrayObjectIfNecessary(oop p);
   623   // This iterates over the bitmap of the previous marking and prints
   624   // out all objects that are marked on the bitmap and indicates
   625   // whether what they point to is also marked or not.
   626   void print_prev_bitmap_reachable();
   628   // Clear the next marking bitmap (will be called concurrently).
   629   void clearNextBitmap();
   631   // main CMS steps and related support
   632   void checkpointRootsInitial();
   634   // These two do the work that needs to be done before and after the
   635   // initial root checkpoint. Since this checkpoint can be done at two
   636   // different points (i.e. an explicit pause or piggy-backed on a
   637   // young collection), then it's nice to be able to easily share the
   638   // pre/post code. It might be the case that we can put everything in
   639   // the post method. TP
   640   void checkpointRootsInitialPre();
   641   void checkpointRootsInitialPost();
   643   // Do concurrent phase of marking, to a tentative transitive closure.
   644   void markFromRoots();
   646   // Process all unprocessed SATB buffers. It is called at the
   647   // beginning of an evacuation pause.
   648   void drainAllSATBBuffers();
   650   void checkpointRootsFinal(bool clear_all_soft_refs);
   651   void checkpointRootsFinalWork();
   652   void calcDesiredRegions();
   653   void cleanup();
   654   void completeCleanup();
   656   // Mark in the previous bitmap.  NB: this is usually read-only, so use
   657   // this carefully!
   658   void markPrev(oop p);
   659   void clear(oop p);
   660   // Clears marks for all objects in the given range, for both prev and
   661   // next bitmaps.  NB: the previous bitmap is usually read-only, so use
   662   // this carefully!
   663   void clearRangeBothMaps(MemRegion mr);
   665   // Record the current top of the mark and region stacks; a
   666   // subsequent oops_do() on the mark stack and
   667   // invalidate_entries_into_cset() on the region stack will iterate
   668   // only over indices valid at the time of this call.
   669   void set_oops_do_bound() {
   670     _markStack.set_oops_do_bound();
   671     _regionStack.set_oops_do_bound();
   672   }
   673   // Iterate over the oops in the mark stack and all local queues. It
   674   // also calls invalidate_entries_into_cset() on the region stack.
   675   void oops_do(OopClosure* f);
   676   // It is called at the end of an evacuation pause during marking so
   677   // that CM is notified of where the new end of the heap is. It
   678   // doesn't do anything if concurrent_marking_in_progress() is false,
   679   // unless the force parameter is true.
   680   void update_g1_committed(bool force = false);
   682   void complete_marking_in_collection_set();
   684   // It indicates that a new collection set is being chosen.
   685   void newCSet();
   686   // It registers a collection set heap region with CM. This is used
   687   // to determine whether any heap regions are located above the finger.
   688   void registerCSetRegion(HeapRegion* hr);
   690   // Returns "true" if at least one mark has been completed.
   691   bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
   693   bool isMarked(oop p) const {
   694     assert(p != NULL && p->is_oop(), "expected an oop");
   695     HeapWord* addr = (HeapWord*)p;
   696     assert(addr >= _nextMarkBitMap->startWord() ||
   697            addr < _nextMarkBitMap->endWord(), "in a region");
   699     return _nextMarkBitMap->isMarked(addr);
   700   }
   702   inline bool not_yet_marked(oop p) const;
   704   // XXX Debug code
   705   bool containing_card_is_marked(void* p);
   706   bool containing_cards_are_marked(void* start, void* last);
   708   bool isPrevMarked(oop p) const {
   709     assert(p != NULL && p->is_oop(), "expected an oop");
   710     HeapWord* addr = (HeapWord*)p;
   711     assert(addr >= _prevMarkBitMap->startWord() ||
   712            addr < _prevMarkBitMap->endWord(), "in a region");
   714     return _prevMarkBitMap->isMarked(addr);
   715   }
   717   inline bool do_yield_check(int worker_i = 0);
   718   inline bool should_yield();
   720   // Called to abort the marking cycle after a Full GC takes palce.
