src/share/vm/c1/c1_Runtime1.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 920
ac8fe14c93e4
child 1577
4ce7240d622c
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_c1_Runtime1.cpp.incl"
    29 // Implementation of StubAssembler
    31 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
    32   _name = name;
    33   _must_gc_arguments = false;
    34   _frame_size = no_frame_size;
    35   _num_rt_args = 0;
    36   _stub_id = stub_id;
    37 }
    40 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
    41   _name = name;
    42   _must_gc_arguments = must_gc_arguments;
    43 }
    46 void StubAssembler::set_frame_size(int size) {
    47   if (_frame_size == no_frame_size) {
    48     _frame_size = size;
    49   }
    50   assert(_frame_size == size, "can't change the frame size");
    51 }
    54 void StubAssembler::set_num_rt_args(int args) {
    55   if (_num_rt_args == 0) {
    56     _num_rt_args = args;
    57   }
    58   assert(_num_rt_args == args, "can't change the number of args");
    59 }
    61 // Implementation of Runtime1
    63 bool      Runtime1::_is_initialized = false;
    64 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
    65 const char *Runtime1::_blob_names[] = {
    66   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
    67 };
    69 #ifndef PRODUCT
    70 // statistics
    71 int Runtime1::_generic_arraycopy_cnt = 0;
    72 int Runtime1::_primitive_arraycopy_cnt = 0;
    73 int Runtime1::_oop_arraycopy_cnt = 0;
    74 int Runtime1::_arraycopy_slowcase_cnt = 0;
    75 int Runtime1::_new_type_array_slowcase_cnt = 0;
    76 int Runtime1::_new_object_array_slowcase_cnt = 0;
    77 int Runtime1::_new_instance_slowcase_cnt = 0;
    78 int Runtime1::_new_multi_array_slowcase_cnt = 0;
    79 int Runtime1::_monitorenter_slowcase_cnt = 0;
    80 int Runtime1::_monitorexit_slowcase_cnt = 0;
    81 int Runtime1::_patch_code_slowcase_cnt = 0;
    82 int Runtime1::_throw_range_check_exception_count = 0;
    83 int Runtime1::_throw_index_exception_count = 0;
    84 int Runtime1::_throw_div0_exception_count = 0;
    85 int Runtime1::_throw_null_pointer_exception_count = 0;
    86 int Runtime1::_throw_class_cast_exception_count = 0;
    87 int Runtime1::_throw_incompatible_class_change_error_count = 0;
    88 int Runtime1::_throw_array_store_exception_count = 0;
    89 int Runtime1::_throw_count = 0;
    90 #endif
    92 BufferBlob* Runtime1::_buffer_blob  = NULL;
    94 // Simple helper to see if the caller of a runtime stub which
    95 // entered the VM has been deoptimized
    97 static bool caller_is_deopted() {
    98   JavaThread* thread = JavaThread::current();
    99   RegisterMap reg_map(thread, false);
   100   frame runtime_frame = thread->last_frame();
   101   frame caller_frame = runtime_frame.sender(&reg_map);
   102   assert(caller_frame.is_compiled_frame(), "must be compiled");
   103   return caller_frame.is_deoptimized_frame();
   104 }
   106 // Stress deoptimization
   107 static void deopt_caller() {
   108   if ( !caller_is_deopted()) {
   109     JavaThread* thread = JavaThread::current();
   110     RegisterMap reg_map(thread, false);
   111     frame runtime_frame = thread->last_frame();
   112     frame caller_frame = runtime_frame.sender(&reg_map);
   113     VM_DeoptimizeFrame deopt(thread, caller_frame.id());
   114     VMThread::execute(&deopt);
   115     assert(caller_is_deopted(), "Must be deoptimized");
   116   }
   117 }
   120 BufferBlob* Runtime1::get_buffer_blob() {
   121   // Allocate code buffer space only once
   122   BufferBlob* blob = _buffer_blob;
   123   if (blob == NULL) {
   124     // setup CodeBuffer.  Preallocate a BufferBlob of size
   125     // NMethodSizeLimit plus some extra space for constants.
