src/cpu/x86/vm/interp_masm_x86_64.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 955
52a431267315
child 1063
7bb995fbd3c0
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 2003-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_interp_masm_x86_64.cpp.incl"
    29 // Implementation of InterpreterMacroAssembler
    31 #ifdef CC_INTERP
    32 void InterpreterMacroAssembler::get_method(Register reg) {
    33   movptr(reg, Address(rbp, -((int)sizeof(BytecodeInterpreter) + 2 * wordSize)));
    34   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
    35 }
    36 #endif // CC_INTERP
    38 #ifndef CC_INTERP
    40 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
    41                                                   int number_of_arguments) {
    42   // interpreter specific
    43   //
    44   // Note: No need to save/restore bcp & locals (r13 & r14) pointer
    45   //       since these are callee saved registers and no blocking/
    46   //       GC can happen in leaf calls.
    47   // Further Note: DO NOT save/restore bcp/locals. If a caller has
    48   // already saved them so that it can use esi/edi as temporaries
    49   // then a save/restore here will DESTROY the copy the caller
    50   // saved! There used to be a save_bcp() that only happened in
    51   // the ASSERT path (no restore_bcp). Which caused bizarre failures
    52   // when jvm built with ASSERTs.
    53 #ifdef ASSERT
    54   {
    55     Label L;
    56     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    57     jcc(Assembler::equal, L);
    58     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
    59          " last_sp != NULL");
    60     bind(L);
    61   }
    62 #endif
    63   // super call
    64   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
    65   // interpreter specific
    66   // Used to ASSERT that r13/r14 were equal to frame's bcp/locals
    67   // but since they may not have been saved (and we don't want to
    68   // save thme here (see note above) the assert is invalid.
    69 }
    71 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
    72                                              Register java_thread,
    73                                              Register last_java_sp,
    74                                              address  entry_point,
    75                                              int      number_of_arguments,
    76                                              bool     check_exceptions) {
    77   // interpreter specific
    78   //
    79   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
    80   //       really make a difference for these runtime calls, since they are
    81   //       slow anyway. Btw., bcp must be saved/restored since it may change
    82   //       due to GC.
    83   // assert(java_thread == noreg , "not expecting a precomputed java thread");
    84   save_bcp();
    85 #ifdef ASSERT
    86   {
    87     Label L;
    88     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
    89     jcc(Assembler::equal, L);
    90     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
    91          " last_sp != NULL");
    92     bind(L);
    93   }
    94 #endif /* ASSERT */
    95   // super call
    96   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
    97                                entry_point, number_of_arguments,
    98                                check_exceptions);
    99   // interpreter specific
   100   restore_bcp();
   101   restore_locals();
   102 }
   105 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
   106   if (JvmtiExport::can_pop_frame()) {
   107     Label L;
   108     // Initiate popframe handling only if it is not already being
   109     // processed.  If the flag has the popframe_processing bit set, it
   110     // means that this code is called *during* popframe handling - we
   111     // don't want to reenter.
   112     // This method is only called just after the call into the vm in
   113     // call_VM_base, so the arg registers are available.
   114     movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset()));
   115     testl(c_rarg0, JavaThread::popframe_pending_bit);
   116     jcc(Assembler::zero, L);
   117     testl(c_rarg0, JavaThread::popframe_processing_bit);
   118     jcc(Assembler::notZero, L);
   119     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   120     // address of the same-named entrypoint in the generated interpreter code.
   121     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   122     jmp(rax);
   123     bind(L);
   124   }
   125 }
   128 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   129   movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   130   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
   131   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
   132   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
   133   switch (state) {
   134     case atos: movptr(rax, oop_addr);
   135                movptr(oop_addr, (int32_t)NULL_WORD);
   136                verify_oop(rax, state);              break;
   137     case ltos: movptr(rax, val_addr);                 break;
   138     case btos:                                   // fall through
   139     case ctos:                                   // fall through
   140     case stos:                                   // fall through
   141     case itos: movl(rax, val_addr);                 break;
   142     case ftos: movflt(xmm0, val_addr);              break;
   143     case dtos: movdbl(xmm0, val_addr);              break;
   144     case vtos: /* nothing to do */                  break;
   145     default  : ShouldNotReachHere();
   146   }
   147   // Clean up tos value in the thread object
   148   movl(tos_addr,  (int) ilgl);
   149   movl(val_addr,  (int32_t) NULL_WORD);
   150 }
   153 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
   154   if (JvmtiExport::can_force_early_return()) {
   155     Label L;
   156     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   157     testptr(c_rarg0, c_rarg0);
   158     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
   160     // Initiate earlyret handling only if it is not already being processed.
   161     // If the flag has the earlyret_processing bit set, it means that this code
   162     // is called *during* earlyret handling - we don't want to reenter.
   163     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset()));
   164     cmpl(c_rarg0, JvmtiThreadState::earlyret_pending);
   165     jcc(Assembler::notEqual, L);
   167     // Call Interpreter::remove_activation_early_entry() to get the address of the
   168     // same-named entrypoint in the generated interpreter code.
   169     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
   170     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset()));
   171     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0);
   172     jmp(rax);
   173     bind(L);
   174   }
   175 }
   178 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
   179   Register reg,
   180   int bcp_offset) {
   181   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
   182   movl(reg, Address(r13, bcp_offset));
   183   bswapl(reg);
   184   shrl(reg, 16);
   185 }
   188 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
   189                                                            Register index,
   190                                                            int bcp_offset) {
   191   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   192   assert(cache != index, "must use different registers");
   193   load_unsigned_word(index, Address(r13, bcp_offset));
   194   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   195   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
   196   // convert from field index to ConstantPoolCacheEntry index
   197   shll(index, 2);
   198 }
   201 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
   202                                                                Register tmp,
   203                                                                int bcp_offset) {
   204   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   205   assert(cache != tmp, "must use different register");
   206   load_unsigned_word(tmp, Address(r13, bcp_offset));
   207   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
   208   // convert from field index to ConstantPoolCacheEntry index
   209   // and from word offset to byte offset
   210   shll(tmp, 2 + LogBytesPerWord);
   211   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
   212   // skip past the header
   213   addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
   214   addptr(cache, tmp);  // construct pointer to cache entry
   215 }
   218 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
   219 // subtype of super_klass.
