src/cpu/x86/vm/stubGenerator_x86_64.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 947
db4caa99ef11
child 1082
bd441136a5ce
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 2003-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_stubGenerator_x86_64.cpp.incl"
    28 // Declaration and definition of StubGenerator (no .hpp file).
    29 // For a more detailed description of the stub routine structure
    30 // see the comment in stubRoutines.hpp
    32 #define __ _masm->
    33 #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8)
    34 #define a__ ((Assembler*)_masm)->
    36 #ifdef PRODUCT
    37 #define BLOCK_COMMENT(str) /* nothing */
    38 #else
    39 #define BLOCK_COMMENT(str) __ block_comment(str)
    40 #endif
    42 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    43 const int MXCSR_MASK = 0xFFC0;  // Mask out any pending exceptions
    45 // Stub Code definitions
    47 static address handle_unsafe_access() {
    48   JavaThread* thread = JavaThread::current();
    49   address pc = thread->saved_exception_pc();
    50   // pc is the instruction which we must emulate
    51   // doing a no-op is fine:  return garbage from the load
    52   // therefore, compute npc
    53   address npc = Assembler::locate_next_instruction(pc);
    55   // request an async exception
    56   thread->set_pending_unsafe_access_error();
    58   // return address of next instruction to execute
    59   return npc;
    60 }
    62 class StubGenerator: public StubCodeGenerator {
    63  private:
    65 #ifdef PRODUCT
    66 #define inc_counter_np(counter) (0)
    67 #else
    68   void inc_counter_np_(int& counter) {
    69     __ incrementl(ExternalAddress((address)&counter));
    70   }
    71 #define inc_counter_np(counter) \
    72   BLOCK_COMMENT("inc_counter " #counter); \
    73   inc_counter_np_(counter);
    74 #endif
    76   // Call stubs are used to call Java from C
    77   //
    78   // Linux Arguments:
    79   //    c_rarg0:   call wrapper address                   address
    80   //    c_rarg1:   result                                 address
    81   //    c_rarg2:   result type                            BasicType
    82   //    c_rarg3:   method                                 methodOop
    83   //    c_rarg4:   (interpreter) entry point              address
    84   //    c_rarg5:   parameters                             intptr_t*
    85   //    16(rbp): parameter size (in words)              int
    86   //    24(rbp): thread                                 Thread*
    87   //
    88   //     [ return_from_Java     ] <--- rsp
    89   //     [ argument word n      ]
    90   //      ...
    91   // -12 [ argument word 1      ]
    92   // -11 [ saved r15            ] <--- rsp_after_call
    93   // -10 [ saved r14            ]
    94   //  -9 [ saved r13            ]
    95   //  -8 [ saved r12            ]
    96   //  -7 [ saved rbx            ]
    97   //  -6 [ call wrapper         ]
    98   //  -5 [ result               ]
    99   //  -4 [ result type          ]
   100   //  -3 [ method               ]
   101   //  -2 [ entry point          ]
   102   //  -1 [ parameters           ]
   103   //   0 [ saved rbp            ] <--- rbp
   104   //   1 [ return address       ]
   105   //   2 [ parameter size       ]
   106   //   3 [ thread               ]
   107   //
   108   // Windows Arguments:
   109   //    c_rarg0:   call wrapper address                   address
   110   //    c_rarg1:   result                                 address
   111   //    c_rarg2:   result type                            BasicType
   112   //    c_rarg3:   method                                 methodOop
   113   //    48(rbp): (interpreter) entry point              address
   114   //    56(rbp): parameters                             intptr_t*
   115   //    64(rbp): parameter size (in words)              int
   116   //    72(rbp): thread                                 Thread*
   117   //
   118   //     [ return_from_Java     ] <--- rsp
   119   //     [ argument word n      ]
   120   //      ...
   121   //  -8 [ argument word 1      ]
   122   //  -7 [ saved r15            ] <--- rsp_after_call
   123   //  -6 [ saved r14            ]
   124   //  -5 [ saved r13            ]
   125   //  -4 [ saved r12            ]
   126   //  -3 [ saved rdi            ]
   127   //  -2 [ saved rsi            ]
   128   //  -1 [ saved rbx            ]
   129   //   0 [ saved rbp            ] <--- rbp
   130   //   1 [ return address       ]
   131   //   2 [ call wrapper         ]
   132   //   3 [ result               ]
   133   //   4 [ result type          ]
   134   //   5 [ method               ]
   135   //   6 [ entry point          ]
   136   //   7 [ parameters           ]
   137   //   8 [ parameter size       ]
   138   //   9 [ thread               ]
   139   //
   140   //    Windows reserves the callers stack space for arguments 1-4.
   141   //    We spill c_rarg0-c_rarg3 to this space.
   143   // Call stub stack layout word offsets from rbp
   144   enum call_stub_layout {
   145 #ifdef _WIN64
   146     rsp_after_call_off = -7,
   147     r15_off            = rsp_after_call_off,
   148     r14_off            = -6,
   149     r13_off            = -5,
   150     r12_off            = -4,
   151     rdi_off            = -3,
   152     rsi_off            = -2,
   153     rbx_off            = -1,
   154     rbp_off            =  0,
   155     retaddr_off        =  1,
   156     call_wrapper_off   =  2,
   157     result_off         =  3,
   158     result_type_off    =  4,
   159     method_off         =  5,
   160     entry_point_off    =  6,
   161     parameters_off     =  7,
   162     parameter_size_off =  8,
   163     thread_off         =  9
   164 #else
   165     rsp_after_call_off = -12,
   166     mxcsr_off          = rsp_after_call_off,
   167     r15_off            = -11,
   168     r14_off            = -10,
   169     r13_off            = -9,
   170     r12_off            = -8,
   171     rbx_off            = -7,
   172     call_wrapper_off   = -6,
   173     result_off         = -5,
   174     result_type_off    = -4,
   175     method_off         = -3,
   176     entry_point_off    = -2,
   177     parameters_off     = -1,
   178     rbp_off            =  0,
   179     retaddr_off        =  1,
   180     parameter_size_off =  2,
   181     thread_off         =  3
   182 #endif
   183   };
   185   address generate_call_stub(address& return_address) {
   186     assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 &&
   187            (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
   188            "adjust this code");
   189     StubCodeMark mark(this, "StubRoutines", "call_stub");
   190     address start = __ pc();
   192     // same as in generate_catch_exception()!
   193     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
   195     const Address call_wrapper  (rbp, call_wrapper_off   * wordSize);
   196     const Address result        (rbp, result_off         * wordSize);
   197     const Address result_type   (rbp, result_type_off    * wordSize);
   198     const Address method        (rbp, method_off         * wordSize);
   199     const Address entry_point   (rbp, entry_point_off    * wordSize);
   200     const Address parameters    (rbp, parameters_off     * wordSize);
   201     const Address parameter_size(rbp, parameter_size_off * wordSize);
   203     // same as in generate_catch_exception()!
   204     const Address thread        (rbp, thread_off         * wordSize);
   206     const Address r15_save(rbp, r15_off * wordSize);
   207     const Address r14_save(rbp, r14_off * wordSize);
   208     const Address r13_save(rbp, r13_off * wordSize);
   209     const Address r12_save(rbp, r12_off * wordSize);
   210     const Address rbx_save(rbp, rbx_off * wordSize);
   212     // stub code
   213     __ enter();
   214     __ subptr(rsp, -rsp_after_call_off * wordSize);
   216     // save register parameters
   217 #ifndef _WIN64
   218     __ movptr(parameters,   c_rarg5); // parameters
   219     __ movptr(entry_point,  c_rarg4); // entry_point
   220 #endif
   222     __ movptr(method,       c_rarg3); // method
   223     __ movl(result_type,  c_rarg2);   // result type
   224     __ movptr(result,       c_rarg1); // result
   225     __ movptr(call_wrapper, c_rarg0); // call wrapper
   227     // save regs belonging to calling function
   228     __ movptr(rbx_save, rbx);
   229     __ movptr(r12_save, r12);
   230     __ movptr(r13_save, r13);
   231     __ movptr(r14_save, r14);
   232     __ movptr(r15_save, r15);
   234 #ifdef _WIN64
   235     const Address rdi_save(rbp, rdi_off * wordSize);
   236     const Address rsi_save(rbp, rsi_off * wordSize);
   238     __ movptr(rsi_save, rsi);
   239     __ movptr(rdi_save, rdi);
   240 #else
   241     const Address mxcsr_save(rbp, mxcsr_off * wordSize);
   242     {
   243       Label skip_ldmx;
   244       __ stmxcsr(mxcsr_save);
   245       __ movl(rax, mxcsr_save);
   246       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   247       ExternalAddress mxcsr_std(StubRoutines::x86::mxcsr_std());
   248       __ cmp32(rax, mxcsr_std);
   249       __ jcc(Assembler::equal, skip_ldmx);
   250       __ ldmxcsr(mxcsr_std);
   251       __ bind(skip_ldmx);
   252     }
   253 #endif
   255     // Load up thread register
   256     __ movptr(r15_thread, thread);
   257     __ reinit_heapbase();
   259 #ifdef ASSERT
   260     // make sure we have no pending exceptions
   261     {
   262       Label L;
   263       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   264       __ jcc(Assembler::equal, L);
   265       __ stop("StubRoutines::call_stub: entered with pending exception");
   266       __ bind(L);
   267     }
   268 #endif
   270     // pass parameters if any
   271     BLOCK_COMMENT("pass parameters if any");
   272     Label parameters_done;
   273     __ movl(c_rarg3, parameter_size);
   274     __ testl(c_rarg3, c_rarg3);
   275     __ jcc(Assembler::zero, parameters_done);
   277     Label loop;
   278     __ movptr(c_rarg2, parameters);       // parameter pointer
   279     __ movl(c_rarg1, c_rarg3);            // parameter counter is in c_rarg1
   280     __ BIND(loop);
   281     if (TaggedStackInterpreter) {
   282       __ movl(rax, Address(c_rarg2, 0)); // get tag
   283       __ addptr(c_rarg2, wordSize);      // advance to next tag
   284       __ push(rax);                      // pass tag
   285     }
   286     __ movptr(rax, Address(c_rarg2, 0));// get parameter
   287     __ addptr(c_rarg2, wordSize);       // advance to next parameter
   288     __ decrementl(c_rarg1);             // decrement counter
   289     __ push(rax);                       // pass parameter
   290     __ jcc(Assembler::notZero, loop);
   292     // call Java function
   293     __ BIND(parameters_done);
   294     __ movptr(rbx, method);             // get methodOop
   295     __ movptr(c_rarg1, entry_point);    // get entry_point
   296     __ mov(r13, rsp);                   // set sender sp
   297     BLOCK_COMMENT("call Java function");
   298     __ call(c_rarg1);
   300     BLOCK_COMMENT("call_stub_return_address:");
   301     return_address = __ pc();
   303     // store result depending on type (everything that is not
   304     // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
   305     __ movptr(c_rarg0, result);
   306     Label is_long, is_float, is_double, exit;
   307     __ movl(c_rarg1, result_type);
   308     __ cmpl(c_rarg1, T_OBJECT);
   309     __ jcc(Assembler::equal, is_long);
   310     __ cmpl(c_rarg1, T_LONG);
   311     __ jcc(Assembler::equal, is_long);
   312     __ cmpl(c_rarg1, T_FLOAT);
   313     __ jcc(Assembler::equal, is_float);
   314     __ cmpl(c_rarg1, T_DOUBLE);
   315     __ jcc(Assembler::equal, is_double);
   317     // handle T_INT case
   318     __ movl(Address(c_rarg0, 0), rax);
   320     __ BIND(exit);
   322     // pop parameters
   323     __ lea(rsp, rsp_after_call);
   325 #ifdef ASSERT
   326     // verify that threads correspond
   327     {
   328       Label L, S;
   329       __ cmpptr(r15_thread, thread);
   330       __ jcc(Assembler::notEqual, S);
   331       __ get_thread(rbx);
   332       __ cmpptr(r15_thread, rbx);
   333       __ jcc(Assembler::equal, L);
   334       __ bind(S);
   335       __ jcc(Assembler::equal, L);
   336       __ stop("StubRoutines::call_stub: threads must correspond");
   337       __ bind(L);
   338     }
   339 #endif
   341     // restore regs belonging to calling function
   342     __ movptr(r15, r15_save);
   343     __ movptr(r14, r14_save);
   344     __ movptr(r13, r13_save);
   345     __ movptr(r12, r12_save);
   346     __ movptr(rbx, rbx_save);
   348 #ifdef _WIN64
   349     __ movptr(rdi, rdi_save);
   350     __ movptr(rsi, rsi_save);
   351 #else
   352     __ ldmxcsr(mxcsr_save);
   353 #endif
   355     // restore rsp
   356     __ addptr(rsp, -rsp_after_call_off * wordSize);
   358     // return
   359     __ pop(rbp);
   360     __ ret(0);
   362     // handle return types different from T_INT
   363     __ BIND(is_long);
   364     __ movq(Address(c_rarg0, 0), rax);
   365     __ jmp(exit);
   367     __ BIND(is_float);
   368     __ movflt(Address(c_rarg0, 0), xmm0);
   369     __ jmp(exit);
   371     __ BIND(is_double);
   372     __ movdbl(Address(c_rarg0, 0), xmm0);
   373     __ jmp(exit);
   375     return start;
   376   }
   378   // Return point for a Java call if there's an exception thrown in
   379   // Java code.  The exception is caught and transformed into a
   380   // pending exception stored in JavaThread that can be tested from
   381   // within the VM.
   382   //
   383   // Note: Usually the parameters are removed by the callee. In case
   384   // of an exception crossing an activation frame boundary, that is
   385   // not the case if the callee is compiled code => need to setup the
   386   // rsp.
