src/os_cpu/linux_x86/vm/os_linux_x86.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 912
24fda36852ce
child 1845
f03d0a26bf83
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // do not include  precompiled  header file
    26 # include "incls/_os_linux_x86.cpp.incl"
    28 // put OS-includes here
    29 # include <sys/types.h>
    30 # include <sys/mman.h>
    31 # include <pthread.h>
    32 # include <signal.h>
    33 # include <errno.h>
    34 # include <dlfcn.h>
    35 # include <stdlib.h>
    36 # include <stdio.h>
    37 # include <unistd.h>
    38 # include <sys/resource.h>
    39 # include <pthread.h>
    40 # include <sys/stat.h>
    41 # include <sys/time.h>
    42 # include <sys/utsname.h>
    43 # include <sys/socket.h>
    44 # include <sys/wait.h>
    45 # include <pwd.h>
    46 # include <poll.h>
    47 # include <ucontext.h>
    48 # include <fpu_control.h>
    50 #ifdef AMD64
    51 #define REG_SP REG_RSP
    52 #define REG_PC REG_RIP
    53 #define REG_FP REG_RBP
    54 #define SPELL_REG_SP "rsp"
    55 #define SPELL_REG_FP "rbp"
    56 #else
    57 #define REG_SP REG_UESP
    58 #define REG_PC REG_EIP
    59 #define REG_FP REG_EBP
    60 #define SPELL_REG_SP "esp"
    61 #define SPELL_REG_FP "ebp"
    62 #endif // AMD64
    64 address os::current_stack_pointer() {
    65 #ifdef SPARC_WORKS
    66   register void *esp;
    67   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
    68   return (address) ((char*)esp + sizeof(long)*2);
    69 #else
    70   register void *esp __asm__ (SPELL_REG_SP);
    71   return (address) esp;
    72 #endif
    73 }
    75 char* os::non_memory_address_word() {
    76   // Must never look like an address returned by reserve_memory,
    77   // even in its subfields (as defined by the CPU immediate fields,
    78   // if the CPU splits constants across multiple instructions).
    80   return (char*) -1;
    81 }
    83 void os::initialize_thread() {
    84 // Nothing to do.
    85 }
    87 address os::Linux::ucontext_get_pc(ucontext_t * uc) {
    88   return (address)uc->uc_mcontext.gregs[REG_PC];
    89 }
    91 intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
    92   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
    93 }
    95 intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
    96   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
    97 }
    99 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
   100 // is currently interrupted by SIGPROF.
   101 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
   102 // frames. Currently we don't do that on Linux, so it's the same as
   103 // os::fetch_frame_from_context().
   104 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
   105   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
   107   assert(thread != NULL, "just checking");
   108   assert(ret_sp != NULL, "just checking");
   109   assert(ret_fp != NULL, "just checking");
   111   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
   112 }
   114 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
   115                     intptr_t** ret_sp, intptr_t** ret_fp) {
   117   ExtendedPC  epc;
   118   ucontext_t* uc = (ucontext_t*)ucVoid;
   120   if (uc != NULL) {
   121     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
   122     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
   123     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
   124   } else {
   125     // construct empty ExtendedPC for return value checking
   126     epc = ExtendedPC(NULL);
   127     if (ret_sp) *ret_sp = (intptr_t *)NULL;
   128     if (ret_fp) *ret_fp = (intptr_t *)NULL;
   129   }
   131   return epc;
   132 }
   134 frame os::fetch_frame_from_context(void* ucVoid) {
   135   intptr_t* sp;
   136   intptr_t* fp;
   137   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
   138   return frame(sp, fp, epc.pc());
   139 }
   141 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
   142 // turned off by -fomit-frame-pointer,
   143 frame os::get_sender_for_C_frame(frame* fr) {
   144   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
   145 }
   147 intptr_t* _get_previous_fp() {
   148 #ifdef SPARC_WORKS
   149   register intptr_t **ebp;
   150   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
   151 #else
   152   register intptr_t **ebp __asm__ (SPELL_REG_FP);
   153 #endif
   154   return (intptr_t*) *ebp;   // we want what it points to.
