src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 947
db4caa99ef11
child 1063
7bb995fbd3c0
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 2000-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
    29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
    30 // instructions, to allow sign-masking or sign-bit flipping.  They allow
    31 // fast versions of NegF/NegD and AbsF/AbsD.
    33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
    34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
    35   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    36   // of 128-bits operands for SSE instructions.
    37   jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
    38   // Store the value to a 128-bits operand.
    39   operand[0] = lo;
    40   operand[1] = hi;
    41   return operand;
    42 }
    44 // Buffer for 128-bits masks used by SSE instructions.
    45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
    47 // Static initialization during VM startup.
    48 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
    49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
    50 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
    51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
    55 NEEDS_CLEANUP // remove this definitions ?
    56 const Register IC_Klass    = rax;   // where the IC klass is cached
    57 const Register SYNC_header = rax;   // synchronization header
    58 const Register SHIFT_count = rcx;   // where count for shift operations must be
    60 #define __ _masm->
    63 static void select_different_registers(Register preserve,
    64                                        Register extra,
    65                                        Register &tmp1,
    66                                        Register &tmp2) {
    67   if (tmp1 == preserve) {
    68     assert_different_registers(tmp1, tmp2, extra);
    69     tmp1 = extra;
    70   } else if (tmp2 == preserve) {
    71     assert_different_registers(tmp1, tmp2, extra);
    72     tmp2 = extra;
    73   }
    74   assert_different_registers(preserve, tmp1, tmp2);
    75 }
    79 static void select_different_registers(Register preserve,
    80                                        Register extra,
    81                                        Register &tmp1,
    82                                        Register &tmp2,
    83                                        Register &tmp3) {
    84   if (tmp1 == preserve) {
    85     assert_different_registers(tmp1, tmp2, tmp3, extra);
    86     tmp1 = extra;
    87   } else if (tmp2 == preserve) {
    88     assert_different_registers(tmp1, tmp2, tmp3, extra);
    89     tmp2 = extra;
    90   } else if (tmp3 == preserve) {
    91     assert_different_registers(tmp1, tmp2, tmp3, extra);
    92     tmp3 = extra;
    93   }
    94   assert_different_registers(preserve, tmp1, tmp2, tmp3);
    95 }
    99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
   100   if (opr->is_constant()) {
   101     LIR_Const* constant = opr->as_constant_ptr();
   102     switch (constant->type()) {
   103       case T_INT: {
   104         return true;
   105       }
   107       default:
   108         return false;
   109     }
   110   }
   111   return false;
   112 }
   115 LIR_Opr LIR_Assembler::receiverOpr() {
   116   return FrameMap::receiver_opr;
   117 }
   119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
   120   return receiverOpr();
   121 }
   123 LIR_Opr LIR_Assembler::osrBufferPointer() {
   124   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
   125 }
   127 //--------------fpu register translations-----------------------
   130 address LIR_Assembler::float_constant(float f) {
   131   address const_addr = __ float_constant(f);
   132   if (const_addr == NULL) {
   133     bailout("const section overflow");
   134     return __ code()->consts()->start();
   135   } else {
   136     return const_addr;
   137   }
   138 }
   141 address LIR_Assembler::double_constant(double d) {
   142   address const_addr = __ double_constant(d);
   143   if (const_addr == NULL) {
   144     bailout("const section overflow");
   145     return __ code()->consts()->start();
   146   } else {
   147     return const_addr;
   148   }
   149 }
   152 void LIR_Assembler::set_24bit_FPU() {
   153   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   154 }
   156 void LIR_Assembler::reset_FPU() {
   157   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   158 }
   160 void LIR_Assembler::fpop() {
   161   __ fpop();
   162 }
   164 void LIR_Assembler::fxch(int i) {
   165   __ fxch(i);
   166 }
   168 void LIR_Assembler::fld(int i) {
   169   __ fld_s(i);
   170 }
   172 void LIR_Assembler::ffree(int i) {
   173   __ ffree(i);
   174 }
   176 void LIR_Assembler::breakpoint() {
   177   __ int3();
   178 }
   180 void LIR_Assembler::push(LIR_Opr opr) {
   181   if (opr->is_single_cpu()) {
   182     __ push_reg(opr->as_register());
   183   } else if (opr->is_double_cpu()) {
   184     NOT_LP64(__ push_reg(opr->as_register_hi()));
   185     __ push_reg(opr->as_register_lo());
   186   } else if (opr->is_stack()) {
   187     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
   188   } else if (opr->is_constant()) {
   189     LIR_Const* const_opr = opr->as_constant_ptr();
   190     if (const_opr->type() == T_OBJECT) {
   191       __ push_oop(const_opr->as_jobject());
   192     } else if (const_opr->type() == T_INT) {
   193       __ push_jint(const_opr->as_jint());
   194     } else {
   195       ShouldNotReachHere();
   196     }
   198   } else {
   199     ShouldNotReachHere();
   200   }
   201 }
   203 void LIR_Assembler::pop(LIR_Opr opr) {
   204   if (opr->is_single_cpu()) {
   205     __ pop_reg(opr->as_register());
   206   } else {
   207     ShouldNotReachHere();
   208   }
   209 }
   211 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
   212   return addr->base()->is_illegal() && addr->index()->is_illegal();
   213 }
   215 //-------------------------------------------
   217 Address LIR_Assembler::as_Address(LIR_Address* addr) {
   218   return as_Address(addr, rscratch1);
   219 }
   221 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
   222   if (addr->base()->is_illegal()) {
   223     assert(addr->index()->is_illegal(), "must be illegal too");
   224     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
   225     if (! __ reachable(laddr)) {
   226       __ movptr(tmp, laddr.addr());
   227       Address res(tmp, 0);
   228       return res;
   229     } else {
   230       return __ as_Address(laddr);
   231     }
   232   }
   234   Register base = addr->base()->as_pointer_register();
   236   if (addr->index()->is_illegal()) {
   237     return Address( base, addr->disp());
   238   } else if (addr->index()->is_cpu_register()) {
   239     Register index = addr->index()->as_pointer_register();
   240     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
   241   } else if (addr->index()->is_constant()) {
   242     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
   243     assert(Assembler::is_simm32(addr_offset), "must be");
   245     return Address(base, addr_offset);
   246   } else {
   247     Unimplemented();
   248     return Address();
   249   }
   250 }
   253 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
   254   Address base = as_Address(addr);
   255   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
   256 }
   259 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
   260   return as_Address(addr);
   261 }
   264 void LIR_Assembler::osr_entry() {
   265   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   266   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   267   ValueStack* entry_state = osr_entry->state();
   268   int number_of_locks = entry_state->locks_size();
   270   // we jump here if osr happens with the interpreter
   271   // state set up to continue at the beginning of the
   272   // loop that triggered osr - in particular, we have
   273   // the following registers setup:
   274   //
   275   // rcx: osr buffer
   276   //
   278   // build frame
   279   ciMethod* m = compilation()->method();
   280   __ build_frame(initial_frame_size_in_bytes());
   282   // OSR buffer is
   283   //
   284   // locals[nlocals-1..0]
   285   // monitors[0..number_of_locks]
   286   //
   287   // locals is a direct copy of the interpreter frame so in the osr buffer
   288   // so first slot in the local array is the last local from the interpreter
   289   // and last slot is local[0] (receiver) from the interpreter
   290   //
   291   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   292   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   293   // in the interpreter frame (the method lock if a sync method)
   295   // Initialize monitors in the compiled activation.
   296   //   rcx: pointer to osr buffer
   297   //
   298   // All other registers are dead at this point and the locals will be
   299   // copied into place by code emitted in the IR.
   301   Register OSR_buf = osrBufferPointer()->as_pointer_register();
   302   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   303     int monitor_offset = BytesPerWord * method()->max_locals() +
   304       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
   305     for (int i = 0; i < number_of_locks; i++) {
   306       int slot_offset = monitor_offset - ((i * BasicObjectLock::size()) * BytesPerWord);
   307 #ifdef ASSERT
   308       // verify the interpreter's monitor has a non-null object
   309       {
   310         Label L;
   311         __ cmpptr(Address(OSR_buf, slot_offset + BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
   312         __ jcc(Assembler::notZero, L);
   313         __ stop("locked object is NULL");
   314         __ bind(L);
   315       }
   316 #endif
   317       __ movptr(rbx, Address(OSR_buf, slot_offset + BasicObjectLock::lock_offset_in_bytes()));
   318       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
   319       __ movptr(rbx, Address(OSR_buf, slot_offset + BasicObjectLock::obj_offset_in_bytes()));
   320       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
   321     }
   322   }
   323 }
   326 // inline cache check; done before the frame is built.
   327 int LIR_Assembler::check_icache() {
   328   Register receiver = FrameMap::receiver_opr->as_register();
   329   Register ic_klass = IC_Klass;
   330   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
   332   if (!VerifyOops) {
   333     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
   334     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
   335       __ nop();
   336     }
   337   }
   338   int offset = __ offset();
   339   __ inline_cache_check(receiver, IC_Klass);
   340   assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
   341   if (VerifyOops) {
   342     // force alignment after the cache check.
   343     // It's been verified to be aligned if !VerifyOops
   344     __ align(CodeEntryAlignment);
   345   }
   346   return offset;
   347 }
   350 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
   351   jobject o = NULL;
   352   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
   353   __ movoop(reg, o);
   354   patching_epilog(patch, lir_patch_normal, reg, info);
   355 }
   358 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
   359   if (exception->is_valid()) {
   360     // preserve exception
   361     // note: the monitor_exit runtime call is a leaf routine
   362     //       and cannot block => no GC can happen
   363     // The slow case (MonitorAccessStub) uses the first two stack slots
   364     // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
   365     __ movptr (Address(rsp, 2*wordSize), exception);
   366   }
   368   Register obj_reg  = obj_opr->as_register();
   369   Register lock_reg = lock_opr->as_register();
   371   // setup registers (lock_reg must be rax, for lock_object)
   372   assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
   373   Register hdr = lock_reg;
   374   assert(new_hdr == SYNC_header, "wrong register");
   375   lock_reg = new_hdr;
   376   // compute pointer to BasicLock
   377   Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
   378   __ lea(lock_reg, lock_addr);
   379   // unlock object
   380   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
   381   // _slow_case_stubs->append(slow_case);
   382   // temporary fix: must be created after exceptionhandler, therefore as call stub
   383   _slow_case_stubs->append(slow_case);
   384   if (UseFastLocking) {
   385     // try inlined fast unlocking first, revert to slow locking if it fails
   386     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   387     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   388     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   389   } else {
   390     // always do slow unlocking
   391     // note: the slow unlocking code could be inlined here, however if we use
   392     //       slow unlocking, speed doesn't matter anyway and this solution is
   393     //       simpler and requires less duplicated code - additionally, the
   394     //       slow unlocking code is the same in either case which simplifies
   395     //       debugging
   396     __ jmp(*slow_case->entry());
   397   }
   398   // done
   399   __ bind(*slow_case->continuation());
   401   if (exception->is_valid()) {
   402     // restore exception
   403     __ movptr (exception, Address(rsp, 2 * wordSize));
   404   }
   405 }
   407 // This specifies the rsp decrement needed to build the frame
   408 int LIR_Assembler::initial_frame_size_in_bytes() {
   409   // if rounding, must let FrameMap know!
   411   // The frame_map records size in slots (32bit word)
   413   // subtract two words to account for return address and link
   414   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
   415 }
   418 void LIR_Assembler::emit_exception_handler() {
   419   // if the last instruction is a call (typically to do a throw which
   420   // is coming at the end after block reordering) the return address
   421   // must still point into the code area in order to avoid assertion
   422   // failures when searching for the corresponding bci => add a nop
   423   // (was bug 5/14/1999 - gri)
   425   __ nop();
   427   // generate code for exception handler
   428   address handler_base = __ start_a_stub(exception_handler_size);
   429   if (handler_base == NULL) {
   430     // not enough space left for the handler
   431     bailout("exception handler overflow");
   432     return;
   433   }
   434 #ifdef ASSERT
   435   int offset = code_offset();
   436 #endif // ASSERT
   438   compilation()->offsets()->set_value(CodeOffsets::Exceptions, code_offset());
   440   // if the method does not have an exception handler, then there is
   441   // no reason to search for one
   442   if (compilation()->has_exception_handlers() || JvmtiExport::can_post_exceptions()) {
   443     // the exception oop and pc are in rax, and rdx
   444     // no other registers need to be preserved, so invalidate them
   445     __ invalidate_registers(false, true, true, false, true, true);
   447     // check that there is really an exception
   448     __ verify_not_null_oop(rax);
   450     // search an exception handler (rax: exception oop, rdx: throwing pc)
   451     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
   453     // if the call returns here, then the exception handler for particular
   454     // exception doesn't exist -> unwind activation and forward exception to caller
   455   }
   457   // the exception oop is in rax,
   458   // no other registers need to be preserved, so invalidate them
   459   __ invalidate_registers(false, true, true, true, true, true);
   461   // check that there is really an exception
   462   __ verify_not_null_oop(rax);
   464   // unlock the receiver/klass if necessary
   465   // rax,: exception
   466   ciMethod* method = compilation()->method();
   467   if (method->is_synchronized() && GenerateSynchronizationCode) {
   468     monitorexit(FrameMap::rbx_oop_opr, FrameMap::rcx_opr, SYNC_header, 0, rax);
   469   }
   471   // unwind activation and forward exception to caller
   472   // rax,: exception
   473   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
   475   assert(code_offset() - offset <= exception_handler_size, "overflow");
   477   __ end_a_stub();
   478 }
   480 void LIR_Assembler::emit_deopt_handler() {
   481   // if the last instruction is a call (typically to do a throw which
   482   // is coming at the end after block reordering) the return address
   483   // must still point into the code area in order to avoid assertion
   484   // failures when searching for the corresponding bci => add a nop
   485   // (was bug 5/14/1999 - gri)
   487   __ nop();
   489   // generate code for exception handler
   490   address handler_base = __ start_a_stub(deopt_handler_size);
   491   if (handler_base == NULL) {
   492     // not enough space left for the handler
   493     bailout("deopt handler overflow");
   494     return;
   495   }
   496 #ifdef ASSERT
   497   int offset = code_offset();
   498 #endif // ASSERT
   500   compilation()->offsets()->set_value(CodeOffsets::Deopt, code_offset());
   502   InternalAddress here(__ pc());
   503   __ pushptr(here.addr());
   505   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   507   assert(code_offset() - offset <= deopt_handler_size, "overflow");
   509   __ end_a_stub();
   511 }
   514 // This is the fast version of java.lang.String.compare; it has not
   515 // OSR-entry and therefore, we generate a slow version for OSR's
   516 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
   517   __ movptr (rbx, rcx); // receiver is in rcx
   518   __ movptr (rax, arg1->as_register());
   520   // Get addresses of first characters from both Strings
   521   __ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
   522   __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
   523   __ lea    (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   526   // rbx, may be NULL
   527   add_debug_info_for_null_check_here(info);
   528   __ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
   529   __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
   530   __ lea    (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   532   // compute minimum length (in rax) and difference of lengths (on top of stack)
   533   if (VM_Version::supports_cmov()) {
   534     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   535     __ movl     (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
   536     __ mov      (rcx, rbx);
   537     __ subptr   (rbx, rax); // subtract lengths
   538     __ push     (rbx);      // result
   539     __ cmov     (Assembler::lessEqual, rax, rcx);
   540   } else {
   541     Label L;
   542     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   543     __ movl     (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
   544     __ mov      (rax, rbx);
   545     __ subptr   (rbx, rcx);
   546     __ push     (rbx);
   547     __ jcc      (Assembler::lessEqual, L);
   548     __ mov      (rax, rcx);
   549     __ bind (L);
   550   }
   551   // is minimum length 0?