   387   //
   388   // rax: exception oop
   390   address generate_catch_exception() {
   391     StubCodeMark mark(this, "StubRoutines", "catch_exception");
   392     address start = __ pc();
   394     // same as in generate_call_stub():
   395     const Address rsp_after_call(rbp, rsp_after_call_off * wordSize);
   396     const Address thread        (rbp, thread_off         * wordSize);
   398 #ifdef ASSERT
   399     // verify that threads correspond
   400     {
   401       Label L, S;
   402       __ cmpptr(r15_thread, thread);
   403       __ jcc(Assembler::notEqual, S);
   404       __ get_thread(rbx);
   405       __ cmpptr(r15_thread, rbx);
   406       __ jcc(Assembler::equal, L);
   407       __ bind(S);
   408       __ stop("StubRoutines::catch_exception: threads must correspond");
   409       __ bind(L);
   410     }
   411 #endif
   413     // set pending exception
   414     __ verify_oop(rax);
   416     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax);
   417     __ lea(rscratch1, ExternalAddress((address)__FILE__));
   418     __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1);
   419     __ movl(Address(r15_thread, Thread::exception_line_offset()), (int)  __LINE__);
   421     // complete return to VM
   422     assert(StubRoutines::_call_stub_return_address != NULL,
   423            "_call_stub_return_address must have been generated before");
   424     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
   426     return start;
   427   }
   429   // Continuation point for runtime calls returning with a pending
   430   // exception.  The pending exception check happened in the runtime
   431   // or native call stub.  The pending exception in Thread is
   432   // converted into a Java-level exception.
   433   //
   434   // Contract with Java-level exception handlers:
   435   // rax: exception
   436   // rdx: throwing pc
   437   //
   438   // NOTE: At entry of this stub, exception-pc must be on stack !!
   440   address generate_forward_exception() {
   441     StubCodeMark mark(this, "StubRoutines", "forward exception");
   442     address start = __ pc();
   444     // Upon entry, the sp points to the return address returning into
   445     // Java (interpreted or compiled) code; i.e., the return address
   446     // becomes the throwing pc.
   447     //
   448     // Arguments pushed before the runtime call are still on the stack
   449     // but the exception handler will reset the stack pointer ->
   450     // ignore them.  A potential result in registers can be ignored as
   451     // well.
   453 #ifdef ASSERT
   454     // make sure this code is only executed if there is a pending exception
   455     {
   456       Label L;
   457       __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL);
   458       __ jcc(Assembler::notEqual, L);
   459       __ stop("StubRoutines::forward exception: no pending exception (1)");
   460       __ bind(L);
   461     }
   462 #endif
   464     // compute exception handler into rbx
   465     __ movptr(c_rarg0, Address(rsp, 0));
   466     BLOCK_COMMENT("call exception_handler_for_return_address");
   467     __ call_VM_leaf(CAST_FROM_FN_PTR(address,
   468                          SharedRuntime::exception_handler_for_return_address),
   469                     c_rarg0);
   470     __ mov(rbx, rax);
   472     // setup rax & rdx, remove return address & clear pending exception
   473     __ pop(rdx);
   474     __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
   475     __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
   477 #ifdef ASSERT
   478     // make sure exception is set
   479     {
   480       Label L;
   481       __ testptr(rax, rax);
   482       __ jcc(Assembler::notEqual, L);
   483       __ stop("StubRoutines::forward exception: no pending exception (2)");
   484       __ bind(L);
   485     }
   486 #endif
   488     // continue at exception handler (return address removed)
   489     // rax: exception
   490     // rbx: exception handler
   491     // rdx: throwing pc
   492     __ verify_oop(rax);
   493     __ jmp(rbx);
   495     return start;
   496   }
   498   // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest)
   499   //
   500   // Arguments :
   501   //    c_rarg0: exchange_value
   502   //    c_rarg0: dest
   503   //
   504   // Result:
   505   //    *dest <- ex, return (orig *dest)
   506   address generate_atomic_xchg() {
   507     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
   508     address start = __ pc();
   510     __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow
   511     __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK
   512     __ ret(0);
   514     return start;
   515   }
   517   // Support for intptr_t atomic::xchg_ptr(intptr_t exchange_value, volatile intptr_t* dest)
   518   //
   519   // Arguments :
   520   //    c_rarg0: exchange_value
   521   //    c_rarg1: dest
   522   //
   523   // Result:
   524   //    *dest <- ex, return (orig *dest)
   525   address generate_atomic_xchg_ptr() {
   526     StubCodeMark mark(this, "StubRoutines", "atomic_xchg_ptr");
   527     address start = __ pc();
   529     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
   530     __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK
   531     __ ret(0);
   533     return start;
   534   }
   536   // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest,
   537   //                                         jint compare_value)
   538   //
   539   // Arguments :
   540   //    c_rarg0: exchange_value
   541   //    c_rarg1: dest
   542   //    c_rarg2: compare_value
   543   //
   544   // Result:
   545   //    if ( compare_value == *dest ) {
   546   //       *dest = exchange_value
   547   //       return compare_value;
   548   //    else
   549   //       return *dest;
   550   address generate_atomic_cmpxchg() {
   551     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
   552     address start = __ pc();
   554     __ movl(rax, c_rarg2);
   555    if ( os::is_MP() ) __ lock();
   556     __ cmpxchgl(c_rarg0, Address(c_rarg1, 0));
   557     __ ret(0);
   559     return start;
   560   }
   562   // Support for jint atomic::atomic_cmpxchg_long(jlong exchange_value,
   563   //                                             volatile jlong* dest,
   564   //                                             jlong compare_value)
   565   // Arguments :
   566   //    c_rarg0: exchange_value
   567   //    c_rarg1: dest
   568   //    c_rarg2: compare_value
   569   //
   570   // Result:
   571   //    if ( compare_value == *dest ) {
   572   //       *dest = exchange_value
   573   //       return compare_value;
   574   //    else
   575   //       return *dest;
   576   address generate_atomic_cmpxchg_long() {
   577     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
   578     address start = __ pc();
   580     __ movq(rax, c_rarg2);
   581    if ( os::is_MP() ) __ lock();
   582     __ cmpxchgq(c_rarg0, Address(c_rarg1, 0));
   583     __ ret(0);
   585     return start;
   586   }
   588   // Support for jint atomic::add(jint add_value, volatile jint* dest)
   589   //
   590   // Arguments :
   591   //    c_rarg0: add_value
   592   //    c_rarg1: dest
   593   //
   594   // Result:
   595   //    *dest += add_value
   596   //    return *dest;
   597   address generate_atomic_add() {
   598     StubCodeMark mark(this, "StubRoutines", "atomic_add");
   599     address start = __ pc();
   601     __ movl(rax, c_rarg0);
   602    if ( os::is_MP() ) __ lock();
   603     __ xaddl(Address(c_rarg1, 0), c_rarg0);
   604     __ addl(rax, c_rarg0);
   605     __ ret(0);
   607     return start;
   608   }
   610   // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest)
   611   //
   612   // Arguments :
   613   //    c_rarg0: add_value
   614   //    c_rarg1: dest
   615   //
   616   // Result:
   617   //    *dest += add_value
   618   //    return *dest;
   619   address generate_atomic_add_ptr() {
   620     StubCodeMark mark(this, "StubRoutines", "atomic_add_ptr");
   621     address start = __ pc();
   623     __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow
   624    if ( os::is_MP() ) __ lock();
   625     __ xaddptr(Address(c_rarg1, 0), c_rarg0);
   626     __ addptr(rax, c_rarg0);
   627     __ ret(0);
   629     return start;
   630   }
   632   // Support for intptr_t OrderAccess::fence()
   633   //
   634   // Arguments :
   635   //
   636   // Result:
   637   address generate_orderaccess_fence() {
   638     StubCodeMark mark(this, "StubRoutines", "orderaccess_fence");
   639     address start = __ pc();
   640     __ mfence();
   641     __ ret(0);
   643     return start;
   644   }
   646   // Support for intptr_t get_previous_fp()
   647   //
   648   // This routine is used to find the previous frame pointer for the
   649   // caller (current_frame_guess). This is used as part of debugging
   650   // ps() is seemingly lost trying to find frames.
   651   // This code assumes that caller current_frame_guess) has a frame.
   652   address generate_get_previous_fp() {
   653     StubCodeMark mark(this, "StubRoutines", "get_previous_fp");
   654     const Address old_fp(rbp, 0);
   655     const Address older_fp(rax, 0);
   656     address start = __ pc();
   658     __ enter();
   659     __ movptr(rax, old_fp); // callers fp
   660     __ movptr(rax, older_fp); // the frame for ps()
   661     __ pop(rbp);
   662     __ ret(0);
   664     return start;
   665   }
   667   //----------------------------------------------------------------------------------------------------
   668   // Support for void verify_mxcsr()
   669   //
   670   // This routine is used with -Xcheck:jni to verify that native
   671   // JNI code does not return to Java code without restoring the
   672   // MXCSR register to our expected state.
   674   address generate_verify_mxcsr() {
   675     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
   676     address start = __ pc();
   678     const Address mxcsr_save(rsp, 0);
   680     if (CheckJNICalls) {
   681       Label ok_ret;
   682       __ push(rax);
   683       __ subptr(rsp, wordSize);      // allocate a temp location
   684       __ stmxcsr(mxcsr_save);
   685       __ movl(rax, mxcsr_save);
   686       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
   687       __ cmpl(rax, *(int *)(StubRoutines::x86::mxcsr_std()));
   688       __ jcc(Assembler::equal, ok_ret);
   690       __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall");
   692       __ ldmxcsr(ExternalAddress(StubRoutines::x86::mxcsr_std()));
   694       __ bind(ok_ret);
   695       __ addptr(rsp, wordSize);
   696       __ pop(rax);
   697     }
   699     __ ret(0);
   701     return start;
   702   }
   704   address generate_f2i_fixup() {
   705     StubCodeMark mark(this, "StubRoutines", "f2i_fixup");
   706     Address inout(rsp, 5 * wordSize); // return address + 4 saves
   708     address start = __ pc();
   710     Label L;
   712     __ push(rax);
   713     __ push(c_rarg3);
   714     __ push(c_rarg2);
   715     __ push(c_rarg1);
   717     __ movl(rax, 0x7f800000);
   718     __ xorl(c_rarg3, c_rarg3);
   719     __ movl(c_rarg2, inout);
   720     __ movl(c_rarg1, c_rarg2);
   721     __ andl(c_rarg1, 0x7fffffff);
   722     __ cmpl(rax, c_rarg1); // NaN? -> 0
   723     __ jcc(Assembler::negative, L);
   724     __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint
   725     __ movl(c_rarg3, 0x80000000);
   726     __ movl(rax, 0x7fffffff);
   727     __ cmovl(Assembler::positive, c_rarg3, rax);
   729     __ bind(L);
   730     __ movptr(inout, c_rarg3);
   732     __ pop(c_rarg1);
   733     __ pop(c_rarg2);
   734     __ pop(c_rarg3);
   735     __ pop(rax);
   737     __ ret(0);
   739     return start;
   740   }
   742   address generate_f2l_fixup() {
   743     StubCodeMark mark(this, "StubRoutines", "f2l_fixup");
   744     Address inout(rsp, 5 * wordSize); // return address + 4 saves
   745     address start = __ pc();
   747     Label L;
   749     __ push(rax);
   750     __ push(c_rarg3);
   751     __ push(c_rarg2);
   752     __ push(c_rarg1);
   754     __ movl(rax, 0x7f800000);
   755     __ xorl(c_rarg3, c_rarg3);
   756     __ movl(c_rarg2, inout);
   757     __ movl(c_rarg1, c_rarg2);
   758     __ andl(c_rarg1, 0x7fffffff);
   759     __ cmpl(rax, c_rarg1); // NaN? -> 0
   760     __ jcc(Assembler::negative, L);
   761     __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong
   762     __ mov64(c_rarg3, 0x8000000000000000);
   763     __ mov64(rax, 0x7fffffffffffffff);
   764     __ cmov(Assembler::positive, c_rarg3, rax);
   766     __ bind(L);
   767     __ movptr(inout, c_rarg3);
   769     __ pop(c_rarg1);
   770     __ pop(c_rarg2);
   771     __ pop(c_rarg3);
   772     __ pop(rax);
   774     __ ret(0);
   776     return start;
   777   }
   779   address generate_d2i_fixup() {
   780     StubCodeMark mark(this, "StubRoutines", "d2i_fixup");
   781     Address inout(rsp, 6 * wordSize); // return address + 5 saves
   783     address start = __ pc();
   785     Label L;
   787     __ push(rax);
   788     __ push(c_rarg3);
   789     __ push(c_rarg2);
   790     __ push(c_rarg1);
   791     __ push(c_rarg0);
   793     __ movl(rax, 0x7ff00000);
   794     __ movq(c_rarg2, inout);
   795     __ movl(c_rarg3, c_rarg2);
   796     __ mov(c_rarg1, c_rarg2);
   797     __ mov(c_rarg0, c_rarg2);
   798     __ negl(c_rarg3);
   799     __ shrptr(c_rarg1, 0x20);
   800     __ orl(c_rarg3, c_rarg2);
   801     __ andl(c_rarg1, 0x7fffffff);
   802     __ xorl(c_rarg2, c_rarg2);
   803     __ shrl(c_rarg3, 0x1f);
   804     __ orl(c_rarg1, c_rarg3);
   805     __ cmpl(rax, c_rarg1);
   806     __ jcc(Assembler::negative, L); // NaN -> 0
   807     __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint
   808     __ movl(c_rarg2, 0x80000000);
   809     __ movl(rax, 0x7fffffff);
   810     __ cmov(Assembler::positive, c_rarg2, rax);
   812     __ bind(L);
   813     __ movptr(inout, c_rarg2);
   815     __ pop(c_rarg0);
   816     __ pop(c_rarg1);
   817     __ pop(c_rarg2);
   818     __ pop(c_rarg3);
   819     __ pop(rax);
   821     __ ret(0);
   823     return start;
   824   }
   826   address generate_d2l_fixup() {
   827     StubCodeMark mark(this, "StubRoutines", "d2l_fixup");
   828     Address inout(rsp, 6 * wordSize); // return address + 5 saves
   830     address start = __ pc();
   832     Label L;
   834     __ push(rax);
   835     __ push(c_rarg3);
   836     __ push(c_rarg2);
   837     __ push(c_rarg1);
   838     __ push(c_rarg0);
   840     __ movl(rax, 0x7ff00000);
   841     __ movq(c_rarg2, inout);
   842     __ movl(c_rarg3, c_rarg2);
   843     __ mov(c_rarg1, c_rarg2);
   844     __ mov(c_rarg0, c_rarg2);
   845     __ negl(c_rarg3);
   846     __ shrptr(c_rarg1, 0x20);
   847     __ orl(c_rarg3, c_rarg2);
   848     __ andl(c_rarg1, 0x7fffffff);
   849     __ xorl(c_rarg2, c_rarg2);
   850     __ shrl(c_rarg3, 0x1f);
   851     __ orl(c_rarg1, c_rarg3);
   852     __ cmpl(rax, c_rarg1);
   853     __ jcc(Assembler::negative, L); // NaN -> 0
   854     __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong
   855     __ mov64(c_rarg2, 0x8000000000000000);
   856     __ mov64(rax, 0x7fffffffffffffff);
   857     __ cmovq(Assembler::positive, c_rarg2, rax);
   859     __ bind(L);
   860     __ movq(inout, c_rarg2);
   862     __ pop(c_rarg0);
   863     __ pop(c_rarg1);
   864     __ pop(c_rarg2);
   865     __ pop(c_rarg3);
   866     __ pop(rax);
   868     __ ret(0);
   870     return start;
   871   }
   873   address generate_fp_mask(const char *stub_name, int64_t mask) {
   874     StubCodeMark mark(this, "StubRoutines", stub_name);
   876     __ align(16);
   877     address start = __ pc();
   879     __ emit_data64( mask, relocInfo::none );
   880     __ emit_data64( mask, relocInfo::none );
   882     return start;
   883   }
   885   // The following routine generates a subroutine to throw an
   886   // asynchronous UnknownError when an unsafe access gets a fault that
   887   // could not be reasonably prevented by the programmer.  (Example:
   888   // SIGBUS/OBJERR.)