   155 }
   158 frame os::current_frame() {
   159   intptr_t* fp = _get_previous_fp();
   160   frame myframe((intptr_t*)os::current_stack_pointer(),
   161                 (intptr_t*)fp,
   162                 CAST_FROM_FN_PTR(address, os::current_frame));
   163   if (os::is_first_C_frame(&myframe)) {
   164     // stack is not walkable
   165     return frame(NULL, NULL, NULL);
   166   } else {
   167     return os::get_sender_for_C_frame(&myframe);
   168   }
   169 }
   171 // Utility functions
   173 // From IA32 System Programming Guide
   174 enum {
   175   trap_page_fault = 0xE
   176 };
   178 extern "C" void Fetch32PFI () ;
   179 extern "C" void Fetch32Resume () ;
   180 #ifdef AMD64
   181 extern "C" void FetchNPFI () ;
   182 extern "C" void FetchNResume () ;
   183 #endif // AMD64
   185 extern "C" int
   186 JVM_handle_linux_signal(int sig,
   187                         siginfo_t* info,
   188                         void* ucVoid,
   189                         int abort_if_unrecognized) {
   190   ucontext_t* uc = (ucontext_t*) ucVoid;
   192   Thread* t = ThreadLocalStorage::get_thread_slow();
   194   SignalHandlerMark shm(t);
   196   // Note: it's not uncommon that JNI code uses signal/sigset to install
   197   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
   198   // or have a SIGILL handler when detecting CPU type). When that happens,
   199   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
   200   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
   201   // that do not require siginfo/ucontext first.
   203   if (sig == SIGPIPE || sig == SIGXFSZ) {
   204     // allow chained handler to go first
   205     if (os::Linux::chained_handler(sig, info, ucVoid)) {
   206       return true;
   207     } else {
   208       if (PrintMiscellaneous && (WizardMode || Verbose)) {
   209         char buf[64];
   210         warning("Ignoring %s - see bugs 4229104 or 646499219",
   211                 os::exception_name(sig, buf, sizeof(buf)));
   212       }
   213       return true;
   214     }
   215   }
   217   JavaThread* thread = NULL;
   218   VMThread* vmthread = NULL;
   219   if (os::Linux::signal_handlers_are_installed) {
   220     if (t != NULL ){
   221       if(t->is_Java_thread()) {
   222         thread = (JavaThread*)t;
   223       }
   224       else if(t->is_VM_thread()){
   225         vmthread = (VMThread *)t;
   226       }
   227     }
   228   }
   229 /*
   230   NOTE: does not seem to work on linux.
   231   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
   232     // can't decode this kind of signal
   233     info = NULL;
   234   } else {
   235     assert(sig == info->si_signo, "bad siginfo");
   236   }
   237 */
   238   // decide if this trap can be handled by a stub
   239   address stub = NULL;
   241   address pc          = NULL;
   243   //%note os_trap_1
   244   if (info != NULL && uc != NULL && thread != NULL) {
   245     pc = (address) os::Linux::ucontext_get_pc(uc);
   247     if (pc == (address) Fetch32PFI) {
   248        uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
   249        return 1 ;
   250     }
   251 #ifdef AMD64
   252     if (pc == (address) FetchNPFI) {
   253        uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
   254        return 1 ;
   255     }
   256 #endif // AMD64
   258     // Handle ALL stack overflow variations here
   259     if (sig == SIGSEGV) {
   260       address addr = (address) info->si_addr;
   262       // check if fault address is within thread stack
   263       if (addr < thread->stack_base() &&
   264           addr >= thread->stack_base() - thread->stack_size()) {
   265         // stack overflow
   266         if (thread->in_stack_yellow_zone(addr)) {
   267           thread->disable_stack_yellow_zone();
   268           if (thread->thread_state() == _thread_in_Java) {
   269             // Throw a stack overflow exception.  Guard pages will be reenabled
   270             // while unwinding the stack.
   271             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
   272           } else {
   273             // Thread was in the vm or native code.  Return and try to finish.
   274             return 1;
   275           }
   276         } else if (thread->in_stack_red_zone(addr)) {
   277           // Fatal red zone violation.  Disable the guard pages and fall through
   278           // to handle_unexpected_exception way down below.