   721   void abort();
   723   void disable_co_trackers();
   725   // This prints the global/local fingers. It is used for debugging.
   726   NOT_PRODUCT(void print_finger();)
   728   void print_summary_info();
   730   // The following indicate whether a given verbose level has been
   731   // set. Notice that anything above stats is conditional to
   732   // _MARKING_VERBOSE_ having been set to 1
   733   bool verbose_stats()
   734     { return _verbose_level >= stats_verbose; }
   735   bool verbose_low()
   736     { return _MARKING_VERBOSE_ && _verbose_level >= low_verbose; }
   737   bool verbose_medium()
   738     { return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose; }
   739   bool verbose_high()
   740     { return _MARKING_VERBOSE_ && _verbose_level >= high_verbose; }
   741 };
   743 // A class representing a marking task.
   744 class CMTask : public TerminatorTerminator {
   745 private:
   746   enum PrivateConstants {
   747     // the regular clock call is called once the scanned words reaches
   748     // this limit
   749     words_scanned_period          = 12*1024,
   750     // the regular clock call is called once the number of visited
   751     // references reaches this limit
   752     refs_reached_period           = 384,
   753     // initial value for the hash seed, used in the work stealing code
   754     init_hash_seed                = 17,
   755     // how many entries will be transferred between global stack and
   756     // local queues
   757     global_stack_transfer_size    = 16
   758   };
   760   int                         _task_id;
   761   G1CollectedHeap*            _g1h;
   762   ConcurrentMark*             _cm;
   763   CMBitMap*                   _nextMarkBitMap;
   764   // the task queue of this task
   765   CMTaskQueue*                _task_queue;
   766   // the task queue set---needed for stealing
   767   CMTaskQueueSet*             _task_queues;
   768   // indicates whether the task has been claimed---this is only  for
   769   // debugging purposes
   770   bool                        _claimed;
   772   // number of calls to this task
   773   int                         _calls;
   775   // concurrent overhead over a single CPU for this task
   776   COTracker                   _co_tracker;
   778   // when the virtual timer reaches this time, the marking step should
   779   // exit
   780   double                      _time_target_ms;
   781   // the start time of the current marking step
   782   double                      _start_time_ms;
   784   // the oop closure used for iterations over oops
   785   OopClosure*                 _oop_closure;
   787   // the region this task is scanning, NULL if we're not scanning any
   788   HeapRegion*                 _curr_region;
   789   // the local finger of this task, NULL if we're not scanning a region
   790   HeapWord*                   _finger;
   791   // limit of the region this task is scanning, NULL if we're not scanning one
   792   HeapWord*                   _region_limit;
   794   // This is used only when we scan regions popped from the region
   795   // stack. It records what the last object on such a region we
   796   // scanned was. It is used to ensure that, if we abort region
   797   // iteration, we do not rescan the first part of the region. This
   798   // should be NULL when we're not scanning a region from the region
   799   // stack.
   800   HeapWord*                   _region_finger;
   802   // the number of words this task has scanned
   803   size_t                      _words_scanned;
   804   // When _words_scanned reaches this limit, the regular clock is
   805   // called. Notice that this might be decreased under certain
   806   // circumstances (i.e. when we believe that we did an expensive
   807   // operation).
   808   size_t                      _words_scanned_limit;
   809   // the initial value of _words_scanned_limit (i.e. what it was
   810   // before it was decreased).
   811   size_t                      _real_words_scanned_limit;
   813   // the number of references this task has visited
   814   size_t                      _refs_reached;
   815   // When _refs_reached reaches this limit, the regular clock is
   816   // called. Notice this this might be decreased under certain
   817   // circumstances (i.e. when we believe that we did an expensive
   818   // operation).
   819   size_t                      _refs_reached_limit;
   820   // the initial value of _refs_reached_limit (i.e. what it was before
   821   // it was decreased).