   220 //
   221 // Args:
   222 //      rax: superklass
   223 //      Rsub_klass: subklass
   224 //
   225 // Kills:
   226 //      rcx, rdi
   227 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
   228                                                   Label& ok_is_subtype) {
   229   assert(Rsub_klass != rax, "rax holds superklass");
   230   assert(Rsub_klass != r14, "r14 holds locals");
   231   assert(Rsub_klass != r13, "r13 holds bcp");
   232   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
   233   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
   235   Label not_subtype, not_subtype_pop, loop;
   237   // Profile the not-null value's klass.
   238   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, rdi
   240   // Load the super-klass's check offset into rcx
   241   movl(rcx, Address(rax, sizeof(oopDesc) +
   242                     Klass::super_check_offset_offset_in_bytes()));
   243   // Load from the sub-klass's super-class display list, or a 1-word
   244   // cache of the secondary superclass list, or a failing value with a
   245   // sentinel offset if the super-klass is an interface or
   246   // exceptionally deep in the Java hierarchy and we have to scan the
   247   // secondary superclass list the hard way.  See if we get an
   248   // immediate positive hit
   249   cmpptr(rax, Address(Rsub_klass, rcx, Address::times_1));
   250   jcc(Assembler::equal,ok_is_subtype);
   252   // Check for immediate negative hit
   253   cmpl(rcx, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
   254   jcc( Assembler::notEqual, not_subtype );
   255   // Check for self
   256   cmpptr(Rsub_klass, rax);
   257   jcc(Assembler::equal, ok_is_subtype);
   259   // Now do a linear scan of the secondary super-klass chain.
   260   movptr(rdi, Address(Rsub_klass, sizeof(oopDesc) +
   261                       Klass::secondary_supers_offset_in_bytes()));
   262   // rdi holds the objArrayOop of secondary supers.
   263   // Load the array length
   264   movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
   265   // Skip to start of data; also clear Z flag incase rcx is zero
   266   addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   267   // Scan rcx words at [rdi] for occurance of rax
   268   // Set NZ/Z based on last compare
   270   // this part is kind tricky, as values in supers array could be 32 or 64 bit wide
   271   // and we store values in objArrays always encoded, thus we need to encode value
   272   // before repne
   273   if (UseCompressedOops) {
   274     push(rax);
   275     encode_heap_oop(rax);
   276     repne_scanl();
   277     // Not equal?
   278     jcc(Assembler::notEqual, not_subtype_pop);
   279     // restore heap oop here for movq
   280     pop(rax);
   281   } else {
   282     repne_scan();
   283     jcc(Assembler::notEqual, not_subtype);
   284   }
   285   // Must be equal but missed in cache.  Update cache.
   286   movptr(Address(Rsub_klass, sizeof(oopDesc) +
   287                Klass::secondary_super_cache_offset_in_bytes()), rax);
   288   jmp(ok_is_subtype);
   290   bind(not_subtype_pop);
   291   // restore heap oop here for miss
   292   if (UseCompressedOops) pop(rax);
   293   bind(not_subtype);
   294   profile_typecheck_failed(rcx); // blows rcx
   295 }
   299 // Java Expression Stack
   301 #ifdef ASSERT
   302 // Verifies that the stack tag matches.  Must be called before the stack
   303 // value is popped off the stack.
   304 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t) {
   305   if (TaggedStackInterpreter) {
   306     frame::Tag tag = t;
   307     if (t == frame::TagCategory2) {
   308       tag = frame::TagValue;
   309       Label hokay;
   310       cmpptr(Address(rsp, 3*wordSize), (int32_t)tag);
   311       jcc(Assembler::equal, hokay);
   312       stop("Java Expression stack tag high value is bad");
   313       bind(hokay);
   314     }
   315     Label okay;
   316     cmpptr(Address(rsp, wordSize), (int32_t)tag);
   317     jcc(Assembler::equal, okay);
   318     // Also compare if the stack value is zero, then the tag might
   319     // not have been set coming from deopt.
   320     cmpptr(Address(rsp, 0), 0);
   321     jcc(Assembler::equal, okay);
   322     stop("Java Expression stack tag value is bad");
   323     bind(okay);
   324   }
   325 }
   326 #endif // ASSERT
   328 void InterpreterMacroAssembler::pop_ptr(Register r) {
   329   debug_only(verify_stack_tag(frame::TagReference));
   330   pop(r);
   331   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   332 }
   334 void InterpreterMacroAssembler::pop_ptr(Register r, Register tag) {
   335   pop(r);
   336   if (TaggedStackInterpreter) pop(tag);
   337 }
   339 void InterpreterMacroAssembler::pop_i(Register r) {
   340   // XXX can't use pop currently, upper half non clean
   341   debug_only(verify_stack_tag(frame::TagValue));
   342   movl(r, Address(rsp, 0));
   343   addptr(rsp, wordSize);
   344   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   345 }
   347 void InterpreterMacroAssembler::pop_l(Register r) {
   348   debug_only(verify_stack_tag(frame::TagCategory2));
   349   movq(r, Address(rsp, 0));
   350   addptr(rsp, 2 * Interpreter::stackElementSize());
   351 }
   353 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
   354   debug_only(verify_stack_tag(frame::TagValue));
   355   movflt(r, Address(rsp, 0));
   356   addptr(rsp, wordSize);
   357   if (TaggedStackInterpreter) addptr(rsp, 1 * wordSize);
   358 }
   360 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
   361   debug_only(verify_stack_tag(frame::TagCategory2));
   362   movdbl(r, Address(rsp, 0));
   363   addptr(rsp, 2 * Interpreter::stackElementSize());
   364 }
   366 void InterpreterMacroAssembler::push_ptr(Register r) {
   367   if (TaggedStackInterpreter) push(frame::TagReference);
   368   push(r);
   369 }
   371 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
   372   if (TaggedStackInterpreter) push(tag);
   373   push(r);
   374 }
   376 void InterpreterMacroAssembler::push_i(Register r) {
   377   if (TaggedStackInterpreter) push(frame::TagValue);
   378   push(r);
   379 }
   381 void InterpreterMacroAssembler::push_l(Register r) {
   382   if (TaggedStackInterpreter) {
   383     push(frame::TagValue);
   384     subptr(rsp, 1 * wordSize);
   385     push(frame::TagValue);
   386     subptr(rsp, 1 * wordSize);
   387   } else {
   388     subptr(rsp, 2 * wordSize);
   389   }
   390   movq(Address(rsp, 0), r);
   391 }
   393 void InterpreterMacroAssembler::push_f(XMMRegister r) {
   394   if (TaggedStackInterpreter) push(frame::TagValue);
   395   subptr(rsp, wordSize);
   396   movflt(Address(rsp, 0), r);
   397 }
   399 void InterpreterMacroAssembler::push_d(XMMRegister r) {
   400   if (TaggedStackInterpreter) {
   401     push(frame::TagValue);
   402     subptr(rsp, 1 * wordSize);
   403     push(frame::TagValue);
   404     subptr(rsp, 1 * wordSize);
   405   } else {
   406     subptr(rsp, 2 * wordSize);
   407   }
   408   movdbl(Address(rsp, 0), r);
   409 }
   411 void InterpreterMacroAssembler::pop(TosState state) {
   412   switch (state) {
   413   case atos: pop_ptr();                 break;
   414   case btos:
   415   case ctos:
   416   case stos:
   417   case itos: pop_i();                   break;
   418   case ltos: pop_l();                   break;
   419   case ftos: pop_f();                   break;
   420   case dtos: pop_d();                   break;
   421   case vtos: /* nothing to do */        break;
   422   default:   ShouldNotReachHere();
   423   }