   126     int code_buffer_size = desired_max_code_buffer_size() + desired_max_constant_size();
   127     blob = BufferBlob::create("Compiler1 temporary CodeBuffer",
   128                               code_buffer_size);
   129     guarantee(blob != NULL, "must create initial code buffer");
   130     _buffer_blob = blob;
   131   }
   132   return _buffer_blob;
   133 }
   135 void Runtime1::setup_code_buffer(CodeBuffer* code, int call_stub_estimate) {
   136   // Preinitialize the consts section to some large size:
   137   int locs_buffer_size = 20 * (relocInfo::length_limit + sizeof(relocInfo));
   138   char* locs_buffer = NEW_RESOURCE_ARRAY(char, locs_buffer_size);
   139   code->insts()->initialize_shared_locs((relocInfo*)locs_buffer,
   140                                         locs_buffer_size / sizeof(relocInfo));
   141   code->initialize_consts_size(desired_max_constant_size());
   142   // Call stubs + deopt/exception handler
   143   code->initialize_stubs_size((call_stub_estimate * LIR_Assembler::call_stub_size) +
   144                               LIR_Assembler::exception_handler_size +
   145                               LIR_Assembler::deopt_handler_size);
   146 }
   149 void Runtime1::generate_blob_for(StubID id) {
   150   assert(0 <= id && id < number_of_ids, "illegal stub id");
   151   ResourceMark rm;
   152   // create code buffer for code storage
   153   CodeBuffer code(get_buffer_blob()->instructions_begin(),
   154                   get_buffer_blob()->instructions_size());
   156   setup_code_buffer(&code, 0);
   158   // create assembler for code generation
   159   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
   160   // generate code for runtime stub
   161   OopMapSet* oop_maps;
   162   oop_maps = generate_code_for(id, sasm);
   163   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
   164          "if stub has an oop map it must have a valid frame size");
   166 #ifdef ASSERT
   167   // Make sure that stubs that need oopmaps have them
   168   switch (id) {
   169     // These stubs don't need to have an oopmap
   170     case dtrace_object_alloc_id:
   171     case g1_pre_barrier_slow_id:
   172     case g1_post_barrier_slow_id:
   173     case slow_subtype_check_id:
   174     case fpu2long_stub_id:
   175     case unwind_exception_id:
   176 #ifndef TIERED
   177     case counter_overflow_id: // Not generated outside the tiered world
   178 #endif
   179 #ifdef SPARC
   180     case handle_exception_nofpu_id:  // Unused on sparc
   181 #endif
   182       break;
   184     // All other stubs should have oopmaps
   185     default:
   186       assert(oop_maps != NULL, "must have an oopmap");
   187   }
   188 #endif
   190   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
   191   sasm->align(BytesPerWord);
   192   // make sure all code is in code buffer
   193   sasm->flush();
   194   // create blob - distinguish a few special cases
   195   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
   196                                                  &code,
   197                                                  CodeOffsets::frame_never_safe,
   198                                                  sasm->frame_size(),
   199                                                  oop_maps,
   200                                                  sasm->must_gc_arguments());
   201   // install blob
   202   assert(blob != NULL, "blob must exist");
   203   _blobs[id] = blob;
   204 }
   207 void Runtime1::initialize() {
   208   // Warning: If we have more than one compilation running in parallel, we
   209   //          need a lock here with the current setup (lazy initialization).
   210   if (!is_initialized()) {
   211     _is_initialized = true;
   213     // platform-dependent initialization
   214     initialize_pd();
   215     // generate stubs
   216     for (int id = 0; id < number_of_ids; id++) generate_blob_for((StubID)id);
   217     // printing
   218 #ifndef PRODUCT
   219     if (PrintSimpleStubs) {
   220       ResourceMark rm;
   221       for (int id = 0; id < number_of_ids; id++) {
   222         _blobs[id]->print();
   223         if (_blobs[id]->oop_maps() != NULL) {
   224           _blobs[id]->oop_maps()->print();
   225         }
   226       }
   227     }
   228 #endif
   229   }
   230 }
   233 CodeBlob* Runtime1::blob_for(StubID id) {
   234   assert(0 <= id && id < number_of_ids, "illegal stub id");
   235   if (!is_initialized()) initialize();
   236   return _blobs[id];
   237 }
   240 const char* Runtime1::name_for(StubID id) {
   241   assert(0 <= id && id < number_of_ids, "illegal stub id");
   242   return _blob_names[id];
   243 }
   245 const char* Runtime1::name_for_address(address entry) {
   246   for (int id = 0; id < number_of_ids; id++) {
   247     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
   248   }
   250 #define FUNCTION_CASE(a, f) \
   251   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
   253   FUNCTION_CASE(entry, os::javaTimeMillis);
   254   FUNCTION_CASE(entry, os::javaTimeNanos);
   255   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
   256   FUNCTION_CASE(entry, SharedRuntime::d2f);
   257   FUNCTION_CASE(entry, SharedRuntime::d2i);
   258   FUNCTION_CASE(entry, SharedRuntime::d2l);
   259   FUNCTION_CASE(entry, SharedRuntime::dcos);
   260   FUNCTION_CASE(entry, SharedRuntime::dexp);
   261   FUNCTION_CASE(entry, SharedRuntime::dlog);
   262   FUNCTION_CASE(entry, SharedRuntime::dlog10);
   263   FUNCTION_CASE(entry, SharedRuntime::dpow);
   264   FUNCTION_CASE(entry, SharedRuntime::drem);
   265   FUNCTION_CASE(entry, SharedRuntime::dsin);
   266   FUNCTION_CASE(entry, SharedRuntime::dtan);
   267   FUNCTION_CASE(entry, SharedRuntime::f2i);
   268   FUNCTION_CASE(entry, SharedRuntime::f2l);
   269   FUNCTION_CASE(entry, SharedRuntime::frem);
   270   FUNCTION_CASE(entry, SharedRuntime::l2d);
   271   FUNCTION_CASE(entry, SharedRuntime::l2f);
   272   FUNCTION_CASE(entry, SharedRuntime::ldiv);
   273   FUNCTION_CASE(entry, SharedRuntime::lmul);
   274   FUNCTION_CASE(entry, SharedRuntime::lrem);
   275   FUNCTION_CASE(entry, SharedRuntime::lrem);
   276   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
   277   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
   278   FUNCTION_CASE(entry, trace_block_entry);
   280 #undef FUNCTION_CASE
   282   return "<unknown function>";
   283 }
   286 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
   287   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
   289   assert(oop(klass)->is_klass(), "not a class");
   290   instanceKlassHandle h(thread, klass);
   291   h->check_valid_for_instantiation(true, CHECK);
   292   // make sure klass is initialized
   293   h->initialize(CHECK);
   294   // allocate instance and return via TLS
   295   oop obj = h->allocate_instance(CHECK);
   296   thread->set_vm_result(obj);
   297 JRT_END
   300 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
   301   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
   302   // Note: no handle for klass needed since they are not used
   303   //       anymore after new_typeArray() and no GC can happen before.