   279           thread->disable_stack_red_zone();
   280           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
   281         } else {
   282           // Accessing stack address below sp may cause SEGV if current
   283           // thread has MAP_GROWSDOWN stack. This should only happen when
   284           // current thread was created by user code with MAP_GROWSDOWN flag
   285           // and then attached to VM. See notes in os_linux.cpp.
   286           if (thread->osthread()->expanding_stack() == 0) {
   287              thread->osthread()->set_expanding_stack();
   288              if (os::Linux::manually_expand_stack(thread, addr)) {
   289                thread->osthread()->clear_expanding_stack();
   290                return 1;
   291              }
   292              thread->osthread()->clear_expanding_stack();
   293           } else {
   294              fatal("recursive segv. expanding stack.");
   295           }
   296         }
   297       }
   298     }
   300     if (thread->thread_state() == _thread_in_Java) {
   301       // Java thread running in Java code => find exception handler if any
   302       // a fault inside compiled code, the interpreter, or a stub
   304       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
   305         stub = SharedRuntime::get_poll_stub(pc);
   306       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
   307         // BugId 4454115: A read from a MappedByteBuffer can fault
   308         // here if the underlying file has been truncated.
   309         // Do not crash the VM in such a case.
   310         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
   311         nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
   312         if (nm != NULL && nm->has_unsafe_access()) {
   313           stub = StubRoutines::handler_for_unsafe_access();
   314         }
   315       }
   316       else
   318 #ifdef AMD64
   319       if (sig == SIGFPE  &&
   320           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
   321         stub =
   322           SharedRuntime::
   323           continuation_for_implicit_exception(thread,
   324                                               pc,
   325                                               SharedRuntime::
   326                                               IMPLICIT_DIVIDE_BY_ZERO);
   327 #else
   328       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
   329         // HACK: si_code does not work on linux 2.2.12-20!!!
   330         int op = pc[0];
   331         if (op == 0xDB) {
   332           // FIST
   333           // TODO: The encoding of D2I in i486.ad can cause an exception
   334           // prior to the fist instruction if there was an invalid operation
   335           // pending. We want to dismiss that exception. From the win_32
   336           // side it also seems that if it really was the fist causing
   337           // the exception that we do the d2i by hand with different
   338           // rounding. Seems kind of weird.
   339           // NOTE: that we take the exception at the NEXT floating point instruction.
   340           assert(pc[0] == 0xDB, "not a FIST opcode");
   341           assert(pc[1] == 0x14, "not a FIST opcode");
   342           assert(pc[2] == 0x24, "not a FIST opcode");
   343           return true;
   344         } else if (op == 0xF7) {
   345           // IDIV
   346           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
   347         } else {
   348           // TODO: handle more cases if we are using other x86 instructions
   349           //   that can generate SIGFPE signal on linux.
   350           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
   351           fatal("please update this code.");
   352         }
   353 #endif // AMD64
   354       } else if (sig == SIGSEGV &&
   355                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
   356           // Determination of interpreter/vtable stub/compiled code null exception
   357           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
   358       }
   359     } else if (thread->thread_state() == _thread_in_vm &&
   360                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
   361                thread->doing_unsafe_access()) {
   362         stub = StubRoutines::handler_for_unsafe_access();
   363     }
   365     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
   366     // and the heap gets shrunk before the field access.
   367     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
   368       address addr = JNI_FastGetField::find_slowcase_pc(pc);
   369       if (addr != (address)-1) {
   370         stub = addr;
   371       }
   372     }
   374     // Check to see if we caught the safepoint code in the
   375     // process of write protecting the memory serialization page.
   376     // It write enables the page immediately after protecting it
   377     // so we can just return to retry the write.
   378     if ((sig == SIGSEGV) &&
   379         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
   380       // Block current thread until the memory serialize page permission restored.
   381       os::block_on_serialize_page_trap();
   382       return true;
   383     }
   384   }
   386 #ifndef AMD64
   387   // Execution protection violation
   388   //
   389   // This should be kept as the last step in the triage.  We don't
   390   // have a dedicated trap number for a no-execute fault, so be
   391   // conservative and allow other handlers the first shot.