   889   address generate_handler_for_unsafe_access() {
   890     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
   891     address start = __ pc();
   893     __ push(0);                       // hole for return address-to-be
   894     __ pusha();                       // push registers
   895     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
   897     __ subptr(rsp, frame::arg_reg_save_area_bytes);
   898     BLOCK_COMMENT("call handle_unsafe_access");
   899     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
   900     __ addptr(rsp, frame::arg_reg_save_area_bytes);
   902     __ movptr(next_pc, rax);          // stuff next address
   903     __ popa();
   904     __ ret(0);                        // jump to next address
   906     return start;
   907   }
   909   // Non-destructive plausibility checks for oops
   910   //
   911   // Arguments:
   912   //    all args on stack!
   913   //
   914   // Stack after saving c_rarg3:
   915   //    [tos + 0]: saved c_rarg3
   916   //    [tos + 1]: saved c_rarg2
   917   //    [tos + 2]: saved r12 (several TemplateTable methods use it)
   918   //    [tos + 3]: saved flags
   919   //    [tos + 4]: return address
   920   //  * [tos + 5]: error message (char*)
   921   //  * [tos + 6]: object to verify (oop)
   922   //  * [tos + 7]: saved rax - saved by caller and bashed
   923   //  * = popped on exit
   924   address generate_verify_oop() {
   925     StubCodeMark mark(this, "StubRoutines", "verify_oop");
   926     address start = __ pc();
   928     Label exit, error;
   930     __ pushf();
   931     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
   933     __ push(r12);
   935     // save c_rarg2 and c_rarg3
   936     __ push(c_rarg2);
   937     __ push(c_rarg3);
   939     enum {
   940            // After previous pushes.
   941            oop_to_verify = 6 * wordSize,
   942            saved_rax     = 7 * wordSize,
   944            // Before the call to MacroAssembler::debug(), see below.
   945            return_addr   = 16 * wordSize,
   946            error_msg     = 17 * wordSize
   947     };
   949     // get object
   950     __ movptr(rax, Address(rsp, oop_to_verify));
   952     // make sure object is 'reasonable'
   953     __ testptr(rax, rax);
   954     __ jcc(Assembler::zero, exit); // if obj is NULL it is OK
   955     // Check if the oop is in the right area of memory
   956     __ movptr(c_rarg2, rax);
   957     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask());
   958     __ andptr(c_rarg2, c_rarg3);
   959     __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits());
   960     __ cmpptr(c_rarg2, c_rarg3);
   961     __ jcc(Assembler::notZero, error);
   963     // set r12 to heapbase for load_klass()
   964     __ reinit_heapbase();
   966     // make sure klass is 'reasonable'
   967     __ load_klass(rax, rax);  // get klass
   968     __ testptr(rax, rax);
   969     __ jcc(Assembler::zero, error); // if klass is NULL it is broken
   970     // Check if the klass is in the right area of memory
   971     __ mov(c_rarg2, rax);
   972     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
   973     __ andptr(c_rarg2, c_rarg3);
   974     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
   975     __ cmpptr(c_rarg2, c_rarg3);
   976     __ jcc(Assembler::notZero, error);
   978     // make sure klass' klass is 'reasonable'
   979     __ load_klass(rax, rax);
   980     __ testptr(rax, rax);
   981     __ jcc(Assembler::zero, error); // if klass' klass is NULL it is broken
   982     // Check if the klass' klass is in the right area of memory
   983     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_mask());
   984     __ andptr(rax, c_rarg3);
   985     __ movptr(c_rarg3, (intptr_t) Universe::verify_klass_bits());
   986     __ cmpptr(rax, c_rarg3);
   987     __ jcc(Assembler::notZero, error);
   989     // return if everything seems ok
   990     __ bind(exit);
   991     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
   992     __ pop(c_rarg3);                             // restore c_rarg3
   993     __ pop(c_rarg2);                             // restore c_rarg2
   994     __ pop(r12);                                 // restore r12
   995     __ popf();                                   // restore flags
   996     __ ret(3 * wordSize);                        // pop caller saved stuff
   998     // handle errors
   999     __ bind(error);
  1000     __ movptr(rax, Address(rsp, saved_rax));     // get saved rax back
  1001     __ pop(c_rarg3);                             // get saved c_rarg3 back
  1002     __ pop(c_rarg2);                             // get saved c_rarg2 back
  1003     __ pop(r12);                                 // get saved r12 back
  1004     __ popf();                                   // get saved flags off stack --
  1005                                                  // will be ignored
  1007     __ pusha();                                  // push registers
  1008                                                  // (rip is already
  1009                                                  // already pushed)
  1010     // debug(char* msg, int64_t pc, int64_t regs[])
  1011     // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and
  1012     // pushed all the registers, so now the stack looks like:
  1013     //     [tos +  0] 16 saved registers
  1014     //     [tos + 16] return address
  1015     //   * [tos + 17] error message (char*)
  1016     //   * [tos + 18] object to verify (oop)
  1017     //   * [tos + 19] saved rax - saved by caller and bashed
  1018     //   * = popped on exit
  1020     __ movptr(c_rarg0, Address(rsp, error_msg));    // pass address of error message
  1021     __ movptr(c_rarg1, Address(rsp, return_addr));  // pass return address
  1022     __ movq(c_rarg2, rsp);                          // pass address of regs on stack
  1023     __ mov(r12, rsp);                               // remember rsp
  1024     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
  1025     __ andptr(rsp, -16);                            // align stack as required by ABI
  1026     BLOCK_COMMENT("call MacroAssembler::debug");
  1027     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  1028     __ mov(rsp, r12);                               // restore rsp
  1029     __ popa();                                      // pop registers (includes r12)
  1030     __ ret(3 * wordSize);                           // pop caller saved stuff
  1032     return start;
  1035   static address disjoint_byte_copy_entry;
  1036   static address disjoint_short_copy_entry;
  1037   static address disjoint_int_copy_entry;
  1038   static address disjoint_long_copy_entry;
  1039   static address disjoint_oop_copy_entry;
  1041   static address byte_copy_entry;
  1042   static address short_copy_entry;
  1043   static address int_copy_entry;
  1044   static address long_copy_entry;
  1045   static address oop_copy_entry;
  1047   static address checkcast_copy_entry;
  1049   //
  1050   // Verify that a register contains clean 32-bits positive value
  1051   // (high 32-bits are 0) so it could be used in 64-bits shifts.
  1052   //
  1053   //  Input:
  1054   //    Rint  -  32-bits value
  1055   //    Rtmp  -  scratch
  1056   //
  1057   void assert_clean_int(Register Rint, Register Rtmp) {
  1058 #ifdef ASSERT
  1059     Label L;
  1060     assert_different_registers(Rtmp, Rint);
  1061     __ movslq(Rtmp, Rint);
  1062     __ cmpq(Rtmp, Rint);
  1063     __ jcc(Assembler::equal, L);
  1064     __ stop("high 32-bits of int value are not 0");
  1065     __ bind(L);
  1066 #endif
  1069   //  Generate overlap test for array copy stubs
  1070   //
  1071   //  Input:
  1072   //     c_rarg0 - from
  1073   //     c_rarg1 - to
  1074   //     c_rarg2 - element count
  1075   //
  1076   //  Output:
  1077   //     rax   - &from[element count - 1]
  1078   //
  1079   void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) {
  1080     assert(no_overlap_target != NULL, "must be generated");
  1081     array_overlap_test(no_overlap_target, NULL, sf);
  1083   void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) {
  1084     array_overlap_test(NULL, &L_no_overlap, sf);
  1086   void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) {
  1087     const Register from     = c_rarg0;
  1088     const Register to       = c_rarg1;
  1089     const Register count    = c_rarg2;
  1090     const Register end_from = rax;
  1092     __ cmpptr(to, from);
  1093     __ lea(end_from, Address(from, count, sf, 0));
  1094     if (NOLp == NULL) {
  1095       ExternalAddress no_overlap(no_overlap_target);
  1096       __ jump_cc(Assembler::belowEqual, no_overlap);
  1097       __ cmpptr(to, end_from);
  1098       __ jump_cc(Assembler::aboveEqual, no_overlap);
  1099     } else {
  1100       __ jcc(Assembler::belowEqual, (*NOLp));
  1101       __ cmpptr(to, end_from);
  1102       __ jcc(Assembler::aboveEqual, (*NOLp));
  1106   // Shuffle first three arg regs on Windows into Linux/Solaris locations.
  1107   //
  1108   // Outputs:
  1109   //    rdi - rcx
  1110   //    rsi - rdx
  1111   //    rdx - r8
  1112   //    rcx - r9
  1113   //
  1114   // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter
  1115   // are non-volatile.  r9 and r10 should not be used by the caller.
  1116   //
  1117   void setup_arg_regs(int nargs = 3) {
  1118     const Register saved_rdi = r9;
  1119     const Register saved_rsi = r10;
  1120     assert(nargs == 3 || nargs == 4, "else fix");
  1121 #ifdef _WIN64
  1122     assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9,
  1123            "unexpected argument registers");
  1124     if (nargs >= 4)
  1125       __ mov(rax, r9);  // r9 is also saved_rdi
  1126     __ movptr(saved_rdi, rdi);
  1127     __ movptr(saved_rsi, rsi);
  1128     __ mov(rdi, rcx); // c_rarg0
  1129     __ mov(rsi, rdx); // c_rarg1
  1130     __ mov(rdx, r8);  // c_rarg2
  1131     if (nargs >= 4)
  1132       __ mov(rcx, rax); // c_rarg3 (via rax)
  1133 #else
  1134     assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx,
  1135            "unexpected argument registers");
  1136 #endif
  1139   void restore_arg_regs() {
  1140     const Register saved_rdi = r9;
  1141     const Register saved_rsi = r10;
  1142 #ifdef _WIN64
  1143     __ movptr(rdi, saved_rdi);
  1144     __ movptr(rsi, saved_rsi);
  1145 #endif
  1148   // Generate code for an array write pre barrier
  1149   //
  1150   //     addr    -  starting address
  1151   //     count    -  element count
  1152   //
  1153   //     Destroy no registers!
  1154   //
  1155   void  gen_write_ref_array_pre_barrier(Register addr, Register count) {
  1156     BarrierSet* bs = Universe::heap()->barrier_set();
  1157     switch (bs->kind()) {
  1158       case BarrierSet::G1SATBCT:
  1159       case BarrierSet::G1SATBCTLogging:
  1161           __ pusha();                      // push registers
  1162           if (count == c_rarg0) {
  1163             if (addr == c_rarg1) {
  1164               // exactly backwards!!
  1165               __ xchgptr(c_rarg1, c_rarg0);
  1166             } else {
  1167               __ movptr(c_rarg1, count);
  1168               __ movptr(c_rarg0, addr);
  1171           } else {
  1172             __ movptr(c_rarg0, addr);
  1173             __ movptr(c_rarg1, count);
  1175           __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre)));
  1176           __ popa();
  1178         break;
  1179       case BarrierSet::CardTableModRef:
  1180       case BarrierSet::CardTableExtension:
  1181       case BarrierSet::ModRef:
  1182         break;
  1183       default:
  1184         ShouldNotReachHere();
  1189   //
  1190   // Generate code for an array write post barrier
  1191   //
  1192   //  Input:
  1193   //     start    - register containing starting address of destination array
  1194   //     end      - register containing ending address of destination array
  1195   //     scratch  - scratch register
  1196   //
  1197   //  The input registers are overwritten.
  1198   //  The ending address is inclusive.