   552   Label noLoop, haveResult;
   553   __ testptr (rax, rax);
   554   __ jcc (Assembler::zero, noLoop);
   556   // compare first characters
   557   __ load_unsigned_word(rcx, Address(rdi, 0));
   558   __ load_unsigned_word(rbx, Address(rsi, 0));
   559   __ subl(rcx, rbx);
   560   __ jcc(Assembler::notZero, haveResult);
   561   // starting loop
   562   __ decrement(rax); // we already tested index: skip one
   563   __ jcc(Assembler::zero, noLoop);
   565   // set rsi.edi to the end of the arrays (arrays have same length)
   566   // negate the index
   568   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   569   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   570   __ negptr(rax);
   572   // compare the strings in a loop
   574   Label loop;
   575   __ align(wordSize);
   576   __ bind(loop);
   577   __ load_unsigned_word(rcx, Address(rdi, rax, Address::times_2, 0));
   578   __ load_unsigned_word(rbx, Address(rsi, rax, Address::times_2, 0));
   579   __ subl(rcx, rbx);
   580   __ jcc(Assembler::notZero, haveResult);
   581   __ increment(rax);
   582   __ jcc(Assembler::notZero, loop);
   584   // strings are equal up to min length
   586   __ bind(noLoop);
   587   __ pop(rax);
   588   return_op(LIR_OprFact::illegalOpr);
   590   __ bind(haveResult);
   591   // leave instruction is going to discard the TOS value
   592   __ mov (rax, rcx); // result of call is in rax,
   593 }
   596 void LIR_Assembler::return_op(LIR_Opr result) {
   597   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
   598   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
   599     assert(result->fpu() == 0, "result must already be on TOS");
   600   }
   602   // Pop the stack before the safepoint code
   603   __ leave();
   605   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
   607   // Note: we do not need to round double result; float result has the right precision
   608   // the poll sets the condition code, but no data registers
   609   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   610                               relocInfo::poll_return_type);
   612   // NOTE: the requires that the polling page be reachable else the reloc
   613   // goes to the movq that loads the address and not the faulting instruction
   614   // which breaks the signal handler code
   616   __ test32(rax, polling_page);
   618   __ ret(0);
   619 }
   622 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
   623   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   624                               relocInfo::poll_type);
   626   if (info != NULL) {
   627     add_debug_info_for_branch(info);
   628   } else {
   629     ShouldNotReachHere();
   630   }
   632   int offset = __ offset();
   634   // NOTE: the requires that the polling page be reachable else the reloc
   635   // goes to the movq that loads the address and not the faulting instruction
   636   // which breaks the signal handler code
   638   __ test32(rax, polling_page);
   639   return offset;
   640 }
   643 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
   644   if (from_reg != to_reg) __ mov(to_reg, from_reg);
   645 }
   647 void LIR_Assembler::swap_reg(Register a, Register b) {
   648   __ xchgptr(a, b);
   649 }
   652 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
   653   assert(src->is_constant(), "should not call otherwise");
   654   assert(dest->is_register(), "should not call otherwise");
   655   LIR_Const* c = src->as_constant_ptr();
   657   switch (c->type()) {
   658     case T_INT: {
   659       assert(patch_code == lir_patch_none, "no patching handled here");
   660       __ movl(dest->as_register(), c->as_jint());
   661       break;
   662     }
   664     case T_LONG: {
   665       assert(patch_code == lir_patch_none, "no patching handled here");
   666 #ifdef _LP64
   667       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
   668 #else
   669       __ movptr(dest->as_register_lo(), c->as_jint_lo());
   670       __ movptr(dest->as_register_hi(), c->as_jint_hi());
   671 #endif // _LP64
   672       break;
   673     }
   675     case T_OBJECT: {
   676       if (patch_code != lir_patch_none) {
   677         jobject2reg_with_patching(dest->as_register(), info);
   678       } else {
   679         __ movoop(dest->as_register(), c->as_jobject());
   680       }
   681       break;
   682     }
   684     case T_FLOAT: {
   685       if (dest->is_single_xmm()) {
   686         if (c->is_zero_float()) {
   687           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
   688         } else {
   689           __ movflt(dest->as_xmm_float_reg(),
   690                    InternalAddress(float_constant(c->as_jfloat())));
   691         }
   692       } else {
   693         assert(dest->is_single_fpu(), "must be");
   694         assert(dest->fpu_regnr() == 0, "dest must be TOS");
   695         if (c->is_zero_float()) {
   696           __ fldz();
   697         } else if (c->is_one_float()) {
   698           __ fld1();
   699         } else {
   700           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
   701         }
   702       }
   703       break;
   704     }
   706     case T_DOUBLE: {
   707       if (dest->is_double_xmm()) {
   708         if (c->is_zero_double()) {
   709           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
   710         } else {
   711           __ movdbl(dest->as_xmm_double_reg(),
   712                     InternalAddress(double_constant(c->as_jdouble())));
   713         }
   714       } else {
   715         assert(dest->is_double_fpu(), "must be");
   716         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
   717         if (c->is_zero_double()) {
   718           __ fldz();
   719         } else if (c->is_one_double()) {
   720           __ fld1();
   721         } else {
   722           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
   723         }
   724       }
   725       break;
   726     }
   728     default:
   729       ShouldNotReachHere();
   730   }
   731 }
   733 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
   734   assert(src->is_constant(), "should not call otherwise");
   735   assert(dest->is_stack(), "should not call otherwise");
   736   LIR_Const* c = src->as_constant_ptr();
   738   switch (c->type()) {
   739     case T_INT:  // fall through
   740     case T_FLOAT:
   741       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   742       break;
   744     case T_OBJECT:
   745       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
   746       break;
   748     case T_LONG:  // fall through
   749     case T_DOUBLE:
   750 #ifdef _LP64
   751       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   752                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
   753 #else
   754       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   755                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
   756       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   757                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
   758 #endif // _LP64
   759       break;
   761     default:
   762       ShouldNotReachHere();
   763   }
   764 }
   766 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
   767   assert(src->is_constant(), "should not call otherwise");
   768   assert(dest->is_address(), "should not call otherwise");
   769   LIR_Const* c = src->as_constant_ptr();
   770   LIR_Address* addr = dest->as_address_ptr();
   772   int null_check_here = code_offset();
   773   switch (type) {
   774     case T_INT:    // fall through
   775     case T_FLOAT:
   776       __ movl(as_Address(addr), c->as_jint_bits());
   777       break;
   779     case T_OBJECT:  // fall through
   780     case T_ARRAY:
   781       if (c->as_jobject() == NULL) {
   782         __ movptr(as_Address(addr), NULL_WORD);
   783       } else {
   784         if (is_literal_address(addr)) {
   785           ShouldNotReachHere();
   786           __ movoop(as_Address(addr, noreg), c->as_jobject());
   787         } else {
   788           __ movoop(as_Address(addr), c->as_jobject());
   789         }
   790       }
   791       break;
   793     case T_LONG:    // fall through
   794     case T_DOUBLE:
   795 #ifdef _LP64
   796       if (is_literal_address(addr)) {
   797         ShouldNotReachHere();
   798         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
   799       } else {
   800         __ movptr(r10, (intptr_t)c->as_jlong_bits());
   801         null_check_here = code_offset();
   802         __ movptr(as_Address_lo(addr), r10);
   803       }
   804 #else
   805       // Always reachable in 32bit so this doesn't produce useless move literal
   806       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
   807       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
   808 #endif // _LP64
   809       break;
   811     case T_BOOLEAN: // fall through
   812     case T_BYTE:
   813       __ movb(as_Address(addr), c->as_jint() & 0xFF);
   814       break;
   816     case T_CHAR:    // fall through
   817     case T_SHORT:
   818       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
   819       break;
   821     default:
   822       ShouldNotReachHere();
   823   };
   825   if (info != NULL) {
   826     add_debug_info_for_null_check(null_check_here, info);
   827   }
   828 }
   831 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
   832   assert(src->is_register(), "should not call otherwise");
   833   assert(dest->is_register(), "should not call otherwise");
   835   // move between cpu-registers
   836   if (dest->is_single_cpu()) {
   837 #ifdef _LP64
   838     if (src->type() == T_LONG) {
   839       // Can do LONG -> OBJECT
   840       move_regs(src->as_register_lo(), dest->as_register());
   841       return;
   842     }
   843 #endif
   844     assert(src->is_single_cpu(), "must match");
   845     if (src->type() == T_OBJECT) {
   846       __ verify_oop(src->as_register());
   847     }
   848     move_regs(src->as_register(), dest->as_register());
   850   } else if (dest->is_double_cpu()) {
   851 #ifdef _LP64
   852     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
   853       // Surprising to me but we can see move of a long to t_object
   854       __ verify_oop(src->as_register());
   855       move_regs(src->as_register(), dest->as_register_lo());
   856       return;
   857     }
   858 #endif
   859     assert(src->is_double_cpu(), "must match");
   860     Register f_lo = src->as_register_lo();
   861     Register f_hi = src->as_register_hi();
   862     Register t_lo = dest->as_register_lo();
   863     Register t_hi = dest->as_register_hi();
   864 #ifdef _LP64
   865     assert(f_hi == f_lo, "must be same");
   866     assert(t_hi == t_lo, "must be same");
   867     move_regs(f_lo, t_lo);
   868 #else
   869     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
   872     if (f_lo == t_hi && f_hi == t_lo) {
   873       swap_reg(f_lo, f_hi);
   874     } else if (f_hi == t_lo) {
   875       assert(f_lo != t_hi, "overwriting register");
   876       move_regs(f_hi, t_hi);
   877       move_regs(f_lo, t_lo);
   878     } else {
   879       assert(f_hi != t_lo, "overwriting register");
   880       move_regs(f_lo, t_lo);
   881       move_regs(f_hi, t_hi);
   882     }
   883 #endif // LP64
   885     // special moves from fpu-register to xmm-register
   886     // necessary for method results
   887   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
   888     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
   889     __ fld_s(Address(rsp, 0));
   890   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
   891     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
   892     __ fld_d(Address(rsp, 0));
   893   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
   894     __ fstp_s(Address(rsp, 0));
   895     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
   896   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
   897     __ fstp_d(Address(rsp, 0));
   898     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
   900     // move between xmm-registers
   901   } else if (dest->is_single_xmm()) {
   902     assert(src->is_single_xmm(), "must match");
   903     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
   904   } else if (dest->is_double_xmm()) {
   905     assert(src->is_double_xmm(), "must match");
   906     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
   908     // move between fpu-registers (no instruction necessary because of fpu-stack)
   909   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
   910     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
   911     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
   912   } else {
   913     ShouldNotReachHere();
   914   }
   915 }
   917 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
   918   assert(src->is_register(), "should not call otherwise");
   919   assert(dest->is_stack(), "should not call otherwise");
   921   if (src->is_single_cpu()) {
   922     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
   923     if (type == T_OBJECT || type == T_ARRAY) {
   924       __ verify_oop(src->as_register());
   925       __ movptr (dst, src->as_register());
   926     } else {
   927       __ movl (dst, src->as_register());
   928     }
   930   } else if (src->is_double_cpu()) {
   931     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
   932     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
   933     __ movptr (dstLO, src->as_register_lo());
   934     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
   936   } else if (src->is_single_xmm()) {
   937     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   938     __ movflt(dst_addr, src->as_xmm_float_reg());
   940   } else if (src->is_double_xmm()) {
   941     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   942     __ movdbl(dst_addr, src->as_xmm_double_reg());
   944   } else if (src->is_single_fpu()) {
   945     assert(src->fpu_regnr() == 0, "argument must be on TOS");