   392   //
   393   // Note: We don't test that info->si_code == SEGV_ACCERR here.
   394   // this si_code is so generic that it is almost meaningless; and
   395   // the si_code for this condition may change in the future.
   396   // Furthermore, a false-positive should be harmless.
   397   if (UnguardOnExecutionViolation > 0 &&
   398       (sig == SIGSEGV || sig == SIGBUS) &&
   399       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
   400     int page_size = os::vm_page_size();
   401     address addr = (address) info->si_addr;
   402     address pc = os::Linux::ucontext_get_pc(uc);
   403     // Make sure the pc and the faulting address are sane.
   404     //
   405     // If an instruction spans a page boundary, and the page containing
   406     // the beginning of the instruction is executable but the following
   407     // page is not, the pc and the faulting address might be slightly
   408     // different - we still want to unguard the 2nd page in this case.
   409     //
   410     // 15 bytes seems to be a (very) safe value for max instruction size.
   411     bool pc_is_near_addr =
   412       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
   413     bool instr_spans_page_boundary =
   414       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
   415                        (intptr_t) page_size) > 0);
   417     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
   418       static volatile address last_addr =
   419         (address) os::non_memory_address_word();
   421       // In conservative mode, don't unguard unless the address is in the VM
   422       if (addr != last_addr &&
   423           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
   425         // Set memory to RWX and retry
   426         address page_start =
   427           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
   428         bool res = os::protect_memory((char*) page_start, page_size,
   429                                       os::MEM_PROT_RWX);
   431         if (PrintMiscellaneous && Verbose) {
   432           char buf[256];
   433           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
   434                        "at " INTPTR_FORMAT
   435                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
   436                        page_start, (res ? "success" : "failed"), errno);
   437           tty->print_raw_cr(buf);
   438         }
   439         stub = pc;
   441         // Set last_addr so if we fault again at the same address, we don't end
   442         // up in an endless loop.
   443         //
   444         // There are two potential complications here.  Two threads trapping at
   445         // the same address at the same time could cause one of the threads to
   446         // think it already unguarded, and abort the VM.  Likely very rare.
   447         //
   448         // The other race involves two threads alternately trapping at
   449         // different addresses and failing to unguard the page, resulting in
   450         // an endless loop.  This condition is probably even more unlikely than
   451         // the first.
   452         //
   453         // Although both cases could be avoided by using locks or thread local
   454         // last_addr, these solutions are unnecessary complication: this
   455         // handler is a best-effort safety net, not a complete solution.  It is
   456         // disabled by default and should only be used as a workaround in case
   457         // we missed any no-execute-unsafe VM code.
   459         last_addr = addr;
   460       }
   461     }
   462   }
   463 #endif // !AMD64
   465   if (stub != NULL) {
   466     // save all thread context in case we need to restore it
   467     if (thread != NULL) thread->set_saved_exception_pc(pc);
   469     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
   470     return true;
   471   }
   473   // signal-chaining
   474   if (os::Linux::chained_handler(sig, info, ucVoid)) {
   475      return true;
   476   }
   478   if (!abort_if_unrecognized) {
   479     // caller wants another chance, so give it to him
   480     return false;
   481   }
   483   if (pc == NULL && uc != NULL) {
   484     pc = os::Linux::ucontext_get_pc(uc);
   485   }
   487   // unmask current signal
   488   sigset_t newset;
   489   sigemptyset(&newset);
   490   sigaddset(&newset, sig);
   491   sigprocmask(SIG_UNBLOCK, &newset, NULL);
   493   VMError err(t, sig, pc, info, ucVoid);
   494   err.report_and_die();
   496   ShouldNotReachHere();
   497 }
   499 void os::Linux::init_thread_fpu_state(void) {
   500 #ifndef AMD64
   501   // set fpu to 53 bit precision
   502   set_fpu_control_word(0x27f);
   503 #endif // !AMD64
   504 }
   506 int os::Linux::get_fpu_control_word(void) {
   507 #ifdef AMD64
   508   return 0;
   509 #else
   510   int fpu_control;
   511   _FPU_GETCW(fpu_control);
   512   return fpu_control & 0xffff;
   513 #endif // AMD64
   514 }
   516 void os::Linux::set_fpu_control_word(int fpu_control) {
   517 #ifndef AMD64
   518   _FPU_SETCW(fpu_control);
   519 #endif // !AMD64
   520 }
   522 // Check that the linux kernel version is 2.4 or higher since earlier
   523 // versions do not support SSE without patches.