   304   //       (This may have to change if this code changes!)
   305   assert(oop(klass)->is_klass(), "not a class");
   306   BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
   307   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
   308   thread->set_vm_result(obj);
   309   // This is pretty rare but this runtime patch is stressful to deoptimization
   310   // if we deoptimize here so force a deopt to stress the path.
   311   if (DeoptimizeALot) {
   312     deopt_caller();
   313   }
   315 JRT_END
   318 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
   319   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
   321   // Note: no handle for klass needed since they are not used
   322   //       anymore after new_objArray() and no GC can happen before.
   323   //       (This may have to change if this code changes!)
   324   assert(oop(array_klass)->is_klass(), "not a class");
   325   klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
   326   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
   327   thread->set_vm_result(obj);
   328   // This is pretty rare but this runtime patch is stressful to deoptimization
   329   // if we deoptimize here so force a deopt to stress the path.
   330   if (DeoptimizeALot) {
   331     deopt_caller();
   332   }
   333 JRT_END
   336 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
   337   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
   339   assert(oop(klass)->is_klass(), "not a class");
   340   assert(rank >= 1, "rank must be nonzero");
   341   oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
   342   thread->set_vm_result(obj);
   343 JRT_END
   346 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
   347   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
   348 JRT_END
   351 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread))
   352   THROW(vmSymbolHandles::java_lang_ArrayStoreException());
   353 JRT_END
   356 JRT_ENTRY(void, Runtime1::post_jvmti_exception_throw(JavaThread* thread))
   357   if (JvmtiExport::can_post_exceptions()) {
   358     vframeStream vfst(thread, true);
   359     address bcp = vfst.method()->bcp_from(vfst.bci());
   360     JvmtiExport::post_exception_throw(thread, vfst.method(), bcp, thread->exception_oop());
   361   }
   362 JRT_END
   364 #ifdef TIERED
   365 JRT_ENTRY(void, Runtime1::counter_overflow(JavaThread* thread, int bci))
   366   RegisterMap map(thread, false);
   367   frame fr =  thread->last_frame().sender(&map);
   368   nmethod* nm = (nmethod*) fr.cb();
   369   assert(nm!= NULL && nm->is_nmethod(), "what?");
   370   methodHandle method(thread, nm->method());
   371   if (bci == 0) {
   372     // invocation counter overflow
   373     if (!Tier1CountOnly) {
   374       CompilationPolicy::policy()->method_invocation_event(method, CHECK);
   375     } else {
   376       method()->invocation_counter()->reset();
   377     }
   378   } else {
   379     if (!Tier1CountOnly) {
   380       // Twe have a bci but not the destination bci and besides a backedge
   381       // event is more for OSR which we don't want here.
   382       CompilationPolicy::policy()->method_invocation_event(method, CHECK);
   383     } else {
   384       method()->backedge_counter()->reset();
   385     }
   386   }
   387 JRT_END
   388 #endif // TIERED
   390 extern void vm_exit(int code);
   392 // Enter this method from compiled code handler below. This is where we transition
   393 // to VM mode. This is done as a helper routine so that the method called directly
   394 // from compiled code does not have to transition to VM. This allows the entry
   395 // method to see if the nmethod that we have just looked up a handler for has
   396 // been deoptimized while we were in the vm. This simplifies the assembly code
   397 // cpu directories.
   398 //
   399 // We are entering here from exception stub (via the entry method below)
   400 // If there is a compiled exception handler in this method, we will continue there;
   401 // otherwise we will unwind the stack and continue at the caller of top frame method
   402 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
   403 // control the area where we can allow a safepoint. After we exit the safepoint area we can
   404 // check to see if the handler we are going to return is now in a nmethod that has
   405 // been deoptimized. If that is the case we return the deopt blob
   406 // unpack_with_exception entry instead. This makes life for the exception blob easier
   407 // because making that same check and diverting is painful from assembly language.
   408 //
   411 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
   413   Handle exception(thread, ex);
   414   nm = CodeCache::find_nmethod(pc);
   415   assert(nm != NULL, "this is not an nmethod");
   416   // Adjust the pc as needed/
   417   if (nm->is_deopt_pc(pc)) {
   418     RegisterMap map(thread, false);
   419     frame exception_frame = thread->last_frame().sender(&map);
   420     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
   421     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
   422     pc = exception_frame.pc();
   423   }
   424 #ifdef ASSERT
   425   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
   426   assert(exception->is_oop(), "just checking");
   427   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
   428   if (!(exception->is_a(SystemDictionary::throwable_klass()))) {
   429     if (ExitVMOnVerifyError) vm_exit(-1);
   430     ShouldNotReachHere();
   431   }
   432 #endif
   434   // Check the stack guard pages and reenable them if necessary and there is
   435   // enough space on the stack to do so.  Use fast exceptions only if the guard
   436   // pages are enabled.