   424   verify_oop(rax, state);
   425 }
   427 void InterpreterMacroAssembler::push(TosState state) {
   428   verify_oop(rax, state);
   429   switch (state) {
   430   case atos: push_ptr();                break;
   431   case btos:
   432   case ctos:
   433   case stos:
   434   case itos: push_i();                  break;
   435   case ltos: push_l();                  break;
   436   case ftos: push_f();                  break;
   437   case dtos: push_d();                  break;
   438   case vtos: /* nothing to do */        break;
   439   default  : ShouldNotReachHere();
   440   }
   441 }
   446 // Tagged stack helpers for swap and dup
   447 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
   448                                                  Register tag) {
   449   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
   450   if (TaggedStackInterpreter) {
   451     movptr(tag, Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)));
   452   }
   453 }
   455 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
   456                                                   Register tag) {
   457   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
   458   if (TaggedStackInterpreter) {
   459     movptr(Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)), tag);
   460   }
   461 }
   464 // Tagged local support
   465 void InterpreterMacroAssembler::tag_local(frame::Tag tag, int n) {
   466   if (TaggedStackInterpreter) {
   467     if (tag == frame::TagCategory2) {
   468       movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)),
   469            (int32_t)frame::TagValue);
   470       movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n)),
   471            (int32_t)frame::TagValue);
   472     } else {
   473       movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)tag);
   474     }
   475   }
   476 }
   478 void InterpreterMacroAssembler::tag_local(frame::Tag tag, Register idx) {
   479   if (TaggedStackInterpreter) {
   480     if (tag == frame::TagCategory2) {
   481       movptr(Address(r14, idx, Address::times_8,
   482                   Interpreter::local_tag_offset_in_bytes(1)), (int32_t)frame::TagValue);
   483       movptr(Address(r14, idx, Address::times_8,
   484                   Interpreter::local_tag_offset_in_bytes(0)), (int32_t)frame::TagValue);
   485     } else {
   486       movptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)),
   487            (int32_t)tag);
   488     }
   489   }
   490 }
   492 void InterpreterMacroAssembler::tag_local(Register tag, Register idx) {
   493   if (TaggedStackInterpreter) {
   494     // can only be TagValue or TagReference
   495     movptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), tag);
   496   }
   497 }
   500 void InterpreterMacroAssembler::tag_local(Register tag, int n) {
   501   if (TaggedStackInterpreter) {
   502     // can only be TagValue or TagReference
   503     movptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), tag);
   504   }
   505 }
   507 #ifdef ASSERT
   508 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, int n) {
   509   if (TaggedStackInterpreter) {
   510      frame::Tag t = tag;
   511     if (tag == frame::TagCategory2) {
   512       Label nbl;
   513       t = frame::TagValue;  // change to what is stored in locals
   514       cmpptr(Address(r14, Interpreter::local_tag_offset_in_bytes(n+1)), (int32_t)t);
   515       jcc(Assembler::equal, nbl);
   516       stop("Local tag is bad for long/double");
   517       bind(nbl);
   518     }
   519     Label notBad;
   520     cmpq(Address(r14, Interpreter::local_tag_offset_in_bytes(n)), (int32_t)t);
   521     jcc(Assembler::equal, notBad);
   522     // Also compare if the local value is zero, then the tag might
   523     // not have been set coming from deopt.
   524     cmpptr(Address(r14, Interpreter::local_offset_in_bytes(n)), 0);
   525     jcc(Assembler::equal, notBad);
   526     stop("Local tag is bad");
   527     bind(notBad);
   528   }
   529 }
   531 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, Register idx) {
   532   if (TaggedStackInterpreter) {
   533     frame::Tag t = tag;
   534     if (tag == frame::TagCategory2) {
   535       Label nbl;
   536       t = frame::TagValue;  // change to what is stored in locals
   537       cmpptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(1)), (int32_t)t);
   538       jcc(Assembler::equal, nbl);
   539       stop("Local tag is bad for long/double");
   540       bind(nbl);
   541     }
   542     Label notBad;
   543     cmpptr(Address(r14, idx, Address::times_8, Interpreter::local_tag_offset_in_bytes(0)), (int32_t)t);
   544     jcc(Assembler::equal, notBad);
   545     // Also compare if the local value is zero, then the tag might
   546     // not have been set coming from deopt.
   547     cmpptr(Address(r14, idx, Address::times_8, Interpreter::local_offset_in_bytes(0)), 0);
   548     jcc(Assembler::equal, notBad);
   549     stop("Local tag is bad");
   550     bind(notBad);
   551   }
   552 }
   553 #endif // ASSERT
   556 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
   557   MacroAssembler::call_VM_leaf_base(entry_point, 0);
   558 }
   561 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
   562                                                    Register arg_1) {
   563   if (c_rarg0 != arg_1) {
   564     mov(c_rarg0, arg_1);
   565   }
   566   MacroAssembler::call_VM_leaf_base(entry_point, 1);
   567 }
   570 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
   571                                                    Register arg_1,
   572                                                    Register arg_2) {
   573   assert(c_rarg0 != arg_2, "smashed argument");
   574   assert(c_rarg1 != arg_1, "smashed argument");
   575   if (c_rarg0 != arg_1) {
   576     mov(c_rarg0, arg_1);
   577   }
   578   if (c_rarg1 != arg_2) {
   579     mov(c_rarg1, arg_2);
   580   }
   581   MacroAssembler::call_VM_leaf_base(entry_point, 2);
   582 }
   584 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point,
   585                                                    Register arg_1,
   586                                                    Register arg_2,
   587                                                    Register arg_3) {
   588   assert(c_rarg0 != arg_2, "smashed argument");
   589   assert(c_rarg0 != arg_3, "smashed argument");
   590   assert(c_rarg1 != arg_1, "smashed argument");
   591   assert(c_rarg1 != arg_3, "smashed argument");
   592   assert(c_rarg2 != arg_1, "smashed argument");
   593   assert(c_rarg2 != arg_2, "smashed argument");
   594   if (c_rarg0 != arg_1) {
   595     mov(c_rarg0, arg_1);
   596   }
   597   if (c_rarg1 != arg_2) {
   598     mov(c_rarg1, arg_2);
   599   }
   600   if (c_rarg2 != arg_3) {
   601     mov(c_rarg2, arg_3);
   602   }
   603   MacroAssembler::call_VM_leaf_base(entry_point, 3);
   604 }
   606 // Jump to from_interpreted entry of a call unless single stepping is possible
   607 // in this thread in which case we must call the i2i entry
   608 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
   609   // set sender sp
   610   lea(r13, Address(rsp, wordSize));
   611   // record last_sp
   612   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13);
   614   if (JvmtiExport::can_post_interpreter_events()) {
   615     Label run_compiled_code;
   616     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   617     // compiled code in threads for which the event is enabled.  Check here for
   618     // interp_only_mode if these events CAN be enabled.
