src/cpu/x86/vm/assembler_x86.cpp

Mon, 09 Mar 2009 13:28:46 -0700

author
xdono
date
Mon, 09 Mar 2009 13:28:46 -0700
changeset 1014
0fbdb4381b99
parent 955
52a431267315
child 1063
7bb995fbd3c0
permissions
-rw-r--r--

6814575: Update copyright year
Summary: Update copyright for files that have been modified in 2009, up to 03/09
Reviewed-by: katleman, tbell, ohair

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_assembler_x86.cpp.incl"
    28 // Implementation of AddressLiteral
    30 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    31   _is_lval = false;
    32   _target = target;
    33   switch (rtype) {
    34   case relocInfo::oop_type:
    35     // Oops are a special case. Normally they would be their own section
    36     // but in cases like icBuffer they are literals in the code stream that
    37     // we don't have a section for. We use none so that we get a literal address
    38     // which is always patchable.
    39     break;
    40   case relocInfo::external_word_type:
    41     _rspec = external_word_Relocation::spec(target);
    42     break;
    43   case relocInfo::internal_word_type:
    44     _rspec = internal_word_Relocation::spec(target);
    45     break;
    46   case relocInfo::opt_virtual_call_type:
    47     _rspec = opt_virtual_call_Relocation::spec();
    48     break;
    49   case relocInfo::static_call_type:
    50     _rspec = static_call_Relocation::spec();
    51     break;
    52   case relocInfo::runtime_call_type:
    53     _rspec = runtime_call_Relocation::spec();
    54     break;
    55   case relocInfo::poll_type:
    56   case relocInfo::poll_return_type:
    57     _rspec = Relocation::spec_simple(rtype);
    58     break;
    59   case relocInfo::none:
    60     break;
    61   default:
    62     ShouldNotReachHere();
    63     break;
    64   }
    65 }
    67 // Implementation of Address
    69 #ifdef _LP64
    71 Address Address::make_array(ArrayAddress adr) {
    72   // Not implementable on 64bit machines
    73   // Should have been handled higher up the call chain.
    74   ShouldNotReachHere();
    75   return Address();
    76 }
    78 // exceedingly dangerous constructor
    79 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
    80   _base  = noreg;
    81   _index = noreg;
    82   _scale = no_scale;
    83   _disp  = disp;
    84   switch (rtype) {
    85     case relocInfo::external_word_type:
    86       _rspec = external_word_Relocation::spec(loc);
    87       break;
    88     case relocInfo::internal_word_type:
    89       _rspec = internal_word_Relocation::spec(loc);
    90       break;
    91     case relocInfo::runtime_call_type:
    92       // HMM
    93       _rspec = runtime_call_Relocation::spec();
    94       break;
    95     case relocInfo::poll_type:
    96     case relocInfo::poll_return_type:
    97       _rspec = Relocation::spec_simple(rtype);
    98       break;
    99     case relocInfo::none:
   100       break;
   101     default:
   102       ShouldNotReachHere();
   103   }
   104 }
   105 #else // LP64
   107 Address Address::make_array(ArrayAddress adr) {
   108   AddressLiteral base = adr.base();
   109   Address index = adr.index();
   110   assert(index._disp == 0, "must not have disp"); // maybe it can?
   111   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   112   array._rspec = base._rspec;
   113   return array;
   114 }
   116 // exceedingly dangerous constructor
   117 Address::Address(address loc, RelocationHolder spec) {
   118   _base  = noreg;
   119   _index = noreg;
   120   _scale = no_scale;
   121   _disp  = (intptr_t) loc;
   122   _rspec = spec;
   123 }
   125 #endif // _LP64
   129 // Convert the raw encoding form into the form expected by the constructor for
   130 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   131 // that to noreg for the Address constructor.
   132 Address Address::make_raw(int base, int index, int scale, int disp) {
   133   bool valid_index = index != rsp->encoding();
   134   if (valid_index) {
   135     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   136     return madr;
   137   } else {
   138     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   139     return madr;
   140   }
   141 }
   143 // Implementation of Assembler
   145 int AbstractAssembler::code_fill_byte() {
   146   return (u_char)'\xF4'; // hlt
   147 }
   149 // make this go away someday
   150 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   151   if (rtype == relocInfo::none)
   152         emit_long(data);
   153   else  emit_data(data, Relocation::spec_simple(rtype), format);
   154 }
   156 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   157   assert(imm_operand == 0, "default format must be immediate in this file");
   158   assert(inst_mark() != NULL, "must be inside InstructionMark");
   159   if (rspec.type() !=  relocInfo::none) {
   160     #ifdef ASSERT
   161       check_relocation(rspec, format);
   162     #endif
   163     // Do not use AbstractAssembler::relocate, which is not intended for
   164     // embedded words.  Instead, relocate to the enclosing instruction.
   166     // hack. call32 is too wide for mask so use disp32
   167     if (format == call32_operand)
   168       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   169     else
   170       code_section()->relocate(inst_mark(), rspec, format);
   171   }
   172   emit_long(data);
   173 }
   175 static int encode(Register r) {
   176   int enc = r->encoding();
   177   if (enc >= 8) {
   178     enc -= 8;
   179   }
   180   return enc;
   181 }
   183 static int encode(XMMRegister r) {
   184   int enc = r->encoding();
   185   if (enc >= 8) {
   186     enc -= 8;
   187   }
   188   return enc;
   189 }
   191 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   192   assert(dst->has_byte_register(), "must have byte register");
   193   assert(isByte(op1) && isByte(op2), "wrong opcode");
   194   assert(isByte(imm8), "not a byte");
   195   assert((op1 & 0x01) == 0, "should be 8bit operation");
   196   emit_byte(op1);
   197   emit_byte(op2 | encode(dst));
   198   emit_byte(imm8);
   199 }
   202 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   203   assert(isByte(op1) && isByte(op2), "wrong opcode");
   204   assert((op1 & 0x01) == 1, "should be 32bit operation");
   205   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   206   if (is8bit(imm32)) {
   207     emit_byte(op1 | 0x02); // set sign bit
   208     emit_byte(op2 | encode(dst));
   209     emit_byte(imm32 & 0xFF);
   210   } else {
   211     emit_byte(op1);
   212     emit_byte(op2 | encode(dst));
   213     emit_long(imm32);
   214   }
   215 }
   217 // immediate-to-memory forms
   218 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   219   assert((op1 & 0x01) == 1, "should be 32bit operation");
   220   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   221   if (is8bit(imm32)) {
   222     emit_byte(op1 | 0x02); // set sign bit
   223     emit_operand(rm, adr, 1);
   224     emit_byte(imm32 & 0xFF);
   225   } else {
   226     emit_byte(op1);
   227     emit_operand(rm, adr, 4);
   228     emit_long(imm32);
   229   }
   230 }
   232 void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
   233   LP64_ONLY(ShouldNotReachHere());
   234   assert(isByte(op1) && isByte(op2), "wrong opcode");
   235   assert((op1 & 0x01) == 1, "should be 32bit operation");
   236   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   237   InstructionMark im(this);
   238   emit_byte(op1);
   239   emit_byte(op2 | encode(dst));
   240   emit_data((intptr_t)obj, relocInfo::oop_type, 0);
   241 }
   244 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   245   assert(isByte(op1) && isByte(op2), "wrong opcode");
   246   emit_byte(op1);
   247   emit_byte(op2 | encode(dst) << 3 | encode(src));
   248 }
   251 void Assembler::emit_operand(Register reg, Register base, Register index,
   252                              Address::ScaleFactor scale, int disp,
   253                              RelocationHolder const& rspec,
   254                              int rip_relative_correction) {
   255   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   257   // Encode the registers as needed in the fields they are used in
   259   int regenc = encode(reg) << 3;
   260   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   261   int baseenc = base->is_valid() ? encode(base) : 0;
   263   if (base->is_valid()) {
   264     if (index->is_valid()) {
   265       assert(scale != Address::no_scale, "inconsistent address");
   266       // [base + index*scale + disp]
   267       if (disp == 0 && rtype == relocInfo::none  &&
   268           base != rbp LP64_ONLY(&& base != r13)) {
   269         // [base + index*scale]
   270         // [00 reg 100][ss index base]
   271         assert(index != rsp, "illegal addressing mode");
   272         emit_byte(0x04 | regenc);
   273         emit_byte(scale << 6 | indexenc | baseenc);
   274       } else if (is8bit(disp) && rtype == relocInfo::none) {
   275         // [base + index*scale + imm8]
   276         // [01 reg 100][ss index base] imm8
   277         assert(index != rsp, "illegal addressing mode");
   278         emit_byte(0x44 | regenc);
   279         emit_byte(scale << 6 | indexenc | baseenc);
   280         emit_byte(disp & 0xFF);
   281       } else {
   282         // [base + index*scale + disp32]
   283         // [10 reg 100][ss index base] disp32
   284         assert(index != rsp, "illegal addressing mode");
   285         emit_byte(0x84 | regenc);
   286         emit_byte(scale << 6 | indexenc | baseenc);
   287         emit_data(disp, rspec, disp32_operand);
   288       }
   289     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   290       // [rsp + disp]
   291       if (disp == 0 && rtype == relocInfo::none) {
   292         // [rsp]
   293         // [00 reg 100][00 100 100]
   294         emit_byte(0x04 | regenc);
   295         emit_byte(0x24);
   296       } else if (is8bit(disp) && rtype == relocInfo::none) {
   297         // [rsp + imm8]
   298         // [01 reg 100][00 100 100] disp8
   299         emit_byte(0x44 | regenc);
   300         emit_byte(0x24);
   301         emit_byte(disp & 0xFF);
   302       } else {
   303         // [rsp + imm32]
   304         // [10 reg 100][00 100 100] disp32
   305         emit_byte(0x84 | regenc);
   306         emit_byte(0x24);
   307         emit_data(disp, rspec, disp32_operand);
   308       }
   309     } else {
   310       // [base + disp]
   311       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   312       if (disp == 0 && rtype == relocInfo::none &&
   313           base != rbp LP64_ONLY(&& base != r13)) {
   314         // [base]
   315         // [00 reg base]
   316         emit_byte(0x00 | regenc | baseenc);
   317       } else if (is8bit(disp) && rtype == relocInfo::none) {
   318         // [base + disp8]
   319         // [01 reg base] disp8
   320         emit_byte(0x40 | regenc | baseenc);
   321         emit_byte(disp & 0xFF);
   322       } else {
   323         // [base + disp32]
   324         // [10 reg base] disp32
   325         emit_byte(0x80 | regenc | baseenc);
   326         emit_data(disp, rspec, disp32_operand);
   327       }
   328     }
   329   } else {
   330     if (index->is_valid()) {
   331       assert(scale != Address::no_scale, "inconsistent address");
   332       // [index*scale + disp]
   333       // [00 reg 100][ss index 101] disp32
   334       assert(index != rsp, "illegal addressing mode");
   335       emit_byte(0x04 | regenc);
   336       emit_byte(scale << 6 | indexenc | 0x05);
   337       emit_data(disp, rspec, disp32_operand);
   338     } else if (rtype != relocInfo::none ) {
   339       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   340       // [00 000 101] disp32
   342       emit_byte(0x05 | regenc);
   343       // Note that the RIP-rel. correction applies to the generated
   344       // disp field, but _not_ to the target address in the rspec.