   946     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   947     if (pop_fpu_stack)     __ fstp_s (dst_addr);
   948     else                   __ fst_s  (dst_addr);
   950   } else if (src->is_double_fpu()) {
   951     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   952     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   953     if (pop_fpu_stack)     __ fstp_d (dst_addr);
   954     else                   __ fst_d  (dst_addr);
   956   } else {
   957     ShouldNotReachHere();
   958   }
   959 }
   962 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
   963   LIR_Address* to_addr = dest->as_address_ptr();
   964   PatchingStub* patch = NULL;
   966   if (type == T_ARRAY || type == T_OBJECT) {
   967     __ verify_oop(src->as_register());
   968   }
   969   if (patch_code != lir_patch_none) {
   970     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
   971     Address toa = as_Address(to_addr);
   972     assert(toa.disp() != 0, "must have");
   973   }
   974   if (info != NULL) {
   975     add_debug_info_for_null_check_here(info);
   976   }
   978   switch (type) {
   979     case T_FLOAT: {
   980       if (src->is_single_xmm()) {
   981         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
   982       } else {
   983         assert(src->is_single_fpu(), "must be");
   984         assert(src->fpu_regnr() == 0, "argument must be on TOS");
   985         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
   986         else                    __ fst_s (as_Address(to_addr));
   987       }
   988       break;
   989     }
   991     case T_DOUBLE: {
   992       if (src->is_double_xmm()) {
   993         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
   994       } else {
   995         assert(src->is_double_fpu(), "must be");
   996         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   997         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
   998         else                    __ fst_d (as_Address(to_addr));
   999       }
  1000       break;
  1003     case T_ADDRESS: // fall through
  1004     case T_ARRAY:   // fall through
  1005     case T_OBJECT:  // fall through
  1006 #ifdef _LP64
  1007       __ movptr(as_Address(to_addr), src->as_register());
  1008       break;
  1009 #endif // _LP64
  1010     case T_INT:
  1011       __ movl(as_Address(to_addr), src->as_register());
  1012       break;
  1014     case T_LONG: {
  1015       Register from_lo = src->as_register_lo();
  1016       Register from_hi = src->as_register_hi();
  1017 #ifdef _LP64
  1018       __ movptr(as_Address_lo(to_addr), from_lo);
  1019 #else
  1020       Register base = to_addr->base()->as_register();
  1021       Register index = noreg;
  1022       if (to_addr->index()->is_register()) {
  1023         index = to_addr->index()->as_register();
  1025       if (base == from_lo || index == from_lo) {
  1026         assert(base != from_hi, "can't be");
  1027         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
  1028         __ movl(as_Address_hi(to_addr), from_hi);
  1029         if (patch != NULL) {
  1030           patching_epilog(patch, lir_patch_high, base, info);
  1031           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1032           patch_code = lir_patch_low;
  1034         __ movl(as_Address_lo(to_addr), from_lo);
  1035       } else {
  1036         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
  1037         __ movl(as_Address_lo(to_addr), from_lo);
  1038         if (patch != NULL) {
  1039           patching_epilog(patch, lir_patch_low, base, info);
  1040           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1041           patch_code = lir_patch_high;
  1043         __ movl(as_Address_hi(to_addr), from_hi);
  1045 #endif // _LP64
  1046       break;
  1049     case T_BYTE:    // fall through
  1050     case T_BOOLEAN: {
  1051       Register src_reg = src->as_register();
  1052       Address dst_addr = as_Address(to_addr);
  1053       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
  1054       __ movb(dst_addr, src_reg);
  1055       break;
  1058     case T_CHAR:    // fall through
  1059     case T_SHORT:
  1060       __ movw(as_Address(to_addr), src->as_register());
  1061       break;
  1063     default:
  1064       ShouldNotReachHere();
  1067   if (patch_code != lir_patch_none) {
  1068     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
  1073 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1074   assert(src->is_stack(), "should not call otherwise");
  1075   assert(dest->is_register(), "should not call otherwise");
  1077   if (dest->is_single_cpu()) {
  1078     if (type == T_ARRAY || type == T_OBJECT) {
  1079       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1080       __ verify_oop(dest->as_register());
  1081     } else {
  1082       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1085   } else if (dest->is_double_cpu()) {
  1086     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
  1087     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
  1088     __ movptr(dest->as_register_lo(), src_addr_LO);
  1089     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
  1091   } else if (dest->is_single_xmm()) {
  1092     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1093     __ movflt(dest->as_xmm_float_reg(), src_addr);
  1095   } else if (dest->is_double_xmm()) {
  1096     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1097     __ movdbl(dest->as_xmm_double_reg(), src_addr);
  1099   } else if (dest->is_single_fpu()) {
  1100     assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1101     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1102     __ fld_s(src_addr);
  1104   } else if (dest->is_double_fpu()) {
  1105     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1106     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1107     __ fld_d(src_addr);
  1109   } else {
  1110     ShouldNotReachHere();
  1115 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1116   if (src->is_single_stack()) {
  1117     if (type == T_OBJECT || type == T_ARRAY) {
  1118       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
  1119       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
  1120     } else {
  1121       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
  1122       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
  1125   } else if (src->is_double_stack()) {
  1126 #ifdef _LP64
  1127     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
  1128     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
  1129 #else
  1130     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
  1131     // push and pop the part at src + wordSize, adding wordSize for the previous push
  1132     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
  1133     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
  1134     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
  1135 #endif // _LP64
  1137   } else {
  1138     ShouldNotReachHere();
  1143 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
  1144   assert(src->is_address(), "should not call otherwise");
  1145   assert(dest->is_register(), "should not call otherwise");
  1147   LIR_Address* addr = src->as_address_ptr();
  1148   Address from_addr = as_Address(addr);
  1150   switch (type) {
  1151     case T_BOOLEAN: // fall through
  1152     case T_BYTE:    // fall through
  1153     case T_CHAR:    // fall through
  1154     case T_SHORT:
  1155       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
  1156         // on pre P6 processors we may get partial register stalls
  1157         // so blow away the value of to_rinfo before loading a
  1158         // partial word into it.  Do it here so that it precedes
  1159         // the potential patch point below.
  1160         __ xorptr(dest->as_register(), dest->as_register());
  1162       break;
  1165   PatchingStub* patch = NULL;
  1166   if (patch_code != lir_patch_none) {
  1167     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1168     assert(from_addr.disp() != 0, "must have");
  1170   if (info != NULL) {
  1171     add_debug_info_for_null_check_here(info);
  1174   switch (type) {
  1175     case T_FLOAT: {
  1176       if (dest->is_single_xmm()) {
  1177         __ movflt(dest->as_xmm_float_reg(), from_addr);
  1178       } else {
  1179         assert(dest->is_single_fpu(), "must be");
  1180         assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1181         __ fld_s(from_addr);
  1183       break;
  1186     case T_DOUBLE: {
  1187       if (dest->is_double_xmm()) {
  1188         __ movdbl(dest->as_xmm_double_reg(), from_addr);
  1189       } else {
  1190         assert(dest->is_double_fpu(), "must be");
  1191         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1192         __ fld_d(from_addr);
  1194       break;
  1197     case T_ADDRESS: // fall through
  1198     case T_OBJECT:  // fall through
  1199     case T_ARRAY:   // fall through
  1200 #ifdef _LP64
  1201       __ movptr(dest->as_register(), from_addr);
  1202       break;
  1203 #endif // _L64
  1204     case T_INT:
  1205       // %%% could this be a movl? this is safer but longer instruction
  1206       __ movl2ptr(dest->as_register(), from_addr);
  1207       break;
  1209     case T_LONG: {
  1210       Register to_lo = dest->as_register_lo();
  1211       Register to_hi = dest->as_register_hi();
  1212 #ifdef _LP64
  1213       __ movptr(to_lo, as_Address_lo(addr));
  1214 #else
  1215       Register base = addr->base()->as_register();
  1216       Register index = noreg;
  1217       if (addr->index()->is_register()) {
  1218         index = addr->index()->as_register();
  1220       if ((base == to_lo && index == to_hi) ||
  1221           (base == to_hi && index == to_lo)) {
  1222         // addresses with 2 registers are only formed as a result of
  1223         // array access so this code will never have to deal with
  1224         // patches or null checks.
  1225         assert(info == NULL && patch == NULL, "must be");
  1226         __ lea(to_hi, as_Address(addr));
  1227         __ movl(to_lo, Address(to_hi, 0));
  1228         __ movl(to_hi, Address(to_hi, BytesPerWord));
  1229       } else if (base == to_lo || index == to_lo) {
  1230         assert(base != to_hi, "can't be");
  1231         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
  1232         __ movl(to_hi, as_Address_hi(addr));
  1233         if (patch != NULL) {
  1234           patching_epilog(patch, lir_patch_high, base, info);
  1235           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1236           patch_code = lir_patch_low;
  1238         __ movl(to_lo, as_Address_lo(addr));
  1239       } else {
  1240         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
  1241         __ movl(to_lo, as_Address_lo(addr));
  1242         if (patch != NULL) {
  1243           patching_epilog(patch, lir_patch_low, base, info);
  1244           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1245           patch_code = lir_patch_high;
  1247         __ movl(to_hi, as_Address_hi(addr));
  1249 #endif // _LP64
  1250       break;
  1253     case T_BOOLEAN: // fall through
  1254     case T_BYTE: {
  1255       Register dest_reg = dest->as_register();
  1256       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1257       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1258         __ movsbl(dest_reg, from_addr);
  1259       } else {
  1260         __ movb(dest_reg, from_addr);
  1261         __ shll(dest_reg, 24);
  1262         __ sarl(dest_reg, 24);
  1264       // These are unsigned so the zero extension on 64bit is just what we need
  1265       break;
  1268     case T_CHAR: {
  1269       Register dest_reg = dest->as_register();
  1270       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1271       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1272         __ movzwl(dest_reg, from_addr);
  1273       } else {
  1274         __ movw(dest_reg, from_addr);
  1276       // This is unsigned so the zero extension on 64bit is just what we need
  1277       // __ movl2ptr(dest_reg, dest_reg);
  1278       break;
  1281     case T_SHORT: {
  1282       Register dest_reg = dest->as_register();
  1283       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1284         __ movswl(dest_reg, from_addr);
  1285       } else {
  1286         __ movw(dest_reg, from_addr);
  1287         __ shll(dest_reg, 16);
  1288         __ sarl(dest_reg, 16);
  1290       // Might not be needed in 64bit but certainly doesn't hurt (except for code size)
  1291       __ movl2ptr(dest_reg, dest_reg);
  1292       break;
  1295     default:
  1296       ShouldNotReachHere();
  1299   if (patch != NULL) {
  1300     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
  1303   if (type == T_ARRAY || type == T_OBJECT) {
  1304     __ verify_oop(dest->as_register());
  1309 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1310   LIR_Address* addr = src->as_address_ptr();
  1311   Address from_addr = as_Address(addr);
  1313   if (VM_Version::supports_sse()) {
  1314     switch (ReadPrefetchInstr) {
  1315       case 0:
  1316         __ prefetchnta(from_addr); break;
  1317       case 1:
  1318         __ prefetcht0(from_addr); break;
  1319       case 2:
  1320         __ prefetcht2(from_addr); break;
  1321       default:
  1322         ShouldNotReachHere(); break;
  1324   } else if (VM_Version::supports_3dnow()) {
  1325     __ prefetchr(from_addr);
  1330 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1331   LIR_Address* addr = src->as_address_ptr();
  1332   Address from_addr = as_Address(addr);
  1334   if (VM_Version::supports_sse()) {
  1335     switch (AllocatePrefetchInstr) {
  1336       case 0:
  1337         __ prefetchnta(from_addr); break;
  1338       case 1:
  1339         __ prefetcht0(from_addr); break;
  1340       case 2:
  1341         __ prefetcht2(from_addr); break;
  1342       case 3:
  1343         __ prefetchw(from_addr); break;
  1344       default:
  1345         ShouldNotReachHere(); break;
  1347   } else if (VM_Version::supports_3dnow()) {
  1348     __ prefetchw(from_addr);