   619     get_thread(temp);
   620     // interp_only is an int, on little endian it is sufficient to test the byte only
   621     // Is a cmpl faster (ce
   622     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
   623     jcc(Assembler::zero, run_compiled_code);
   624     jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
   625     bind(run_compiled_code);
   626   }
   628   jmp(Address(method, methodOopDesc::from_interpreted_offset()));
   630 }
   633 // The following two routines provide a hook so that an implementation
   634 // can schedule the dispatch in two parts.  amd64 does not do this.
   635 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
   636   // Nothing amd64 specific to be done here
   637 }
   639 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
   640   dispatch_next(state, step);
   641 }
   643 void InterpreterMacroAssembler::dispatch_base(TosState state,
   644                                               address* table,
   645                                               bool verifyoop) {
   646   verify_FPU(1, state);
   647   if (VerifyActivationFrameSize) {
   648     Label L;
   649     mov(rcx, rbp);
   650     subptr(rcx, rsp);
   651     int32_t min_frame_size =
   652       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
   653       wordSize;
   654     cmpptr(rcx, (int32_t)min_frame_size);
   655     jcc(Assembler::greaterEqual, L);
   656     stop("broken stack frame");
   657     bind(L);
   658   }
   659   if (verifyoop) {
   660     verify_oop(rax, state);
   661   }
   662   lea(rscratch1, ExternalAddress((address)table));
   663   jmp(Address(rscratch1, rbx, Address::times_8));
   664 }
   666 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   667   dispatch_base(state, Interpreter::dispatch_table(state));
   668 }
   670 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
   671   dispatch_base(state, Interpreter::normal_table(state));
   672 }
   674 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
   675   dispatch_base(state, Interpreter::normal_table(state), false);
   676 }
   679 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
   680   // load next bytecode (load before advancing r13 to prevent AGI)
   681   load_unsigned_byte(rbx, Address(r13, step));
   682   // advance r13
   683   increment(r13, step);
   684   dispatch_base(state, Interpreter::dispatch_table(state));
   685 }
   687 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   688   // load current bytecode
   689   load_unsigned_byte(rbx, Address(r13, 0));
   690   dispatch_base(state, table);
   691 }
   693 // remove activation
   694 //
   695 // Unlock the receiver if this is a synchronized method.
   696 // Unlock any Java monitors from syncronized blocks.
   697 // Remove the activation from the stack.
   698 //
   699 // If there are locked Java monitors
   700 //    If throw_monitor_exception
   701 //       throws IllegalMonitorStateException
   702 //    Else if install_monitor_exception
   703 //       installs IllegalMonitorStateException
   704 //    Else
   705 //       no error processing
   706 void InterpreterMacroAssembler::remove_activation(
   707         TosState state,
   708         Register ret_addr,
   709         bool throw_monitor_exception,
   710         bool install_monitor_exception,
   711         bool notify_jvmdi) {
   712   // Note: Registers rdx xmm0 may be in use for the
   713   // result check if synchronized method
   714   Label unlocked, unlock, no_unlock;
   716   // get the value of _do_not_unlock_if_synchronized into rdx
   717   const Address do_not_unlock_if_synchronized(r15_thread,
   718     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
   719   movbool(rdx, do_not_unlock_if_synchronized);
   720   movbool(do_not_unlock_if_synchronized, false); // reset the flag
   722  // get method access flags
   723   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
   724   movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
   725   testl(rcx, JVM_ACC_SYNCHRONIZED);
   726   jcc(Assembler::zero, unlocked);
   728   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
   729   // is set.
   730   testbool(rdx);
   731   jcc(Assembler::notZero, no_unlock);
   733   // unlock monitor
   734   push(state); // save result
   736   // BasicObjectLock will be first in list, since this is a
   737   // synchronized method. However, need to check that the object has
   738   // not been unlocked by an explicit monitorexit bytecode.
   739   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
   740                         wordSize - (int) sizeof(BasicObjectLock));
   741   // We use c_rarg1 so that if we go slow path it will be the correct
   742   // register for unlock_object to pass to VM directly
   743   lea(c_rarg1, monitor); // address of first monitor
   745   movptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
   746   testptr(rax, rax);
   747   jcc(Assembler::notZero, unlock);
   749   pop(state);
   750   if (throw_monitor_exception) {
   751     // Entry already unlocked, need to throw exception
   752     call_VM(noreg, CAST_FROM_FN_PTR(address,
   753                    InterpreterRuntime::throw_illegal_monitor_state_exception));
   754     should_not_reach_here();
   755   } else {
   756     // Monitor already unlocked during a stack unroll. If requested,
   757     // install an illegal_monitor_state_exception.  Continue with
   758     // stack unrolling.