   346       // disp was created by converting the target address minus the pc
   347       // at the start of the instruction. That needs more correction here.
   348       // intptr_t disp = target - next_ip;
   349       assert(inst_mark() != NULL, "must be inside InstructionMark");
   350       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   351       int64_t adjusted = disp;
   352       // Do rip-rel adjustment for 64bit
   353       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   354       assert(is_simm32(adjusted),
   355              "must be 32bit offset (RIP relative address)");
   356       emit_data((int32_t) adjusted, rspec, disp32_operand);
   358     } else {
   359       // 32bit never did this, did everything as the rip-rel/disp code above
   360       // [disp] ABSOLUTE
   361       // [00 reg 100][00 100 101] disp32
   362       emit_byte(0x04 | regenc);
   363       emit_byte(0x25);
   364       emit_data(disp, rspec, disp32_operand);
   365     }
   366   }
   367 }
   369 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   370                              Address::ScaleFactor scale, int disp,
   371                              RelocationHolder const& rspec) {
   372   emit_operand((Register)reg, base, index, scale, disp, rspec);
   373 }
   375 // Secret local extension to Assembler::WhichOperand:
   376 #define end_pc_operand (_WhichOperand_limit)
   378 address Assembler::locate_operand(address inst, WhichOperand which) {
   379   // Decode the given instruction, and return the address of
   380   // an embedded 32-bit operand word.
   382   // If "which" is disp32_operand, selects the displacement portion
   383   // of an effective address specifier.
   384   // If "which" is imm64_operand, selects the trailing immediate constant.
   385   // If "which" is call32_operand, selects the displacement of a call or jump.
   386   // Caller is responsible for ensuring that there is such an operand,
   387   // and that it is 32/64 bits wide.
   389   // If "which" is end_pc_operand, find the end of the instruction.
   391   address ip = inst;
   392   bool is_64bit = false;
   394   debug_only(bool has_disp32 = false);
   395   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   397   again_after_prefix:
   398   switch (0xFF & *ip++) {
   400   // These convenience macros generate groups of "case" labels for the switch.
   401 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   402 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   403              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   404 #define REP16(x) REP8((x)+0): \
   405               case REP8((x)+8)
   407   case CS_segment:
   408   case SS_segment:
   409   case DS_segment:
   410   case ES_segment:
   411   case FS_segment:
   412   case GS_segment:
   413     // Seems dubious
   414     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   415     assert(ip == inst+1, "only one prefix allowed");
   416     goto again_after_prefix;
   418   case 0x67:
   419   case REX:
   420   case REX_B:
   421   case REX_X:
   422   case REX_XB:
   423   case REX_R:
   424   case REX_RB:
   425   case REX_RX:
   426   case REX_RXB:
   427     NOT_LP64(assert(false, "64bit prefixes"));
   428     goto again_after_prefix;
   430   case REX_W:
   431   case REX_WB:
   432   case REX_WX:
   433   case REX_WXB:
   434   case REX_WR:
   435   case REX_WRB:
   436   case REX_WRX:
   437   case REX_WRXB:
   438     NOT_LP64(assert(false, "64bit prefixes"));
   439     is_64bit = true;
   440     goto again_after_prefix;
   442   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   443   case 0x88: // movb a, r
   444   case 0x89: // movl a, r
   445   case 0x8A: // movb r, a
   446   case 0x8B: // movl r, a
   447   case 0x8F: // popl a
   448     debug_only(has_disp32 = true);
   449     break;
   451   case 0x68: // pushq #32
   452     if (which == end_pc_operand) {
   453       return ip + 4;
   454     }
   455     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   456     return ip;                  // not produced by emit_operand
   458   case 0x66: // movw ... (size prefix)
   459     again_after_size_prefix2:
   460     switch (0xFF & *ip++) {
   461     case REX:
   462     case REX_B:
   463     case REX_X:
   464     case REX_XB:
   465     case REX_R:
   466     case REX_RB:
   467     case REX_RX:
   468     case REX_RXB:
   469     case REX_W:
   470     case REX_WB:
   471     case REX_WX:
   472     case REX_WXB:
   473     case REX_WR:
   474     case REX_WRB:
   475     case REX_WRX:
   476     case REX_WRXB:
   477       NOT_LP64(assert(false, "64bit prefix found"));
   478       goto again_after_size_prefix2;
   479     case 0x8B: // movw r, a
   480     case 0x89: // movw a, r
   481       debug_only(has_disp32 = true);
   482       break;
   483     case 0xC7: // movw a, #16
   484       debug_only(has_disp32 = true);
   485       tail_size = 2;  // the imm16
   486       break;
   487     case 0x0F: // several SSE/SSE2 variants
   488       ip--;    // reparse the 0x0F
   489       goto again_after_prefix;
   490     default:
   491       ShouldNotReachHere();
   492     }
   493     break;
   495   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   496     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   497     // these asserts are somewhat nonsensical
   498 #ifndef _LP64
   499     assert(which == imm_operand || which == disp32_operand, "");
   500 #else
   501     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   502            which == narrow_oop_operand && !is_64bit, "");
   503 #endif // _LP64
   504     return ip;
   506   case 0x69: // imul r, a, #32
   507   case 0xC7: // movl a, #32(oop?)
   508     tail_size = 4;
   509     debug_only(has_disp32 = true); // has both kinds of operands!
   510     break;
   512   case 0x0F: // movx..., etc.