  1353 NEEDS_CLEANUP; // This could be static?
  1354 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
  1355   int elem_size = type2aelembytes(type);
  1356   switch (elem_size) {
  1357     case 1: return Address::times_1;
  1358     case 2: return Address::times_2;
  1359     case 4: return Address::times_4;
  1360     case 8: return Address::times_8;
  1362   ShouldNotReachHere();
  1363   return Address::no_scale;
  1367 void LIR_Assembler::emit_op3(LIR_Op3* op) {
  1368   switch (op->code()) {
  1369     case lir_idiv:
  1370     case lir_irem:
  1371       arithmetic_idiv(op->code(),
  1372                       op->in_opr1(),
  1373                       op->in_opr2(),
  1374                       op->in_opr3(),
  1375                       op->result_opr(),
  1376                       op->info());
  1377       break;
  1378     default:      ShouldNotReachHere(); break;
  1382 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
  1383 #ifdef ASSERT
  1384   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
  1385   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
  1386   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
  1387 #endif
  1389   if (op->cond() == lir_cond_always) {
  1390     if (op->info() != NULL) add_debug_info_for_branch(op->info());
  1391     __ jmp (*(op->label()));
  1392   } else {
  1393     Assembler::Condition acond = Assembler::zero;
  1394     if (op->code() == lir_cond_float_branch) {
  1395       assert(op->ublock() != NULL, "must have unordered successor");
  1396       __ jcc(Assembler::parity, *(op->ublock()->label()));
  1397       switch(op->cond()) {
  1398         case lir_cond_equal:        acond = Assembler::equal;      break;
  1399         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
  1400         case lir_cond_less:         acond = Assembler::below;      break;
  1401         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
  1402         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
  1403         case lir_cond_greater:      acond = Assembler::above;      break;
  1404         default:                         ShouldNotReachHere();
  1406     } else {
  1407       switch (op->cond()) {
  1408         case lir_cond_equal:        acond = Assembler::equal;       break;
  1409         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  1410         case lir_cond_less:         acond = Assembler::less;        break;
  1411         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  1412         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  1413         case lir_cond_greater:      acond = Assembler::greater;     break;
  1414         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  1415         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  1416         default:                         ShouldNotReachHere();
  1419     __ jcc(acond,*(op->label()));
  1423 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
  1424   LIR_Opr src  = op->in_opr();
  1425   LIR_Opr dest = op->result_opr();
  1427   switch (op->bytecode()) {
  1428     case Bytecodes::_i2l:
  1429 #ifdef _LP64
  1430       __ movl2ptr(dest->as_register_lo(), src->as_register());
  1431 #else
  1432       move_regs(src->as_register(), dest->as_register_lo());
  1433       move_regs(src->as_register(), dest->as_register_hi());
  1434       __ sarl(dest->as_register_hi(), 31);
  1435 #endif // LP64
  1436       break;
  1438     case Bytecodes::_l2i:
  1439       move_regs(src->as_register_lo(), dest->as_register());
  1440       break;
  1442     case Bytecodes::_i2b:
  1443       move_regs(src->as_register(), dest->as_register());
  1444       __ sign_extend_byte(dest->as_register());
  1445       break;
  1447     case Bytecodes::_i2c:
  1448       move_regs(src->as_register(), dest->as_register());
  1449       __ andl(dest->as_register(), 0xFFFF);
  1450       break;
  1452     case Bytecodes::_i2s:
  1453       move_regs(src->as_register(), dest->as_register());
  1454       __ sign_extend_short(dest->as_register());
  1455       break;
  1458     case Bytecodes::_f2d:
  1459     case Bytecodes::_d2f:
  1460       if (dest->is_single_xmm()) {
  1461         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
  1462       } else if (dest->is_double_xmm()) {
  1463         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
  1464       } else {
  1465         assert(src->fpu() == dest->fpu(), "register must be equal");
  1466         // do nothing (float result is rounded later through spilling)
  1468       break;
  1470     case Bytecodes::_i2f:
  1471     case Bytecodes::_i2d:
  1472       if (dest->is_single_xmm()) {
  1473         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
  1474       } else if (dest->is_double_xmm()) {
  1475         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
  1476       } else {
  1477         assert(dest->fpu() == 0, "result must be on TOS");
  1478         __ movl(Address(rsp, 0), src->as_register());
  1479         __ fild_s(Address(rsp, 0));
  1481       break;
  1483     case Bytecodes::_f2i:
  1484     case Bytecodes::_d2i:
  1485       if (src->is_single_xmm()) {
  1486         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
  1487       } else if (src->is_double_xmm()) {
  1488         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
  1489       } else {
  1490         assert(src->fpu() == 0, "input must be on TOS");
  1491         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
  1492         __ fist_s(Address(rsp, 0));
  1493         __ movl(dest->as_register(), Address(rsp, 0));
  1494         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1497       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
  1498       assert(op->stub() != NULL, "stub required");
  1499       __ cmpl(dest->as_register(), 0x80000000);
  1500       __ jcc(Assembler::equal, *op->stub()->entry());
  1501       __ bind(*op->stub()->continuation());
  1502       break;
  1504     case Bytecodes::_l2f:
  1505     case Bytecodes::_l2d:
  1506       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
  1507       assert(dest->fpu() == 0, "result must be on TOS");
  1509       __ movptr(Address(rsp, 0),            src->as_register_lo());
  1510       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
  1511       __ fild_d(Address(rsp, 0));
  1512       // float result is rounded later through spilling
  1513       break;
  1515     case Bytecodes::_f2l:
  1516     case Bytecodes::_d2l:
  1517       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
  1518       assert(src->fpu() == 0, "input must be on TOS");
  1519       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
  1521       // instruction sequence too long to inline it here
  1523         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
  1525       break;
  1527     default: ShouldNotReachHere();
  1531 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  1532   if (op->init_check()) {
  1533     __ cmpl(Address(op->klass()->as_register(),
  1534                     instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
  1535             instanceKlass::fully_initialized);
  1536     add_debug_info_for_null_check_here(op->stub()->info());
  1537     __ jcc(Assembler::notEqual, *op->stub()->entry());
  1539   __ allocate_object(op->obj()->as_register(),
  1540                      op->tmp1()->as_register(),
  1541                      op->tmp2()->as_register(),
  1542                      op->header_size(),
  1543                      op->object_size(),
  1544                      op->klass()->as_register(),
  1545                      *op->stub()->entry());
  1546   __ bind(*op->stub()->continuation());
  1549 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  1550   if (UseSlowPath ||
  1551       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  1552       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  1553     __ jmp(*op->stub()->entry());
  1554   } else {
  1555     Register len =  op->len()->as_register();
  1556     Register tmp1 = op->tmp1()->as_register();
  1557     Register tmp2 = op->tmp2()->as_register();
  1558     Register tmp3 = op->tmp3()->as_register();
  1559     if (len == tmp1) {
  1560       tmp1 = tmp3;
  1561     } else if (len == tmp2) {
  1562       tmp2 = tmp3;
  1563     } else if (len == tmp3) {
  1564       // everything is ok
  1565     } else {
  1566       __ mov(tmp3, len);
  1568     __ allocate_array(op->obj()->as_register(),
  1569                       len,
  1570                       tmp1,
  1571                       tmp2,
  1572                       arrayOopDesc::header_size(op->type()),
  1573                       array_element_size(op->type()),
  1574                       op->klass()->as_register(),
  1575                       *op->stub()->entry());
  1577   __ bind(*op->stub()->continuation());
  1582 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  1583   LIR_Code code = op->code();
  1584   if (code == lir_store_check) {
  1585     Register value = op->object()->as_register();
  1586     Register array = op->array()->as_register();
  1587     Register k_RInfo = op->tmp1()->as_register();
  1588     Register klass_RInfo = op->tmp2()->as_register();
  1589     Register Rtmp1 = op->tmp3()->as_register();
  1591     CodeStub* stub = op->stub();
  1592     Label done;
  1593     __ cmpptr(value, (int32_t)NULL_WORD);
  1594     __ jcc(Assembler::equal, done);
  1595     add_debug_info_for_null_check_here(op->info_for_exception());
  1596     __ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
  1597     __ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
  1599     // get instance klass
  1600     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
  1601     // get super_check_offset
  1602     __ movl(Rtmp1, Address(k_RInfo, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes()));
  1603     // See if we get an immediate positive hit
  1604     __ cmpptr(k_RInfo, Address(klass_RInfo, Rtmp1, Address::times_1));
  1605     __ jcc(Assembler::equal, done);
  1606     // check for immediate negative hit
  1607     __ cmpl(Rtmp1, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
  1608     __ jcc(Assembler::notEqual, *stub->entry());
  1609     // check for self
  1610     __ cmpptr(klass_RInfo, k_RInfo);
  1611     __ jcc(Assembler::equal, done);
  1613     __ push(klass_RInfo);
  1614     __ push(k_RInfo);
  1615     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1616     __ pop(klass_RInfo);
  1617     __ pop(k_RInfo);
  1618     // result is a boolean
  1619     __ cmpl(k_RInfo, 0);
  1620     __ jcc(Assembler::equal, *stub->entry());
  1621     __ bind(done);
  1622   } else if (op->code() == lir_checkcast) {
  1623     // we always need a stub for the failure case.
  1624     CodeStub* stub = op->stub();
  1625     Register obj = op->object()->as_register();
  1626     Register k_RInfo = op->tmp1()->as_register();
  1627     Register klass_RInfo = op->tmp2()->as_register();
  1628     Register dst = op->result_opr()->as_register();
  1629     ciKlass* k = op->klass();
  1630     Register Rtmp1 = noreg;
  1632     Label done;
  1633     if (obj == k_RInfo) {
  1634       k_RInfo = dst;
  1635     } else if (obj == klass_RInfo) {
  1636       klass_RInfo = dst;
  1638     if (k->is_loaded()) {
  1639       select_different_registers(obj, dst, k_RInfo, klass_RInfo);
  1640     } else {
  1641       Rtmp1 = op->tmp3()->as_register();
  1642       select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
  1645     assert_different_registers(obj, k_RInfo, klass_RInfo);
  1646     if (!k->is_loaded()) {
  1647       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  1648     } else {
  1649 #ifdef _LP64
  1650       __ movoop(k_RInfo, k->encoding());
  1651 #else
  1652       k_RInfo = noreg;
  1653 #endif // _LP64
  1655     assert(obj != k_RInfo, "must be different");
  1656     __ cmpptr(obj, (int32_t)NULL_WORD);
  1657     if (op->profiled_method() != NULL) {
  1658       ciMethod* method = op->profiled_method();
  1659       int bci          = op->profiled_bci();
  1661       Label profile_done;
  1662       __ jcc(Assembler::notEqual, profile_done);
  1663       // Object is null; update methodDataOop
  1664       ciMethodData* md = method->method_data();
  1665       if (md == NULL) {
  1666         bailout("out of memory building methodDataOop");
  1667         return;
  1669       ciProfileData* data = md->bci_to_data(bci);
  1670       assert(data != NULL,       "need data for checkcast");
  1671       assert(data->is_BitData(), "need BitData for checkcast");
  1672       Register mdo  = klass_RInfo;
  1673       __ movoop(mdo, md->encoding());
  1674       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1675       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1676       __ orl(data_addr, header_bits);
  1677       __ jmp(done);
  1678       __ bind(profile_done);
  1679     } else {
  1680       __ jcc(Assembler::equal, done);
  1682     __ verify_oop(obj);
  1684     if (op->fast_check()) {
  1685       // get object classo
  1686       // not a safepoint as obj null check happens earlier
  1687       if (k->is_loaded()) {
  1688 #ifdef _LP64
  1689         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1690 #else
  1691         __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->encoding());
  1692 #endif // _LP64
  1693       } else {
  1694         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1697       __ jcc(Assembler::notEqual, *stub->entry());
  1698       __ bind(done);
  1699     } else {
  1700       // get object class
  1701       // not a safepoint as obj null check happens earlier
  1702       __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1703       if (k->is_loaded()) {
  1704         // See if we get an immediate positive hit
  1705 #ifdef _LP64
  1706         __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
  1707 #else
  1708         __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->encoding());
  1709 #endif // _LP64
  1710         if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
  1711           __ jcc(Assembler::notEqual, *stub->entry());
  1712         } else {
  1713           // See if we get an immediate positive hit
  1714           __ jcc(Assembler::equal, done);
  1715           // check for self
  1716 #ifdef _LP64
  1717           __ cmpptr(klass_RInfo, k_RInfo);
  1718 #else
  1719           __ cmpoop(klass_RInfo, k->encoding());
  1720 #endif // _LP64
  1721           __ jcc(Assembler::equal, done);
  1723           __ push(klass_RInfo);
  1724 #ifdef _LP64
  1725           __ push(k_RInfo);
  1726 #else
  1727           __ pushoop(k->encoding());
  1728 #endif // _LP64
  1729           __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1730           __ pop(klass_RInfo);
  1731           __ pop(klass_RInfo);
  1732           // result is a boolean
  1733           __ cmpl(klass_RInfo, 0);
  1734           __ jcc(Assembler::equal, *stub->entry());
  1736         __ bind(done);
  1737       } else {
  1738         __ movl(Rtmp1, Address(k_RInfo, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes()));
  1739         // See if we get an immediate positive hit
  1740         __ cmpptr(k_RInfo, Address(klass_RInfo, Rtmp1, Address::times_1));
  1741         __ jcc(Assembler::equal, done);
  1742         // check for immediate negative hit
  1743         __ cmpl(Rtmp1, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
  1744         __ jcc(Assembler::notEqual, *stub->entry());
  1745         // check for self
  1746         __ cmpptr(klass_RInfo, k_RInfo);
  1747         __ jcc(Assembler::equal, done);
  1749         __ push(klass_RInfo);
  1750         __ push(k_RInfo);
  1751         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1752         __ pop(klass_RInfo);
  1753         __ pop(k_RInfo);
  1754         // result is a boolean
  1755         __ cmpl(k_RInfo, 0);