   524 bool os::supports_sse() {
   525 #ifdef AMD64
   526   return true;
   527 #else
   528   struct utsname uts;
   529   if( uname(&uts) != 0 ) return false; // uname fails?
   530   char *minor_string;
   531   int major = strtol(uts.release,&minor_string,10);
   532   int minor = strtol(minor_string+1,NULL,10);
   533   bool result = (major > 2 || (major==2 && minor >= 4));
   534 #ifndef PRODUCT
   535   if (PrintMiscellaneous && Verbose) {
   536     tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
   537                major,minor, result ? "DOES" : "does NOT");
   538   }
   539 #endif
   540   return result;
   541 #endif // AMD64
   542 }
   544 bool os::is_allocatable(size_t bytes) {
   545 #ifdef AMD64
   546   // unused on amd64?
   547   return true;
   548 #else
   550   if (bytes < 2 * G) {
   551     return true;
   552   }
   554   char* addr = reserve_memory(bytes, NULL);
   556   if (addr != NULL) {
   557     release_memory(addr, bytes);
   558   }
   560   return addr != NULL;
   561 #endif // AMD64
   562 }
   564 ////////////////////////////////////////////////////////////////////////////////
   565 // thread stack
   567 #ifdef AMD64
   568 size_t os::Linux::min_stack_allowed  = 64 * K;
   570 // amd64: pthread on amd64 is always in floating stack mode
   571 bool os::Linux::supports_variable_stack_size() {  return true; }
   572 #else
   573 size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
   575 #ifdef __GNUC__
   576 #define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
   577 #endif
   579 // Test if pthread library can support variable thread stack size. LinuxThreads
   580 // in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
   581 // in floating stack mode and NPTL support variable stack size.
   582 bool os::Linux::supports_variable_stack_size() {
   583   if (os::Linux::is_NPTL()) {
   584      // NPTL, yes
   585      return true;
   587   } else {
   588     // Note: We can't control default stack size when creating a thread.
   589     // If we use non-default stack size (pthread_attr_setstacksize), both
   590     // floating stack and non-floating stack LinuxThreads will return the
   591     // same value. This makes it impossible to implement this function by
   592     // detecting thread stack size directly.
   593     //
   594     // An alternative approach is to check %gs. Fixed-stack LinuxThreads
   595     // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
   596     // %gs (either as LDT selector or GDT selector, depending on kernel)
   597     // to access thread specific data.
   598     //
   599     // Note that %gs is a reserved glibc register since early 2001, so
   600     // applications are not allowed to change its value (Ulrich Drepper from
   601     // Redhat confirmed that all known offenders have been modified to use
   602     // either %fs or TSD). In the worst case scenario, when VM is embedded in
   603     // a native application that plays with %gs, we might see non-zero %gs
   604     // even LinuxThreads is running in fixed stack mode. As the result, we'll
   605     // return true and skip _thread_safety_check(), so we may not be able to
   606     // detect stack-heap collisions. But otherwise it's harmless.
   607     //
   608 #ifdef __GNUC__
   609     return (GET_GS() != 0);
   610 #else
   611     return false;
   612 #endif
   613   }
   614 }
   615 #endif // AMD64
   617 // return default stack size for thr_type
   618 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
   619   // default stack size (compiler thread needs larger stack)
   620 #ifdef AMD64
   621   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
   622 #else
   623   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
   624 #endif // AMD64
   625   return s;
   626 }
   628 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
   629   // Creating guard page is very expensive. Java thread has HotSpot
   630   // guard page, only enable glibc guard page for non-Java threads.
   631   return (thr_type == java_thread ? 0 : page_size());
   632 }
   634 // Java thread:
   635 //
   636 //   Low memory addresses
   637 //    +------------------------+
   638 //    |                        |\  JavaThread created by VM does not have glibc
   639 //    |    glibc guard page    | - guard, attached Java thread usually has
   640 //    |                        |/  1 page glibc guard.