   437   bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
   438   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
   440   if (JvmtiExport::can_post_exceptions()) {
   441     // To ensure correct notification of exception catches and throws
   442     // we have to deoptimize here.  If we attempted to notify the
   443     // catches and throws during this exception lookup it's possible
   444     // we could deoptimize on the way out of the VM and end back in
   445     // the interpreter at the throw site.  This would result in double
   446     // notifications since the interpreter would also notify about
   447     // these same catches and throws as it unwound the frame.
   449     RegisterMap reg_map(thread);
   450     frame stub_frame = thread->last_frame();
   451     frame caller_frame = stub_frame.sender(&reg_map);
   453     // We don't really want to deoptimize the nmethod itself since we
   454     // can actually continue in the exception handler ourselves but I
   455     // don't see an easy way to have the desired effect.
   456     VM_DeoptimizeFrame deopt(thread, caller_frame.id());
   457     VMThread::execute(&deopt);
   459     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   460   }
   462   // ExceptionCache is used only for exceptions at call and not for implicit exceptions
   463   if (guard_pages_enabled) {
   464     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
   465     if (fast_continuation != NULL) {
   466       if (fast_continuation == ExceptionCache::unwind_handler()) fast_continuation = NULL;
   467       return fast_continuation;
   468     }
   469   }
   471   // If the stack guard pages are enabled, check whether there is a handler in
   472   // the current method.  Otherwise (guard pages disabled), force an unwind and
   473   // skip the exception cache update (i.e., just leave continuation==NULL).
   474   address continuation = NULL;
   475   if (guard_pages_enabled) {
   477     // New exception handling mechanism can support inlined methods
   478     // with exception handlers since the mappings are from PC to PC
   480     // debugging support
   481     // tracing
   482     if (TraceExceptions) {
   483       ttyLocker ttyl;
   484       ResourceMark rm;
   485       tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
   486                     exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
   487     }
   488     // for AbortVMOnException flag
   489     NOT_PRODUCT(Exceptions::debug_check_abort(exception));
   491     // Clear out the exception oop and pc since looking up an
   492     // exception handler can cause class loading, which might throw an
   493     // exception and those fields are expected to be clear during
   494     // normal bytecode execution.
   495     thread->set_exception_oop(NULL);
   496     thread->set_exception_pc(NULL);
   498     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
   499     // If an exception was thrown during exception dispatch, the exception oop may have changed
   500     thread->set_exception_oop(exception());
   501     thread->set_exception_pc(pc);
   503     // the exception cache is used only by non-implicit exceptions
   504     if (continuation == NULL) {
   505       nm->add_handler_for_exception_and_pc(exception, pc, ExceptionCache::unwind_handler());
   506     } else {
   507       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
   508     }
   509   }
   511   thread->set_vm_result(exception());
   513   if (TraceExceptions) {
   514     ttyLocker ttyl;
   515     ResourceMark rm;
   516     tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
   517                   thread, continuation, pc);
   518   }
   520   return continuation;
   521 JRT_END
   523 // Enter this method from compiled code only if there is a Java exception handler
   524 // in the method handling the exception
   525 // We are entering here from exception stub. We don't do a normal VM transition here.
   526 // We do it in a helper. This is so we can check to see if the nmethod we have just
   527 // searched for an exception handler has been deoptimized in the meantime.
   528 address  Runtime1::exception_handler_for_pc(JavaThread* thread) {
   529   oop exception = thread->exception_oop();
   530   address pc = thread->exception_pc();
   531   // Still in Java mode
   532   debug_only(ResetNoHandleMark rnhm);
   533   nmethod* nm = NULL;
   534   address continuation = NULL;
   535   {
   536     // Enter VM mode by calling the helper
   538     ResetNoHandleMark rnhm;
   539     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
   540   }
   541   // Back in JAVA, use no oops DON'T safepoint
   543   // Now check to see if the nmethod we were called from is now deoptimized.