   759     if (install_monitor_exception) {
   760       call_VM(noreg, CAST_FROM_FN_PTR(address,
   761                      InterpreterRuntime::new_illegal_monitor_state_exception));
   762     }
   763     jmp(unlocked);
   764   }
   766   bind(unlock);
   767   unlock_object(c_rarg1);
   768   pop(state);
   770   // Check that for block-structured locking (i.e., that all locked
   771   // objects has been unlocked)
   772   bind(unlocked);
   774   // rax: Might contain return value
   776   // Check that all monitors are unlocked
   777   {
   778     Label loop, exception, entry, restart;
   779     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
   780     const Address monitor_block_top(
   781         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
   782     const Address monitor_block_bot(
   783         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
   785     bind(restart);
   786     // We use c_rarg1 so that if we go slow path it will be the correct
   787     // register for unlock_object to pass to VM directly
   788     movptr(c_rarg1, monitor_block_top); // points to current entry, starting
   789                                   // with top-most entry
   790     lea(rbx, monitor_block_bot);  // points to word before bottom of
   791                                   // monitor block
   792     jmp(entry);
   794     // Entry already locked, need to throw exception
   795     bind(exception);
   797     if (throw_monitor_exception) {
   798       // Throw exception
   799       MacroAssembler::call_VM(noreg,
   800                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
   801                                    throw_illegal_monitor_state_exception));
   802       should_not_reach_here();
   803     } else {
   804       // Stack unrolling. Unlock object and install illegal_monitor_exception.
   805       // Unlock does not block, so don't have to worry about the frame.
   806       // We don't have to preserve c_rarg1 since we are going to throw an exception.
   808       push(state);
   809       unlock_object(c_rarg1);
   810       pop(state);
   812       if (install_monitor_exception) {
   813         call_VM(noreg, CAST_FROM_FN_PTR(address,
   814                                         InterpreterRuntime::
   815                                         new_illegal_monitor_state_exception));
   816       }
   818       jmp(restart);
   819     }
   821     bind(loop);
   822     // check if current entry is used
   823     cmpptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
   824     jcc(Assembler::notEqual, exception);
   826     addptr(c_rarg1, entry_size); // otherwise advance to next entry
   827     bind(entry);
   828     cmpptr(c_rarg1, rbx); // check if bottom reached
   829     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
   830   }
   832   bind(no_unlock);
   834   // jvmti support
   835   if (notify_jvmdi) {
   836     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
   837   } else {
   838     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
   839   }
   841   // remove activation
   842   // get sender sp
   843   movptr(rbx,
   844          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
   845   leave();                           // remove frame anchor
   846   pop(ret_addr);                     // get return address
   847   mov(rsp, rbx);                     // set sp to sender sp
   848 }
   850 #endif // C_INTERP
   852 // Lock object
   853 //
   854 // Args:
   855 //      c_rarg1: BasicObjectLock to be used for locking
   856 //
   857 // Kills:
   858 //      rax
   859 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
   860 //      rscratch1, rscratch2 (scratch regs)
   861 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
   862   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
   864   if (UseHeavyMonitors) {
   865     call_VM(noreg,
   866             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
   867             lock_reg);
   868   } else {
   869     Label done;
   871     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
   872     const Register obj_reg = c_rarg3; // Will contain the oop
   874     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
   875     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
   876     const int mark_offset = lock_offset +
   877                             BasicLock::displaced_header_offset_in_bytes();
   879     Label slow_case;
   881     // Load object pointer into obj_reg %c_rarg3
   882     movptr(obj_reg, Address(lock_reg, obj_offset));
   884     if (UseBiasedLocking) {
   885       biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case);
   886     }
   888     // Load immediate 1 into swap_reg %rax
   889     movl(swap_reg, 1);
   891     // Load (object->mark() | 1) into swap_reg %rax
   892     orptr(swap_reg, Address(obj_reg, 0));
   894     // Save (object->mark() | 1) into BasicLock's displaced header
   895     movptr(Address(lock_reg, mark_offset), swap_reg);
   897     assert(lock_offset == 0,
   898            "displached header must be first word in BasicObjectLock");
   900     if (os::is_MP()) lock();
   901     cmpxchgptr(lock_reg, Address(obj_reg, 0));
   902     if (PrintBiasedLockingStatistics) {
   903       cond_inc32(Assembler::zero,
   904                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   905     }
   906     jcc(Assembler::zero, done);
   908     // Test if the oopMark is an obvious stack pointer, i.e.,
   909     //  1) (mark & 7) == 0, and
   910     //  2) rsp <= mark < mark + os::pagesize()
   911     //
   912     // These 3 tests can be done by evaluating the following
   913     // expression: ((mark - rsp) & (7 - os::vm_page_size())),
   914     // assuming both stack pointer and pagesize have their
   915     // least significant 3 bits clear.
   916     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
   917     subptr(swap_reg, rsp);
   918     andptr(swap_reg, 7 - os::vm_page_size());
   920     // Save the test result, for recursive case, the result is zero
   921     movptr(Address(lock_reg, mark_offset), swap_reg);
   923     if (PrintBiasedLockingStatistics) {
   924       cond_inc32(Assembler::zero,
   925                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
   926     }
   927     jcc(Assembler::zero, done);
   929     bind(slow_case);
   931     // Call the runtime routine for slow case
   932     call_VM(noreg,
   933             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
   934             lock_reg);
   936     bind(done);
   937   }
   938 }
   941 // Unlocks an object. Used in monitorexit bytecode and
   942 // remove_activation.  Throws an IllegalMonitorException if object is
   943 // not locked by current thread.
   944 //
   945 // Args:
   946 //      c_rarg1: BasicObjectLock for lock
   947 //
   948 // Kills:
   949 //      rax
   950 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
   951 //      rscratch1, rscratch2 (scratch regs)
   952 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
   953   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
   955   if (UseHeavyMonitors) {
   956     call_VM(noreg,
   957             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
   958             lock_reg);
   959   } else {
   960     Label done;
   962     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
   963     const Register header_reg = c_rarg2;  // Will contain the old oopMark
   964     const Register obj_reg    = c_rarg3;  // Will contain the oop
   966     save_bcp(); // Save in case of exception
   968     // Convert from BasicObjectLock structure to object and BasicLock
   969     // structure Store the BasicLock address into %rax
   970     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
   972     // Load oop into obj_reg(%c_rarg3)
   973     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
   975     // Free entry
   976     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
   978     if (UseBiasedLocking) {
   979       biased_locking_exit(obj_reg, header_reg, done);
   980     }
   982     // Load the old header from BasicLock structure
   983     movptr(header_reg, Address(swap_reg,
   984                                BasicLock::displaced_header_offset_in_bytes()));
   986     // Test for recursion
   987     testptr(header_reg, header_reg);
   989     // zero for recursive case
   990     jcc(Assembler::zero, done);
   992     // Atomic swap back the old header
   993     if (os::is_MP()) lock();
   994     cmpxchgptr(header_reg, Address(obj_reg, 0));
   996     // zero for recursive case
   997     jcc(Assembler::zero, done);
   999     // Call the runtime routine for slow case.