  1756         __ jcc(Assembler::equal, *stub->entry());
  1757         __ bind(done);
  1761     if (dst != obj) {
  1762       __ mov(dst, obj);
  1764   } else if (code == lir_instanceof) {
  1765     Register obj = op->object()->as_register();
  1766     Register k_RInfo = op->tmp1()->as_register();
  1767     Register klass_RInfo = op->tmp2()->as_register();
  1768     Register dst = op->result_opr()->as_register();
  1769     ciKlass* k = op->klass();
  1771     Label done;
  1772     Label zero;
  1773     Label one;
  1774     if (obj == k_RInfo) {
  1775       k_RInfo = klass_RInfo;
  1776       klass_RInfo = obj;
  1778     // patching may screw with our temporaries on sparc,
  1779     // so let's do it before loading the class
  1780     if (!k->is_loaded()) {
  1781       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  1782     } else {
  1783       LP64_ONLY(__ movoop(k_RInfo, k->encoding()));
  1785     assert(obj != k_RInfo, "must be different");
  1787     __ verify_oop(obj);
  1788     if (op->fast_check()) {
  1789       __ cmpptr(obj, (int32_t)NULL_WORD);
  1790       __ jcc(Assembler::equal, zero);
  1791       // get object class
  1792       // not a safepoint as obj null check happens earlier
  1793       if (LP64_ONLY(false &&) k->is_loaded()) {
  1794         NOT_LP64(__ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->encoding()));
  1795         k_RInfo = noreg;
  1796       } else {
  1797         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1800       __ jcc(Assembler::equal, one);
  1801     } else {
  1802       // get object class
  1803       // not a safepoint as obj null check happens earlier
  1804       __ cmpptr(obj, (int32_t)NULL_WORD);
  1805       __ jcc(Assembler::equal, zero);
  1806       __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1808 #ifndef _LP64
  1809       if (k->is_loaded()) {
  1810         // See if we get an immediate positive hit
  1811         __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->encoding());
  1812         __ jcc(Assembler::equal, one);
  1813         if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() == k->super_check_offset()) {
  1814           // check for self
  1815           __ cmpoop(klass_RInfo, k->encoding());
  1816           __ jcc(Assembler::equal, one);
  1817           __ push(klass_RInfo);
  1818           __ pushoop(k->encoding());
  1819           __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1820           __ pop(klass_RInfo);
  1821           __ pop(dst);
  1822           __ jmp(done);
  1824       } else {
  1825 #else
  1826       { // YUCK
  1827 #endif // LP64
  1828         assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
  1830         __ movl(dst, Address(k_RInfo, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes()));
  1831         // See if we get an immediate positive hit
  1832         __ cmpptr(k_RInfo, Address(klass_RInfo, dst, Address::times_1));
  1833         __ jcc(Assembler::equal, one);
  1834         // check for immediate negative hit
  1835         __ cmpl(dst, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes());
  1836         __ jcc(Assembler::notEqual, zero);
  1837         // check for self
  1838         __ cmpptr(klass_RInfo, k_RInfo);
  1839         __ jcc(Assembler::equal, one);
  1841         __ push(klass_RInfo);
  1842         __ push(k_RInfo);
  1843         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1844         __ pop(klass_RInfo);
  1845         __ pop(dst);
  1846         __ jmp(done);
  1849     __ bind(zero);
  1850     __ xorptr(dst, dst);
  1851     __ jmp(done);
  1852     __ bind(one);
  1853     __ movptr(dst, 1);
  1854     __ bind(done);
  1855   } else {
  1856     ShouldNotReachHere();
  1862 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  1863   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
  1864     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
  1865     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
  1866     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
  1867     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
  1868     Register addr = op->addr()->as_register();
  1869     if (os::is_MP()) {
  1870       __ lock();
  1872     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
  1874   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
  1875     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
  1876     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1877     Register newval = op->new_value()->as_register();
  1878     Register cmpval = op->cmp_value()->as_register();
  1879     assert(cmpval == rax, "wrong register");
  1880     assert(newval != NULL, "new val must be register");
  1881     assert(cmpval != newval, "cmp and new values must be in different registers");
  1882     assert(cmpval != addr, "cmp and addr must be in different registers");
  1883     assert(newval != addr, "new value and addr must be in different registers");
  1884     if (os::is_MP()) {
  1885       __ lock();
  1887     if ( op->code() == lir_cas_obj) {
  1888       __ cmpxchgptr(newval, Address(addr, 0));
  1889     } else if (op->code() == lir_cas_int) {
  1890       __ cmpxchgl(newval, Address(addr, 0));
  1891     } else {
  1892       LP64_ONLY(__ cmpxchgq(newval, Address(addr, 0)));
  1894 #ifdef _LP64
  1895   } else if (op->code() == lir_cas_long) {
  1896     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1897     Register newval = op->new_value()->as_register_lo();
  1898     Register cmpval = op->cmp_value()->as_register_lo();
  1899     assert(cmpval == rax, "wrong register");
  1900     assert(newval != NULL, "new val must be register");
  1901     assert(cmpval != newval, "cmp and new values must be in different registers");
  1902     assert(cmpval != addr, "cmp and addr must be in different registers");
  1903     assert(newval != addr, "new value and addr must be in different registers");
  1904     if (os::is_MP()) {
  1905       __ lock();
  1907     __ cmpxchgq(newval, Address(addr, 0));
  1908 #endif // _LP64
  1909   } else {
  1910     Unimplemented();
  1915 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
  1916   Assembler::Condition acond, ncond;
  1917   switch (condition) {
  1918     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
  1919     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
  1920     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
  1921     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
  1922     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
  1923     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
  1924     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
  1925     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
  1926     default:                    ShouldNotReachHere();
  1929   if (opr1->is_cpu_register()) {
  1930     reg2reg(opr1, result);
  1931   } else if (opr1->is_stack()) {
  1932     stack2reg(opr1, result, result->type());
  1933   } else if (opr1->is_constant()) {
  1934     const2reg(opr1, result, lir_patch_none, NULL);
  1935   } else {
  1936     ShouldNotReachHere();
  1939   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
  1940     // optimized version that does not require a branch
  1941     if (opr2->is_single_cpu()) {
  1942       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
  1943       __ cmov(ncond, result->as_register(), opr2->as_register());
  1944     } else if (opr2->is_double_cpu()) {
  1945       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  1946       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  1947       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
  1948       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
  1949     } else if (opr2->is_single_stack()) {
  1950       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
  1951     } else if (opr2->is_double_stack()) {
  1952       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
  1953       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
  1954     } else {
  1955       ShouldNotReachHere();
  1958   } else {
  1959     Label skip;
  1960     __ jcc (acond, skip);
  1961     if (opr2->is_cpu_register()) {
  1962       reg2reg(opr2, result);
  1963     } else if (opr2->is_stack()) {
  1964       stack2reg(opr2, result, result->type());
  1965     } else if (opr2->is_constant()) {
  1966       const2reg(opr2, result, lir_patch_none, NULL);
  1967     } else {
  1968       ShouldNotReachHere();
  1970     __ bind(skip);
  1975 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1976   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
  1978   if (left->is_single_cpu()) {
  1979     assert(left == dest, "left and dest must be equal");
  1980     Register lreg = left->as_register();
  1982     if (right->is_single_cpu()) {
  1983       // cpu register - cpu register
  1984       Register rreg = right->as_register();
  1985       switch (code) {
  1986         case lir_add: __ addl (lreg, rreg); break;
  1987         case lir_sub: __ subl (lreg, rreg); break;
  1988         case lir_mul: __ imull(lreg, rreg); break;
  1989         default:      ShouldNotReachHere();
  1992     } else if (right->is_stack()) {
  1993       // cpu register - stack
  1994       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  1995       switch (code) {
  1996         case lir_add: __ addl(lreg, raddr); break;
  1997         case lir_sub: __ subl(lreg, raddr); break;
  1998         default:      ShouldNotReachHere();
  2001     } else if (right->is_constant()) {
  2002       // cpu register - constant
  2003       jint c = right->as_constant_ptr()->as_jint();
  2004       switch (code) {
  2005         case lir_add: {
  2006           __ increment(lreg, c);
  2007           break;
  2009         case lir_sub: {
  2010           __ decrement(lreg, c);
  2011           break;
  2013         default: ShouldNotReachHere();
  2016     } else {
  2017       ShouldNotReachHere();
  2020   } else if (left->is_double_cpu()) {
  2021     assert(left == dest, "left and dest must be equal");
  2022     Register lreg_lo = left->as_register_lo();
  2023     Register lreg_hi = left->as_register_hi();
  2025     if (right->is_double_cpu()) {
  2026       // cpu register - cpu register
  2027       Register rreg_lo = right->as_register_lo();
  2028       Register rreg_hi = right->as_register_hi();
  2029       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
  2030       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
  2031       switch (code) {
  2032         case lir_add:
  2033           __ addptr(lreg_lo, rreg_lo);
  2034           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
  2035           break;
  2036         case lir_sub:
  2037           __ subptr(lreg_lo, rreg_lo);
  2038           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
  2039           break;
  2040         case lir_mul:
  2041 #ifdef _LP64
  2042           __ imulq(lreg_lo, rreg_lo);
  2043 #else
  2044           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
  2045           __ imull(lreg_hi, rreg_lo);
  2046           __ imull(rreg_hi, lreg_lo);
  2047           __ addl (rreg_hi, lreg_hi);
  2048           __ mull (rreg_lo);
  2049           __ addl (lreg_hi, rreg_hi);
  2050 #endif // _LP64
  2051           break;
  2052         default:
  2053           ShouldNotReachHere();
  2056     } else if (right->is_constant()) {
  2057       // cpu register - constant
  2058 #ifdef _LP64
  2059       jlong c = right->as_constant_ptr()->as_jlong_bits();
  2060       __ movptr(r10, (intptr_t) c);
  2061       switch (code) {
  2062         case lir_add:
  2063           __ addptr(lreg_lo, r10);
  2064           break;
  2065         case lir_sub:
  2066           __ subptr(lreg_lo, r10);
  2067           break;
  2068         default:
  2069           ShouldNotReachHere();
  2071 #else
  2072       jint c_lo = right->as_constant_ptr()->as_jint_lo();
  2073       jint c_hi = right->as_constant_ptr()->as_jint_hi();
  2074       switch (code) {
  2075         case lir_add:
  2076           __ addptr(lreg_lo, c_lo);
  2077           __ adcl(lreg_hi, c_hi);
  2078           break;
  2079         case lir_sub:
  2080           __ subptr(lreg_lo, c_lo);
  2081           __ sbbl(lreg_hi, c_hi);
  2082           break;
  2083         default:
  2084           ShouldNotReachHere();
  2086 #endif // _LP64
  2088     } else {
  2089       ShouldNotReachHere();
  2092   } else if (left->is_single_xmm()) {
  2093     assert(left == dest, "left and dest must be equal");
  2094     XMMRegister lreg = left->as_xmm_float_reg();
  2096     if (right->is_single_xmm()) {
  2097       XMMRegister rreg = right->as_xmm_float_reg();
  2098       switch (code) {
  2099         case lir_add: __ addss(lreg, rreg);  break;
  2100         case lir_sub: __ subss(lreg, rreg);  break;
  2101         case lir_mul_strictfp: // fall through
  2102         case lir_mul: __ mulss(lreg, rreg);  break;
  2103         case lir_div_strictfp: // fall through
  2104         case lir_div: __ divss(lreg, rreg);  break;
  2105         default: ShouldNotReachHere();
  2107     } else {
  2108       Address raddr;
  2109       if (right->is_single_stack()) {
  2110         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2111       } else if (right->is_constant()) {
  2112         // hack for now
  2113         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
  2114       } else {
  2115         ShouldNotReachHere();
  2117       switch (code) {
  2118         case lir_add: __ addss(lreg, raddr);  break;
  2119         case lir_sub: __ subss(lreg, raddr);  break;
  2120         case lir_mul_strictfp: // fall through
  2121         case lir_mul: __ mulss(lreg, raddr);  break;
  2122         case lir_div_strictfp: // fall through
  2123         case lir_div: __ divss(lreg, raddr);  break;
  2124         default: ShouldNotReachHere();
  2128   } else if (left->is_double_xmm()) {
  2129     assert(left == dest, "left and dest must be equal");
  2131     XMMRegister lreg = left->as_xmm_double_reg();
  2132     if (right->is_double_xmm()) {
  2133       XMMRegister rreg = right->as_xmm_double_reg();
  2134       switch (code) {
  2135         case lir_add: __ addsd(lreg, rreg);  break;
  2136         case lir_sub: __ subsd(lreg, rreg);  break;
  2137         case lir_mul_strictfp: // fall through
  2138         case lir_mul: __ mulsd(lreg, rreg);  break;
  2139         case lir_div_strictfp: // fall through
  2140         case lir_div: __ divsd(lreg, rreg);  break;
  2141         default: ShouldNotReachHere();
  2143     } else {
  2144       Address raddr;
  2145       if (right->is_double_stack()) {
  2146         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2147       } else if (right->is_constant()) {
  2148         // hack for now
  2149         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2150       } else {
  2151         ShouldNotReachHere();
  2153       switch (code) {
  2154         case lir_add: __ addsd(lreg, raddr);  break;
  2155         case lir_sub: __ subsd(lreg, raddr);  break;
  2156         case lir_mul_strictfp: // fall through
  2157         case lir_mul: __ mulsd(lreg, raddr);  break;
  2158         case lir_div_strictfp: // fall through
  2159         case lir_div: __ divsd(lreg, raddr);  break;
  2160         default: ShouldNotReachHere();
  2164   } else if (left->is_single_fpu()) {
  2165     assert(dest->is_single_fpu(),  "fpu stack allocation required");
  2167     if (right->is_single_fpu()) {
  2168       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
  2170     } else {
  2171       assert(left->fpu_regnr() == 0, "left must be on TOS");
  2172       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
  2174       Address raddr;
  2175       if (right->is_single_stack()) {
  2176         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2177       } else if (right->is_constant()) {