   544   // If so we must return to the deopt blob and deoptimize the nmethod
   546   if (nm != NULL && caller_is_deopted()) {
   547     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
   548   }
   550   return continuation;
   551 }
   554 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
   555   NOT_PRODUCT(_throw_range_check_exception_count++;)
   556   Events::log("throw_range_check");
   557   char message[jintAsStringSize];
   558   sprintf(message, "%d", index);
   559   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
   560 JRT_END
   563 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
   564   NOT_PRODUCT(_throw_index_exception_count++;)
   565   Events::log("throw_index");
   566   char message[16];
   567   sprintf(message, "%d", index);
   568   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
   569 JRT_END
   572 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
   573   NOT_PRODUCT(_throw_div0_exception_count++;)
   574   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
   575 JRT_END
   578 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
   579   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
   580   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
   581 JRT_END
   584 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
   585   NOT_PRODUCT(_throw_class_cast_exception_count++;)
   586   ResourceMark rm(thread);
   587   char* message = SharedRuntime::generate_class_cast_message(
   588     thread, Klass::cast(object->klass())->external_name());
   589   SharedRuntime::throw_and_post_jvmti_exception(
   590     thread, vmSymbols::java_lang_ClassCastException(), message);
   591 JRT_END
   594 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
   595   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
   596   ResourceMark rm(thread);
   597   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
   598 JRT_END
   601 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
   602   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
   603   if (PrintBiasedLockingStatistics) {
   604     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
   605   }
   606   Handle h_obj(thread, obj);
   607   assert(h_obj()->is_oop(), "must be NULL or an object");
   608   if (UseBiasedLocking) {
   609     // Retry fast entry if bias is revoked to avoid unnecessary inflation
   610     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
   611   } else {
   612     if (UseFastLocking) {
   613       // When using fast locking, the compiled code has already tried the fast case
   614       assert(obj == lock->obj(), "must match");
   615       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
   616     } else {
   617       lock->set_obj(obj);
   618       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
   619     }
   620   }
   621 JRT_END
   624 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
   625   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
   626   assert(thread == JavaThread::current(), "threads must correspond");
   627   assert(thread->last_Java_sp(), "last_Java_sp must be set");
   628   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
   629   EXCEPTION_MARK;
   631   oop obj = lock->obj();
   632   assert(obj->is_oop(), "must be NULL or an object");
   633   if (UseFastLocking) {
   634     // When using fast locking, the compiled code has already tried the fast case
   635     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
   636   } else {
   637     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
   638   }
   639 JRT_END
   642 static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
   643   Bytecode_field* field_access = Bytecode_field_at(caller(), caller->bcp_from(bci));
   644   // This can be static or non-static field access
   645   Bytecodes::Code code       = field_access->code();
   647   // We must load class, initialize class and resolvethe field
   648   FieldAccessInfo result; // initialize class if needed
   649   constantPoolHandle constants(THREAD, caller->constants());
   650   LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK_NULL);
   651   return result.klass()();
   652 }
   655 //
   656 // This routine patches sites where a class wasn't loaded or
   657 // initialized at the time the code was generated.  It handles
   658 // references to classes, fields and forcing of initialization.  Most
   659 // of the cases are straightforward and involving simply forcing
   660 // resolution of a class, rewriting the instruction stream with the
   661 // needed constant and replacing the call in this function with the
   662 // patched code.  The case for static field is more complicated since
   663 // the thread which is in the process of initializing a class can
   664 // access it's static fields but other threads can't so the code
   665 // either has to deoptimize when this case is detected or execute a
   666 // check that the current thread is the initializing thread.  The
   667 // current
   668 //
   669 // Patches basically look like this:
   670 //
   671 //
   672 // patch_site: jmp patch stub     ;; will be patched
   673 // continue:   ...
   674 //             ...
   675 //             ...
   676 //             ...
   677 //
   678 // They have a stub which looks like this:
   679 //
   680 //             ;; patch body
   681 //             movl <const>, reg           (for class constants)
   682 //        <or> movl [reg1 + <const>], reg  (for field offsets)
   683 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
   684 //             <being_init offset> <bytes to copy> <bytes to skip>
   685 // patch_stub: call Runtime1::patch_code (through a runtime stub)
   686 //             jmp patch_site
   687 //
   688 //
   689 // A normal patch is done by rewriting the patch body, usually a move,
   690 // and then copying it into place over top of the jmp instruction
   691 // being careful to flush caches and doing it in an MP-safe way.  The
   692 // constants following the patch body are used to find various pieces
   693 // of the patch relative to the call site for Runtime1::patch_code.
   694 // The case for getstatic and putstatic is more complicated because
   695 // getstatic and putstatic have special semantics when executing while
   696 // the class is being initialized.  getstatic/putstatic on a class
   697 // which is being_initialized may be executed by the initializing
   698 // thread but other threads have to block when they execute it.  This
   699 // is accomplished in compiled code by executing a test of the current
   700 // thread against the initializing thread of the class.  It's emitted
   701 // as boilerplate in their stub which allows the patched code to be
   702 // executed before it's copied back into the main body of the nmethod.
   703 //
   704 // being_init: get_thread(<tmp reg>
   705 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
   706 //             jne patch_stub
   707 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
   708 //             movl reg, [reg1 + <const>]  (for field offsets)
   709 //             jmp continue
   710 //             <being_init offset> <bytes to copy> <bytes to skip>
   711 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
   712 //             jmp patch_site
   713 //
   714 // If the class is being initialized the patch body is rewritten and
   715 // the patch site is rewritten to jump to being_init, instead of
   716 // patch_stub.  Whenever this code is executed it checks the current
   717 // thread against the intializing thread so other threads will enter
   718 // the runtime and end up blocked waiting the class to finish
   719 // initializing inside the calls to resolve_field below.  The
   720 // initializing class will continue on it's way.  Once the class is
   721 // fully_initialized, the intializing_thread of the class becomes
   722 // NULL, so the next thread to execute this code will fail the test,
   723 // call into patch_code and complete the patching process by copying
   724 // the patch body back into the main part of the nmethod and resume
   725 // executing.