  1000     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
  1001          obj_reg); // restore obj
  1002     call_VM(noreg,
  1003             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
  1004             lock_reg);
  1006     bind(done);
  1008     restore_bcp();
  1012 #ifndef CC_INTERP
  1014 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
  1015                                                          Label& zero_continue) {
  1016   assert(ProfileInterpreter, "must be profiling interpreter");
  1017   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
  1018   testptr(mdp, mdp);
  1019   jcc(Assembler::zero, zero_continue);
  1023 // Set the method data pointer for the current bcp.
  1024 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
  1025   assert(ProfileInterpreter, "must be profiling interpreter");
  1026   Label zero_continue;
  1027   push(rax);
  1028   push(rbx);
  1030   get_method(rbx);
  1031   // Test MDO to avoid the call if it is NULL.
  1032   movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
  1033   testptr(rax, rax);
  1034   jcc(Assembler::zero, zero_continue);
  1036   // rbx: method
  1037   // r13: bcp
  1038   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13);
  1039   // rax: mdi
  1041   movptr(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
  1042   testptr(rbx, rbx);
  1043   jcc(Assembler::zero, zero_continue);
  1044   addptr(rbx, in_bytes(methodDataOopDesc::data_offset()));
  1045   addptr(rbx, rax);
  1046   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);
  1048   bind(zero_continue);
  1049   pop(rbx);
  1050   pop(rax);
  1053 void InterpreterMacroAssembler::verify_method_data_pointer() {
  1054   assert(ProfileInterpreter, "must be profiling interpreter");
  1055 #ifdef ASSERT
  1056   Label verify_continue;
  1057   push(rax);
  1058   push(rbx);
  1059   push(c_rarg3);
  1060   push(c_rarg2);
  1061   test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue
  1062   get_method(rbx);
  1064   // If the mdp is valid, it will point to a DataLayout header which is
  1065   // consistent with the bcp.  The converse is highly probable also.
  1066   load_unsigned_word(c_rarg2,
  1067                      Address(c_rarg3, in_bytes(DataLayout::bci_offset())));
  1068   addptr(c_rarg2, Address(rbx, methodOopDesc::const_offset()));
  1069   lea(c_rarg2, Address(c_rarg2, constMethodOopDesc::codes_offset()));
  1070   cmpptr(c_rarg2, r13);
  1071   jcc(Assembler::equal, verify_continue);
  1072   // rbx: method
  1073   // r13: bcp
  1074   // c_rarg3: mdp
  1075   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
  1076                rbx, r13, c_rarg3);
  1077   bind(verify_continue);
  1078   pop(c_rarg2);
  1079   pop(c_rarg3);
  1080   pop(rbx);
  1081   pop(rax);
  1082 #endif // ASSERT
  1086 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
  1087                                                 int constant,
  1088                                                 Register value) {
  1089   assert(ProfileInterpreter, "must be profiling interpreter");
  1090   Address data(mdp_in, constant);
  1091   movptr(data, value);
  1095 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
  1096                                                       int constant,
  1097                                                       bool decrement) {
  1098   // Counter address
  1099   Address data(mdp_in, constant);
  1101   increment_mdp_data_at(data, decrement);
  1104 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
  1105                                                       bool decrement) {
  1106   assert(ProfileInterpreter, "must be profiling interpreter");
  1107   // %%% this does 64bit counters at best it is wasting space
  1108   // at worst it is a rare bug when counters overflow
  1110   if (decrement) {
  1111     // Decrement the register.  Set condition codes.
  1112     addptr(data, (int32_t) -DataLayout::counter_increment);
  1113     // If the decrement causes the counter to overflow, stay negative
  1114     Label L;
  1115     jcc(Assembler::negative, L);
  1116     addptr(data, (int32_t) DataLayout::counter_increment);
  1117     bind(L);
  1118   } else {
  1119     assert(DataLayout::counter_increment == 1,
  1120            "flow-free idiom only works with 1");
  1121     // Increment the register.  Set carry flag.
  1122     addptr(data, DataLayout::counter_increment);
  1123     // If the increment causes the counter to overflow, pull back by 1.
  1124     sbbptr(data, (int32_t)0);
  1129 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
  1130                                                       Register reg,
  1131                                                       int constant,
  1132                                                       bool decrement) {
  1133   Address data(mdp_in, reg, Address::times_1, constant);
  1135   increment_mdp_data_at(data, decrement);
  1138 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
  1139                                                 int flag_byte_constant) {
  1140   assert(ProfileInterpreter, "must be profiling interpreter");
  1141   int header_offset = in_bytes(DataLayout::header_offset());
  1142   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
  1143   // Set the flag
  1144   orl(Address(mdp_in, header_offset), header_bits);
  1149 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
  1150                                                  int offset,
  1151                                                  Register value,
  1152                                                  Register test_value_out,
  1153                                                  Label& not_equal_continue) {
  1154   assert(ProfileInterpreter, "must be profiling interpreter");
  1155   if (test_value_out == noreg) {
  1156     cmpptr(value, Address(mdp_in, offset));
  1157   } else {
  1158     // Put the test value into a register, so caller can use it:
  1159     movptr(test_value_out, Address(mdp_in, offset));
  1160     cmpptr(test_value_out, value);
  1162   jcc(Assembler::notEqual, not_equal_continue);
  1166 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
  1167                                                      int offset_of_disp) {
  1168   assert(ProfileInterpreter, "must be profiling interpreter");
  1169   Address disp_address(mdp_in, offset_of_disp);
  1170   addptr(mdp_in, disp_address);
  1171   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1175 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
  1176                                                      Register reg,
  1177                                                      int offset_of_disp) {
  1178   assert(ProfileInterpreter, "must be profiling interpreter");
  1179   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
  1180   addptr(mdp_in, disp_address);
  1181   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1185 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
  1186                                                        int constant) {
  1187   assert(ProfileInterpreter, "must be profiling interpreter");
  1188   addptr(mdp_in, constant);
  1189   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
  1193 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
  1194   assert(ProfileInterpreter, "must be profiling interpreter");
  1195   push(return_bci); // save/restore across call_VM
  1196   call_VM(noreg,
  1197           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
  1198           return_bci);
  1199   pop(return_bci);
  1203 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
  1204                                                      Register bumped_count) {
  1205   if (ProfileInterpreter) {
  1206     Label profile_continue;
  1208     // If no method data exists, go to profile_continue.
  1209     // Otherwise, assign to mdp
  1210     test_method_data_pointer(mdp, profile_continue);
  1212     // We are taking a branch.  Increment the taken count.