  1199   void  gen_write_ref_array_post_barrier(Register start, Register end, Register scratch) {
  1200     assert_different_registers(start, end, scratch);
  1201     BarrierSet* bs = Universe::heap()->barrier_set();
  1202     switch (bs->kind()) {
  1203       case BarrierSet::G1SATBCT:
  1204       case BarrierSet::G1SATBCTLogging:
  1207           __ pusha();                      // push registers (overkill)
  1208           // must compute element count unless barrier set interface is changed (other platforms supply count)
  1209           assert_different_registers(start, end, scratch);
  1210           __ lea(scratch, Address(end, wordSize));
  1211           __ subptr(scratch, start);
  1212           __ shrptr(scratch, LogBytesPerWord);
  1213           __ mov(c_rarg0, start);
  1214           __ mov(c_rarg1, scratch);
  1215           __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post)));
  1216           __ popa();
  1218         break;
  1219       case BarrierSet::CardTableModRef:
  1220       case BarrierSet::CardTableExtension:
  1222           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  1223           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  1225           Label L_loop;
  1227            __ shrptr(start, CardTableModRefBS::card_shift);
  1228            __ shrptr(end, CardTableModRefBS::card_shift);
  1229            __ subptr(end, start); // number of bytes to copy
  1231           intptr_t disp = (intptr_t) ct->byte_map_base;
  1232           if (__ is_simm32(disp)) {
  1233             Address cardtable(noreg, noreg, Address::no_scale, disp);
  1234             __ lea(scratch, cardtable);
  1235           } else {
  1236             ExternalAddress cardtable((address)disp);
  1237             __ lea(scratch, cardtable);
  1240           const Register count = end; // 'end' register contains bytes count now
  1241           __ addptr(start, scratch);
  1242         __ BIND(L_loop);
  1243           __ movb(Address(start, count, Address::times_1), 0);
  1244           __ decrement(count);
  1245           __ jcc(Assembler::greaterEqual, L_loop);
  1247         break;
  1248       default:
  1249         ShouldNotReachHere();
  1255   // Copy big chunks forward
  1256   //
  1257   // Inputs:
  1258   //   end_from     - source arrays end address
  1259   //   end_to       - destination array end address
  1260   //   qword_count  - 64-bits element count, negative
  1261   //   to           - scratch
  1262   //   L_copy_32_bytes - entry label
  1263   //   L_copy_8_bytes  - exit  label
  1264   //
  1265   void copy_32_bytes_forward(Register end_from, Register end_to,
  1266                              Register qword_count, Register to,
  1267                              Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
  1268     DEBUG_ONLY(__ stop("enter at entry label, not here"));
  1269     Label L_loop;
  1270     __ align(16);
  1271   __ BIND(L_loop);
  1272     if(UseUnalignedLoadStores) {
  1273       __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24));
  1274       __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0);
  1275       __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8));
  1276       __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1);
  1278     } else {
  1279       __ movq(to, Address(end_from, qword_count, Address::times_8, -24));
  1280       __ movq(Address(end_to, qword_count, Address::times_8, -24), to);
  1281       __ movq(to, Address(end_from, qword_count, Address::times_8, -16));
  1282       __ movq(Address(end_to, qword_count, Address::times_8, -16), to);
  1283       __ movq(to, Address(end_from, qword_count, Address::times_8, - 8));
  1284       __ movq(Address(end_to, qword_count, Address::times_8, - 8), to);
  1285       __ movq(to, Address(end_from, qword_count, Address::times_8, - 0));
  1286       __ movq(Address(end_to, qword_count, Address::times_8, - 0), to);
  1288   __ BIND(L_copy_32_bytes);
  1289     __ addptr(qword_count, 4);
  1290     __ jcc(Assembler::lessEqual, L_loop);
  1291     __ subptr(qword_count, 4);
  1292     __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords
  1296   // Copy big chunks backward
  1297   //
  1298   // Inputs:
  1299   //   from         - source arrays address
  1300   //   dest         - destination array address
  1301   //   qword_count  - 64-bits element count
  1302   //   to           - scratch
  1303   //   L_copy_32_bytes - entry label
  1304   //   L_copy_8_bytes  - exit  label
  1305   //
  1306   void copy_32_bytes_backward(Register from, Register dest,
  1307                               Register qword_count, Register to,
  1308                               Label& L_copy_32_bytes, Label& L_copy_8_bytes) {
  1309     DEBUG_ONLY(__ stop("enter at entry label, not here"));
  1310     Label L_loop;
  1311     __ align(16);
  1312   __ BIND(L_loop);
  1313     if(UseUnalignedLoadStores) {
  1314       __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16));
  1315       __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0);
  1316       __ movdqu(xmm1, Address(from, qword_count, Address::times_8,  0));
  1317       __ movdqu(Address(dest, qword_count, Address::times_8,  0), xmm1);
  1319     } else {
  1320       __ movq(to, Address(from, qword_count, Address::times_8, 24));
  1321       __ movq(Address(dest, qword_count, Address::times_8, 24), to);
  1322       __ movq(to, Address(from, qword_count, Address::times_8, 16));
  1323       __ movq(Address(dest, qword_count, Address::times_8, 16), to);
  1324       __ movq(to, Address(from, qword_count, Address::times_8,  8));
  1325       __ movq(Address(dest, qword_count, Address::times_8,  8), to);
  1326       __ movq(to, Address(from, qword_count, Address::times_8,  0));
  1327       __ movq(Address(dest, qword_count, Address::times_8,  0), to);
  1329   __ BIND(L_copy_32_bytes);
  1330     __ subptr(qword_count, 4);
  1331     __ jcc(Assembler::greaterEqual, L_loop);
  1332     __ addptr(qword_count, 4);
  1333     __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords
  1337   // Arguments:
  1338   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1339   //             ignored
  1340   //   name    - stub name string
  1341   //
  1342   // Inputs:
  1343   //   c_rarg0   - source array address
  1344   //   c_rarg1   - destination array address
  1345   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1346   //
  1347   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
  1348   // we let the hardware handle it.  The one to eight bytes within words,
  1349   // dwords or qwords that span cache line boundaries will still be loaded
  1350   // and stored atomically.
  1351   //
  1352   // Side Effects:
  1353   //   disjoint_byte_copy_entry is set to the no-overlap entry point
  1354   //   used by generate_conjoint_byte_copy().
  1355   //
  1356   address generate_disjoint_byte_copy(bool aligned, const char *name) {
  1357     __ align(CodeEntryAlignment);
  1358     StubCodeMark mark(this, "StubRoutines", name);
  1359     address start = __ pc();
  1361     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
  1362     Label L_copy_byte, L_exit;
  1363     const Register from        = rdi;  // source array address
  1364     const Register to          = rsi;  // destination array address
  1365     const Register count       = rdx;  // elements count
  1366     const Register byte_count  = rcx;
  1367     const Register qword_count = count;
  1368     const Register end_from    = from; // source array end address
  1369     const Register end_to      = to;   // destination array end address
  1370     // End pointers are inclusive, and if count is not zero they point
  1371     // to the last unit copied:  end_to[0] := end_from[0]
  1373     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1374     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1376     disjoint_byte_copy_entry = __ pc();
  1377     BLOCK_COMMENT("Entry:");
  1378     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1380     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1381                       // r9 and r10 may be used to save non-volatile registers
  1383     // 'from', 'to' and 'count' are now valid
  1384     __ movptr(byte_count, count);
  1385     __ shrptr(count, 3); // count => qword_count
  1387     // Copy from low to high addresses.  Use 'to' as scratch.
  1388     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1389     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1390     __ negptr(qword_count); // make the count negative
  1391     __ jmp(L_copy_32_bytes);
  1393     // Copy trailing qwords
  1394   __ BIND(L_copy_8_bytes);
  1395     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1396     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1397     __ increment(qword_count);
  1398     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1400     // Check for and copy trailing dword
  1401   __ BIND(L_copy_4_bytes);
  1402     __ testl(byte_count, 4);
  1403     __ jccb(Assembler::zero, L_copy_2_bytes);
  1404     __ movl(rax, Address(end_from, 8));
  1405     __ movl(Address(end_to, 8), rax);
  1407     __ addptr(end_from, 4);
  1408     __ addptr(end_to, 4);
  1410     // Check for and copy trailing word
  1411   __ BIND(L_copy_2_bytes);
  1412     __ testl(byte_count, 2);
  1413     __ jccb(Assembler::zero, L_copy_byte);
  1414     __ movw(rax, Address(end_from, 8));
  1415     __ movw(Address(end_to, 8), rax);
  1417     __ addptr(end_from, 2);
  1418     __ addptr(end_to, 2);
  1420     // Check for and copy trailing byte
  1421   __ BIND(L_copy_byte);
  1422     __ testl(byte_count, 1);
  1423     __ jccb(Assembler::zero, L_exit);
  1424     __ movb(rax, Address(end_from, 8));
  1425     __ movb(Address(end_to, 8), rax);
  1427   __ BIND(L_exit);
  1428     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
  1429     restore_arg_regs();
  1430     __ xorptr(rax, rax); // return 0
  1431     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1432     __ ret(0);
  1434     // Copy in 32-bytes chunks
  1435     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1436     __ jmp(L_copy_4_bytes);
  1438     return start;
  1441   // Arguments:
  1442   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1443   //             ignored
  1444   //   name    - stub name string
  1445   //
  1446   // Inputs:
  1447   //   c_rarg0   - source array address
  1448   //   c_rarg1   - destination array address
  1449   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1450   //
  1451   // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
  1452   // we let the hardware handle it.  The one to eight bytes within words,
  1453   // dwords or qwords that span cache line boundaries will still be loaded
  1454   // and stored atomically.
  1455   //
  1456   address generate_conjoint_byte_copy(bool aligned, const char *name) {
  1457     __ align(CodeEntryAlignment);
  1458     StubCodeMark mark(this, "StubRoutines", name);
  1459     address start = __ pc();
  1461     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes;
  1462     const Register from        = rdi;  // source array address
  1463     const Register to          = rsi;  // destination array address
  1464     const Register count       = rdx;  // elements count
  1465     const Register byte_count  = rcx;
  1466     const Register qword_count = count;
  1468     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1469     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1471     byte_copy_entry = __ pc();
  1472     BLOCK_COMMENT("Entry:");
  1473     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1475     array_overlap_test(disjoint_byte_copy_entry, Address::times_1);
  1476     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1477                       // r9 and r10 may be used to save non-volatile registers
  1479     // 'from', 'to' and 'count' are now valid
  1480     __ movptr(byte_count, count);
  1481     __ shrptr(count, 3);   // count => qword_count
  1483     // Copy from high to low addresses.
  1485     // Check for and copy trailing byte
  1486     __ testl(byte_count, 1);
  1487     __ jcc(Assembler::zero, L_copy_2_bytes);
  1488     __ movb(rax, Address(from, byte_count, Address::times_1, -1));
  1489     __ movb(Address(to, byte_count, Address::times_1, -1), rax);
  1490     __ decrement(byte_count); // Adjust for possible trailing word
  1492     // Check for and copy trailing word
  1493   __ BIND(L_copy_2_bytes);
  1494     __ testl(byte_count, 2);
  1495     __ jcc(Assembler::zero, L_copy_4_bytes);
  1496     __ movw(rax, Address(from, byte_count, Address::times_1, -2));
  1497     __ movw(Address(to, byte_count, Address::times_1, -2), rax);
  1499     // Check for and copy trailing dword
  1500   __ BIND(L_copy_4_bytes);
  1501     __ testl(byte_count, 4);
  1502     __ jcc(Assembler::zero, L_copy_32_bytes);
  1503     __ movl(rax, Address(from, qword_count, Address::times_8));
  1504     __ movl(Address(to, qword_count, Address::times_8), rax);
  1505     __ jmp(L_copy_32_bytes);
  1507     // Copy trailing qwords
  1508   __ BIND(L_copy_8_bytes);
  1509     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1510     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1511     __ decrement(qword_count);
  1512     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1514     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
  1515     restore_arg_regs();
  1516     __ xorptr(rax, rax); // return 0
  1517     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1518     __ ret(0);
  1520     // Copy in 32-bytes chunks
  1521     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1523     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr);
  1524     restore_arg_regs();
  1525     __ xorptr(rax, rax); // return 0
  1526     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1527     __ ret(0);
  1529     return start;
  1532   // Arguments:
  1533   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1534   //             ignored
  1535   //   name    - stub name string
  1536   //
  1537   // Inputs:
  1538   //   c_rarg0   - source array address
  1539   //   c_rarg1   - destination array address
  1540   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1541   //
  1542   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
  1543   // let the hardware handle it.  The two or four words within dwords
  1544   // or qwords that span cache line boundaries will still be loaded
  1545   // and stored atomically.
  1546   //
  1547   // Side Effects:
  1548   //   disjoint_short_copy_entry is set to the no-overlap entry point
  1549   //   used by generate_conjoint_short_copy().
  1550   //
  1551   address generate_disjoint_short_copy(bool aligned, const char *name) {
  1552     __ align(CodeEntryAlignment);
  1553     StubCodeMark mark(this, "StubRoutines", name);
  1554     address start = __ pc();
  1556     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit;
  1557     const Register from        = rdi;  // source array address
  1558     const Register to          = rsi;  // destination array address
  1559     const Register count       = rdx;  // elements count
  1560     const Register word_count  = rcx;
  1561     const Register qword_count = count;
  1562     const Register end_from    = from; // source array end address
  1563     const Register end_to      = to;   // destination array end address
  1564     // End pointers are inclusive, and if count is not zero they point
  1565     // to the last unit copied:  end_to[0] := end_from[0]
  1567     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1568     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1570     disjoint_short_copy_entry = __ pc();
  1571     BLOCK_COMMENT("Entry:");
  1572     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1574     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1575                       // r9 and r10 may be used to save non-volatile registers
  1577     // 'from', 'to' and 'count' are now valid
  1578     __ movptr(word_count, count);
  1579     __ shrptr(count, 2); // count => qword_count
  1581     // Copy from low to high addresses.  Use 'to' as scratch.