   726 //
   727 //
   729 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
   730   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
   732   ResourceMark rm(thread);
   733   RegisterMap reg_map(thread, false);
   734   frame runtime_frame = thread->last_frame();
   735   frame caller_frame = runtime_frame.sender(&reg_map);
   737   // last java frame on stack
   738   vframeStream vfst(thread, true);
   739   assert(!vfst.at_end(), "Java frame must exist");
   741   methodHandle caller_method(THREAD, vfst.method());
   742   // Note that caller_method->code() may not be same as caller_code because of OSR's
   743   // Note also that in the presence of inlining it is not guaranteed
   744   // that caller_method() == caller_code->method()
   747   int bci = vfst.bci();
   749   Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc());
   751   Bytecodes::Code code = Bytecode_at(caller_method->bcp_from(bci))->java_code();
   753 #ifndef PRODUCT
   754   // this is used by assertions in the access_field_patching_id
   755   BasicType patch_field_type = T_ILLEGAL;
   756 #endif // PRODUCT
   757   bool deoptimize_for_volatile = false;
   758   int patch_field_offset = -1;
   759   KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
   760   Handle load_klass(THREAD, NULL);                // oop needed by load_klass_patching code
   761   if (stub_id == Runtime1::access_field_patching_id) {
   763     Bytecode_field* field_access = Bytecode_field_at(caller_method(), caller_method->bcp_from(bci));
   764     FieldAccessInfo result; // initialize class if needed
   765     Bytecodes::Code code = field_access->code();
   766     constantPoolHandle constants(THREAD, caller_method->constants());
   767     LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK);
   768     patch_field_offset = result.field_offset();
   770     // If we're patching a field which is volatile then at compile it
   771     // must not have been know to be volatile, so the generated code
   772     // isn't correct for a volatile reference.  The nmethod has to be
   773     // deoptimized so that the code can be regenerated correctly.
   774     // This check is only needed for access_field_patching since this
   775     // is the path for patching field offsets.  load_klass is only
   776     // used for patching references to oops which don't need special
   777     // handling in the volatile case.
   778     deoptimize_for_volatile = result.access_flags().is_volatile();
   780 #ifndef PRODUCT
   781     patch_field_type = result.field_type();
   782 #endif
   783   } else if (stub_id == Runtime1::load_klass_patching_id) {
   784     oop k;
   785     switch (code) {
   786       case Bytecodes::_putstatic:
   787       case Bytecodes::_getstatic:
   788         { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
   789           // Save a reference to the class that has to be checked for initialization
   790           init_klass = KlassHandle(THREAD, klass);
   791           k = klass;
   792         }
   793         break;
   794       case Bytecodes::_new:
   795         { Bytecode_new* bnew = Bytecode_new_at(caller_method->bcp_from(bci));
   796           k = caller_method->constants()->klass_at(bnew->index(), CHECK);
   797         }
   798         break;
   799       case Bytecodes::_multianewarray:
   800         { Bytecode_multianewarray* mna = Bytecode_multianewarray_at(caller_method->bcp_from(bci));
   801           k = caller_method->constants()->klass_at(mna->index(), CHECK);
   802         }
   803         break;
   804       case Bytecodes::_instanceof:
   805         { Bytecode_instanceof* io = Bytecode_instanceof_at(caller_method->bcp_from(bci));
   806           k = caller_method->constants()->klass_at(io->index(), CHECK);
   807         }
   808         break;
   809       case Bytecodes::_checkcast:
   810         { Bytecode_checkcast* cc = Bytecode_checkcast_at(caller_method->bcp_from(bci));
   811           k = caller_method->constants()->klass_at(cc->index(), CHECK);
   812         }
   813         break;
   814       case Bytecodes::_anewarray:
   815         { Bytecode_anewarray* anew = Bytecode_anewarray_at(caller_method->bcp_from(bci));
   816           klassOop ek = caller_method->constants()->klass_at(anew->index(), CHECK);
   817           k = Klass::cast(ek)->array_klass(CHECK);
   818         }
   819         break;
   820       case Bytecodes::_ldc:
   821       case Bytecodes::_ldc_w:
   822         {
   823           Bytecode_loadconstant* cc = Bytecode_loadconstant_at(caller_method(),
   824                                                                caller_method->bcp_from(bci));
   825           klassOop resolved = caller_method->constants()->klass_at(cc->index(), CHECK);
   826           // ldc wants the java mirror.
   827           k = resolved->klass_part()->java_mirror();
   828         }
   829         break;
   830       default: Unimplemented();
   831     }
   832     // convert to handle
   833     load_klass = Handle(THREAD, k);
   834   } else {
   835     ShouldNotReachHere();
   836   }
   838   if (deoptimize_for_volatile) {
   839     // At compile time we assumed the field wasn't volatile but after
   840     // loading it turns out it was volatile so we have to throw the
   841     // compiled code out and let it be regenerated.
   842     if (TracePatching) {
   843       tty->print_cr("Deoptimizing for patching volatile field reference");
   844     }
   845     // It's possible the nmethod was invalidated in the last
   846     // safepoint, but if it's still alive then make it not_entrant.
   847     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
   848     if (nm != NULL) {
   849       nm->make_not_entrant();
   850     }
   852     VM_DeoptimizeFrame deopt(thread, caller_frame.id());
   853     VMThread::execute(&deopt);
   855     // Return to the now deoptimized frame.
   856   }
   859   // Now copy code back
   861   {
   862     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
   863     //
   864     // Deoptimization may have happened while we waited for the lock.
   865     // In that case we don't bother to do any patching we just return
   866     // and let the deopt happen
   867     if (!caller_is_deopted()) {
   868       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
   869       address instr_pc = jump->jump_destination();
   870       NativeInstruction* ni = nativeInstruction_at(instr_pc);
   871       if (ni->is_jump() ) {
   872         // the jump has not been patched yet
   873         // The jump destination is slow case and therefore not part of the stubs
   874         // (stubs are only for StaticCalls)
   876         // format of buffer
   877         //    ....