  1213     // We inline increment_mdp_data_at to return bumped_count in a register
  1214     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
  1215     Address data(mdp, in_bytes(JumpData::taken_offset()));
  1216     movptr(bumped_count, data);
  1217     assert(DataLayout::counter_increment == 1,
  1218             "flow-free idiom only works with 1");
  1219     addptr(bumped_count, DataLayout::counter_increment);
  1220     sbbptr(bumped_count, 0);
  1221     movptr(data, bumped_count); // Store back out
  1223     // The method data pointer needs to be updated to reflect the new target.
  1224     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
  1225     bind(profile_continue);
  1230 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
  1231   if (ProfileInterpreter) {
  1232     Label profile_continue;
  1234     // If no method data exists, go to profile_continue.
  1235     test_method_data_pointer(mdp, profile_continue);
  1237     // We are taking a branch.  Increment the not taken count.
  1238     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
  1240     // The method data pointer needs to be updated to correspond to
  1241     // the next bytecode
  1242     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
  1243     bind(profile_continue);
  1248 void InterpreterMacroAssembler::profile_call(Register mdp) {
  1249   if (ProfileInterpreter) {
  1250     Label profile_continue;
  1252     // If no method data exists, go to profile_continue.
  1253     test_method_data_pointer(mdp, profile_continue);
  1255     // We are making a call.  Increment the count.
  1256     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1258     // The method data pointer needs to be updated to reflect the new target.
  1259     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
  1260     bind(profile_continue);
  1265 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
  1266   if (ProfileInterpreter) {
  1267     Label profile_continue;
  1269     // If no method data exists, go to profile_continue.
  1270     test_method_data_pointer(mdp, profile_continue);
  1272     // We are making a call.  Increment the count.
  1273     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1275     // The method data pointer needs to be updated to reflect the new target.
  1276     update_mdp_by_constant(mdp,
  1277                            in_bytes(VirtualCallData::
  1278                                     virtual_call_data_size()));
  1279     bind(profile_continue);
  1284 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
  1285                                                      Register mdp,
  1286                                                      Register reg2) {
  1287   if (ProfileInterpreter) {
  1288     Label profile_continue;
  1290     // If no method data exists, go to profile_continue.
  1291     test_method_data_pointer(mdp, profile_continue);
  1293     // We are making a call.  Increment the count.
  1294     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1296     // Record the receiver type.
  1297     record_klass_in_profile(receiver, mdp, reg2);
  1299     // The method data pointer needs to be updated to reflect the new target.
  1300     update_mdp_by_constant(mdp,
  1301                            in_bytes(VirtualCallData::
  1302                                     virtual_call_data_size()));
  1303     bind(profile_continue);
  1307 // This routine creates a state machine for updating the multi-row
  1308 // type profile at a virtual call site (or other type-sensitive bytecode).
  1309 // The machine visits each row (of receiver/count) until the receiver type
  1310 // is found, or until it runs out of rows.  At the same time, it remembers
  1311 // the location of the first empty row.  (An empty row records null for its
  1312 // receiver, and can be allocated for a newly-observed receiver type.)
  1313 // Because there are two degrees of freedom in the state, a simple linear
  1314 // search will not work; it must be a decision tree.  Hence this helper
  1315 // function is recursive, to generate the required tree structured code.
  1316 // It's the interpreter, so we are trading off code space for speed.
  1317 // See below for example code.
  1318 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1319                                         Register receiver, Register mdp,
  1320                                         Register reg2,
  1321                                         int start_row, Label& done) {
  1322   int last_row = VirtualCallData::row_limit() - 1;
  1323   assert(start_row <= last_row, "must be work left to do");
  1324   // Test this row for both the receiver and for null.
  1325   // Take any of three different outcomes:
  1326   //   1. found receiver => increment count and goto done
  1327   //   2. found null => keep looking for case 1, maybe allocate this cell
  1328   //   3. found something else => keep looking for cases 1 and 2
  1329   // Case 3 is handled by a recursive call.
  1330   for (int row = start_row; row <= last_row; row++) {
  1331     Label next_test;
  1332     bool test_for_null_also = (row == start_row);
  1334     // See if the receiver is receiver[n].
  1335     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1336     test_mdp_data_at(mdp, recvr_offset, receiver,
  1337                      (test_for_null_also ? reg2 : noreg),
  1338                      next_test);
  1339     // (Reg2 now contains the receiver from the CallData.)
  1341     // The receiver is receiver[n].  Increment count[n].
  1342     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1343     increment_mdp_data_at(mdp, count_offset);
  1344     jmp(done);
  1345     bind(next_test);
  1347     if (test_for_null_also) {
  1348       // Failed the equality check on receiver[n]...  Test for null.
  1349       testptr(reg2, reg2);
  1350       if (start_row == last_row) {
  1351         // The only thing left to do is handle the null case.
  1352         jcc(Assembler::notZero, done);
  1353         break;
  1355       // Since null is rare, make it be the branch-taken case.
  1356       Label found_null;
  1357       jcc(Assembler::zero, found_null);
  1359       // Put all the "Case 3" tests here.
  1360       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);
  1362       // Found a null.  Keep searching for a matching receiver,
  1363       // but remember that this is an empty (unused) slot.
  1364       bind(found_null);
  1368   // In the fall-through case, we found no matching receiver, but we
  1369   // observed the receiver[start_row] is NULL.
  1371   // Fill in the receiver field and increment the count.
  1372   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1373   set_mdp_data_at(mdp, recvr_offset, receiver);
  1374   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1375   movl(reg2, DataLayout::counter_increment);
  1376   set_mdp_data_at(mdp, count_offset, reg2);
  1377   jmp(done);
  1380 // Example state machine code for three profile rows:
  1381 //   // main copy of decision tree, rooted at row[1]
  1382 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
  1383 //   if (row[0].rec != NULL) {
  1384 //     // inner copy of decision tree, rooted at row[1]
  1385 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
  1386 //     if (row[1].rec != NULL) {
  1387 //       // degenerate decision tree, rooted at row[2]
  1388 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
  1389 //       if (row[2].rec != NULL) { goto done; } // overflow
  1390 //       row[2].init(rec); goto done;
  1391 //     } else {
  1392 //       // remember row[1] is empty
  1393 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
  1394 //       row[1].init(rec); goto done;
  1395 //     }
  1396 //   } else {
  1397 //     // remember row[0] is empty
  1398 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
  1399 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
  1400 //     row[0].init(rec); goto done;
  1401 //   }
  1403 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1404                                                         Register mdp,
  1405                                                         Register reg2) {
  1406   assert(ProfileInterpreter, "must be profiling");
  1407   Label done;
  1409   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
  1411   bind (done);
  1414 void InterpreterMacroAssembler::profile_ret(Register return_bci,
  1415                                             Register mdp) {
  1416   if (ProfileInterpreter) {
  1417     Label profile_continue;
  1418     uint row;
  1420     // If no method data exists, go to profile_continue.