  1582     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1583     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1584     __ negptr(qword_count);
  1585     __ jmp(L_copy_32_bytes);
  1587     // Copy trailing qwords
  1588   __ BIND(L_copy_8_bytes);
  1589     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1590     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1591     __ increment(qword_count);
  1592     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1594     // Original 'dest' is trashed, so we can't use it as a
  1595     // base register for a possible trailing word copy
  1597     // Check for and copy trailing dword
  1598   __ BIND(L_copy_4_bytes);
  1599     __ testl(word_count, 2);
  1600     __ jccb(Assembler::zero, L_copy_2_bytes);
  1601     __ movl(rax, Address(end_from, 8));
  1602     __ movl(Address(end_to, 8), rax);
  1604     __ addptr(end_from, 4);
  1605     __ addptr(end_to, 4);
  1607     // Check for and copy trailing word
  1608   __ BIND(L_copy_2_bytes);
  1609     __ testl(word_count, 1);
  1610     __ jccb(Assembler::zero, L_exit);
  1611     __ movw(rax, Address(end_from, 8));
  1612     __ movw(Address(end_to, 8), rax);
  1614   __ BIND(L_exit);
  1615     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
  1616     restore_arg_regs();
  1617     __ xorptr(rax, rax); // return 0
  1618     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1619     __ ret(0);
  1621     // Copy in 32-bytes chunks
  1622     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1623     __ jmp(L_copy_4_bytes);
  1625     return start;
  1628   // Arguments:
  1629   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1630   //             ignored
  1631   //   name    - stub name string
  1632   //
  1633   // Inputs:
  1634   //   c_rarg0   - source array address
  1635   //   c_rarg1   - destination array address
  1636   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1637   //
  1638   // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
  1639   // let the hardware handle it.  The two or four words within dwords
  1640   // or qwords that span cache line boundaries will still be loaded
  1641   // and stored atomically.
  1642   //
  1643   address generate_conjoint_short_copy(bool aligned, const char *name) {
  1644     __ align(CodeEntryAlignment);
  1645     StubCodeMark mark(this, "StubRoutines", name);
  1646     address start = __ pc();
  1648     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes;
  1649     const Register from        = rdi;  // source array address
  1650     const Register to          = rsi;  // destination array address
  1651     const Register count       = rdx;  // elements count
  1652     const Register word_count  = rcx;
  1653     const Register qword_count = count;
  1655     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1656     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1658     short_copy_entry = __ pc();
  1659     BLOCK_COMMENT("Entry:");
  1660     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1662     array_overlap_test(disjoint_short_copy_entry, Address::times_2);
  1663     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1664                       // r9 and r10 may be used to save non-volatile registers
  1666     // 'from', 'to' and 'count' are now valid
  1667     __ movptr(word_count, count);
  1668     __ shrptr(count, 2); // count => qword_count
  1670     // Copy from high to low addresses.  Use 'to' as scratch.
  1672     // Check for and copy trailing word
  1673     __ testl(word_count, 1);
  1674     __ jccb(Assembler::zero, L_copy_4_bytes);
  1675     __ movw(rax, Address(from, word_count, Address::times_2, -2));
  1676     __ movw(Address(to, word_count, Address::times_2, -2), rax);
  1678     // Check for and copy trailing dword
  1679   __ BIND(L_copy_4_bytes);
  1680     __ testl(word_count, 2);
  1681     __ jcc(Assembler::zero, L_copy_32_bytes);
  1682     __ movl(rax, Address(from, qword_count, Address::times_8));
  1683     __ movl(Address(to, qword_count, Address::times_8), rax);
  1684     __ jmp(L_copy_32_bytes);
  1686     // Copy trailing qwords
  1687   __ BIND(L_copy_8_bytes);
  1688     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1689     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1690     __ decrement(qword_count);
  1691     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1693     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
  1694     restore_arg_regs();
  1695     __ xorptr(rax, rax); // return 0
  1696     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1697     __ ret(0);
  1699     // Copy in 32-bytes chunks
  1700     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1702     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr);
  1703     restore_arg_regs();
  1704     __ xorptr(rax, rax); // return 0
  1705     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1706     __ ret(0);
  1708     return start;
  1711   // Arguments:
  1712   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1713   //             ignored
  1714   //   is_oop  - true => oop array, so generate store check code
  1715   //   name    - stub name string
  1716   //
  1717   // Inputs:
  1718   //   c_rarg0   - source array address
  1719   //   c_rarg1   - destination array address
  1720   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1721   //
  1722   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
  1723   // the hardware handle it.  The two dwords within qwords that span
  1724   // cache line boundaries will still be loaded and stored atomicly.
  1725   //
  1726   // Side Effects:
  1727   //   disjoint_int_copy_entry is set to the no-overlap entry point
  1728   //   used by generate_conjoint_int_oop_copy().
  1729   //
  1730   address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
  1731     __ align(CodeEntryAlignment);
  1732     StubCodeMark mark(this, "StubRoutines", name);
  1733     address start = __ pc();
  1735     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit;
  1736     const Register from        = rdi;  // source array address
  1737     const Register to          = rsi;  // destination array address
  1738     const Register count       = rdx;  // elements count
  1739     const Register dword_count = rcx;
  1740     const Register qword_count = count;
  1741     const Register end_from    = from; // source array end address
  1742     const Register end_to      = to;   // destination array end address
  1743     const Register saved_to    = r11;  // saved destination array address
  1744     // End pointers are inclusive, and if count is not zero they point
  1745     // to the last unit copied:  end_to[0] := end_from[0]
  1747     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1748     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1750     (is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry) = __ pc();
  1752     if (is_oop) {
  1753       // no registers are destroyed by this call
  1754       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
  1757     BLOCK_COMMENT("Entry:");
  1758     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1760     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1761                       // r9 and r10 may be used to save non-volatile registers
  1763     if (is_oop) {
  1764       __ movq(saved_to, to);
  1767     // 'from', 'to' and 'count' are now valid
  1768     __ movptr(dword_count, count);
  1769     __ shrptr(count, 1); // count => qword_count
  1771     // Copy from low to high addresses.  Use 'to' as scratch.
  1772     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1773     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1774     __ negptr(qword_count);
  1775     __ jmp(L_copy_32_bytes);
  1777     // Copy trailing qwords
  1778   __ BIND(L_copy_8_bytes);
  1779     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1780     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1781     __ increment(qword_count);
  1782     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1784     // Check for and copy trailing dword
  1785   __ BIND(L_copy_4_bytes);
  1786     __ testl(dword_count, 1); // Only byte test since the value is 0 or 1
  1787     __ jccb(Assembler::zero, L_exit);
  1788     __ movl(rax, Address(end_from, 8));
  1789     __ movl(Address(end_to, 8), rax);
  1791   __ BIND(L_exit);
  1792     if (is_oop) {
  1793       __ leaq(end_to, Address(saved_to, dword_count, Address::times_4, -4));
  1794       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
  1796     inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
  1797     restore_arg_regs();
  1798     __ xorptr(rax, rax); // return 0
  1799     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1800     __ ret(0);
  1802     // Copy 32-bytes chunks
  1803     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1804     __ jmp(L_copy_4_bytes);
  1806     return start;
  1809   // Arguments:
  1810   //   aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
  1811   //             ignored
  1812   //   is_oop  - true => oop array, so generate store check code
  1813   //   name    - stub name string
  1814   //
  1815   // Inputs:
  1816   //   c_rarg0   - source array address
  1817   //   c_rarg1   - destination array address
  1818   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1819   //
  1820   // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
  1821   // the hardware handle it.  The two dwords within qwords that span
  1822   // cache line boundaries will still be loaded and stored atomicly.
  1823   //
  1824   address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, const char *name) {
  1825     __ align(CodeEntryAlignment);
  1826     StubCodeMark mark(this, "StubRoutines", name);
  1827     address start = __ pc();
  1829     Label L_copy_32_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit;
  1830     const Register from        = rdi;  // source array address
  1831     const Register to          = rsi;  // destination array address
  1832     const Register count       = rdx;  // elements count
  1833     const Register dword_count = rcx;
  1834     const Register qword_count = count;
  1836     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1837     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1839     if (is_oop) {
  1840       // no registers are destroyed by this call
  1841       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
  1844     (is_oop ? oop_copy_entry : int_copy_entry) = __ pc();
  1845     BLOCK_COMMENT("Entry:");
  1846     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1848     array_overlap_test(is_oop ? disjoint_oop_copy_entry : disjoint_int_copy_entry,
  1849                        Address::times_4);
  1850     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1851                       // r9 and r10 may be used to save non-volatile registers
  1853     assert_clean_int(count, rax); // Make sure 'count' is clean int.
  1854     // 'from', 'to' and 'count' are now valid
  1855     __ movptr(dword_count, count);
  1856     __ shrptr(count, 1); // count => qword_count
  1858     // Copy from high to low addresses.  Use 'to' as scratch.
  1860     // Check for and copy trailing dword
  1861     __ testl(dword_count, 1);
  1862     __ jcc(Assembler::zero, L_copy_32_bytes);
  1863     __ movl(rax, Address(from, dword_count, Address::times_4, -4));
  1864     __ movl(Address(to, dword_count, Address::times_4, -4), rax);
  1865     __ jmp(L_copy_32_bytes);
  1867     // Copy trailing qwords
  1868   __ BIND(L_copy_8_bytes);
  1869     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  1870     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  1871     __ decrement(qword_count);
  1872     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1874     inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
  1875     if (is_oop) {
  1876       __ jmp(L_exit);
  1878     restore_arg_regs();
  1879     __ xorptr(rax, rax); // return 0
  1880     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1881     __ ret(0);
  1883     // Copy in 32-bytes chunks
  1884     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1886    inc_counter_np(SharedRuntime::_jint_array_copy_ctr);
  1887    __ bind(L_exit);
  1888      if (is_oop) {
  1889        Register end_to = rdx;
  1890        __ leaq(end_to, Address(to, dword_count, Address::times_4, -4));
  1891        gen_write_ref_array_post_barrier(to, end_to, rax);
  1893     restore_arg_regs();
  1894     __ xorptr(rax, rax); // return 0
  1895     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1896     __ ret(0);
  1898     return start;
  1901   // Arguments:
  1902   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
  1903   //             ignored
  1904   //   is_oop  - true => oop array, so generate store check code
  1905   //   name    - stub name string
  1906   //
  1907   // Inputs:
  1908   //   c_rarg0   - source array address
  1909   //   c_rarg1   - destination array address
  1910   //   c_rarg2   - element count, treated as ssize_t, can be zero
  1911   //
  1912  // Side Effects:
  1913   //   disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
  1914   //   no-overlap entry point used by generate_conjoint_long_oop_copy().
  1915   //
  1916   address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
  1917     __ align(CodeEntryAlignment);
  1918     StubCodeMark mark(this, "StubRoutines", name);
  1919     address start = __ pc();
  1921     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
  1922     const Register from        = rdi;  // source array address
  1923     const Register to          = rsi;  // destination array address
  1924     const Register qword_count = rdx;  // elements count
  1925     const Register end_from    = from; // source array end address
  1926     const Register end_to      = rcx;  // destination array end address
  1927     const Register saved_to    = to;
  1928     // End pointers are inclusive, and if count is not zero they point
  1929     // to the last unit copied:  end_to[0] := end_from[0]
  1931     __ enter(); // required for proper stackwalking of RuntimeStub frame
  1932     // Save no-overlap entry point for generate_conjoint_long_oop_copy()
  1933     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  1935     if (is_oop) {
  1936       disjoint_oop_copy_entry  = __ pc();
  1937       // no registers are destroyed by this call
  1938       gen_write_ref_array_pre_barrier(/* dest */ c_rarg1, /* count */ c_rarg2);
  1939     } else {
  1940       disjoint_long_copy_entry = __ pc();
  1942     BLOCK_COMMENT("Entry:");
  1943     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  1945     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  1946                       // r9 and r10 may be used to save non-volatile registers
  1948     // 'from', 'to' and 'qword_count' are now valid
  1950     // Copy from low to high addresses.  Use 'to' as scratch.
  1951     __ lea(end_from, Address(from, qword_count, Address::times_8, -8));
  1952     __ lea(end_to,   Address(to,   qword_count, Address::times_8, -8));
  1953     __ negptr(qword_count);
  1954     __ jmp(L_copy_32_bytes);
  1956     // Copy trailing qwords
  1957   __ BIND(L_copy_8_bytes);
  1958     __ movq(rax, Address(end_from, qword_count, Address::times_8, 8));
  1959     __ movq(Address(end_to, qword_count, Address::times_8, 8), rax);
  1960     __ increment(qword_count);
  1961     __ jcc(Assembler::notZero, L_copy_8_bytes);
  1963     if (is_oop) {
  1964       __ jmp(L_exit);
  1965     } else {
  1966       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  1967       restore_arg_regs();
  1968       __ xorptr(rax, rax); // return 0
  1969       __ leave(); // required for proper stackwalking of RuntimeStub frame
  1970       __ ret(0);
  1973     // Copy 64-byte chunks
  1974     copy_32_bytes_forward(end_from, end_to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  1976     if (is_oop) {
  1977     __ BIND(L_exit);
  1978       gen_write_ref_array_post_barrier(saved_to, end_to, rax);
  1979       inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
  1980     } else {
  1981       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  1983     restore_arg_regs();
  1984     __ xorptr(rax, rax); // return 0
  1985     __ leave(); // required for proper stackwalking of RuntimeStub frame
  1986     __ ret(0);
  1988     return start;
  1991   // Arguments:
  1992   //   aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
  1993   //             ignored
  1994   //   is_oop  - true => oop array, so generate store check code
  1995   //   name    - stub name string
  1996   //
  1997   // Inputs:
  1998   //   c_rarg0   - source array address
  1999   //   c_rarg1   - destination array address
  2000   //   c_rarg2   - element count, treated as ssize_t, can be zero
  2001   //
  2002   address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, const char *name) {
  2003     __ align(CodeEntryAlignment);
  2004     StubCodeMark mark(this, "StubRoutines", name);
  2005     address start = __ pc();
  2007     Label L_copy_32_bytes, L_copy_8_bytes, L_exit;
  2008     const Register from        = rdi;  // source array address
  2009     const Register to          = rsi;  // destination array address
  2010     const Register qword_count = rdx;  // elements count
  2011     const Register saved_count = rcx;
  2013     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2014     assert_clean_int(c_rarg2, rax);    // Make sure 'count' is clean int.