   878         //    instr byte 0     <-- copy_buff
   879         //    instr byte 1
   880         //    ..
   881         //    instr byte n-1
   882         //      n
   883         //    ....             <-- call destination
   885         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
   886         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
   887         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
   888         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
   889         address copy_buff = stub_location - *byte_skip - *byte_count;
   890         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
   891         if (TracePatching) {
   892           tty->print_cr(" Patching %s at bci %d at address 0x%x  (%s)", Bytecodes::name(code), bci,
   893                         instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
   894           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
   895           assert(caller_code != NULL, "nmethod not found");
   897           // NOTE we use pc() not original_pc() because we already know they are
   898           // identical otherwise we'd have never entered this block of code
   900           OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
   901           assert(map != NULL, "null check");
   902           map->print();
   903           tty->cr();
   905           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   906         }
   907         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
   908         bool do_patch = true;
   909         if (stub_id == Runtime1::access_field_patching_id) {
   910           // The offset may not be correct if the class was not loaded at code generation time.
   911           // Set it now.
   912           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
   913           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
   914           assert(patch_field_offset >= 0, "illegal offset");
   915           n_move->add_offset_in_bytes(patch_field_offset);
   916         } else if (stub_id == Runtime1::load_klass_patching_id) {
   917           // If a getstatic or putstatic is referencing a klass which
   918           // isn't fully initialized, the patch body isn't copied into
   919           // place until initialization is complete.  In this case the
   920           // patch site is setup so that any threads besides the
   921           // initializing thread are forced to come into the VM and
   922           // block.
   923           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
   924                      instanceKlass::cast(init_klass())->is_initialized();
   925           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
   926           if (jump->jump_destination() == being_initialized_entry) {
   927             assert(do_patch == true, "initialization must be complete at this point");
   928           } else {
   929             // patch the instruction <move reg, klass>
   930             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
   931             assert(n_copy->data() == 0, "illegal init value");
   932             assert(load_klass() != NULL, "klass not set");
   933             n_copy->set_data((intx) (load_klass()));
   935             if (TracePatching) {
   936               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
   937             }
   939 #ifdef SPARC
   940             // Update the oop location in the nmethod with the proper
   941             // oop.  When the code was generated, a NULL was stuffed
   942             // in the oop table and that table needs to be update to
   943             // have the right value.  On intel the value is kept
   944             // directly in the instruction instead of in the oop
   945             // table, so set_data above effectively updated the value.
   946             nmethod* nm = CodeCache::find_nmethod(instr_pc);
   947             assert(nm != NULL, "invalid nmethod_pc");
   948             RelocIterator oops(nm, copy_buff, copy_buff + 1);
   949             bool found = false;
   950             while (oops.next() && !found) {
   951               if (oops.type() == relocInfo::oop_type) {
   952                 oop_Relocation* r = oops.oop_reloc();
   953                 oop* oop_adr = r->oop_addr();
   954                 *oop_adr = load_klass();
   955                 r->fix_oop_relocation();
   956                 found = true;
   957               }
   958             }
   959             assert(found, "the oop must exist!");
   960 #endif
   962           }
   963         } else {
   964           ShouldNotReachHere();
   965         }
   966         if (do_patch) {
   967           // replace instructions
   968           // first replace the tail, then the call
   969           for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
   970             address ptr = copy_buff + i;
   971             int a_byte = (*ptr) & 0xFF;
   972             address dst = instr_pc + i;
   973             *(unsigned char*)dst = (unsigned char) a_byte;
   974           }
   975           ICache::invalidate_range(instr_pc, *byte_count);
   976           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
   978           if (stub_id == Runtime1::load_klass_patching_id) {
   979             // update relocInfo to oop
   980             nmethod* nm = CodeCache::find_nmethod(instr_pc);
   981             assert(nm != NULL, "invalid nmethod_pc");
   983             // The old patch site is now a move instruction so update
   984             // the reloc info so that it will get updated during
   985             // future GCs.
   986             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
   987             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
   988                                                      relocInfo::none, relocInfo::oop_type);
   989 #ifdef SPARC
   990             // Sparc takes two relocations for an oop so update the second one.
   991             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
   992             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
   993             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
   994                                                      relocInfo::none, relocInfo::oop_type);
   995 #endif
   996           }
   998         } else {
   999           ICache::invalidate_range(copy_buff, *byte_count);
  1000           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
  1005 JRT_END
  1007 //
  1008 // Entry point for compiled code. We want to patch a nmethod.
  1009 // We don't do a normal VM transition here because we want to
  1010 // know after the patching is complete and any safepoint(s) are taken
  1011 // if the calling nmethod was deoptimized. We do this by calling a
  1012 // helper method which does the normal VM transition and when it
  1013 // completes we can check for deoptimization. This simplifies the
  1014 // assembly code in the cpu directories.