  2178         address const_addr = float_constant(right->as_jfloat());
  2179         assert(const_addr != NULL, "incorrect float/double constant maintainance");
  2180         // hack for now
  2181         raddr = __ as_Address(InternalAddress(const_addr));
  2182       } else {
  2183         ShouldNotReachHere();
  2186       switch (code) {
  2187         case lir_add: __ fadd_s(raddr); break;
  2188         case lir_sub: __ fsub_s(raddr); break;
  2189         case lir_mul_strictfp: // fall through
  2190         case lir_mul: __ fmul_s(raddr); break;
  2191         case lir_div_strictfp: // fall through
  2192         case lir_div: __ fdiv_s(raddr); break;
  2193         default:      ShouldNotReachHere();
  2197   } else if (left->is_double_fpu()) {
  2198     assert(dest->is_double_fpu(),  "fpu stack allocation required");
  2200     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2201       // Double values require special handling for strictfp mul/div on x86
  2202       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  2203       __ fmulp(left->fpu_regnrLo() + 1);
  2206     if (right->is_double_fpu()) {
  2207       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
  2209     } else {
  2210       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
  2211       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
  2213       Address raddr;
  2214       if (right->is_double_stack()) {
  2215         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2216       } else if (right->is_constant()) {
  2217         // hack for now
  2218         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2219       } else {
  2220         ShouldNotReachHere();
  2223       switch (code) {
  2224         case lir_add: __ fadd_d(raddr); break;
  2225         case lir_sub: __ fsub_d(raddr); break;
  2226         case lir_mul_strictfp: // fall through
  2227         case lir_mul: __ fmul_d(raddr); break;
  2228         case lir_div_strictfp: // fall through
  2229         case lir_div: __ fdiv_d(raddr); break;
  2230         default: ShouldNotReachHere();
  2234     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2235       // Double values require special handling for strictfp mul/div on x86
  2236       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  2237       __ fmulp(dest->fpu_regnrLo() + 1);
  2240   } else if (left->is_single_stack() || left->is_address()) {
  2241     assert(left == dest, "left and dest must be equal");
  2243     Address laddr;
  2244     if (left->is_single_stack()) {
  2245       laddr = frame_map()->address_for_slot(left->single_stack_ix());
  2246     } else if (left->is_address()) {
  2247       laddr = as_Address(left->as_address_ptr());
  2248     } else {
  2249       ShouldNotReachHere();
  2252     if (right->is_single_cpu()) {
  2253       Register rreg = right->as_register();
  2254       switch (code) {
  2255         case lir_add: __ addl(laddr, rreg); break;
  2256         case lir_sub: __ subl(laddr, rreg); break;
  2257         default:      ShouldNotReachHere();
  2259     } else if (right->is_constant()) {
  2260       jint c = right->as_constant_ptr()->as_jint();
  2261       switch (code) {
  2262         case lir_add: {
  2263           __ incrementl(laddr, c);
  2264           break;
  2266         case lir_sub: {
  2267           __ decrementl(laddr, c);
  2268           break;
  2270         default: ShouldNotReachHere();
  2272     } else {
  2273       ShouldNotReachHere();
  2276   } else {
  2277     ShouldNotReachHere();
  2281 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
  2282   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
  2283   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
  2284   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
  2286   bool left_is_tos = (left_index == 0);
  2287   bool dest_is_tos = (dest_index == 0);
  2288   int non_tos_index = (left_is_tos ? right_index : left_index);
  2290   switch (code) {
  2291     case lir_add:
  2292       if (pop_fpu_stack)       __ faddp(non_tos_index);
  2293       else if (dest_is_tos)    __ fadd (non_tos_index);
  2294       else                     __ fadda(non_tos_index);
  2295       break;
  2297     case lir_sub:
  2298       if (left_is_tos) {
  2299         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
  2300         else if (dest_is_tos)  __ fsub  (non_tos_index);
  2301         else                   __ fsubra(non_tos_index);
  2302       } else {
  2303         if (pop_fpu_stack)     __ fsubp (non_tos_index);
  2304         else if (dest_is_tos)  __ fsubr (non_tos_index);
  2305         else                   __ fsuba (non_tos_index);
  2307       break;
  2309     case lir_mul_strictfp: // fall through
  2310     case lir_mul:
  2311       if (pop_fpu_stack)       __ fmulp(non_tos_index);
  2312       else if (dest_is_tos)    __ fmul (non_tos_index);
  2313       else                     __ fmula(non_tos_index);
  2314       break;
  2316     case lir_div_strictfp: // fall through
  2317     case lir_div:
  2318       if (left_is_tos) {
  2319         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
  2320         else if (dest_is_tos)  __ fdiv  (non_tos_index);
  2321         else                   __ fdivra(non_tos_index);
  2322       } else {
  2323         if (pop_fpu_stack)     __ fdivp (non_tos_index);
  2324         else if (dest_is_tos)  __ fdivr (non_tos_index);
  2325         else                   __ fdiva (non_tos_index);
  2327       break;
  2329     case lir_rem:
  2330       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
  2331       __ fremr(noreg);
  2332       break;
  2334     default:
  2335       ShouldNotReachHere();
  2340 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
  2341   if (value->is_double_xmm()) {
  2342     switch(code) {
  2343       case lir_abs :
  2345           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
  2346             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
  2348           __ andpd(dest->as_xmm_double_reg(),
  2349                     ExternalAddress((address)double_signmask_pool));
  2351         break;
  2353       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
  2354       // all other intrinsics are not available in the SSE instruction set, so FPU is used
  2355       default      : ShouldNotReachHere();
  2358   } else if (value->is_double_fpu()) {
  2359     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
  2360     switch(code) {
  2361       case lir_log   : __ flog() ; break;
  2362       case lir_log10 : __ flog10() ; break;
  2363       case lir_abs   : __ fabs() ; break;
  2364       case lir_sqrt  : __ fsqrt(); break;
  2365       case lir_sin   :
  2366         // Should consider not saving rbx, if not necessary
  2367         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
  2368         break;
  2369       case lir_cos :
  2370         // Should consider not saving rbx, if not necessary
  2371         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
  2372         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
  2373         break;
  2374       case lir_tan :
  2375         // Should consider not saving rbx, if not necessary
  2376         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
  2377         break;
  2378       default      : ShouldNotReachHere();
  2380   } else {
  2381     Unimplemented();
  2385 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2386   // assert(left->destroys_register(), "check");
  2387   if (left->is_single_cpu()) {
  2388     Register reg = left->as_register();
  2389     if (right->is_constant()) {
  2390       int val = right->as_constant_ptr()->as_jint();
  2391       switch (code) {
  2392         case lir_logic_and: __ andl (reg, val); break;
  2393         case lir_logic_or:  __ orl  (reg, val); break;
  2394         case lir_logic_xor: __ xorl (reg, val); break;
  2395         default: ShouldNotReachHere();
  2397     } else if (right->is_stack()) {
  2398       // added support for stack operands
  2399       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2400       switch (code) {
  2401         case lir_logic_and: __ andl (reg, raddr); break;
  2402         case lir_logic_or:  __ orl  (reg, raddr); break;
  2403         case lir_logic_xor: __ xorl (reg, raddr); break;
  2404         default: ShouldNotReachHere();
  2406     } else {
  2407       Register rright = right->as_register();
  2408       switch (code) {
  2409         case lir_logic_and: __ andptr (reg, rright); break;
  2410         case lir_logic_or : __ orptr  (reg, rright); break;
  2411         case lir_logic_xor: __ xorptr (reg, rright); break;
  2412         default: ShouldNotReachHere();
  2415     move_regs(reg, dst->as_register());
  2416   } else {
  2417     Register l_lo = left->as_register_lo();
  2418     Register l_hi = left->as_register_hi();
  2419     if (right->is_constant()) {
  2420 #ifdef _LP64
  2421       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
  2422       switch (code) {
  2423         case lir_logic_and:
  2424           __ andq(l_lo, rscratch1);
  2425           break;
  2426         case lir_logic_or:
  2427           __ orq(l_lo, rscratch1);
  2428           break;
  2429         case lir_logic_xor:
  2430           __ xorq(l_lo, rscratch1);
  2431           break;
  2432         default: ShouldNotReachHere();
  2434 #else
  2435       int r_lo = right->as_constant_ptr()->as_jint_lo();
  2436       int r_hi = right->as_constant_ptr()->as_jint_hi();
  2437       switch (code) {
  2438         case lir_logic_and:
  2439           __ andl(l_lo, r_lo);
  2440           __ andl(l_hi, r_hi);
  2441           break;
  2442         case lir_logic_or:
  2443           __ orl(l_lo, r_lo);
  2444           __ orl(l_hi, r_hi);
  2445           break;
  2446         case lir_logic_xor:
  2447           __ xorl(l_lo, r_lo);
  2448           __ xorl(l_hi, r_hi);
  2449           break;
  2450         default: ShouldNotReachHere();
  2452 #endif // _LP64
  2453     } else {
  2454       Register r_lo = right->as_register_lo();
  2455       Register r_hi = right->as_register_hi();
  2456       assert(l_lo != r_hi, "overwriting registers");
  2457       switch (code) {
  2458         case lir_logic_and:
  2459           __ andptr(l_lo, r_lo);
  2460           NOT_LP64(__ andptr(l_hi, r_hi);)
  2461           break;
  2462         case lir_logic_or:
  2463           __ orptr(l_lo, r_lo);
  2464           NOT_LP64(__ orptr(l_hi, r_hi);)
  2465           break;
  2466         case lir_logic_xor:
  2467           __ xorptr(l_lo, r_lo);
  2468           NOT_LP64(__ xorptr(l_hi, r_hi);)
  2469           break;
  2470         default: ShouldNotReachHere();
  2474     Register dst_lo = dst->as_register_lo();
  2475     Register dst_hi = dst->as_register_hi();
  2477 #ifdef _LP64
  2478     move_regs(l_lo, dst_lo);
  2479 #else
  2480     if (dst_lo == l_hi) {
  2481       assert(dst_hi != l_lo, "overwriting registers");
  2482       move_regs(l_hi, dst_hi);
  2483       move_regs(l_lo, dst_lo);
  2484     } else {
  2485       assert(dst_lo != l_hi, "overwriting registers");
  2486       move_regs(l_lo, dst_lo);
  2487       move_regs(l_hi, dst_hi);
  2489 #endif // _LP64
  2494 // we assume that rax, and rdx can be overwritten
  2495 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
  2497   assert(left->is_single_cpu(),   "left must be register");
  2498   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
  2499   assert(result->is_single_cpu(), "result must be register");
  2501   //  assert(left->destroys_register(), "check");
  2502   //  assert(right->destroys_register(), "check");
  2504   Register lreg = left->as_register();
  2505   Register dreg = result->as_register();
  2507   if (right->is_constant()) {
  2508     int divisor = right->as_constant_ptr()->as_jint();
  2509     assert(divisor > 0 && is_power_of_2(divisor), "must be");
  2510     if (code == lir_idiv) {
  2511       assert(lreg == rax, "must be rax,");
  2512       assert(temp->as_register() == rdx, "tmp register must be rdx");
  2513       __ cdql(); // sign extend into rdx:rax
  2514       if (divisor == 2) {
  2515         __ subl(lreg, rdx);
  2516       } else {
  2517         __ andl(rdx, divisor - 1);
  2518         __ addl(lreg, rdx);
  2520       __ sarl(lreg, log2_intptr(divisor));
  2521       move_regs(lreg, dreg);
  2522     } else if (code == lir_irem) {
  2523       Label done;
  2524       __ mov(dreg, lreg);
  2525       __ andl(dreg, 0x80000000 | (divisor - 1));
  2526       __ jcc(Assembler::positive, done);
  2527       __ decrement(dreg);
  2528       __ orl(dreg, ~(divisor - 1));
  2529       __ increment(dreg);
  2530       __ bind(done);
  2531     } else {
  2532       ShouldNotReachHere();
  2534   } else {
  2535     Register rreg = right->as_register();
  2536     assert(lreg == rax, "left register must be rax,");
  2537     assert(rreg != rdx, "right register must not be rdx");
  2538     assert(temp->as_register() == rdx, "tmp register must be rdx");
  2540     move_regs(lreg, rax);
  2542     int idivl_offset = __ corrected_idivl(rreg);
  2543     add_debug_info_for_div0(idivl_offset, info);
  2544     if (code == lir_irem) {
  2545       move_regs(rdx, dreg); // result is in rdx
  2546     } else {
  2547       move_regs(rax, dreg);
  2553 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  2554   if (opr1->is_single_cpu()) {
  2555     Register reg1 = opr1->as_register();
  2556     if (opr2->is_single_cpu()) {
  2557       // cpu register - cpu register
  2558       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2559         __ cmpptr(reg1, opr2->as_register());
  2560       } else {
  2561         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
  2562         __ cmpl(reg1, opr2->as_register());
  2564     } else if (opr2->is_stack()) {
  2565       // cpu register - stack
  2566       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2567         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2568       } else {
  2569         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2571     } else if (opr2->is_constant()) {
  2572       // cpu register - constant
  2573       LIR_Const* c = opr2->as_constant_ptr();
  2574       if (c->type() == T_INT) {
  2575         __ cmpl(reg1, c->as_jint());
  2576       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2577         // In 64bit oops are single register
  2578         jobject o = c->as_jobject();
  2579         if (o == NULL) {
  2580           __ cmpptr(reg1, (int32_t)NULL_WORD);
  2581         } else {
  2582 #ifdef _LP64
  2583           __ movoop(rscratch1, o);
  2584           __ cmpptr(reg1, rscratch1);
  2585 #else
  2586           __ cmpoop(reg1, c->as_jobject());
  2587 #endif // _LP64
  2589       } else {
  2590         ShouldNotReachHere();
  2592       // cpu register - address
  2593     } else if (opr2->is_address()) {
  2594       if (op->info() != NULL) {
  2595         add_debug_info_for_null_check_here(op->info());
  2597       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
  2598     } else {
  2599       ShouldNotReachHere();
  2602   } else if(opr1->is_double_cpu()) {
  2603     Register xlo = opr1->as_register_lo();
  2604     Register xhi = opr1->as_register_hi();
  2605     if (opr2->is_double_cpu()) {
  2606 #ifdef _LP64
  2607       __ cmpptr(xlo, opr2->as_register_lo());
  2608 #else
  2609       // cpu register - cpu register
  2610       Register ylo = opr2->as_register_lo();
  2611       Register yhi = opr2->as_register_hi();
  2612       __ subl(xlo, ylo);
  2613       __ sbbl(xhi, yhi);
  2614       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  2615         __ orl(xhi, xlo);
  2617 #endif // _LP64
  2618     } else if (opr2->is_constant()) {
  2619       // cpu register - constant 0
  2620       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
  2621 #ifdef _LP64