   513     switch (0xFF & *ip++) {
   514     case 0x12: // movlps
   515     case 0x28: // movaps
   516     case 0x2E: // ucomiss
   517     case 0x2F: // comiss
   518     case 0x54: // andps
   519     case 0x55: // andnps
   520     case 0x56: // orps
   521     case 0x57: // xorps
   522     case 0x6E: // movd
   523     case 0x7E: // movd
   524     case 0xAE: // ldmxcsr   a
   525       // 64bit side says it these have both operands but that doesn't
   526       // appear to be true
   527       debug_only(has_disp32 = true);
   528       break;
   530     case 0xAD: // shrd r, a, %cl
   531     case 0xAF: // imul r, a
   532     case 0xBE: // movsbl r, a (movsxb)
   533     case 0xBF: // movswl r, a (movsxw)
   534     case 0xB6: // movzbl r, a (movzxb)
   535     case 0xB7: // movzwl r, a (movzxw)
   536     case REP16(0x40): // cmovl cc, r, a
   537     case 0xB0: // cmpxchgb
   538     case 0xB1: // cmpxchg
   539     case 0xC1: // xaddl
   540     case 0xC7: // cmpxchg8
   541     case REP16(0x90): // setcc a
   542       debug_only(has_disp32 = true);
   543       // fall out of the switch to decode the address
   544       break;
   546     case 0xAC: // shrd r, a, #8
   547       debug_only(has_disp32 = true);
   548       tail_size = 1;  // the imm8
   549       break;
   551     case REP16(0x80): // jcc rdisp32
   552       if (which == end_pc_operand)  return ip + 4;
   553       assert(which == call32_operand, "jcc has no disp32 or imm");
   554       return ip;
   555     default:
   556       ShouldNotReachHere();
   557     }
   558     break;
   560   case 0x81: // addl a, #32; addl r, #32
   561     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   562     // on 32bit in the case of cmpl, the imm might be an oop
   563     tail_size = 4;
   564     debug_only(has_disp32 = true); // has both kinds of operands!
   565     break;
   567   case 0x83: // addl a, #8; addl r, #8
   568     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   569     debug_only(has_disp32 = true); // has both kinds of operands!
   570     tail_size = 1;
   571     break;
   573   case 0x9B:
   574     switch (0xFF & *ip++) {
   575     case 0xD9: // fnstcw a
   576       debug_only(has_disp32 = true);
   577       break;
   578     default:
   579       ShouldNotReachHere();
   580     }
   581     break;
   583   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   584   case REP4(0x10): // adc...
   585   case REP4(0x20): // and...
   586   case REP4(0x30): // xor...
   587   case REP4(0x08): // or...
   588   case REP4(0x18): // sbb...
   589   case REP4(0x28): // sub...
   590   case 0xF7: // mull a
   591   case 0x8D: // lea r, a
   592   case 0x87: // xchg r, a
   593   case REP4(0x38): // cmp...
   594   case 0x85: // test r, a
   595     debug_only(has_disp32 = true); // has both kinds of operands!
   596     break;
   598   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   599   case 0xC6: // movb a, #8
   600   case 0x80: // cmpb a, #8
   601   case 0x6B: // imul r, a, #8
   602     debug_only(has_disp32 = true); // has both kinds of operands!
   603     tail_size = 1; // the imm8
   604     break;
   606   case 0xE8: // call rdisp32
   607   case 0xE9: // jmp  rdisp32
   608     if (which == end_pc_operand)  return ip + 4;
   609     assert(which == call32_operand, "call has no disp32 or imm");
   610     return ip;
   612   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   613   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   614   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   615   case 0xDD: // fld_d a; fst_d a; fstp_d a
   616   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   617   case 0xDF: // fild_d a; fistp_d a
   618   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   619   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   620   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   621     debug_only(has_disp32 = true);
   622     break;
   624   case 0xF0:                    // Lock
   625     assert(os::is_MP(), "only on MP");
   626     goto again_after_prefix;
   628   case 0xF3:                    // For SSE
   629   case 0xF2:                    // For SSE2
   630     switch (0xFF & *ip++) {
   631     case REX:
   632     case REX_B:
   633     case REX_X:
   634     case REX_XB:
   635     case REX_R:
   636     case REX_RB:
   637     case REX_RX:
   638     case REX_RXB:
   639     case REX_W:
   640     case REX_WB:
   641     case REX_WX:
   642     case REX_WXB:
   643     case REX_WR:
   644     case REX_WRB:
   645     case REX_WRX:
   646     case REX_WRXB:
   647       NOT_LP64(assert(false, "found 64bit prefix"));
   648       ip++;
   649     default:
   650       ip++;
   651     }
   652     debug_only(has_disp32 = true); // has both kinds of operands!
   653     break;
   655   default:
   656     ShouldNotReachHere();
   658 #undef REP8
   659 #undef REP16
   660   }
   662   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   663 #ifdef _LP64
   664   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   665 #else
   666   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   667   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   668 #endif // LP64
   669   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   671   // parse the output of emit_operand
   672   int op2 = 0xFF & *ip++;
   673   int base = op2 & 0x07;
   674   int op3 = -1;
   675   const int b100 = 4;
   676   const int b101 = 5;
   677   if (base == b100 && (op2 >> 6) != 3) {
   678     op3 = 0xFF & *ip++;
   679     base = op3 & 0x07;   // refetch the base
   680   }
   681   // now ip points at the disp (if any)
   683   switch (op2 >> 6) {
   684   case 0:
   685     // [00 reg  100][ss index base]
   686     // [00 reg  100][00   100  esp]
   687     // [00 reg base]
   688     // [00 reg  100][ss index  101][disp32]
   689     // [00 reg  101]               [disp32]
   691     if (base == b101) {
   692       if (which == disp32_operand)
   693         return ip;              // caller wants the disp32
   694       ip += 4;                  // skip the disp32
   695     }
   696     break;
   698   case 1:
   699     // [01 reg  100][ss index base][disp8]
   700     // [01 reg  100][00   100  esp][disp8]
   701     // [01 reg base]               [disp8]
   702     ip += 1;                    // skip the disp8
   703     break;
   705   case 2:
   706     // [10 reg  100][ss index base][disp32]
   707     // [10 reg  100][00   100  esp][disp32]
   708     // [10 reg base]               [disp32]
   709     if (which == disp32_operand)
   710       return ip;                // caller wants the disp32
   711     ip += 4;                    // skip the disp32
   712     break;
   714   case 3:
   715     // [11 reg base]  (not a memory addressing mode)
   716     break;
   717   }
   719   if (which == end_pc_operand) {
   720     return ip + tail_size;
   721   }
   723 #ifdef _LP64
   724   assert(false, "fix locate_operand");
   725 #else
   726   assert(which == imm_operand, "instruction has only an imm field");
   727 #endif // LP64
   728   return ip;
   729 }
   731 address Assembler::locate_next_instruction(address inst) {
   732   // Secretly share code with locate_operand:
   733   return locate_operand(inst, end_pc_operand);
   734 }
   737 #ifdef ASSERT
   738 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   739   address inst = inst_mark();
   740   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   741   address opnd;
   743   Relocation* r = rspec.reloc();
   744   if (r->type() == relocInfo::none) {
   745     return;
   746   } else if (r->is_call() || format == call32_operand) {
   747     // assert(format == imm32_operand, "cannot specify a nonzero format");
   748     opnd = locate_operand(inst, call32_operand);
   749   } else if (r->is_data()) {
   750     assert(format == imm_operand || format == disp32_operand
   751            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   752     opnd = locate_operand(inst, (WhichOperand)format);
   753   } else {
   754     assert(format == imm_operand, "cannot specify a format");
   755     return;
   756   }
   757   assert(opnd == pc(), "must put operand where relocs can find it");
   758 }
   759 #endif // ASSERT
   761 void Assembler::emit_operand32(Register reg, Address adr) {
   762   assert(reg->encoding() < 8, "no extended registers");
   763   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   764   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   765                adr._rspec);
   766 }
   768 void Assembler::emit_operand(Register reg, Address adr,
   769                              int rip_relative_correction) {
   770   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   771                adr._rspec,
   772                rip_relative_correction);
   773 }
   775 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   776   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   777                adr._rspec);
   778 }
   780 // MMX operations
   781 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   782   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   783   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   784 }
   786 // work around gcc (3.2.1-7a) bug
   787 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   788   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   789   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   790 }