   641 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
   642 //    |                        |\
   643 //    |  HotSpot Guard Pages   | - red and yellow pages
   644 //    |                        |/
   645 //    +------------------------+ JavaThread::stack_yellow_zone_base()
   646 //    |                        |\
   647 //    |      Normal Stack      | -
   648 //    |                        |/
   649 // P2 +------------------------+ Thread::stack_base()
   650 //
   651 // Non-Java thread:
   652 //
   653 //   Low memory addresses
   654 //    +------------------------+
   655 //    |                        |\
   656 //    |  glibc guard page      | - usually 1 page
   657 //    |                        |/
   658 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
   659 //    |                        |\
   660 //    |      Normal Stack      | -
   661 //    |                        |/
   662 // P2 +------------------------+ Thread::stack_base()
   663 //
   664 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
   665 //    pthread_attr_getstack()
   667 static void current_stack_region(address * bottom, size_t * size) {
   668   if (os::Linux::is_initial_thread()) {
   669      // initial thread needs special handling because pthread_getattr_np()
   670      // may return bogus value.
   671      *bottom = os::Linux::initial_thread_stack_bottom();
   672      *size   = os::Linux::initial_thread_stack_size();
   673   } else {
   674      pthread_attr_t attr;
   676      int rslt = pthread_getattr_np(pthread_self(), &attr);
   678      // JVM needs to know exact stack location, abort if it fails
   679      if (rslt != 0) {
   680        if (rslt == ENOMEM) {
   681          vm_exit_out_of_memory(0, "pthread_getattr_np");
   682        } else {
   683          fatal1("pthread_getattr_np failed with errno = %d", rslt);
   684        }
   685      }
   687      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
   688          fatal("Can not locate current stack attributes!");
   689      }
   691      pthread_attr_destroy(&attr);
   693   }
   694   assert(os::current_stack_pointer() >= *bottom &&
   695          os::current_stack_pointer() < *bottom + *size, "just checking");
   696 }
   698 address os::current_stack_base() {
   699   address bottom;
   700   size_t size;
   701   current_stack_region(&bottom, &size);
   702   return (bottom + size);
   703 }
   705 size_t os::current_stack_size() {
   706   // stack size includes normal stack and HotSpot guard pages
   707   address bottom;
   708   size_t size;
   709   current_stack_region(&bottom, &size);
   710   return size;
   711 }
   713 /////////////////////////////////////////////////////////////////////////////
   714 // helper functions for fatal error handler
   716 void os::print_context(outputStream *st, void *context) {
   717   if (context == NULL) return;
   719   ucontext_t *uc = (ucontext_t*)context;
   720   st->print_cr("Registers:");
   721 #ifdef AMD64
   722   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
   723   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
   724   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
   725   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
   726   st->cr();
   727   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
   728   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
   729   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
   730   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
   731   st->cr();
   732   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
   733   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
   734   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
   735   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
   736   st->cr();
   737   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
   738   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
   739   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
   740   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
   741   st->cr();
   742   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
   743   st->print(", EFL=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
   744   st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
   745   st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
   746   st->cr();
   747   st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
   748 #else
   749   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
   750   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
   751   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
   752   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
   753   st->cr();
   754   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
   755   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
   756   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
   757   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
   758   st->cr();
   759   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
   760   st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
   761   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
   762 #endif // AMD64
   763   st->cr();
   764   st->cr();
   766   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
   767   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
   768   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
   769   st->cr();
   771   // Note: it may be unsafe to inspect memory near pc. For example, pc may
   772   // point to garbage if entry point in an nmethod is corrupted. Leave
   773   // this at the end, and hope for the best.
   774   address pc = os::Linux::ucontext_get_pc(uc);
   775   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
   776   print_hex_dump(st, pc - 16, pc + 16, sizeof(char));
   777 }
   779 void os::setup_fpu() {
   780 #ifndef AMD64
   781   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
   782   __asm__ volatile (  "fldcw (%0)" :
   783                       : "r" (fpu_cntrl) : "memory");
   784 #endif // !AMD64
   785 }

mercurial