  2622       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
  2623 #else
  2624       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
  2625       __ orl(xhi, xlo);
  2626 #endif // _LP64
  2627     } else {
  2628       ShouldNotReachHere();
  2631   } else if (opr1->is_single_xmm()) {
  2632     XMMRegister reg1 = opr1->as_xmm_float_reg();
  2633     if (opr2->is_single_xmm()) {
  2634       // xmm register - xmm register
  2635       __ ucomiss(reg1, opr2->as_xmm_float_reg());
  2636     } else if (opr2->is_stack()) {
  2637       // xmm register - stack
  2638       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2639     } else if (opr2->is_constant()) {
  2640       // xmm register - constant
  2641       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
  2642     } else if (opr2->is_address()) {
  2643       // xmm register - address
  2644       if (op->info() != NULL) {
  2645         add_debug_info_for_null_check_here(op->info());
  2647       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
  2648     } else {
  2649       ShouldNotReachHere();
  2652   } else if (opr1->is_double_xmm()) {
  2653     XMMRegister reg1 = opr1->as_xmm_double_reg();
  2654     if (opr2->is_double_xmm()) {
  2655       // xmm register - xmm register
  2656       __ ucomisd(reg1, opr2->as_xmm_double_reg());
  2657     } else if (opr2->is_stack()) {
  2658       // xmm register - stack
  2659       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
  2660     } else if (opr2->is_constant()) {
  2661       // xmm register - constant
  2662       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
  2663     } else if (opr2->is_address()) {
  2664       // xmm register - address
  2665       if (op->info() != NULL) {
  2666         add_debug_info_for_null_check_here(op->info());
  2668       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
  2669     } else {
  2670       ShouldNotReachHere();
  2673   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
  2674     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
  2675     assert(opr2->is_fpu_register(), "both must be registers");
  2676     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2678   } else if (opr1->is_address() && opr2->is_constant()) {
  2679     LIR_Const* c = opr2->as_constant_ptr();
  2680 #ifdef _LP64
  2681     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2682       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
  2683       __ movoop(rscratch1, c->as_jobject());
  2685 #endif // LP64
  2686     if (op->info() != NULL) {
  2687       add_debug_info_for_null_check_here(op->info());
  2689     // special case: address - constant
  2690     LIR_Address* addr = opr1->as_address_ptr();
  2691     if (c->type() == T_INT) {
  2692       __ cmpl(as_Address(addr), c->as_jint());
  2693     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2694 #ifdef _LP64
  2695       // %%% Make this explode if addr isn't reachable until we figure out a
  2696       // better strategy by giving noreg as the temp for as_Address
  2697       __ cmpptr(rscratch1, as_Address(addr, noreg));
  2698 #else
  2699       __ cmpoop(as_Address(addr), c->as_jobject());
  2700 #endif // _LP64
  2701     } else {
  2702       ShouldNotReachHere();
  2705   } else {
  2706     ShouldNotReachHere();
  2710 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
  2711   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  2712     if (left->is_single_xmm()) {
  2713       assert(right->is_single_xmm(), "must match");
  2714       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2715     } else if (left->is_double_xmm()) {
  2716       assert(right->is_double_xmm(), "must match");
  2717       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2719     } else {
  2720       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
  2721       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
  2723       assert(left->fpu() == 0, "left must be on TOS");
  2724       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
  2725                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2727   } else {
  2728     assert(code == lir_cmp_l2i, "check");
  2729 #ifdef _LP64
  2730       Register dest = dst->as_register();
  2731       __ xorptr(dest, dest);
  2732       Label high, done;
  2733       __ cmpptr(left->as_register_lo(), right->as_register_lo());
  2734       __ jcc(Assembler::equal, done);
  2735       __ jcc(Assembler::greater, high);
  2736       __ decrement(dest);
  2737       __ jmp(done);
  2738       __ bind(high);
  2739       __ increment(dest);
  2741       __ bind(done);
  2743 #else
  2744     __ lcmp2int(left->as_register_hi(),
  2745                 left->as_register_lo(),
  2746                 right->as_register_hi(),
  2747                 right->as_register_lo());
  2748     move_regs(left->as_register_hi(), dst->as_register());
  2749 #endif // _LP64
  2754 void LIR_Assembler::align_call(LIR_Code code) {
  2755   if (os::is_MP()) {
  2756     // make sure that the displacement word of the call ends up word aligned
  2757     int offset = __ offset();
  2758     switch (code) {
  2759       case lir_static_call:
  2760       case lir_optvirtual_call:
  2761         offset += NativeCall::displacement_offset;
  2762         break;
  2763       case lir_icvirtual_call:
  2764         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
  2765       break;
  2766       case lir_virtual_call:  // currently, sparc-specific for niagara
  2767       default: ShouldNotReachHere();
  2769     while (offset++ % BytesPerWord != 0) {
  2770       __ nop();
  2776 void LIR_Assembler::call(address entry, relocInfo::relocType rtype, CodeEmitInfo* info) {
  2777   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2778          "must be aligned");
  2779   __ call(AddressLiteral(entry, rtype));
  2780   add_call_info(code_offset(), info);
  2784 void LIR_Assembler::ic_call(address entry, CodeEmitInfo* info) {
  2785   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  2786   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
  2787   assert(!os::is_MP() ||
  2788          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2789          "must be aligned");
  2790   __ call(AddressLiteral(entry, rh));
  2791   add_call_info(code_offset(), info);
  2795 /* Currently, vtable-dispatch is only enabled for sparc platforms */
  2796 void LIR_Assembler::vtable_call(int vtable_offset, CodeEmitInfo* info) {
  2797   ShouldNotReachHere();
  2800 void LIR_Assembler::emit_static_call_stub() {
  2801   address call_pc = __ pc();
  2802   address stub = __ start_a_stub(call_stub_size);
  2803   if (stub == NULL) {
  2804     bailout("static call stub overflow");
  2805     return;
  2808   int start = __ offset();
  2809   if (os::is_MP()) {
  2810     // make sure that the displacement word of the call ends up word aligned
  2811     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
  2812     while (offset++ % BytesPerWord != 0) {
  2813       __ nop();
  2816   __ relocate(static_stub_Relocation::spec(call_pc));
  2817   __ movoop(rbx, (jobject)NULL);
  2818   // must be set to -1 at code generation time
  2819   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
  2820   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
  2821   __ jump(RuntimeAddress(__ pc()));
  2823   assert(__ offset() - start <= call_stub_size, "stub too big")
  2824   __ end_a_stub();
  2828 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info, bool unwind) {
  2829   assert(exceptionOop->as_register() == rax, "must match");
  2830   assert(unwind || exceptionPC->as_register() == rdx, "must match");
  2832   // exception object is not added to oop map by LinearScan
  2833   // (LinearScan assumes that no oops are in fixed registers)
  2834   info->add_register_oop(exceptionOop);
  2835   Runtime1::StubID unwind_id;
  2837   if (!unwind) {
  2838     // get current pc information
  2839     // pc is only needed if the method has an exception handler, the unwind code does not need it.
  2840     int pc_for_athrow_offset = __ offset();
  2841     InternalAddress pc_for_athrow(__ pc());
  2842     __ lea(exceptionPC->as_register(), pc_for_athrow);
  2843     add_call_info(pc_for_athrow_offset, info); // for exception handler
  2845     __ verify_not_null_oop(rax);
  2846     // search an exception handler (rax: exception oop, rdx: throwing pc)
  2847     if (compilation()->has_fpu_code()) {
  2848       unwind_id = Runtime1::handle_exception_id;
  2849     } else {
  2850       unwind_id = Runtime1::handle_exception_nofpu_id;
  2852   } else {
  2853     unwind_id = Runtime1::unwind_exception_id;
  2855   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
  2857   // enough room for two byte trap
  2858   __ nop();
  2862 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2864   // optimized version for linear scan:
  2865   // * count must be already in ECX (guaranteed by LinearScan)
  2866   // * left and dest must be equal
  2867   // * tmp must be unused
  2868   assert(count->as_register() == SHIFT_count, "count must be in ECX");
  2869   assert(left == dest, "left and dest must be equal");
  2870   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
  2872   if (left->is_single_cpu()) {
  2873     Register value = left->as_register();
  2874     assert(value != SHIFT_count, "left cannot be ECX");
  2876     switch (code) {
  2877       case lir_shl:  __ shll(value); break;
  2878       case lir_shr:  __ sarl(value); break;
  2879       case lir_ushr: __ shrl(value); break;
  2880       default: ShouldNotReachHere();
  2882   } else if (left->is_double_cpu()) {
  2883     Register lo = left->as_register_lo();
  2884     Register hi = left->as_register_hi();
  2885     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
  2886 #ifdef _LP64
  2887     switch (code) {
  2888       case lir_shl:  __ shlptr(lo);        break;
  2889       case lir_shr:  __ sarptr(lo);        break;
  2890       case lir_ushr: __ shrptr(lo);        break;
  2891       default: ShouldNotReachHere();
  2893 #else
  2895     switch (code) {
  2896       case lir_shl:  __ lshl(hi, lo);        break;
  2897       case lir_shr:  __ lshr(hi, lo, true);  break;
  2898       case lir_ushr: __ lshr(hi, lo, false); break;
  2899       default: ShouldNotReachHere();
  2901 #endif // LP64
  2902   } else {
  2903     ShouldNotReachHere();
  2908 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2909   if (dest->is_single_cpu()) {
  2910     // first move left into dest so that left is not destroyed by the shift
  2911     Register value = dest->as_register();
  2912     count = count & 0x1F; // Java spec
  2914     move_regs(left->as_register(), value);
  2915     switch (code) {
  2916       case lir_shl:  __ shll(value, count); break;
  2917       case lir_shr:  __ sarl(value, count); break;
  2918       case lir_ushr: __ shrl(value, count); break;
  2919       default: ShouldNotReachHere();
  2921   } else if (dest->is_double_cpu()) {
  2922 #ifndef _LP64
  2923     Unimplemented();
  2924 #else
  2925     // first move left into dest so that left is not destroyed by the shift
  2926     Register value = dest->as_register_lo();
  2927     count = count & 0x1F; // Java spec
  2929     move_regs(left->as_register_lo(), value);
  2930     switch (code) {
  2931       case lir_shl:  __ shlptr(value, count); break;
  2932       case lir_shr:  __ sarptr(value, count); break;
  2933       case lir_ushr: __ shrptr(value, count); break;
  2934       default: ShouldNotReachHere();
  2936 #endif // _LP64
  2937   } else {
  2938     ShouldNotReachHere();
  2943 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
  2944   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  2945   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  2946   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  2947   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
  2951 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
  2952   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  2953   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  2954   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  2955   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
  2959 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
  2960   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  2961   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  2962   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  2963   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
  2967 // This code replaces a call to arraycopy; no exception may
  2968 // be thrown in this code, they must be thrown in the System.arraycopy
  2969 // activation frame; we could save some checks if this would not be the case
  2970 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2971   ciArrayKlass* default_type = op->expected_type();
  2972   Register src = op->src()->as_register();
  2973   Register dst = op->dst()->as_register();
  2974   Register src_pos = op->src_pos()->as_register();
  2975   Register dst_pos = op->dst_pos()->as_register();
  2976   Register length  = op->length()->as_register();
  2977   Register tmp = op->tmp()->as_register();
  2979   CodeStub* stub = op->stub();
  2980   int flags = op->flags();
  2981   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2982   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2984   // if we don't know anything or it's an object array, just go through the generic arraycopy
  2985   if (default_type == NULL) {
  2986     Label done;
  2987     // save outgoing arguments on stack in case call to System.arraycopy is needed
  2988     // HACK ALERT. This code used to push the parameters in a hardwired fashion
  2989     // for interpreter calling conventions. Now we have to do it in new style conventions.
  2990     // For the moment until C1 gets the new register allocator I just force all the
  2991     // args to the right place (except the register args) and then on the back side
  2992     // reload the register args properly if we go slow path. Yuck
  2994     // These are proper for the calling convention
  2996     store_parameter(length, 2);
  2997     store_parameter(dst_pos, 1);
  2998     store_parameter(dst, 0);
  3000     // these are just temporary placements until we need to reload
  3001     store_parameter(src_pos, 3);
  3002     store_parameter(src, 4);
  3003     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
  3005     address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
  3007     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
  3008 #ifdef _LP64
  3009     // The arguments are in java calling convention so we can trivially shift them to C
  3010     // convention
  3011     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3012     __ mov(c_rarg0, j_rarg0);
  3013     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3014     __ mov(c_rarg1, j_rarg1);
  3015     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
  3016     __ mov(c_rarg2, j_rarg2);
  3017     assert_different_registers(c_rarg3, j_rarg4);
  3018     __ mov(c_rarg3, j_rarg3);
  3019 #ifdef _WIN64
  3020     // Allocate abi space for args but be sure to keep stack aligned
  3021     __ subptr(rsp, 6*wordSize);
  3022     store_parameter(j_rarg4, 4);
  3023     __ call(RuntimeAddress(entry));
  3024     __ addptr(rsp, 6*wordSize);
  3025 #else
  3026     __ mov(c_rarg4, j_rarg4);
  3027     __ call(RuntimeAddress(entry));
  3028 #endif // _WIN64
  3029 #else
  3030     __ push(length);
  3031     __ push(dst_pos);
  3032     __ push(dst);
  3033     __ push(src_pos);
  3034     __ push(src);
  3035     __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
  3037 #endif // _LP64
  3039     __ cmpl(rax, 0);
  3040     __ jcc(Assembler::equal, *stub->continuation());
  3042     // Reload values from the stack so they are where the stub
  3043     // expects them.