   793 void Assembler::emit_farith(int b1, int b2, int i) {
   794   assert(isByte(b1) && isByte(b2), "wrong opcode");
   795   assert(0 <= i &&  i < 8, "illegal stack offset");
   796   emit_byte(b1);
   797   emit_byte(b2 + i);
   798 }
   801 // Now the Assembler instruction (identical for 32/64 bits)
   803 void Assembler::adcl(Register dst, int32_t imm32) {
   804   prefix(dst);
   805   emit_arith(0x81, 0xD0, dst, imm32);
   806 }
   808 void Assembler::adcl(Register dst, Address src) {
   809   InstructionMark im(this);
   810   prefix(src, dst);
   811   emit_byte(0x13);
   812   emit_operand(dst, src);
   813 }
   815 void Assembler::adcl(Register dst, Register src) {
   816   (void) prefix_and_encode(dst->encoding(), src->encoding());
   817   emit_arith(0x13, 0xC0, dst, src);
   818 }
   820 void Assembler::addl(Address dst, int32_t imm32) {
   821   InstructionMark im(this);
   822   prefix(dst);
   823   emit_arith_operand(0x81, rax, dst, imm32);
   824 }
   826 void Assembler::addl(Address dst, Register src) {
   827   InstructionMark im(this);
   828   prefix(dst, src);
   829   emit_byte(0x01);
   830   emit_operand(src, dst);
   831 }
   833 void Assembler::addl(Register dst, int32_t imm32) {
   834   prefix(dst);
   835   emit_arith(0x81, 0xC0, dst, imm32);
   836 }
   838 void Assembler::addl(Register dst, Address src) {
   839   InstructionMark im(this);
   840   prefix(src, dst);
   841   emit_byte(0x03);
   842   emit_operand(dst, src);
   843 }
   845 void Assembler::addl(Register dst, Register src) {
   846   (void) prefix_and_encode(dst->encoding(), src->encoding());
   847   emit_arith(0x03, 0xC0, dst, src);
   848 }
   850 void Assembler::addr_nop_4() {
   851   // 4 bytes: NOP DWORD PTR [EAX+0]
   852   emit_byte(0x0F);
   853   emit_byte(0x1F);
   854   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   855   emit_byte(0);    // 8-bits offset (1 byte)
   856 }
   858 void Assembler::addr_nop_5() {
   859   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   860   emit_byte(0x0F);
   861   emit_byte(0x1F);
   862   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   863   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   864   emit_byte(0);    // 8-bits offset (1 byte)
   865 }
   867 void Assembler::addr_nop_7() {
   868   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   869   emit_byte(0x0F);
   870   emit_byte(0x1F);
   871   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   872   emit_long(0);    // 32-bits offset (4 bytes)
   873 }
   875 void Assembler::addr_nop_8() {
   876   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   877   emit_byte(0x0F);
   878   emit_byte(0x1F);
   879   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   880   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   881   emit_long(0);    // 32-bits offset (4 bytes)
   882 }
   884 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   885   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   886   emit_byte(0xF2);
   887   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   888   emit_byte(0x0F);
   889   emit_byte(0x58);
   890   emit_byte(0xC0 | encode);
   891 }
   893 void Assembler::addsd(XMMRegister dst, Address src) {
   894   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   895   InstructionMark im(this);
   896   emit_byte(0xF2);
   897   prefix(src, dst);
   898   emit_byte(0x0F);
   899   emit_byte(0x58);
   900   emit_operand(dst, src);
   901 }
   903 void Assembler::addss(XMMRegister dst, XMMRegister src) {
   904   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   905   emit_byte(0xF3);
   906   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   907   emit_byte(0x0F);
   908   emit_byte(0x58);
   909   emit_byte(0xC0 | encode);
   910 }
   912 void Assembler::addss(XMMRegister dst, Address src) {
   913   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   914   InstructionMark im(this);
   915   emit_byte(0xF3);
   916   prefix(src, dst);
   917   emit_byte(0x0F);
   918   emit_byte(0x58);
   919   emit_operand(dst, src);
   920 }
   922 void Assembler::andl(Register dst, int32_t imm32) {
   923   prefix(dst);
   924   emit_arith(0x81, 0xE0, dst, imm32);
   925 }
   927 void Assembler::andl(Register dst, Address src) {
   928   InstructionMark im(this);
   929   prefix(src, dst);
   930   emit_byte(0x23);
   931   emit_operand(dst, src);
   932 }
   934 void Assembler::andl(Register dst, Register src) {
   935   (void) prefix_and_encode(dst->encoding(), src->encoding());
   936   emit_arith(0x23, 0xC0, dst, src);
   937 }
   939 void Assembler::andpd(XMMRegister dst, Address src) {
   940   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   941   InstructionMark im(this);
   942   emit_byte(0x66);
   943   prefix(src, dst);
   944   emit_byte(0x0F);
   945   emit_byte(0x54);
   946   emit_operand(dst, src);
   947 }
   949 void Assembler::bswapl(Register reg) { // bswap
   950   int encode = prefix_and_encode(reg->encoding());
   951   emit_byte(0x0F);
   952   emit_byte(0xC8 | encode);
   953 }
   955 void Assembler::call(Label& L, relocInfo::relocType rtype) {
   956   // suspect disp32 is always good
   957   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
   959   if (L.is_bound()) {
   960     const int long_size = 5;
   961     int offs = (int)( target(L) - pc() );
   962     assert(offs <= 0, "assembler error");
   963     InstructionMark im(this);
   964     // 1110 1000 #32-bit disp
   965     emit_byte(0xE8);
   966     emit_data(offs - long_size, rtype, operand);
   967   } else {
   968     InstructionMark im(this);
   969     // 1110 1000 #32-bit disp
   970     L.add_patch_at(code(), locator());
   972     emit_byte(0xE8);
   973     emit_data(int(0), rtype, operand);
   974   }
   975 }
   977 void Assembler::call(Register dst) {
   978   // This was originally using a 32bit register encoding
   979   // and surely we want 64bit!
   980   // this is a 32bit encoding but in 64bit mode the default
   981   // operand size is 64bit so there is no need for the
   982   // wide prefix. So prefix only happens if we use the
   983   // new registers. Much like push/pop.
   984   int x = offset();
   985   // this may be true but dbx disassembles it as if it
   986   // were 32bits...
   987   // int encode = prefix_and_encode(dst->encoding());
   988   // if (offset() != x) assert(dst->encoding() >= 8, "what?");
   989   int encode = prefixq_and_encode(dst->encoding());
   991   emit_byte(0xFF);
   992   emit_byte(0xD0 | encode);
   993 }
   996 void Assembler::call(Address adr) {
   997   InstructionMark im(this);
   998   prefix(adr);
   999   emit_byte(0xFF);
  1000   emit_operand(rdx, adr);
  1003 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1004   assert(entry != NULL, "call most probably wrong");
  1005   InstructionMark im(this);
  1006   emit_byte(0xE8);
  1007   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  1008   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1009   // Technically, should use call32_operand, but this format is
  1010   // implied by the fact that we're emitting a call instruction.
  1012   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1013   emit_data((int) disp, rspec, operand);
  1016 void Assembler::cdql() {
  1017   emit_byte(0x99);
  1020 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1021   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1022   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1023   emit_byte(0x0F);
  1024   emit_byte(0x40 | cc);
  1025   emit_byte(0xC0 | encode);
  1029 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1030   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1031   prefix(src, dst);
  1032   emit_byte(0x0F);
  1033   emit_byte(0x40 | cc);
  1034   emit_operand(dst, src);
  1037 void Assembler::cmpb(Address dst, int imm8) {
  1038   InstructionMark im(this);
  1039   prefix(dst);
  1040   emit_byte(0x80);
  1041   emit_operand(rdi, dst, 1);
  1042   emit_byte(imm8);
  1045 void Assembler::cmpl(Address dst, int32_t imm32) {
  1046   InstructionMark im(this);
  1047   prefix(dst);
  1048   emit_byte(0x81);
  1049   emit_operand(rdi, dst, 4);
  1050   emit_long(imm32);
  1053 void Assembler::cmpl(Register dst, int32_t imm32) {
  1054   prefix(dst);
  1055   emit_arith(0x81, 0xF8, dst, imm32);
  1058 void Assembler::cmpl(Register dst, Register src) {
  1059   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1060   emit_arith(0x3B, 0xC0, dst, src);
  1064 void Assembler::cmpl(Register dst, Address  src) {
  1065   InstructionMark im(this);
  1066   prefix(src, dst);
  1067   emit_byte(0x3B);
  1068   emit_operand(dst, src);
  1071 void Assembler::cmpw(Address dst, int imm16) {
  1072   InstructionMark im(this);
  1073   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1074   emit_byte(0x66);
  1075   emit_byte(0x81);
  1076   emit_operand(rdi, dst, 2);
  1077   emit_word(imm16);
  1080 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1081 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1082 // The ZF is set if the compared values were equal, and cleared otherwise.
  1083 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1084   if (Atomics & 2) {
  1085      // caveat: no instructionmark, so this isn't relocatable.
  1086      // Emit a synthetic, non-atomic, CAS equivalent.
  1087      // Beware.  The synthetic form sets all ICCs, not just ZF.