   822   size_t                      _real_refs_reached_limit;
   824   // used by the work stealing stuff
   825   int                         _hash_seed;
   826   // if this is true, then the task has aborted for some reason
   827   bool                        _has_aborted;
   828   // set when the task aborts because it has met its time quota
   829   bool                        _has_aborted_timed_out;
   830   // true when we're draining SATB buffers; this avoids the task
   831   // aborting due to SATB buffers being available (as we're already
   832   // dealing with them)
   833   bool                        _draining_satb_buffers;
   835   // number sequence of past step times
   836   NumberSeq                   _step_times_ms;
   837   // elapsed time of this task
   838   double                      _elapsed_time_ms;
   839   // termination time of this task
   840   double                      _termination_time_ms;
   841   // when this task got into the termination protocol
   842   double                      _termination_start_time_ms;
   844   // true when the task is during a concurrent phase, false when it is
   845   // in the remark phase (so, in the latter case, we do not have to
   846   // check all the things that we have to check during the concurrent
   847   // phase, i.e. SATB buffer availability...)
   848   bool                        _concurrent;
   850   TruncatedSeq                _marking_step_diffs_ms;
   852   // LOTS of statistics related with this task
   853 #if _MARKING_STATS_
   854   NumberSeq                   _all_clock_intervals_ms;
   855   double                      _interval_start_time_ms;
   857   int                         _aborted;
   858   int                         _aborted_overflow;
   859   int                         _aborted_cm_aborted;
   860   int                         _aborted_yield;
   861   int                         _aborted_timed_out;
   862   int                         _aborted_satb;
   863   int                         _aborted_termination;
   865   int                         _steal_attempts;
   866   int                         _steals;
   868   int                         _clock_due_to_marking;
   869   int                         _clock_due_to_scanning;
   871   int                         _local_pushes;
   872   int                         _local_pops;
   873   int                         _local_max_size;
   874   int                         _objs_scanned;
   876   int                         _global_pushes;
   877   int                         _global_pops;
   878   int                         _global_max_size;
   880   int                         _global_transfers_to;
   881   int                         _global_transfers_from;
   883   int                         _region_stack_pops;
   885   int                         _regions_claimed;
   886   int                         _objs_found_on_bitmap;
   888   int                         _satb_buffers_processed;
   889 #endif // _MARKING_STATS_
   891   // it updates the local fields after this task has claimed
   892   // a new region to scan
   893   void setup_for_region(HeapRegion* hr);
   894   // it brings up-to-date the limit of the region
   895   void update_region_limit();
   896   // it resets the local fields after a task has finished scanning a
   897   // region
   898   void giveup_current_region();
   900   // called when either the words scanned or the refs visited limit
   901   // has been reached
   902   void reached_limit();
   903   // recalculates the words scanned and refs visited limits
   904   void recalculate_limits();
   905   // decreases the words scanned and refs visited limits when we reach
   906   // an expensive operation
   907   void decrease_limits();
   908   // it checks whether the words scanned or refs visited reached their
   909   // respective limit and calls reached_limit() if they have
   910   void check_limits() {
   911     if (_words_scanned >= _words_scanned_limit ||
   912         _refs_reached >= _refs_reached_limit)
   913       reached_limit();
   914   }
   915   // this is supposed to be called regularly during a marking step as
   916   // it checks a bunch of conditions that might cause the marking step
   917   // to abort
   918   void regular_clock_call();
   919   bool concurrent() { return _concurrent; }
   921 public:
   922   // It resets the task; it should be called right at the beginning of
   923   // a marking phase.
   924   void reset(CMBitMap* _nextMarkBitMap);
   925   // it clears all the fields that correspond to a claimed region.