  3044     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3045     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3046     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3047     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3048     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3049     __ jmp(*stub->entry());
  3051     __ bind(*stub->continuation());
  3052     return;
  3055   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
  3057   int elem_size = type2aelembytes(basic_type);
  3058   int shift_amount;
  3059   Address::ScaleFactor scale;
  3061   switch (elem_size) {
  3062     case 1 :
  3063       shift_amount = 0;
  3064       scale = Address::times_1;
  3065       break;
  3066     case 2 :
  3067       shift_amount = 1;
  3068       scale = Address::times_2;
  3069       break;
  3070     case 4 :
  3071       shift_amount = 2;
  3072       scale = Address::times_4;
  3073       break;
  3074     case 8 :
  3075       shift_amount = 3;
  3076       scale = Address::times_8;
  3077       break;
  3078     default:
  3079       ShouldNotReachHere();
  3082   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
  3083   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
  3084   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
  3085   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
  3087   // length and pos's are all sign extended at this point on 64bit
  3089   // test for NULL
  3090   if (flags & LIR_OpArrayCopy::src_null_check) {
  3091     __ testptr(src, src);
  3092     __ jcc(Assembler::zero, *stub->entry());
  3094   if (flags & LIR_OpArrayCopy::dst_null_check) {
  3095     __ testptr(dst, dst);
  3096     __ jcc(Assembler::zero, *stub->entry());
  3099   // check if negative
  3100   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  3101     __ testl(src_pos, src_pos);
  3102     __ jcc(Assembler::less, *stub->entry());
  3104   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  3105     __ testl(dst_pos, dst_pos);
  3106     __ jcc(Assembler::less, *stub->entry());
  3108   if (flags & LIR_OpArrayCopy::length_positive_check) {
  3109     __ testl(length, length);
  3110     __ jcc(Assembler::less, *stub->entry());
  3113   if (flags & LIR_OpArrayCopy::src_range_check) {
  3114     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
  3115     __ cmpl(tmp, src_length_addr);
  3116     __ jcc(Assembler::above, *stub->entry());
  3118   if (flags & LIR_OpArrayCopy::dst_range_check) {
  3119     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
  3120     __ cmpl(tmp, dst_length_addr);
  3121     __ jcc(Assembler::above, *stub->entry());
  3124   if (flags & LIR_OpArrayCopy::type_check) {
  3125     __ movptr(tmp, src_klass_addr);
  3126     __ cmpptr(tmp, dst_klass_addr);
  3127     __ jcc(Assembler::notEqual, *stub->entry());
  3130 #ifdef ASSERT
  3131   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  3132     // Sanity check the known type with the incoming class.  For the
  3133     // primitive case the types must match exactly with src.klass and
  3134     // dst.klass each exactly matching the default type.  For the
  3135     // object array case, if no type check is needed then either the
  3136     // dst type is exactly the expected type and the src type is a
  3137     // subtype which we can't check or src is the same array as dst
  3138     // but not necessarily exactly of type default_type.
  3139     Label known_ok, halt;
  3140     __ movoop(tmp, default_type->encoding());
  3141     if (basic_type != T_OBJECT) {
  3142       __ cmpptr(tmp, dst_klass_addr);
  3143       __ jcc(Assembler::notEqual, halt);
  3144       __ cmpptr(tmp, src_klass_addr);
  3145       __ jcc(Assembler::equal, known_ok);
  3146     } else {
  3147       __ cmpptr(tmp, dst_klass_addr);
  3148       __ jcc(Assembler::equal, known_ok);
  3149       __ cmpptr(src, dst);
  3150       __ jcc(Assembler::equal, known_ok);
  3152     __ bind(halt);
  3153     __ stop("incorrect type information in arraycopy");
  3154     __ bind(known_ok);
  3156 #endif
  3158   if (shift_amount > 0 && basic_type != T_OBJECT) {
  3159     __ shlptr(length, shift_amount);
  3162 #ifdef _LP64
  3163   assert_different_registers(c_rarg0, dst, dst_pos, length);
  3164   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3165   assert_different_registers(c_rarg1, length);
  3166   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3167   __ mov(c_rarg2, length);
  3169 #else
  3170   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3171   store_parameter(tmp, 0);
  3172   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3173   store_parameter(tmp, 1);
  3174   store_parameter(length, 2);
  3175 #endif // _LP64
  3176   if (basic_type == T_OBJECT) {
  3177     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
  3178   } else {
  3179     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
  3182   __ bind(*stub->continuation());
  3186 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  3187   Register obj = op->obj_opr()->as_register();  // may not be an oop
  3188   Register hdr = op->hdr_opr()->as_register();
  3189   Register lock = op->lock_opr()->as_register();
  3190   if (!UseFastLocking) {
  3191     __ jmp(*op->stub()->entry());
  3192   } else if (op->code() == lir_lock) {
  3193     Register scratch = noreg;
  3194     if (UseBiasedLocking) {
  3195       scratch = op->scratch_opr()->as_register();
  3197     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3198     // add debug info for NullPointerException only if one is possible
  3199     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
  3200     if (op->info() != NULL) {
  3201       add_debug_info_for_null_check(null_check_offset, op->info());
  3203     // done
  3204   } else if (op->code() == lir_unlock) {
  3205     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3206     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  3207   } else {
  3208     Unimplemented();
  3210   __ bind(*op->stub()->continuation());
  3214 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3215   ciMethod* method = op->profiled_method();
  3216   int bci          = op->profiled_bci();
  3218   // Update counter for all call types
  3219   ciMethodData* md = method->method_data();
  3220   if (md == NULL) {
  3221     bailout("out of memory building methodDataOop");
  3222     return;
  3224   ciProfileData* data = md->bci_to_data(bci);
  3225   assert(data->is_CounterData(), "need CounterData for calls");
  3226   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3227   Register mdo  = op->mdo()->as_register();
  3228   __ movoop(mdo, md->encoding());
  3229   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  3230   __ addl(counter_addr, DataLayout::counter_increment);
  3231   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3232   // Perform additional virtual call profiling for invokevirtual and
  3233   // invokeinterface bytecodes
  3234   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3235       Tier1ProfileVirtualCalls) {
  3236     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3237     Register recv = op->recv()->as_register();
  3238     assert_different_registers(mdo, recv);
  3239     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3240     ciKlass* known_klass = op->known_holder();
  3241     if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3242       // We know the type that will be seen at this call site; we can
  3243       // statically update the methodDataOop rather than needing to do
  3244       // dynamic tests on the receiver type
  3246       // NOTE: we should probably put a lock around this search to
  3247       // avoid collisions by concurrent compilations
  3248       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3249       uint i;
  3250       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3251         ciKlass* receiver = vc_data->receiver(i);
  3252         if (known_klass->equals(receiver)) {
  3253           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3254           __ addl(data_addr, DataLayout::counter_increment);
  3255           return;
  3259       // Receiver type not found in profile data; select an empty slot
  3261       // Note that this is less efficient than it should be because it
  3262       // always does a write to the receiver part of the
  3263       // VirtualCallData rather than just the first time
  3264       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3265         ciKlass* receiver = vc_data->receiver(i);
  3266         if (receiver == NULL) {
  3267           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3268           __ movoop(recv_addr, known_klass->encoding());
  3269           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3270           __ addl(data_addr, DataLayout::counter_increment);
  3271           return;
  3274     } else {
  3275       __ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
  3276       Label update_done;
  3277       uint i;
  3278       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3279         Label next_test;
  3280         // See if the receiver is receiver[n].
  3281         __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))));
  3282         __ jcc(Assembler::notEqual, next_test);
  3283         Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3284         __ addl(data_addr, DataLayout::counter_increment);
  3285         __ jmp(update_done);
  3286         __ bind(next_test);
  3289       // Didn't find receiver; find next empty slot and fill it in
  3290       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3291         Label next_test;
  3292         Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3293         __ cmpptr(recv_addr, (int32_t)NULL_WORD);
  3294         __ jcc(Assembler::notEqual, next_test);
  3295         __ movptr(recv_addr, recv);
  3296         __ movl(Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))), DataLayout::counter_increment);
  3297         if (i < (VirtualCallData::row_limit() - 1)) {
  3298           __ jmp(update_done);
  3300         __ bind(next_test);
  3303       __ bind(update_done);
  3309 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
  3310   Unimplemented();
  3314 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
  3315   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
  3319 void LIR_Assembler::align_backward_branch_target() {
  3320   __ align(BytesPerWord);
  3324 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3325   if (left->is_single_cpu()) {
  3326     __ negl(left->as_register());
  3327     move_regs(left->as_register(), dest->as_register());
  3329   } else if (left->is_double_cpu()) {
  3330     Register lo = left->as_register_lo();
  3331 #ifdef _LP64
  3332     Register dst = dest->as_register_lo();
  3333     __ movptr(dst, lo);
  3334     __ negptr(dst);
  3335 #else
  3336     Register hi = left->as_register_hi();
  3337     __ lneg(hi, lo);
  3338     if (dest->as_register_lo() == hi) {
  3339       assert(dest->as_register_hi() != lo, "destroying register");
  3340       move_regs(hi, dest->as_register_hi());
  3341       move_regs(lo, dest->as_register_lo());
  3342     } else {
  3343       move_regs(lo, dest->as_register_lo());
  3344       move_regs(hi, dest->as_register_hi());
  3346 #endif // _LP64
  3348   } else if (dest->is_single_xmm()) {
  3349     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
  3350       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
  3352     __ xorps(dest->as_xmm_float_reg(),
  3353              ExternalAddress((address)float_signflip_pool));
  3355   } else if (dest->is_double_xmm()) {
  3356     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
  3357       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
  3359     __ xorpd(dest->as_xmm_double_reg(),
  3360              ExternalAddress((address)double_signflip_pool));
  3362   } else if (left->is_single_fpu() || left->is_double_fpu()) {
  3363     assert(left->fpu() == 0, "arg must be on TOS");
  3364     assert(dest->fpu() == 0, "dest must be TOS");
  3365     __ fchs();
  3367   } else {
  3368     ShouldNotReachHere();
  3373 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
  3374   assert(addr->is_address() && dest->is_register(), "check");
  3375   Register reg;
  3376   reg = dest->as_pointer_register();
  3377   __ lea(reg, as_Address(addr->as_address_ptr()));
  3382 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3383   assert(!tmp->is_valid(), "don't need temporary");
  3384   __ call(RuntimeAddress(dest));
  3385   if (info != NULL) {
  3386     add_call_info_here(info);
  3391 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3392   assert(type == T_LONG, "only for volatile long fields");
  3394   if (info != NULL) {
  3395     add_debug_info_for_null_check_here(info);
  3398   if (src->is_double_xmm()) {
  3399     if (dest->is_double_cpu()) {
  3400 #ifdef _LP64
  3401       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
  3402 #else
  3403       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
  3404       __ psrlq(src->as_xmm_double_reg(), 32);
  3405       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
  3406 #endif // _LP64
  3407     } else if (dest->is_double_stack()) {
  3408       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
  3409     } else if (dest->is_address()) {
  3410       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
  3411     } else {
  3412       ShouldNotReachHere();
  3415   } else if (dest->is_double_xmm()) {
  3416     if (src->is_double_stack()) {
  3417       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
  3418     } else if (src->is_address()) {
  3419       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
  3420     } else {
  3421       ShouldNotReachHere();
  3424   } else if (src->is_double_fpu()) {
  3425     assert(src->fpu_regnrLo() == 0, "must be TOS");
  3426     if (dest->is_double_stack()) {
  3427       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
  3428     } else if (dest->is_address()) {
  3429       __ fistp_d(as_Address(dest->as_address_ptr()));
  3430     } else {
  3431       ShouldNotReachHere();
  3434   } else if (dest->is_double_fpu()) {
  3435     assert(dest->fpu_regnrLo() == 0, "must be TOS");
  3436     if (src->is_double_stack()) {
  3437       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
  3438     } else if (src->is_address()) {
  3439       __ fild_d(as_Address(src->as_address_ptr()));
  3440     } else {
  3441       ShouldNotReachHere();
  3443   } else {
  3444     ShouldNotReachHere();
  3449 void LIR_Assembler::membar() {
  3450   // QQQ sparc TSO uses this,
  3451   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3454 void LIR_Assembler::membar_acquire() {
  3455   // No x86 machines currently require load fences
  3456   // __ load_fence();
  3459 void LIR_Assembler::membar_release() {
  3460   // No x86 machines currently require store fences
  3461   // __ store_fence();
  3464 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3465   assert(result_reg->is_register(), "check");
  3466 #ifdef _LP64
  3467   // __ get_thread(result_reg->as_register_lo());
  3468   __ mov(result_reg->as_register(), r15_thread);
  3469 #else
  3470   __ get_thread(result_reg->as_register());
  3471 #endif // _LP64
  3475 void LIR_Assembler::peephole(LIR_List*) {
  3476   // do nothing for now
  3480 #undef __

mercurial