  1088      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
  1089      cmpl(rax, adr);
  1090      movl(rax, adr);
  1091      if (reg != rax) {
  1092         Label L ;
  1093         jcc(Assembler::notEqual, L);
  1094         movl(adr, reg);
  1095         bind(L);
  1097   } else {
  1098      InstructionMark im(this);
  1099      prefix(adr, reg);
  1100      emit_byte(0x0F);
  1101      emit_byte(0xB1);
  1102      emit_operand(reg, adr);
  1106 void Assembler::comisd(XMMRegister dst, Address src) {
  1107   // NOTE: dbx seems to decode this as comiss even though the
  1108   // 0x66 is there. Strangly ucomisd comes out correct
  1109   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1110   emit_byte(0x66);
  1111   comiss(dst, src);
  1114 void Assembler::comiss(XMMRegister dst, Address src) {
  1115   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1117   InstructionMark im(this);
  1118   prefix(src, dst);
  1119   emit_byte(0x0F);
  1120   emit_byte(0x2F);
  1121   emit_operand(dst, src);
  1124 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1125   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1126   emit_byte(0xF3);
  1127   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1128   emit_byte(0x0F);
  1129   emit_byte(0xE6);
  1130   emit_byte(0xC0 | encode);
  1133 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1134   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1135   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1136   emit_byte(0x0F);
  1137   emit_byte(0x5B);
  1138   emit_byte(0xC0 | encode);
  1141 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1142   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1143   emit_byte(0xF2);
  1144   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1145   emit_byte(0x0F);
  1146   emit_byte(0x5A);
  1147   emit_byte(0xC0 | encode);
  1150 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1151   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1152   emit_byte(0xF2);
  1153   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1154   emit_byte(0x0F);
  1155   emit_byte(0x2A);
  1156   emit_byte(0xC0 | encode);
  1159 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1160   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1161   emit_byte(0xF3);
  1162   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1163   emit_byte(0x0F);
  1164   emit_byte(0x2A);
  1165   emit_byte(0xC0 | encode);
  1168 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1169   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1170   emit_byte(0xF3);
  1171   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1172   emit_byte(0x0F);
  1173   emit_byte(0x5A);
  1174   emit_byte(0xC0 | encode);
  1177 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1178   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1179   emit_byte(0xF2);
  1180   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1181   emit_byte(0x0F);
  1182   emit_byte(0x2C);
  1183   emit_byte(0xC0 | encode);
  1186 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1187   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1188   emit_byte(0xF3);
  1189   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1190   emit_byte(0x0F);
  1191   emit_byte(0x2C);
  1192   emit_byte(0xC0 | encode);
  1195 void Assembler::decl(Address dst) {
  1196   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1197   InstructionMark im(this);
  1198   prefix(dst);
  1199   emit_byte(0xFF);
  1200   emit_operand(rcx, dst);
  1203 void Assembler::divsd(XMMRegister dst, Address src) {
  1204   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1205   InstructionMark im(this);
  1206   emit_byte(0xF2);
  1207   prefix(src, dst);
  1208   emit_byte(0x0F);
  1209   emit_byte(0x5E);
  1210   emit_operand(dst, src);
  1213 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1214   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1215   emit_byte(0xF2);
  1216   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1217   emit_byte(0x0F);
  1218   emit_byte(0x5E);
  1219   emit_byte(0xC0 | encode);
  1222 void Assembler::divss(XMMRegister dst, Address src) {
  1223   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1224   InstructionMark im(this);
  1225   emit_byte(0xF3);
  1226   prefix(src, dst);
  1227   emit_byte(0x0F);
  1228   emit_byte(0x5E);
  1229   emit_operand(dst, src);
  1232 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1233   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1234   emit_byte(0xF3);
  1235   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1236   emit_byte(0x0F);
  1237   emit_byte(0x5E);
  1238   emit_byte(0xC0 | encode);
  1241 void Assembler::emms() {
  1242   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1243   emit_byte(0x0F);
  1244   emit_byte(0x77);
  1247 void Assembler::hlt() {
  1248   emit_byte(0xF4);
  1251 void Assembler::idivl(Register src) {
  1252   int encode = prefix_and_encode(src->encoding());
  1253   emit_byte(0xF7);
  1254   emit_byte(0xF8 | encode);
  1257 void Assembler::imull(Register dst, Register src) {
  1258   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1259   emit_byte(0x0F);
  1260   emit_byte(0xAF);
  1261   emit_byte(0xC0 | encode);
  1265 void Assembler::imull(Register dst, Register src, int value) {
  1266   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1267   if (is8bit(value)) {
  1268     emit_byte(0x6B);
  1269     emit_byte(0xC0 | encode);
  1270     emit_byte(value);
  1271   } else {
  1272     emit_byte(0x69);
  1273     emit_byte(0xC0 | encode);
  1274     emit_long(value);
  1278 void Assembler::incl(Address dst) {
  1279   // Don't use it directly. Use MacroAssembler::increment() instead.
  1280   InstructionMark im(this);
  1281   prefix(dst);
  1282   emit_byte(0xFF);
  1283   emit_operand(rax, dst);
  1286 void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
  1287   InstructionMark im(this);
  1288   relocate(rtype);
  1289   assert((0 <= cc) && (cc < 16), "illegal cc");
  1290   if (L.is_bound()) {
  1291     address dst = target(L);
  1292     assert(dst != NULL, "jcc most probably wrong");
  1294     const int short_size = 2;
  1295     const int long_size = 6;
  1296     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
  1297     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
  1298       // 0111 tttn #8-bit disp
  1299       emit_byte(0x70 | cc);
  1300       emit_byte((offs - short_size) & 0xFF);
  1301     } else {
  1302       // 0000 1111 1000 tttn #32-bit disp
  1303       assert(is_simm32(offs - long_size),
  1304              "must be 32bit offset (call4)");
  1305       emit_byte(0x0F);
  1306       emit_byte(0x80 | cc);
  1307       emit_long(offs - long_size);
  1309   } else {
  1310     // Note: could eliminate cond. jumps to this jump if condition
  1311     //       is the same however, seems to be rather unlikely case.
  1312     // Note: use jccb() if label to be bound is very close to get
  1313     //       an 8-bit displacement
  1314     L.add_patch_at(code(), locator());
  1315     emit_byte(0x0F);
  1316     emit_byte(0x80 | cc);
  1317     emit_long(0);
  1321 void Assembler::jccb(Condition cc, Label& L) {
  1322   if (L.is_bound()) {
  1323     const int short_size = 2;
  1324     address entry = target(L);
  1325     assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
  1326            "Dispacement too large for a short jmp");
  1327     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
  1328     // 0111 tttn #8-bit disp
  1329     emit_byte(0x70 | cc);
  1330     emit_byte((offs - short_size) & 0xFF);
  1331   } else {
  1332     InstructionMark im(this);
  1333     L.add_patch_at(code(), locator());
  1334     emit_byte(0x70 | cc);
  1335     emit_byte(0);
  1339 void Assembler::jmp(Address adr) {
  1340   InstructionMark im(this);
  1341   prefix(adr);
  1342   emit_byte(0xFF);
  1343   emit_operand(rsp, adr);
  1346 void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
  1347   if (L.is_bound()) {
  1348     address entry = target(L);
  1349     assert(entry != NULL, "jmp most probably wrong");
  1350     InstructionMark im(this);
  1351     const int short_size = 2;
  1352     const int long_size = 5;
  1353     intptr_t offs = entry - _code_pos;
  1354     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
  1355       emit_byte(0xEB);
  1356       emit_byte((offs - short_size) & 0xFF);
  1357     } else {
  1358       emit_byte(0xE9);
  1359       emit_long(offs - long_size);
  1361   } else {
  1362     // By default, forward jumps are always 32-bit displacements, since
  1363     // we can't yet know where the label will be bound.  If you're sure that
  1364     // the forward jump will not run beyond 256 bytes, use jmpb to
  1365     // force an 8-bit displacement.
  1366     InstructionMark im(this);
  1367     relocate(rtype);
  1368     L.add_patch_at(code(), locator());
  1369     emit_byte(0xE9);
  1370     emit_long(0);
  1374 void Assembler::jmp(Register entry) {
  1375   int encode = prefix_and_encode(entry->encoding());
  1376   emit_byte(0xFF);
  1377   emit_byte(0xE0 | encode);
  1380 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1381   InstructionMark im(this);
  1382   emit_byte(0xE9);
  1383   assert(dest != NULL, "must have a target");
  1384   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  1385   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1386   emit_data(disp, rspec.reloc(), call32_operand);
  1389 void Assembler::jmpb(Label& L) {
  1390   if (L.is_bound()) {
  1391     const int short_size = 2;
  1392     address entry = target(L);
  1393     assert(is8bit((entry - _code_pos) + short_size),
  1394            "Dispacement too large for a short jmp");
  1395     assert(entry != NULL, "jmp most probably wrong");
  1396     intptr_t offs = entry - _code_pos;
  1397     emit_byte(0xEB);
  1398     emit_byte((offs - short_size) & 0xFF);
  1399   } else {
  1400     InstructionMark im(this);
  1401     L.add_patch_at(code(), locator());
  1402     emit_byte(0xEB);
  1403     emit_byte(0);
  1407 void Assembler::ldmxcsr( Address src) {
  1408   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1409   InstructionMark im(this);
  1410   prefix(src);
  1411   emit_byte(0x0F);
  1412   emit_byte(0xAE);
  1413   emit_operand(as_Register(2), src);
  1416 void Assembler::leal(Register dst, Address src) {
  1417   InstructionMark im(this);
  1418 #ifdef _LP64
  1419   emit_byte(0x67); // addr32
  1420   prefix(src, dst);
  1421 #endif // LP64
  1422   emit_byte(0x8D);
  1423   emit_operand(dst, src);
  1426 void Assembler::lock() {
  1427   if (Atomics & 1) {
  1428      // Emit either nothing, a NOP, or a NOP: prefix
  1429      emit_byte(0x90) ;
  1430   } else {
  1431      emit_byte(0xF0);
  1435 // Serializes memory.