   926   void clear_region_fields();
   928   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
   930   void enable_co_tracker() {
   931     guarantee( !_co_tracker.enabled(), "invariant" );
   932     _co_tracker.enable();
   933   }
   934   void disable_co_tracker() {
   935     guarantee( _co_tracker.enabled(), "invariant" );
   936     _co_tracker.disable();
   937   }
   938   bool co_tracker_enabled() {
   939     return _co_tracker.enabled();
   940   }
   941   void reset_co_tracker(double starting_conc_overhead = 0.0) {
   942     _co_tracker.reset(starting_conc_overhead);
   943   }
   944   void start_co_tracker() {
   945     _co_tracker.start();
   946   }
   947   void update_co_tracker(bool force_end = false) {
   948     _co_tracker.update(force_end);
   949   }
   951   // The main method of this class which performs a marking step
   952   // trying not to exceed the given duration. However, it might exit
   953   // prematurely, according to some conditions (i.e. SATB buffers are
   954   // available for processing).
   955   void do_marking_step(double target_ms);
   957   // These two calls start and stop the timer
   958   void record_start_time() {
   959     _elapsed_time_ms = os::elapsedTime() * 1000.0;
   960   }
   961   void record_end_time() {
   962     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
   963   }
   965   // returns the task ID
   966   int task_id() { return _task_id; }
   968   // From TerminatorTerminator. It determines whether this task should
   969   // exit the termination protocol after it's entered it.
   970   virtual bool should_exit_termination();
   972   HeapWord* finger()            { return _finger; }
   974   bool has_aborted()            { return _has_aborted; }
   975   void set_has_aborted()        { _has_aborted = true; }
   976   void clear_has_aborted()      { _has_aborted = false; }
   977   bool claimed() { return _claimed; }
   979   void set_oop_closure(OopClosure* oop_closure) {
   980     _oop_closure = oop_closure;
   981   }
   983   // It grays the object by marking it and, if necessary, pushing it
   984   // on the local queue
   985   void deal_with_reference(oop obj);
   987   // It scans an object and visits its children.
   988   void scan_object(oop obj) {
   989     tmp_guarantee_CM( _nextMarkBitMap->isMarked((HeapWord*) obj),
   990                       "invariant" );
   992     if (_cm->verbose_high())
   993       gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
   994                              _task_id, (void*) obj);
   996     size_t obj_size = obj->size();
   997     _words_scanned += obj_size;
   999     obj->oop_iterate(_oop_closure);
  1000     statsOnly( ++_objs_scanned );
  1001     check_limits();
  1004   // It pushes an object on the local queue.
  1005   void push(oop obj);
  1007   // These two move entries to/from the global stack.
  1008   void move_entries_to_global_stack();
  1009   void get_entries_from_global_stack();
  1011   // It pops and scans objects from the local queue. If partially is
  1012   // true, then it stops when the queue size is of a given limit. If
  1013   // partially is false, then it stops when the queue is empty.
  1014   void drain_local_queue(bool partially);
  1015   // It moves entries from the global stack to the local queue and
  1016   // drains the local queue. If partially is true, then it stops when
  1017   // both the global stack and the local queue reach a given size. If
  1018   // partially if false, it tries to empty them totally.
  1019   void drain_global_stack(bool partially);
  1020   // It keeps picking SATB buffers and processing them until no SATB
  1021   // buffers are available.
  1022   void drain_satb_buffers();
  1023   // It keeps popping regions from the region stack and processing
  1024   // them until the region stack is empty.
  1025   void drain_region_stack(BitMapClosure* closure);
  1027   // moves the local finger to a new location
  1028   inline void move_finger_to(HeapWord* new_finger) {
  1029     tmp_guarantee_CM( new_finger >= _finger && new_finger < _region_limit,
  1030                    "invariant" );
  1031     _finger = new_finger;
  1034   // moves the region finger to a new location
  1035   inline void move_region_finger_to(HeapWord* new_finger) {
  1036     tmp_guarantee_CM( new_finger < _cm->finger(), "invariant" );
  1037     _region_finger = new_finger;
  1040   CMTask(int task_num, ConcurrentMark *cm,
  1041          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
  1043   // it prints statistics associated with this task
  1044   void print_stats();
  1046 #if _MARKING_STATS_
  1047   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
  1048 #endif // _MARKING_STATS_
  1049 };

mercurial