  2016     address disjoint_copy_entry = NULL;
  2017     if (is_oop) {
  2018       assert(!UseCompressedOops, "shouldn't be called for compressed oops");
  2019       disjoint_copy_entry = disjoint_oop_copy_entry;
  2020       oop_copy_entry  = __ pc();
  2021       array_overlap_test(disjoint_oop_copy_entry, Address::times_8);
  2022     } else {
  2023       disjoint_copy_entry = disjoint_long_copy_entry;
  2024       long_copy_entry = __ pc();
  2025       array_overlap_test(disjoint_long_copy_entry, Address::times_8);
  2027     BLOCK_COMMENT("Entry:");
  2028     // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
  2030     array_overlap_test(disjoint_copy_entry, Address::times_8);
  2031     setup_arg_regs(); // from => rdi, to => rsi, count => rdx
  2032                       // r9 and r10 may be used to save non-volatile registers
  2034     // 'from', 'to' and 'qword_count' are now valid
  2036     if (is_oop) {
  2037       // Save to and count for store barrier
  2038       __ movptr(saved_count, qword_count);
  2039       // No registers are destroyed by this call
  2040       gen_write_ref_array_pre_barrier(to, saved_count);
  2043     __ jmp(L_copy_32_bytes);
  2045     // Copy trailing qwords
  2046   __ BIND(L_copy_8_bytes);
  2047     __ movq(rax, Address(from, qword_count, Address::times_8, -8));
  2048     __ movq(Address(to, qword_count, Address::times_8, -8), rax);
  2049     __ decrement(qword_count);
  2050     __ jcc(Assembler::notZero, L_copy_8_bytes);
  2052     if (is_oop) {
  2053       __ jmp(L_exit);
  2054     } else {
  2055       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  2056       restore_arg_regs();
  2057       __ xorptr(rax, rax); // return 0
  2058       __ leave(); // required for proper stackwalking of RuntimeStub frame
  2059       __ ret(0);
  2062     // Copy in 32-bytes chunks
  2063     copy_32_bytes_backward(from, to, qword_count, rax, L_copy_32_bytes, L_copy_8_bytes);
  2065     if (is_oop) {
  2066     __ BIND(L_exit);
  2067       __ lea(rcx, Address(to, saved_count, Address::times_8, -8));
  2068       gen_write_ref_array_post_barrier(to, rcx, rax);
  2069       inc_counter_np(SharedRuntime::_oop_array_copy_ctr);
  2070     } else {
  2071       inc_counter_np(SharedRuntime::_jlong_array_copy_ctr);
  2073     restore_arg_regs();
  2074     __ xorptr(rax, rax); // return 0
  2075     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2076     __ ret(0);
  2078     return start;
  2082   // Helper for generating a dynamic type check.
  2083   // Smashes no registers.
  2084   void generate_type_check(Register sub_klass,
  2085                            Register super_check_offset,
  2086                            Register super_klass,
  2087                            Label& L_success) {
  2088     assert_different_registers(sub_klass, super_check_offset, super_klass);
  2090     BLOCK_COMMENT("type_check:");
  2092     Label L_miss;
  2094     // a couple of useful fields in sub_klass:
  2095     int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
  2096                      Klass::secondary_supers_offset_in_bytes());
  2097     int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  2098                      Klass::secondary_super_cache_offset_in_bytes());
  2099     Address secondary_supers_addr(sub_klass, ss_offset);
  2100     Address super_cache_addr(     sub_klass, sc_offset);
  2102     // if the pointers are equal, we are done (e.g., String[] elements)
  2103     __ cmpptr(super_klass, sub_klass);
  2104     __ jcc(Assembler::equal, L_success);
  2106     // check the supertype display:
  2107     Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  2108     __ cmpptr(super_klass, super_check_addr); // test the super type
  2109     __ jcc(Assembler::equal, L_success);
  2111     // if it was a primary super, we can just fail immediately
  2112     __ cmpl(super_check_offset, sc_offset);
  2113     __ jcc(Assembler::notEqual, L_miss);
  2115     // Now do a linear scan of the secondary super-klass chain.
  2116     // The repne_scan instruction uses fixed registers, which we must spill.
  2117     // (We need a couple more temps in any case.)
  2118     // This code is rarely used, so simplicity is a virtue here.
  2119     inc_counter_np(SharedRuntime::_partial_subtype_ctr);
  2121       __ push(rax);
  2122       __ push(rcx);
  2123       __ push(rdi);
  2124       assert_different_registers(sub_klass, super_klass, rax, rcx, rdi);
  2126       __ movptr(rdi, secondary_supers_addr);
  2127       // Load the array length.
  2128       __ movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
  2129       // Skip to start of data.
  2130       __ addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
  2131       // Scan rcx words at [rdi] for occurance of rax
  2132       // Set NZ/Z based on last compare
  2133       __ movptr(rax, super_klass);
  2134       if (UseCompressedOops) {
  2135         // Compare against compressed form.  Don't need to uncompress because
  2136         // looks like orig rax is restored in popq below.
  2137         __ encode_heap_oop(rax);
  2138         __ repne_scanl();
  2139       } else {
  2140         __ repne_scan();
  2143       // Unspill the temp. registers:
  2144       __ pop(rdi);
  2145       __ pop(rcx);
  2146       __ pop(rax);
  2148       __ jcc(Assembler::notEqual, L_miss);
  2151     // Success.  Cache the super we found and proceed in triumph.
  2152     __ movptr(super_cache_addr, super_klass); // note: rax is dead
  2153     __ jmp(L_success);
  2155     // Fall through on failure!
  2156     __ BIND(L_miss);
  2159   //
  2160   //  Generate checkcasting array copy stub
  2161   //
  2162   //  Input:
  2163   //    c_rarg0   - source array address
  2164   //    c_rarg1   - destination array address
  2165   //    c_rarg2   - element count, treated as ssize_t, can be zero
  2166   //    c_rarg3   - size_t ckoff (super_check_offset)
  2167   // not Win64
  2168   //    c_rarg4   - oop ckval (super_klass)
  2169   // Win64
  2170   //    rsp+40    - oop ckval (super_klass)
  2171   //
  2172   //  Output:
  2173   //    rax ==  0  -  success
  2174   //    rax == -1^K - failure, where K is partial transfer count
  2175   //
  2176   address generate_checkcast_copy(const char *name) {
  2178     Label L_load_element, L_store_element, L_do_card_marks, L_done;
  2180     // Input registers (after setup_arg_regs)
  2181     const Register from        = rdi;   // source array address
  2182     const Register to          = rsi;   // destination array address
  2183     const Register length      = rdx;   // elements count
  2184     const Register ckoff       = rcx;   // super_check_offset
  2185     const Register ckval       = r8;    // super_klass
  2187     // Registers used as temps (r13, r14 are save-on-entry)
  2188     const Register end_from    = from;  // source array end address
  2189     const Register end_to      = r13;   // destination array end address
  2190     const Register count       = rdx;   // -(count_remaining)
  2191     const Register r14_length  = r14;   // saved copy of length
  2192     // End pointers are inclusive, and if length is not zero they point
  2193     // to the last unit copied:  end_to[0] := end_from[0]
  2195     const Register rax_oop    = rax;    // actual oop copied
  2196     const Register r11_klass  = r11;    // oop._klass
  2198     //---------------------------------------------------------------
  2199     // Assembler stub will be used for this call to arraycopy
  2200     // if the two arrays are subtypes of Object[] but the
  2201     // destination array type is not equal to or a supertype
  2202     // of the source type.  Each element must be separately
  2203     // checked.
  2205     __ align(CodeEntryAlignment);
  2206     StubCodeMark mark(this, "StubRoutines", name);
  2207     address start = __ pc();
  2209     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2211     checkcast_copy_entry  = __ pc();
  2212     BLOCK_COMMENT("Entry:");
  2214 #ifdef ASSERT
  2215     // caller guarantees that the arrays really are different
  2216     // otherwise, we would have to make conjoint checks
  2217     { Label L;
  2218       array_overlap_test(L, TIMES_OOP);
  2219       __ stop("checkcast_copy within a single array");
  2220       __ bind(L);
  2222 #endif //ASSERT
  2224     // allocate spill slots for r13, r14
  2225     enum {
  2226       saved_r13_offset,
  2227       saved_r14_offset,
  2228       saved_rbp_offset,
  2229       saved_rip_offset,
  2230       saved_rarg0_offset
  2231     };
  2232     __ subptr(rsp, saved_rbp_offset * wordSize);
  2233     __ movptr(Address(rsp, saved_r13_offset * wordSize), r13);
  2234     __ movptr(Address(rsp, saved_r14_offset * wordSize), r14);
  2235     setup_arg_regs(4); // from => rdi, to => rsi, length => rdx
  2236                        // ckoff => rcx, ckval => r8
  2237                        // r9 and r10 may be used to save non-volatile registers
  2238 #ifdef _WIN64
  2239     // last argument (#4) is on stack on Win64
  2240     const int ckval_offset = saved_rarg0_offset + 4;
  2241     __ movptr(ckval, Address(rsp, ckval_offset * wordSize));
  2242 #endif
  2244     // check that int operands are properly extended to size_t
  2245     assert_clean_int(length, rax);
  2246     assert_clean_int(ckoff, rax);
  2248 #ifdef ASSERT
  2249     BLOCK_COMMENT("assert consistent ckoff/ckval");
  2250     // The ckoff and ckval must be mutually consistent,
  2251     // even though caller generates both.
  2252     { Label L;
  2253       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2254                         Klass::super_check_offset_offset_in_bytes());
  2255       __ cmpl(ckoff, Address(ckval, sco_offset));
  2256       __ jcc(Assembler::equal, L);
  2257       __ stop("super_check_offset inconsistent");
  2258       __ bind(L);
  2260 #endif //ASSERT
  2262     // Loop-invariant addresses.  They are exclusive end pointers.
  2263     Address end_from_addr(from, length, TIMES_OOP, 0);
  2264     Address   end_to_addr(to,   length, TIMES_OOP, 0);
  2265     // Loop-variant addresses.  They assume post-incremented count < 0.
  2266     Address from_element_addr(end_from, count, TIMES_OOP, 0);
  2267     Address   to_element_addr(end_to,   count, TIMES_OOP, 0);
  2269     gen_write_ref_array_pre_barrier(to, count);
  2271     // Copy from low to high addresses, indexed from the end of each array.
  2272     __ lea(end_from, end_from_addr);
  2273     __ lea(end_to,   end_to_addr);
  2274     __ movptr(r14_length, length);        // save a copy of the length
  2275     assert(length == count, "");          // else fix next line:
  2276     __ negptr(count);                     // negate and test the length
  2277     __ jcc(Assembler::notZero, L_load_element);
  2279     // Empty array:  Nothing to do.
  2280     __ xorptr(rax, rax);                  // return 0 on (trivial) success
  2281     __ jmp(L_done);
  2283     // ======== begin loop ========
  2284     // (Loop is rotated; its entry is L_load_element.)
  2285     // Loop control:
  2286     //   for (count = -count; count != 0; count++)
  2287     // Base pointers src, dst are biased by 8*(count-1),to last element.
  2288     __ align(16);
  2290     __ BIND(L_store_element);
  2291     __ store_heap_oop(to_element_addr, rax_oop);  // store the oop
  2292     __ increment(count);               // increment the count toward zero
  2293     __ jcc(Assembler::zero, L_do_card_marks);
  2295     // ======== loop entry is here ========
  2296     __ BIND(L_load_element);
  2297     __ load_heap_oop(rax_oop, from_element_addr); // load the oop
  2298     __ testptr(rax_oop, rax_oop);
  2299     __ jcc(Assembler::zero, L_store_element);
  2301     __ load_klass(r11_klass, rax_oop);// query the object klass
  2302     generate_type_check(r11_klass, ckoff, ckval, L_store_element);
  2303     // ======== end loop ========
  2305     // It was a real error; we must depend on the caller to finish the job.
  2306     // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops.
  2307     // Emit GC store barriers for the oops we have copied (r14 + rdx),
  2308     // and report their number to the caller.
  2309     assert_different_registers(rax, r14_length, count, to, end_to, rcx);
  2310     __ lea(end_to, to_element_addr);
  2311     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
  2312     __ movptr(rax, r14_length);           // original oops
  2313     __ addptr(rax, count);                // K = (original - remaining) oops
  2314     __ notptr(rax);                       // report (-1^K) to caller
  2315     __ jmp(L_done);
  2317     // Come here on success only.
  2318     __ BIND(L_do_card_marks);
  2319     __ addptr(end_to, -wordSize);         // make an inclusive end pointer
  2320     gen_write_ref_array_post_barrier(to, end_to, rscratch1);
  2321     __ xorptr(rax, rax);                  // return 0 on success
  2323     // Common exit point (success or failure).
  2324     __ BIND(L_done);
  2325     __ movptr(r13, Address(rsp, saved_r13_offset * wordSize));
  2326     __ movptr(r14, Address(rsp, saved_r14_offset * wordSize));
  2327     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
  2328     restore_arg_regs();
  2329     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2330     __ ret(0);
  2332     return start;
  2335   //
  2336   //  Generate 'unsafe' array copy stub
  2337   //  Though just as safe as the other stubs, it takes an unscaled
  2338   //  size_t argument instead of an element count.
  2339   //
  2340   //  Input:
  2341   //    c_rarg0   - source array address
  2342   //    c_rarg1   - destination array address
  2343   //    c_rarg2   - byte count, treated as ssize_t, can be zero
  2344   //
  2345   // Examines the alignment of the operands and dispatches
  2346   // to a long, int, short, or byte copy loop.