  1436 void Assembler::mfence() {
  1437     // Memory barriers are only needed on multiprocessors
  1438   if (os::is_MP()) {
  1439     if( LP64_ONLY(true ||) VM_Version::supports_sse2() ) {
  1440       emit_byte( 0x0F );                // MFENCE; faster blows no regs
  1441       emit_byte( 0xAE );
  1442       emit_byte( 0xF0 );
  1443     } else {
  1444       // All usable chips support "locked" instructions which suffice
  1445       // as barriers, and are much faster than the alternative of
  1446       // using cpuid instruction. We use here a locked add [esp],0.
  1447       // This is conveniently otherwise a no-op except for blowing
  1448       // flags (which we save and restore.)
  1449       pushf();                // Save eflags register
  1450       lock();
  1451       addl(Address(rsp, 0), 0);// Assert the lock# signal here
  1452       popf();                 // Restore eflags register
  1457 void Assembler::mov(Register dst, Register src) {
  1458   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1461 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1462   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1463   int dstenc = dst->encoding();
  1464   int srcenc = src->encoding();
  1465   emit_byte(0x66);
  1466   if (dstenc < 8) {
  1467     if (srcenc >= 8) {
  1468       prefix(REX_B);
  1469       srcenc -= 8;
  1471   } else {
  1472     if (srcenc < 8) {
  1473       prefix(REX_R);
  1474     } else {
  1475       prefix(REX_RB);
  1476       srcenc -= 8;
  1478     dstenc -= 8;
  1480   emit_byte(0x0F);
  1481   emit_byte(0x28);
  1482   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1485 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1486   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1487   int dstenc = dst->encoding();
  1488   int srcenc = src->encoding();
  1489   if (dstenc < 8) {
  1490     if (srcenc >= 8) {
  1491       prefix(REX_B);
  1492       srcenc -= 8;
  1494   } else {
  1495     if (srcenc < 8) {
  1496       prefix(REX_R);
  1497     } else {
  1498       prefix(REX_RB);
  1499       srcenc -= 8;
  1501     dstenc -= 8;
  1503   emit_byte(0x0F);
  1504   emit_byte(0x28);
  1505   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1508 void Assembler::movb(Register dst, Address src) {
  1509   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1510   InstructionMark im(this);
  1511   prefix(src, dst, true);
  1512   emit_byte(0x8A);
  1513   emit_operand(dst, src);
  1517 void Assembler::movb(Address dst, int imm8) {
  1518   InstructionMark im(this);
  1519    prefix(dst);
  1520   emit_byte(0xC6);
  1521   emit_operand(rax, dst, 1);
  1522   emit_byte(imm8);
  1526 void Assembler::movb(Address dst, Register src) {
  1527   assert(src->has_byte_register(), "must have byte register");
  1528   InstructionMark im(this);
  1529   prefix(dst, src, true);
  1530   emit_byte(0x88);
  1531   emit_operand(src, dst);
  1534 void Assembler::movdl(XMMRegister dst, Register src) {
  1535   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1536   emit_byte(0x66);
  1537   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1538   emit_byte(0x0F);
  1539   emit_byte(0x6E);
  1540   emit_byte(0xC0 | encode);
  1543 void Assembler::movdl(Register dst, XMMRegister src) {
  1544   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1545   emit_byte(0x66);
  1546   // swap src/dst to get correct prefix
  1547   int encode = prefix_and_encode(src->encoding(), dst->encoding());
  1548   emit_byte(0x0F);
  1549   emit_byte(0x7E);
  1550   emit_byte(0xC0 | encode);
  1553 void Assembler::movdqa(XMMRegister dst, Address src) {
  1554   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1555   InstructionMark im(this);
  1556   emit_byte(0x66);
  1557   prefix(src, dst);
  1558   emit_byte(0x0F);
  1559   emit_byte(0x6F);
  1560   emit_operand(dst, src);
  1563 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1564   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1565   emit_byte(0x66);
  1566   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1567   emit_byte(0x0F);
  1568   emit_byte(0x6F);
  1569   emit_byte(0xC0 | encode);
  1572 void Assembler::movdqa(Address dst, XMMRegister src) {
  1573   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1574   InstructionMark im(this);
  1575   emit_byte(0x66);
  1576   prefix(dst, src);
  1577   emit_byte(0x0F);
  1578   emit_byte(0x7F);
  1579   emit_operand(src, dst);
  1582 void Assembler::movdqu(XMMRegister dst, Address src) {
  1583   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1584   InstructionMark im(this);
  1585   emit_byte(0xF3);
  1586   prefix(src, dst);
  1587   emit_byte(0x0F);
  1588   emit_byte(0x6F);
  1589   emit_operand(dst, src);
  1592 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1593   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1594   emit_byte(0xF3);
  1595   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1596   emit_byte(0x0F);
  1597   emit_byte(0x6F);
  1598   emit_byte(0xC0 | encode);
  1601 void Assembler::movdqu(Address dst, XMMRegister src) {
  1602   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1603   InstructionMark im(this);
  1604   emit_byte(0xF3);
  1605   prefix(dst, src);
  1606   emit_byte(0x0F);
  1607   emit_byte(0x7F);
  1608   emit_operand(src, dst);
  1611 // Uses zero extension on 64bit
  1613 void Assembler::movl(Register dst, int32_t imm32) {
  1614   int encode = prefix_and_encode(dst->encoding());
  1615   emit_byte(0xB8 | encode);
  1616   emit_long(imm32);
  1619 void Assembler::movl(Register dst, Register src) {
  1620   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1621   emit_byte(0x8B);
  1622   emit_byte(0xC0 | encode);
  1625 void Assembler::movl(Register dst, Address src) {
  1626   InstructionMark im(this);
  1627   prefix(src, dst);
  1628   emit_byte(0x8B);
  1629   emit_operand(dst, src);
  1632 void Assembler::movl(Address dst, int32_t imm32) {
  1633   InstructionMark im(this);
  1634   prefix(dst);
  1635   emit_byte(0xC7);
  1636   emit_operand(rax, dst, 4);
  1637   emit_long(imm32);
  1640 void Assembler::movl(Address dst, Register src) {
  1641   InstructionMark im(this);
  1642   prefix(dst, src);
  1643   emit_byte(0x89);
  1644   emit_operand(src, dst);
  1647 // New cpus require to use movsd and movss to avoid partial register stall
  1648 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1649 // The selection is done in MacroAssembler::movdbl() and movflt().
  1650 void Assembler::movlpd(XMMRegister dst, Address src) {
  1651   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1652   InstructionMark im(this);
  1653   emit_byte(0x66);
  1654   prefix(src, dst);
  1655   emit_byte(0x0F);
  1656   emit_byte(0x12);
  1657   emit_operand(dst, src);
  1660 void Assembler::movq( MMXRegister dst, Address src ) {
  1661   assert( VM_Version::supports_mmx(), "" );
  1662   emit_byte(0x0F);
  1663   emit_byte(0x6F);
  1664   emit_operand(dst, src);
  1667 void Assembler::movq( Address dst, MMXRegister src ) {
  1668   assert( VM_Version::supports_mmx(), "" );
  1669   emit_byte(0x0F);
  1670   emit_byte(0x7F);
  1671   // workaround gcc (3.2.1-7a) bug
  1672   // In that version of gcc with only an emit_operand(MMX, Address)
  1673   // gcc will tail jump and try and reverse the parameters completely
  1674   // obliterating dst in the process. By having a version available
  1675   // that doesn't need to swap the args at the tail jump the bug is
  1676   // avoided.