  1015 //
  1016 int Runtime1::move_klass_patching(JavaThread* thread) {
  1017 //
  1018 // NOTE: we are still in Java
  1019 //
  1020   Thread* THREAD = thread;
  1021   debug_only(NoHandleMark nhm;)
  1023     // Enter VM mode
  1025     ResetNoHandleMark rnhm;
  1026     patch_code(thread, load_klass_patching_id);
  1028   // Back in JAVA, use no oops DON'T safepoint
  1030   // Return true if calling code is deoptimized
  1032   return caller_is_deopted();
  1035 //
  1036 // Entry point for compiled code. We want to patch a nmethod.
  1037 // We don't do a normal VM transition here because we want to
  1038 // know after the patching is complete and any safepoint(s) are taken
  1039 // if the calling nmethod was deoptimized. We do this by calling a
  1040 // helper method which does the normal VM transition and when it
  1041 // completes we can check for deoptimization. This simplifies the
  1042 // assembly code in the cpu directories.
  1043 //
  1045 int Runtime1::access_field_patching(JavaThread* thread) {
  1046 //
  1047 // NOTE: we are still in Java
  1048 //
  1049   Thread* THREAD = thread;
  1050   debug_only(NoHandleMark nhm;)
  1052     // Enter VM mode
  1054     ResetNoHandleMark rnhm;
  1055     patch_code(thread, access_field_patching_id);
  1057   // Back in JAVA, use no oops DON'T safepoint
  1059   // Return true if calling code is deoptimized
  1061   return caller_is_deopted();
  1062 JRT_END
  1065 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
  1066   // for now we just print out the block id
  1067   tty->print("%d ", block_id);
  1068 JRT_END
  1071 // Array copy return codes.
  1072 enum {
  1073   ac_failed = -1, // arraycopy failed
  1074   ac_ok = 0       // arraycopy succeeded
  1075 };
  1078 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
  1079                                           oopDesc* dst, T* dst_addr,
  1080                                           int length) {
  1082   // For performance reasons, we assume we are using a card marking write
  1083   // barrier. The assert will fail if this is not the case.
  1084   // Note that we use the non-virtual inlineable variant of write_ref_array.
  1085   BarrierSet* bs = Universe::heap()->barrier_set();
  1086   assert(bs->has_write_ref_array_opt(),
  1087          "Barrier set must have ref array opt");
  1088   if (src == dst) {
  1089     // same object, no check
  1090     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1091     bs->write_ref_array(MemRegion((HeapWord*)dst_addr,
  1092                                   (HeapWord*)(dst_addr + length)));
  1093     return ac_ok;
  1094   } else {
  1095     klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
  1096     klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
  1097     if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
  1098       // Elements are guaranteed to be subtypes, so no check necessary
  1099       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
  1100       bs->write_ref_array(MemRegion((HeapWord*)dst_addr,
  1101                                     (HeapWord*)(dst_addr + length)));
  1102       return ac_ok;
  1105   return ac_failed;
  1108 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
  1109 // and we did not copy anything
  1110 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
  1111 #ifndef PRODUCT
  1112   _generic_arraycopy_cnt++;        // Slow-path oop array copy
  1113 #endif
  1115   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
  1116   if (!dst->is_array() || !src->is_array()) return ac_failed;
  1117   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
  1118   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
  1120   if (length == 0) return ac_ok;
  1121   if (src->is_typeArray()) {
  1122     const klassOop klass_oop = src->klass();
  1123     if (klass_oop != dst->klass()) return ac_failed;
  1124     typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
  1125     const int l2es = klass->log2_element_size();
  1126     const int ihs = klass->array_header_in_bytes() / wordSize;
  1127     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
  1128     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
  1129     // Potential problem: memmove is not guaranteed to be word atomic
  1130     // Revisit in Merlin
  1131     memmove(dst_addr, src_addr, length << l2es);
  1132     return ac_ok;
  1133   } else if (src->is_objArray() && dst->is_objArray()) {
  1134     if (UseCompressedOops) {  // will need for tiered
  1135       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
  1136       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
  1137       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1138     } else {
  1139       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
  1140       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
  1141       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
  1144   return ac_failed;
  1145 JRT_END
  1148 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
  1149 #ifndef PRODUCT
  1150   _primitive_arraycopy_cnt++;
  1151 #endif
  1153   if (length == 0) return;
  1154   // Not guaranteed to be word atomic, but that doesn't matter
  1155   // for anything but an oop array, which is covered by oop_arraycopy.
  1156   Copy::conjoint_bytes(src, dst, length);
  1157 JRT_END
  1159 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
  1160 #ifndef PRODUCT
  1161   _oop_arraycopy_cnt++;
  1162 #endif
  1164   if (num == 0) return;
  1165   Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
  1166   BarrierSet* bs = Universe::heap()->barrier_set();
  1167   bs->write_ref_array(MemRegion(dst, dst + num));
  1168 JRT_END
  1171 #ifndef PRODUCT
  1172 void Runtime1::print_statistics() {
  1173   tty->print_cr("C1 Runtime statistics:");
  1174   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
  1175   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
  1176   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
  1177   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
  1178   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
  1179   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
  1180   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
  1181   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_cnt);
  1182   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
  1184   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
  1185   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
  1186   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
  1187   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
  1188   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
  1189   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
  1190   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
  1192   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
  1193   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
  1194   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
  1195   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
  1196   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
  1197   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
  1198   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
  1199   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
  1201   SharedRuntime::print_ic_miss_histogram();
  1202   tty->cr();
  1204 #endif // PRODUCT

mercurial