  2347   //
  2348   address generate_unsafe_copy(const char *name) {
  2350     Label L_long_aligned, L_int_aligned, L_short_aligned;
  2352     // Input registers (before setup_arg_regs)
  2353     const Register from        = c_rarg0;  // source array address
  2354     const Register to          = c_rarg1;  // destination array address
  2355     const Register size        = c_rarg2;  // byte count (size_t)
  2357     // Register used as a temp
  2358     const Register bits        = rax;      // test copy of low bits
  2360     __ align(CodeEntryAlignment);
  2361     StubCodeMark mark(this, "StubRoutines", name);
  2362     address start = __ pc();
  2364     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2366     // bump this on entry, not on exit:
  2367     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
  2369     __ mov(bits, from);
  2370     __ orptr(bits, to);
  2371     __ orptr(bits, size);
  2373     __ testb(bits, BytesPerLong-1);
  2374     __ jccb(Assembler::zero, L_long_aligned);
  2376     __ testb(bits, BytesPerInt-1);
  2377     __ jccb(Assembler::zero, L_int_aligned);
  2379     __ testb(bits, BytesPerShort-1);
  2380     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
  2382     __ BIND(L_short_aligned);
  2383     __ shrptr(size, LogBytesPerShort); // size => short_count
  2384     __ jump(RuntimeAddress(short_copy_entry));
  2386     __ BIND(L_int_aligned);
  2387     __ shrptr(size, LogBytesPerInt); // size => int_count
  2388     __ jump(RuntimeAddress(int_copy_entry));
  2390     __ BIND(L_long_aligned);
  2391     __ shrptr(size, LogBytesPerLong); // size => qword_count
  2392     __ jump(RuntimeAddress(long_copy_entry));
  2394     return start;
  2397   // Perform range checks on the proposed arraycopy.
  2398   // Kills temp, but nothing else.
  2399   // Also, clean the sign bits of src_pos and dst_pos.
  2400   void arraycopy_range_checks(Register src,     // source array oop (c_rarg0)
  2401                               Register src_pos, // source position (c_rarg1)
  2402                               Register dst,     // destination array oo (c_rarg2)
  2403                               Register dst_pos, // destination position (c_rarg3)
  2404                               Register length,
  2405                               Register temp,
  2406                               Label& L_failed) {
  2407     BLOCK_COMMENT("arraycopy_range_checks:");
  2409     //  if (src_pos + length > arrayOop(src)->length())  FAIL;
  2410     __ movl(temp, length);
  2411     __ addl(temp, src_pos);             // src_pos + length
  2412     __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes()));
  2413     __ jcc(Assembler::above, L_failed);
  2415     //  if (dst_pos + length > arrayOop(dst)->length())  FAIL;
  2416     __ movl(temp, length);
  2417     __ addl(temp, dst_pos);             // dst_pos + length
  2418     __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes()));
  2419     __ jcc(Assembler::above, L_failed);
  2421     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
  2422     // Move with sign extension can be used since they are positive.
  2423     __ movslq(src_pos, src_pos);
  2424     __ movslq(dst_pos, dst_pos);
  2426     BLOCK_COMMENT("arraycopy_range_checks done");
  2429   //
  2430   //  Generate generic array copy stubs
  2431   //
  2432   //  Input:
  2433   //    c_rarg0    -  src oop
  2434   //    c_rarg1    -  src_pos (32-bits)
  2435   //    c_rarg2    -  dst oop
  2436   //    c_rarg3    -  dst_pos (32-bits)
  2437   // not Win64
  2438   //    c_rarg4    -  element count (32-bits)
  2439   // Win64
  2440   //    rsp+40     -  element count (32-bits)
  2441   //
  2442   //  Output:
  2443   //    rax ==  0  -  success
  2444   //    rax == -1^K - failure, where K is partial transfer count
  2445   //
  2446   address generate_generic_copy(const char *name) {
  2448     Label L_failed, L_failed_0, L_objArray;
  2449     Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
  2451     // Input registers
  2452     const Register src        = c_rarg0;  // source array oop
  2453     const Register src_pos    = c_rarg1;  // source position
  2454     const Register dst        = c_rarg2;  // destination array oop
  2455     const Register dst_pos    = c_rarg3;  // destination position
  2456     // elements count is on stack on Win64
  2457 #ifdef _WIN64
  2458 #define C_RARG4 Address(rsp, 6 * wordSize)
  2459 #else
  2460 #define C_RARG4 c_rarg4
  2461 #endif
  2463     { int modulus = CodeEntryAlignment;
  2464       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
  2465       int advance = target - (__ offset() % modulus);
  2466       if (advance < 0)  advance += modulus;
  2467       if (advance > 0)  __ nop(advance);
  2469     StubCodeMark mark(this, "StubRoutines", name);
  2471     // Short-hop target to L_failed.  Makes for denser prologue code.
  2472     __ BIND(L_failed_0);
  2473     __ jmp(L_failed);
  2474     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
  2476     __ align(CodeEntryAlignment);
  2477     address start = __ pc();
  2479     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2481     // bump this on entry, not on exit:
  2482     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
  2484     //-----------------------------------------------------------------------
  2485     // Assembler stub will be used for this call to arraycopy
  2486     // if the following conditions are met:
  2487     //
  2488     // (1) src and dst must not be null.
  2489     // (2) src_pos must not be negative.
  2490     // (3) dst_pos must not be negative.
  2491     // (4) length  must not be negative.
  2492     // (5) src klass and dst klass should be the same and not NULL.
  2493     // (6) src and dst should be arrays.
  2494     // (7) src_pos + length must not exceed length of src.
  2495     // (8) dst_pos + length must not exceed length of dst.
  2496     //
  2498     //  if (src == NULL) return -1;
  2499     __ testptr(src, src);         // src oop
  2500     size_t j1off = __ offset();
  2501     __ jccb(Assembler::zero, L_failed_0);
  2503     //  if (src_pos < 0) return -1;
  2504     __ testl(src_pos, src_pos); // src_pos (32-bits)
  2505     __ jccb(Assembler::negative, L_failed_0);
  2507     //  if (dst == NULL) return -1;
  2508     __ testptr(dst, dst);         // dst oop
  2509     __ jccb(Assembler::zero, L_failed_0);
  2511     //  if (dst_pos < 0) return -1;
  2512     __ testl(dst_pos, dst_pos); // dst_pos (32-bits)
  2513     size_t j4off = __ offset();
  2514     __ jccb(Assembler::negative, L_failed_0);
  2516     // The first four tests are very dense code,
  2517     // but not quite dense enough to put four
  2518     // jumps in a 16-byte instruction fetch buffer.
  2519     // That's good, because some branch predicters
  2520     // do not like jumps so close together.
  2521     // Make sure of this.
  2522     guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps");
  2524     // registers used as temp
  2525     const Register r11_length    = r11; // elements count to copy
  2526     const Register r10_src_klass = r10; // array klass
  2527     const Register r9_dst_klass  = r9;  // dest array klass
  2529     //  if (length < 0) return -1;
  2530     __ movl(r11_length, C_RARG4);       // length (elements count, 32-bits value)
  2531     __ testl(r11_length, r11_length);
  2532     __ jccb(Assembler::negative, L_failed_0);
  2534     __ load_klass(r10_src_klass, src);
  2535 #ifdef ASSERT
  2536     //  assert(src->klass() != NULL);
  2537     BLOCK_COMMENT("assert klasses not null");
  2538     { Label L1, L2;
  2539       __ testptr(r10_src_klass, r10_src_klass);
  2540       __ jcc(Assembler::notZero, L2);   // it is broken if klass is NULL
  2541       __ bind(L1);
  2542       __ stop("broken null klass");
  2543       __ bind(L2);
  2544       __ load_klass(r9_dst_klass, dst);
  2545       __ cmpq(r9_dst_klass, 0);
  2546       __ jcc(Assembler::equal, L1);     // this would be broken also
  2547       BLOCK_COMMENT("assert done");
  2549 #endif
  2551     // Load layout helper (32-bits)
  2552     //
  2553     //  |array_tag|     | header_size | element_type |     |log2_element_size|
  2554     // 32        30    24            16              8     2                 0
  2555     //
  2556     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
  2557     //
  2559     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
  2560                     Klass::layout_helper_offset_in_bytes();
  2562     const Register rax_lh = rax;  // layout helper
  2564     __ movl(rax_lh, Address(r10_src_klass, lh_offset));
  2566     // Handle objArrays completely differently...
  2567     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2568     __ cmpl(rax_lh, objArray_lh);
  2569     __ jcc(Assembler::equal, L_objArray);
  2571     //  if (src->klass() != dst->klass()) return -1;
  2572     __ load_klass(r9_dst_klass, dst);
  2573     __ cmpq(r10_src_klass, r9_dst_klass);
  2574     __ jcc(Assembler::notEqual, L_failed);
  2576     //  if (!src->is_Array()) return -1;
  2577     __ cmpl(rax_lh, Klass::_lh_neutral_value);
  2578     __ jcc(Assembler::greaterEqual, L_failed);
  2580     // At this point, it is known to be a typeArray (array_tag 0x3).
  2581 #ifdef ASSERT
  2582     { Label L;
  2583       __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
  2584       __ jcc(Assembler::greaterEqual, L);
  2585       __ stop("must be a primitive array");
  2586       __ bind(L);
  2588 #endif
  2590     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2591                            r10, L_failed);
  2593     // typeArrayKlass
  2594     //
  2595     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
  2596     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
  2597     //
  2599     const Register r10_offset = r10;    // array offset
  2600     const Register rax_elsize = rax_lh; // element size
  2602     __ movl(r10_offset, rax_lh);
  2603     __ shrl(r10_offset, Klass::_lh_header_size_shift);
  2604     __ andptr(r10_offset, Klass::_lh_header_size_mask);   // array_offset
  2605     __ addptr(src, r10_offset);           // src array offset
  2606     __ addptr(dst, r10_offset);           // dst array offset
  2607     BLOCK_COMMENT("choose copy loop based on element size");
  2608     __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize
  2610     // next registers should be set before the jump to corresponding stub
  2611     const Register from     = c_rarg0;  // source array address
  2612     const Register to       = c_rarg1;  // destination array address
  2613     const Register count    = c_rarg2;  // elements count
  2615     // 'from', 'to', 'count' registers should be set in such order
  2616     // since they are the same as 'src', 'src_pos', 'dst'.
  2618   __ BIND(L_copy_bytes);
  2619     __ cmpl(rax_elsize, 0);
  2620     __ jccb(Assembler::notEqual, L_copy_shorts);
  2621     __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr
  2622     __ lea(to,   Address(dst, dst_pos, Address::times_1, 0));// dst_addr
  2623     __ movl2ptr(count, r11_length); // length
  2624     __ jump(RuntimeAddress(byte_copy_entry));
  2626   __ BIND(L_copy_shorts);
  2627     __ cmpl(rax_elsize, LogBytesPerShort);
  2628     __ jccb(Assembler::notEqual, L_copy_ints);
  2629     __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr
  2630     __ lea(to,   Address(dst, dst_pos, Address::times_2, 0));// dst_addr
  2631     __ movl2ptr(count, r11_length); // length
  2632     __ jump(RuntimeAddress(short_copy_entry));
  2634   __ BIND(L_copy_ints);
  2635     __ cmpl(rax_elsize, LogBytesPerInt);
  2636     __ jccb(Assembler::notEqual, L_copy_longs);
  2637     __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr
  2638     __ lea(to,   Address(dst, dst_pos, Address::times_4, 0));// dst_addr
  2639     __ movl2ptr(count, r11_length); // length
  2640     __ jump(RuntimeAddress(int_copy_entry));
  2642   __ BIND(L_copy_longs);
  2643 #ifdef ASSERT
  2644     { Label L;
  2645       __ cmpl(rax_elsize, LogBytesPerLong);
  2646       __ jcc(Assembler::equal, L);
  2647       __ stop("must be long copy, but elsize is wrong");
  2648       __ bind(L);
  2650 #endif
  2651     __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr
  2652     __ lea(to,   Address(dst, dst_pos, Address::times_8, 0));// dst_addr
  2653     __ movl2ptr(count, r11_length); // length
  2654     __ jump(RuntimeAddress(long_copy_entry));
  2656     // objArrayKlass
  2657   __ BIND(L_objArray);
  2658     // live at this point:  r10_src_klass, src[_pos], dst[_pos]
  2660     Label L_plain_copy, L_checkcast_copy;
  2661     //  test array classes for subtyping
  2662     __ load_klass(r9_dst_klass, dst);
  2663     __ cmpq(r10_src_klass, r9_dst_klass); // usual case is exact equality
  2664     __ jcc(Assembler::notEqual, L_checkcast_copy);
  2666     // Identically typed arrays can be copied without element-wise checks.
  2667     arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2668                            r10, L_failed);
  2670     __ lea(from, Address(src, src_pos, TIMES_OOP,
  2671                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
  2672     __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
  2673                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
  2674     __ movl2ptr(count, r11_length); // length
  2675   __ BIND(L_plain_copy);
  2676     __ jump(RuntimeAddress(oop_copy_entry));
  2678   __ BIND(L_checkcast_copy);
  2679     // live at this point:  r10_src_klass, !r11_length
  2681       // assert(r11_length == C_RARG4); // will reload from here
  2682       Register r11_dst_klass = r11;
  2683       __ load_klass(r11_dst_klass, dst);
  2685       // Before looking at dst.length, make sure dst is also an objArray.
  2686       __ cmpl(Address(r11_dst_klass, lh_offset), objArray_lh);
  2687       __ jcc(Assembler::notEqual, L_failed);
  2689       // It is safe to examine both src.length and dst.length.
  2690 #ifndef _WIN64
  2691       arraycopy_range_checks(src, src_pos, dst, dst_pos, C_RARG4,
  2692                              rax, L_failed);
  2693 #else
  2694       __ movl(r11_length, C_RARG4);     // reload
  2695       arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length,
  2696                              rax, L_failed);
  2697       __ load_klass(r11_dst_klass, dst); // reload
  2698 #endif
  2700       // Marshal the base address arguments now, freeing registers.