  1677   emit_operand(dst, src);
  1680 void Assembler::movq(XMMRegister dst, Address src) {
  1681   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1682   InstructionMark im(this);
  1683   emit_byte(0xF3);
  1684   prefix(src, dst);
  1685   emit_byte(0x0F);
  1686   emit_byte(0x7E);
  1687   emit_operand(dst, src);
  1690 void Assembler::movq(Address dst, XMMRegister src) {
  1691   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1692   InstructionMark im(this);
  1693   emit_byte(0x66);
  1694   prefix(dst, src);
  1695   emit_byte(0x0F);
  1696   emit_byte(0xD6);
  1697   emit_operand(src, dst);
  1700 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1701   InstructionMark im(this);
  1702   prefix(src, dst);
  1703   emit_byte(0x0F);
  1704   emit_byte(0xBE);
  1705   emit_operand(dst, src);
  1708 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1709   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1710   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1711   emit_byte(0x0F);
  1712   emit_byte(0xBE);
  1713   emit_byte(0xC0 | encode);
  1716 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1717   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1718   emit_byte(0xF2);
  1719   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1720   emit_byte(0x0F);
  1721   emit_byte(0x10);
  1722   emit_byte(0xC0 | encode);
  1725 void Assembler::movsd(XMMRegister dst, Address src) {
  1726   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1727   InstructionMark im(this);
  1728   emit_byte(0xF2);
  1729   prefix(src, dst);
  1730   emit_byte(0x0F);
  1731   emit_byte(0x10);
  1732   emit_operand(dst, src);
  1735 void Assembler::movsd(Address dst, XMMRegister src) {
  1736   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1737   InstructionMark im(this);
  1738   emit_byte(0xF2);
  1739   prefix(dst, src);
  1740   emit_byte(0x0F);
  1741   emit_byte(0x11);
  1742   emit_operand(src, dst);
  1745 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1746   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1747   emit_byte(0xF3);
  1748   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1749   emit_byte(0x0F);
  1750   emit_byte(0x10);
  1751   emit_byte(0xC0 | encode);
  1754 void Assembler::movss(XMMRegister dst, Address src) {
  1755   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1756   InstructionMark im(this);
  1757   emit_byte(0xF3);
  1758   prefix(src, dst);
  1759   emit_byte(0x0F);
  1760   emit_byte(0x10);
  1761   emit_operand(dst, src);
  1764 void Assembler::movss(Address dst, XMMRegister src) {
  1765   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1766   InstructionMark im(this);
  1767   emit_byte(0xF3);
  1768   prefix(dst, src);
  1769   emit_byte(0x0F);
  1770   emit_byte(0x11);
  1771   emit_operand(src, dst);
  1774 void Assembler::movswl(Register dst, Address src) { // movsxw
  1775   InstructionMark im(this);
  1776   prefix(src, dst);
  1777   emit_byte(0x0F);
  1778   emit_byte(0xBF);
  1779   emit_operand(dst, src);
  1782 void Assembler::movswl(Register dst, Register src) { // movsxw
  1783   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1784   emit_byte(0x0F);
  1785   emit_byte(0xBF);
  1786   emit_byte(0xC0 | encode);
  1789 void Assembler::movw(Address dst, int imm16) {
  1790   InstructionMark im(this);
  1792   emit_byte(0x66); // switch to 16-bit mode
  1793   prefix(dst);
  1794   emit_byte(0xC7);
  1795   emit_operand(rax, dst, 2);
  1796   emit_word(imm16);
  1799 void Assembler::movw(Register dst, Address src) {
  1800   InstructionMark im(this);
  1801   emit_byte(0x66);
  1802   prefix(src, dst);
  1803   emit_byte(0x8B);
  1804   emit_operand(dst, src);
  1807 void Assembler::movw(Address dst, Register src) {
  1808   InstructionMark im(this);
  1809   emit_byte(0x66);
  1810   prefix(dst, src);
  1811   emit_byte(0x89);
  1812   emit_operand(src, dst);
  1815 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1816   InstructionMark im(this);
  1817   prefix(src, dst);
  1818   emit_byte(0x0F);
  1819   emit_byte(0xB6);
  1820   emit_operand(dst, src);
  1823 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1824   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1825   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1826   emit_byte(0x0F);
  1827   emit_byte(0xB6);
  1828   emit_byte(0xC0 | encode);
  1831 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1832   InstructionMark im(this);
  1833   prefix(src, dst);
  1834   emit_byte(0x0F);
  1835   emit_byte(0xB7);
  1836   emit_operand(dst, src);
  1839 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1840   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1841   emit_byte(0x0F);
  1842   emit_byte(0xB7);
  1843   emit_byte(0xC0 | encode);
  1846 void Assembler::mull(Address src) {
  1847   InstructionMark im(this);
  1848   prefix(src);
  1849   emit_byte(0xF7);
  1850   emit_operand(rsp, src);
  1853 void Assembler::mull(Register src) {
  1854   int encode = prefix_and_encode(src->encoding());
  1855   emit_byte(0xF7);
  1856   emit_byte(0xE0 | encode);
  1859 void Assembler::mulsd(XMMRegister dst, Address src) {
  1860   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1861   InstructionMark im(this);
  1862   emit_byte(0xF2);
  1863   prefix(src, dst);
  1864   emit_byte(0x0F);
  1865   emit_byte(0x59);
  1866   emit_operand(dst, src);
  1869 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  1870   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1871   emit_byte(0xF2);
  1872   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1873   emit_byte(0x0F);
  1874   emit_byte(0x59);
  1875   emit_byte(0xC0 | encode);
  1878 void Assembler::mulss(XMMRegister dst, Address src) {
  1879   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1880   InstructionMark im(this);
  1881   emit_byte(0xF3);
  1882   prefix(src, dst);
  1883   emit_byte(0x0F);
  1884   emit_byte(0x59);
  1885   emit_operand(dst, src);
  1888 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  1889   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1890   emit_byte(0xF3);
  1891   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1892   emit_byte(0x0F);
  1893   emit_byte(0x59);
  1894   emit_byte(0xC0 | encode);
  1897 void Assembler::negl(Register dst) {
  1898   int encode = prefix_and_encode(dst->encoding());
  1899   emit_byte(0xF7);
  1900   emit_byte(0xD8 | encode);
  1903 void Assembler::nop(int i) {
  1904 #ifdef ASSERT
  1905   assert(i > 0, " ");
  1906   // The fancy nops aren't currently recognized by debuggers making it a
  1907   // pain to disassemble code while debugging. If asserts are on clearly
  1908   // speed is not an issue so simply use the single byte traditional nop
  1909   // to do alignment.
  1911   for (; i > 0 ; i--) emit_byte(0x90);
  1912   return;
  1914 #endif // ASSERT
  1916   if (UseAddressNop && VM_Version::is_intel()) {
  1917     //
  1918     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  1919     //  1: 0x90
  1920     //  2: 0x66 0x90
  1921     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  1922     //  4: 0x0F 0x1F 0x40 0x00
  1923     //  5: 0x0F 0x1F 0x44 0x00 0x00
  1924     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  1925     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  1926     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1927     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1928     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1929     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1931     // The rest coding is Intel specific - don't use consecutive address nops
  1933     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1934     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1935     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1936     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1938     while(i >= 15) {
  1939       // For Intel don't generate consecutive addess nops (mix with regular nops)
  1940       i -= 15;
  1941       emit_byte(0x66);   // size prefix
  1942       emit_byte(0x66);   // size prefix
  1943       emit_byte(0x66);   // size prefix
  1944       addr_nop_8();
  1945       emit_byte(0x66);   // size prefix
  1946       emit_byte(0x66);   // size prefix
  1947       emit_byte(0x66);   // size prefix
  1948       emit_byte(0x90);   // nop
  1950     switch (i) {
  1951       case 14:
  1952         emit_byte(0x66); // size prefix
  1953       case 13:
  1954         emit_byte(0x66); // size prefix
  1955       case 12:
  1956         addr_nop_8();
  1957         emit_byte(0x66); // size prefix
  1958         emit_byte(0x66); // size prefix
  1959         emit_byte(0x66); // size prefix
  1960         emit_byte(0x90); // nop
  1961         break;
  1962       case 11:
  1963         emit_byte(0x66); // size prefix
  1964       case 10:
  1965         emit_byte(0x66); // size prefix
  1966       case 9:
  1967         emit_byte(0x66); // size prefix
  1968       case 8:
  1969         addr_nop_8();
  1970         break;
  1971       case 7:
  1972         addr_nop_7();
  1973         break;
  1974       case 6:
  1975         emit_byte(0x66); // size prefix
  1976       case 5:
  1977         addr_nop_5();
  1978         break;
  1979       case 4:
  1980         addr_nop_4();
  1981         break;
  1982       case 3:
  1983         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  1984         emit_byte(0x66); // size prefix
  1985       case 2:
  1986         emit_byte(0x66); // size prefix
  1987       case 1:
  1988         emit_byte(0x90); // nop
  1989         break;
  1990       default:
  1991         assert(i == 0, " ");
  1993     return;
  1995   if (UseAddressNop && VM_Version::is_amd()) {
  1996     //
  1997     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  1998     //  1: 0x90
  1999     //  2: 0x66 0x90
  2000     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2001     //  4: 0x0F 0x1F 0x40 0x00
  2002     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2003     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2004     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2005     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2006     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2007     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2008     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2010     // The rest coding is AMD specific - use consecutive address nops
  2012     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2013     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2014     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2015     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2016     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2017     //     Size prefixes (0x66) are added for larger sizes
  2019     while(i >= 22) {
  2020       i -= 11;
  2021       emit_byte(0x66); // size prefix
  2022       emit_byte(0x66); // size prefix
  2023       emit_byte(0x66); // size prefix
  2024       addr_nop_8();
  2026     // Generate first nop for size between 21-12
  2027     switch (i) {
  2028       case 21:
  2029         i -= 1;
  2030         emit_byte(0x66); // size prefix
  2031       case 20:
  2032       case 19:
  2033         i -= 1;
  2034         emit_byte(0x66); // size prefix
  2035       case 18:
  2036       case 17:
  2037         i -= 1;
  2038         emit_byte(0x66); // size prefix
  2039       case 16:
  2040       case 15:
  2041         i -= 8;
  2042         addr_nop_8();
  2043         break;
  2044       case 14:
  2045       case 13:
  2046         i -= 7;
  2047         addr_nop_7();
  2048         break;
  2049       case 12:
  2050         i -= 6;
  2051         emit_byte(0x66); // size prefix
  2052         addr_nop_5();
  2053         break;
  2054       default:
  2055         assert(i < 12, " ");
  2058     // Generate second nop for size between 11-1
  2059     switch (i) {
  2060       case 11:
  2061         emit_byte(0x66); // size prefix
  2062       case 10:
  2063         emit_byte(0x66); // size prefix
  2064       case 9:
  2065         emit_byte(0x66); // size prefix
  2066       case 8:
  2067         addr_nop_8();
  2068         break;
  2069       case 7:
  2070         addr_nop_7();
  2071         break;
  2072       case 6:
  2073         emit_byte(0x66); // size prefix
  2074       case 5:
  2075         addr_nop_5();
  2076         break;
  2077       case 4:
  2078         addr_nop_4();
  2079         break;
  2080       case 3:
  2081         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2082         emit_byte(0x66); // size prefix
  2083       case 2:
  2084         emit_byte(0x66); // size prefix
  2085       case 1:
  2086         emit_byte(0x90); // nop
  2087         break;
  2088       default:
  2089         assert(i == 0, " ");
  2091     return;
  2094   // Using nops with size prefixes "0x66 0x90".