  1421     test_method_data_pointer(mdp, profile_continue);
  1423     // Update the total ret count.
  1424     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
  1426     for (row = 0; row < RetData::row_limit(); row++) {
  1427       Label next_test;
  1429       // See if return_bci is equal to bci[n]:
  1430       test_mdp_data_at(mdp,
  1431                        in_bytes(RetData::bci_offset(row)),
  1432                        return_bci, noreg,
  1433                        next_test);
  1435       // return_bci is equal to bci[n].  Increment the count.
  1436       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
  1438       // The method data pointer needs to be updated to reflect the new target.
  1439       update_mdp_by_offset(mdp,
  1440                            in_bytes(RetData::bci_displacement_offset(row)));
  1441       jmp(profile_continue);
  1442       bind(next_test);
  1445     update_mdp_for_ret(return_bci);
  1447     bind(profile_continue);
  1452 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
  1453   if (ProfileInterpreter) {
  1454     Label profile_continue;
  1456     // If no method data exists, go to profile_continue.
  1457     test_method_data_pointer(mdp, profile_continue);
  1459     // The method data pointer needs to be updated.
  1460     int mdp_delta = in_bytes(BitData::bit_data_size());
  1461     if (TypeProfileCasts) {
  1462       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1464     update_mdp_by_constant(mdp, mdp_delta);
  1466     bind(profile_continue);
  1471 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
  1472   if (ProfileInterpreter && TypeProfileCasts) {
  1473     Label profile_continue;
  1475     // If no method data exists, go to profile_continue.
  1476     test_method_data_pointer(mdp, profile_continue);
  1478     int count_offset = in_bytes(CounterData::count_offset());
  1479     // Back up the address, since we have already bumped the mdp.
  1480     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1482     // *Decrement* the counter.  We expect to see zero or small negatives.
  1483     increment_mdp_data_at(mdp, count_offset, true);
  1485     bind (profile_continue);
  1490 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
  1491   if (ProfileInterpreter) {
  1492     Label profile_continue;
  1494     // If no method data exists, go to profile_continue.
  1495     test_method_data_pointer(mdp, profile_continue);
  1497     // The method data pointer needs to be updated.
  1498     int mdp_delta = in_bytes(BitData::bit_data_size());
  1499     if (TypeProfileCasts) {
  1500       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1502       // Record the object type.
  1503       record_klass_in_profile(klass, mdp, reg2);
  1505     update_mdp_by_constant(mdp, mdp_delta);
  1507     bind(profile_continue);
  1512 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
  1513   if (ProfileInterpreter) {
  1514     Label profile_continue;
  1516     // If no method data exists, go to profile_continue.
  1517     test_method_data_pointer(mdp, profile_continue);
  1519     // Update the default case count
  1520     increment_mdp_data_at(mdp,
  1521                           in_bytes(MultiBranchData::default_count_offset()));
  1523     // The method data pointer needs to be updated.
  1524     update_mdp_by_offset(mdp,
  1525                          in_bytes(MultiBranchData::
  1526                                   default_displacement_offset()));
  1528     bind(profile_continue);
  1533 void InterpreterMacroAssembler::profile_switch_case(Register index,
  1534                                                     Register mdp,
  1535                                                     Register reg2) {
  1536   if (ProfileInterpreter) {
  1537     Label profile_continue;
  1539     // If no method data exists, go to profile_continue.
  1540     test_method_data_pointer(mdp, profile_continue);
  1542     // Build the base (index * per_case_size_in_bytes()) +
  1543     // case_array_offset_in_bytes()
  1544     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
  1545     imulptr(index, reg2); // XXX l ?
  1546     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
  1548     // Update the case count
  1549     increment_mdp_data_at(mdp,
  1550                           index,
  1551                           in_bytes(MultiBranchData::relative_count_offset()));
  1553     // The method data pointer needs to be updated.
  1554     update_mdp_by_offset(mdp,
  1555                          index,
  1556                          in_bytes(MultiBranchData::
  1557                                   relative_displacement_offset()));
  1559     bind(profile_continue);
  1565 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
  1566   if (state == atos) {
  1567     MacroAssembler::verify_oop(reg);
  1571 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  1573 #endif // !CC_INTERP
  1576 void InterpreterMacroAssembler::notify_method_entry() {
  1577   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1578   // track stack depth.  If it is possible to enter interp_only_mode we add
  1579   // the code to check if the event should be sent.
  1580   if (JvmtiExport::can_post_interpreter_events()) {
  1581     Label L;
  1582     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
  1583     testl(rdx, rdx);
  1584     jcc(Assembler::zero, L);
  1585     call_VM(noreg, CAST_FROM_FN_PTR(address,
  1586                                     InterpreterRuntime::post_method_entry));
  1587     bind(L);
  1591     SkipIfEqual skip(this, &DTraceMethodProbes, false);
  1592     get_method(c_rarg1);
  1593     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  1594                  r15_thread, c_rarg1);
  1599 void InterpreterMacroAssembler::notify_method_exit(
  1600     TosState state, NotifyMethodExitMode mode) {
  1601   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
  1602   // track stack depth.  If it is possible to enter interp_only_mode we add
  1603   // the code to check if the event should be sent.
  1604   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  1605     Label L;
  1606     // Note: frame::interpreter_frame_result has a dependency on how the
  1607     // method result is saved across the call to post_method_exit. If this
  1608     // is changed then the interpreter_frame_result implementation will
  1609     // need to be updated too.
  1611     // For c++ interpreter the result is always stored at a known location in the frame
  1612     // template interpreter will leave it on the top of the stack.
  1613     NOT_CC_INTERP(push(state);)
  1614     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
  1615     testl(rdx, rdx);
  1616     jcc(Assembler::zero, L);
  1617     call_VM(noreg,
  1618             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  1619     bind(L);
  1620     NOT_CC_INTERP(pop(state));
  1624     SkipIfEqual skip(this, &DTraceMethodProbes, false);
  1625     NOT_CC_INTERP(push(state));
  1626     get_method(c_rarg1);
  1627     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  1628                  r15_thread, c_rarg1);
  1629     NOT_CC_INTERP(pop(state));

mercurial