  2701       __ lea(from, Address(src, src_pos, TIMES_OOP,
  2702                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  2703       __ lea(to,   Address(dst, dst_pos, TIMES_OOP,
  2704                    arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
  2705       __ movl(count, C_RARG4);          // length (reloaded)
  2706       Register sco_temp = c_rarg3;      // this register is free now
  2707       assert_different_registers(from, to, count, sco_temp,
  2708                                  r11_dst_klass, r10_src_klass);
  2709       assert_clean_int(count, sco_temp);
  2711       // Generate the type check.
  2712       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  2713                         Klass::super_check_offset_offset_in_bytes());
  2714       __ movl(sco_temp, Address(r11_dst_klass, sco_offset));
  2715       assert_clean_int(sco_temp, rax);
  2716       generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy);
  2718       // Fetch destination element klass from the objArrayKlass header.
  2719       int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
  2720                        objArrayKlass::element_klass_offset_in_bytes());
  2721       __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset));
  2722       __ movl(sco_temp,      Address(r11_dst_klass, sco_offset));
  2723       assert_clean_int(sco_temp, rax);
  2725       // the checkcast_copy loop needs two extra arguments:
  2726       assert(c_rarg3 == sco_temp, "#3 already in place");
  2727       __ movptr(C_RARG4, r11_dst_klass);  // dst.klass.element_klass
  2728       __ jump(RuntimeAddress(checkcast_copy_entry));
  2731   __ BIND(L_failed);
  2732     __ xorptr(rax, rax);
  2733     __ notptr(rax); // return -1
  2734     __ leave();   // required for proper stackwalking of RuntimeStub frame
  2735     __ ret(0);
  2737     return start;
  2740 #undef length_arg
  2742   void generate_arraycopy_stubs() {
  2743     // Call the conjoint generation methods immediately after
  2744     // the disjoint ones so that short branches from the former
  2745     // to the latter can be generated.
  2746     StubRoutines::_jbyte_disjoint_arraycopy  = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
  2747     StubRoutines::_jbyte_arraycopy           = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
  2749     StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
  2750     StubRoutines::_jshort_arraycopy          = generate_conjoint_short_copy(false, "jshort_arraycopy");
  2752     StubRoutines::_jint_disjoint_arraycopy   = generate_disjoint_int_oop_copy(false, false, "jint_disjoint_arraycopy");
  2753     StubRoutines::_jint_arraycopy            = generate_conjoint_int_oop_copy(false, false, "jint_arraycopy");
  2755     StubRoutines::_jlong_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, false, "jlong_disjoint_arraycopy");
  2756     StubRoutines::_jlong_arraycopy           = generate_conjoint_long_oop_copy(false, false, "jlong_arraycopy");
  2759     if (UseCompressedOops) {
  2760       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_int_oop_copy(false, true, "oop_disjoint_arraycopy");
  2761       StubRoutines::_oop_arraycopy           = generate_conjoint_int_oop_copy(false, true, "oop_arraycopy");
  2762     } else {
  2763       StubRoutines::_oop_disjoint_arraycopy  = generate_disjoint_long_oop_copy(false, true, "oop_disjoint_arraycopy");
  2764       StubRoutines::_oop_arraycopy           = generate_conjoint_long_oop_copy(false, true, "oop_arraycopy");
  2767     StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
  2768     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy");
  2769     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy");
  2771     // We don't generate specialized code for HeapWord-aligned source
  2772     // arrays, so just use the code we've already generated
  2773     StubRoutines::_arrayof_jbyte_disjoint_arraycopy  = StubRoutines::_jbyte_disjoint_arraycopy;
  2774     StubRoutines::_arrayof_jbyte_arraycopy           = StubRoutines::_jbyte_arraycopy;
  2776     StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy;
  2777     StubRoutines::_arrayof_jshort_arraycopy          = StubRoutines::_jshort_arraycopy;
  2779     StubRoutines::_arrayof_jint_disjoint_arraycopy   = StubRoutines::_jint_disjoint_arraycopy;
  2780     StubRoutines::_arrayof_jint_arraycopy            = StubRoutines::_jint_arraycopy;
  2782     StubRoutines::_arrayof_jlong_disjoint_arraycopy  = StubRoutines::_jlong_disjoint_arraycopy;
  2783     StubRoutines::_arrayof_jlong_arraycopy           = StubRoutines::_jlong_arraycopy;
  2785     StubRoutines::_arrayof_oop_disjoint_arraycopy    = StubRoutines::_oop_disjoint_arraycopy;
  2786     StubRoutines::_arrayof_oop_arraycopy             = StubRoutines::_oop_arraycopy;
  2789 #undef __
  2790 #define __ masm->
  2792   // Continuation point for throwing of implicit exceptions that are
  2793   // not handled in the current activation. Fabricates an exception
  2794   // oop and initiates normal exception dispatching in this
  2795   // frame. Since we need to preserve callee-saved values (currently
  2796   // only for C2, but done for C1 as well) we need a callee-saved oop
  2797   // map and therefore have to make these stubs into RuntimeStubs
  2798   // rather than BufferBlobs.  If the compiler needs all registers to
  2799   // be preserved between the fault point and the exception handler
  2800   // then it must assume responsibility for that in
  2801   // AbstractCompiler::continuation_for_implicit_null_exception or
  2802   // continuation_for_implicit_division_by_zero_exception. All other
  2803   // implicit exceptions (e.g., NullPointerException or
  2804   // AbstractMethodError on entry) are either at call sites or
  2805   // otherwise assume that stack unwinding will be initiated, so
  2806   // caller saved registers were assumed volatile in the compiler.
  2807   address generate_throw_exception(const char* name,
  2808                                    address runtime_entry,
  2809                                    bool restore_saved_exception_pc) {
  2810     // Information about frame layout at time of blocking runtime call.
  2811     // Note that we only have to preserve callee-saved registers since
  2812     // the compilers are responsible for supplying a continuation point
  2813     // if they expect all registers to be preserved.
  2814     enum layout {
  2815       rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  2816       rbp_off2,
  2817       return_off,
  2818       return_off2,
  2819       framesize // inclusive of return address
  2820     };
  2822     int insts_size = 512;
  2823     int locs_size  = 64;
  2825     CodeBuffer code(name, insts_size, locs_size);
  2826     OopMapSet* oop_maps  = new OopMapSet();
  2827     MacroAssembler* masm = new MacroAssembler(&code);
  2829     address start = __ pc();
  2831     // This is an inlined and slightly modified version of call_VM
  2832     // which has the ability to fetch the return PC out of
  2833     // thread-local storage and also sets up last_Java_sp slightly
  2834     // differently than the real call_VM
  2835     if (restore_saved_exception_pc) {
  2836       __ movptr(rax,
  2837                 Address(r15_thread,
  2838                         in_bytes(JavaThread::saved_exception_pc_offset())));
  2839       __ push(rax);
  2842     __ enter(); // required for proper stackwalking of RuntimeStub frame
  2844     assert(is_even(framesize/2), "sp not 16-byte aligned");
  2846     // return address and rbp are already in place
  2847     __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog
  2849     int frame_complete = __ pc() - start;
  2851     // Set up last_Java_sp and last_Java_fp
  2852     __ set_last_Java_frame(rsp, rbp, NULL);
  2854     // Call runtime
  2855     __ movptr(c_rarg0, r15_thread);
  2856     BLOCK_COMMENT("call runtime_entry");
  2857     __ call(RuntimeAddress(runtime_entry));
  2859     // Generate oop map
  2860     OopMap* map = new OopMap(framesize, 0);
  2862     oop_maps->add_gc_map(__ pc() - start, map);
  2864     __ reset_last_Java_frame(true, false);
  2866     __ leave(); // required for proper stackwalking of RuntimeStub frame
  2868     // check for pending exceptions
  2869 #ifdef ASSERT
  2870     Label L;
  2871     __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()),
  2872             (int32_t) NULL_WORD);
  2873     __ jcc(Assembler::notEqual, L);
  2874     __ should_not_reach_here();
  2875     __ bind(L);
  2876 #endif // ASSERT
  2877     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  2880     // codeBlob framesize is in words (not VMRegImpl::slot_size)
  2881     RuntimeStub* stub =
  2882       RuntimeStub::new_runtime_stub(name,
  2883                                     &code,
  2884                                     frame_complete,
  2885                                     (framesize >> (LogBytesPerWord - LogBytesPerInt)),
  2886                                     oop_maps, false);
  2887     return stub->entry_point();
  2890   // Initialization
  2891   void generate_initial() {
  2892     // Generates all stubs and initializes the entry points
  2894     // This platform-specific stub is needed by generate_call_stub()
  2895     StubRoutines::x86::_mxcsr_std        = generate_fp_mask("mxcsr_std",        0x0000000000001F80);
  2897     // entry points that exist in all platforms Note: This is code
  2898     // that could be shared among different platforms - however the
  2899     // benefit seems to be smaller than the disadvantage of having a
  2900     // much more complicated generator structure. See also comment in
  2901     // stubRoutines.hpp.
  2903     StubRoutines::_forward_exception_entry = generate_forward_exception();
  2905     StubRoutines::_call_stub_entry =
  2906       generate_call_stub(StubRoutines::_call_stub_return_address);
  2908     // is referenced by megamorphic call
  2909     StubRoutines::_catch_exception_entry = generate_catch_exception();
  2911     // atomic calls
  2912     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
  2913     StubRoutines::_atomic_xchg_ptr_entry     = generate_atomic_xchg_ptr();
  2914     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
  2915     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
  2916     StubRoutines::_atomic_add_entry          = generate_atomic_add();
  2917     StubRoutines::_atomic_add_ptr_entry      = generate_atomic_add_ptr();
  2918     StubRoutines::_fence_entry               = generate_orderaccess_fence();
  2920     StubRoutines::_handler_for_unsafe_access_entry =
  2921       generate_handler_for_unsafe_access();
  2923     // platform dependent
  2924     StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp();
  2926     StubRoutines::x86::_verify_mxcsr_entry    = generate_verify_mxcsr();
  2929   void generate_all() {
  2930     // Generates all stubs and initializes the entry points
  2932     // These entry points require SharedInfo::stack0 to be set up in
  2933     // non-core builds and need to be relocatable, so they each
  2934     // fabricate a RuntimeStub internally.
  2935     StubRoutines::_throw_AbstractMethodError_entry =
  2936       generate_throw_exception("AbstractMethodError throw_exception",
  2937                                CAST_FROM_FN_PTR(address,
  2938                                                 SharedRuntime::
  2939                                                 throw_AbstractMethodError),
  2940                                false);
  2942     StubRoutines::_throw_IncompatibleClassChangeError_entry =
  2943       generate_throw_exception("IncompatibleClassChangeError throw_exception",
  2944                                CAST_FROM_FN_PTR(address,
  2945                                                 SharedRuntime::
  2946                                                 throw_IncompatibleClassChangeError),
  2947                                false);
  2949     StubRoutines::_throw_ArithmeticException_entry =
  2950       generate_throw_exception("ArithmeticException throw_exception",
  2951                                CAST_FROM_FN_PTR(address,
  2952                                                 SharedRuntime::
  2953                                                 throw_ArithmeticException),
  2954                                true);
  2956     StubRoutines::_throw_NullPointerException_entry =
  2957       generate_throw_exception("NullPointerException throw_exception",
  2958                                CAST_FROM_FN_PTR(address,
  2959                                                 SharedRuntime::
  2960                                                 throw_NullPointerException),
  2961                                true);
  2963     StubRoutines::_throw_NullPointerException_at_call_entry =
  2964       generate_throw_exception("NullPointerException at call throw_exception",
  2965                                CAST_FROM_FN_PTR(address,
  2966                                                 SharedRuntime::
  2967                                                 throw_NullPointerException_at_call),
  2968                                false);
  2970     StubRoutines::_throw_StackOverflowError_entry =
  2971       generate_throw_exception("StackOverflowError throw_exception",
  2972                                CAST_FROM_FN_PTR(address,
  2973                                                 SharedRuntime::
  2974                                                 throw_StackOverflowError),
  2975                                false);
  2977     // entry points that are platform specific
  2978     StubRoutines::x86::_f2i_fixup = generate_f2i_fixup();
  2979     StubRoutines::x86::_f2l_fixup = generate_f2l_fixup();
  2980     StubRoutines::x86::_d2i_fixup = generate_d2i_fixup();
  2981     StubRoutines::x86::_d2l_fixup = generate_d2l_fixup();
  2983     StubRoutines::x86::_float_sign_mask  = generate_fp_mask("float_sign_mask",  0x7FFFFFFF7FFFFFFF);
  2984     StubRoutines::x86::_float_sign_flip  = generate_fp_mask("float_sign_flip",  0x8000000080000000);
  2985     StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF);
  2986     StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000);
  2988     // support for verify_oop (must happen after universe_init)
  2989     StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
  2991     // arraycopy stubs used by compilers
  2992     generate_arraycopy_stubs();
  2995  public:
  2996   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
  2997     if (all) {
  2998       generate_all();
  2999     } else {
  3000       generate_initial();
  3003 }; // end class declaration
  3005 address StubGenerator::disjoint_byte_copy_entry  = NULL;
  3006 address StubGenerator::disjoint_short_copy_entry = NULL;
  3007 address StubGenerator::disjoint_int_copy_entry   = NULL;
  3008 address StubGenerator::disjoint_long_copy_entry  = NULL;
  3009 address StubGenerator::disjoint_oop_copy_entry   = NULL;
  3011 address StubGenerator::byte_copy_entry  = NULL;
  3012 address StubGenerator::short_copy_entry = NULL;
  3013 address StubGenerator::int_copy_entry   = NULL;
  3014 address StubGenerator::long_copy_entry  = NULL;
  3015 address StubGenerator::oop_copy_entry   = NULL;
  3017 address StubGenerator::checkcast_copy_entry = NULL;
  3019 void StubGenerator_generate(CodeBuffer* code, bool all) {
  3020   StubGenerator g(code, all);

mercurial