  2095   // From AMD Optimization Guide:
  2096   //  1: 0x90
  2097   //  2: 0x66 0x90
  2098   //  3: 0x66 0x66 0x90
  2099   //  4: 0x66 0x66 0x66 0x90
  2100   //  5: 0x66 0x66 0x90 0x66 0x90
  2101   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2102   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2103   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2104   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2105   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2106   //
  2107   while(i > 12) {
  2108     i -= 4;
  2109     emit_byte(0x66); // size prefix
  2110     emit_byte(0x66);
  2111     emit_byte(0x66);
  2112     emit_byte(0x90); // nop
  2114   // 1 - 12 nops
  2115   if(i > 8) {
  2116     if(i > 9) {
  2117       i -= 1;
  2118       emit_byte(0x66);
  2120     i -= 3;
  2121     emit_byte(0x66);
  2122     emit_byte(0x66);
  2123     emit_byte(0x90);
  2125   // 1 - 8 nops
  2126   if(i > 4) {
  2127     if(i > 6) {
  2128       i -= 1;
  2129       emit_byte(0x66);
  2131     i -= 3;
  2132     emit_byte(0x66);
  2133     emit_byte(0x66);
  2134     emit_byte(0x90);
  2136   switch (i) {
  2137     case 4:
  2138       emit_byte(0x66);
  2139     case 3:
  2140       emit_byte(0x66);
  2141     case 2:
  2142       emit_byte(0x66);
  2143     case 1:
  2144       emit_byte(0x90);
  2145       break;
  2146     default:
  2147       assert(i == 0, " ");
  2151 void Assembler::notl(Register dst) {
  2152   int encode = prefix_and_encode(dst->encoding());
  2153   emit_byte(0xF7);
  2154   emit_byte(0xD0 | encode );
  2157 void Assembler::orl(Address dst, int32_t imm32) {
  2158   InstructionMark im(this);
  2159   prefix(dst);
  2160   emit_byte(0x81);
  2161   emit_operand(rcx, dst, 4);
  2162   emit_long(imm32);
  2165 void Assembler::orl(Register dst, int32_t imm32) {
  2166   prefix(dst);
  2167   emit_arith(0x81, 0xC8, dst, imm32);
  2171 void Assembler::orl(Register dst, Address src) {
  2172   InstructionMark im(this);
  2173   prefix(src, dst);
  2174   emit_byte(0x0B);
  2175   emit_operand(dst, src);
  2179 void Assembler::orl(Register dst, Register src) {
  2180   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2181   emit_arith(0x0B, 0xC0, dst, src);
  2184 // generic
  2185 void Assembler::pop(Register dst) {
  2186   int encode = prefix_and_encode(dst->encoding());
  2187   emit_byte(0x58 | encode);
  2190 void Assembler::popf() {
  2191   emit_byte(0x9D);
  2194 void Assembler::popl(Address dst) {
  2195   // NOTE: this will adjust stack by 8byte on 64bits
  2196   InstructionMark im(this);
  2197   prefix(dst);
  2198   emit_byte(0x8F);
  2199   emit_operand(rax, dst);
  2202 void Assembler::prefetch_prefix(Address src) {
  2203   prefix(src);
  2204   emit_byte(0x0F);
  2207 void Assembler::prefetchnta(Address src) {
  2208   NOT_LP64(assert(VM_Version::supports_sse2(), "must support"));
  2209   InstructionMark im(this);
  2210   prefetch_prefix(src);
  2211   emit_byte(0x18);
  2212   emit_operand(rax, src); // 0, src
  2215 void Assembler::prefetchr(Address src) {
  2216   NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
  2217   InstructionMark im(this);
  2218   prefetch_prefix(src);
  2219   emit_byte(0x0D);
  2220   emit_operand(rax, src); // 0, src
  2223 void Assembler::prefetcht0(Address src) {
  2224   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2225   InstructionMark im(this);
  2226   prefetch_prefix(src);
  2227   emit_byte(0x18);
  2228   emit_operand(rcx, src); // 1, src
  2231 void Assembler::prefetcht1(Address src) {
  2232   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2233   InstructionMark im(this);
  2234   prefetch_prefix(src);
  2235   emit_byte(0x18);
  2236   emit_operand(rdx, src); // 2, src
  2239 void Assembler::prefetcht2(Address src) {
  2240   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2241   InstructionMark im(this);
  2242   prefetch_prefix(src);
  2243   emit_byte(0x18);
  2244   emit_operand(rbx, src); // 3, src
  2247 void Assembler::prefetchw(Address src) {
  2248   NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
  2249   InstructionMark im(this);
  2250   prefetch_prefix(src);
  2251   emit_byte(0x0D);
  2252   emit_operand(rcx, src); // 1, src
  2255 void Assembler::prefix(Prefix p) {
  2256   a_byte(p);
  2259 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2260   assert(isByte(mode), "invalid value");
  2261   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2263   emit_byte(0x66);
  2264   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2265   emit_byte(0x0F);
  2266   emit_byte(0x70);
  2267   emit_byte(0xC0 | encode);
  2268   emit_byte(mode & 0xFF);
  2272 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2273   assert(isByte(mode), "invalid value");
  2274   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2276   InstructionMark im(this);
  2277   emit_byte(0x66);
  2278   prefix(src, dst);
  2279   emit_byte(0x0F);
  2280   emit_byte(0x70);
  2281   emit_operand(dst, src);
  2282   emit_byte(mode & 0xFF);
  2285 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2286   assert(isByte(mode), "invalid value");
  2287   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2289   emit_byte(0xF2);
  2290   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2291   emit_byte(0x0F);
  2292   emit_byte(0x70);
  2293   emit_byte(0xC0 | encode);
  2294   emit_byte(mode & 0xFF);
  2297 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2298   assert(isByte(mode), "invalid value");
  2299   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2301   InstructionMark im(this);
  2302   emit_byte(0xF2);
  2303   prefix(src, dst); // QQ new
  2304   emit_byte(0x0F);
  2305   emit_byte(0x70);
  2306   emit_operand(dst, src);
  2307   emit_byte(mode & 0xFF);
  2310 void Assembler::psrlq(XMMRegister dst, int shift) {
  2311   // HMM Table D-1 says sse2 or mmx
  2312   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2314   int encode = prefixq_and_encode(xmm2->encoding(), dst->encoding());
  2315   emit_byte(0x66);
  2316   emit_byte(0x0F);
  2317   emit_byte(0x73);
  2318   emit_byte(0xC0 | encode);
  2319   emit_byte(shift);
  2322 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2323   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2324   emit_byte(0x66);
  2325   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2326   emit_byte(0x0F);
  2327   emit_byte(0x60);
  2328   emit_byte(0xC0 | encode);
  2331 void Assembler::push(int32_t imm32) {
  2332   // in 64bits we push 64bits onto the stack but only
  2333   // take a 32bit immediate
  2334   emit_byte(0x68);
  2335   emit_long(imm32);
  2338 void Assembler::push(Register src) {
  2339   int encode = prefix_and_encode(src->encoding());
  2341   emit_byte(0x50 | encode);
  2344 void Assembler::pushf() {
  2345   emit_byte(0x9C);
  2348 void Assembler::pushl(Address src) {
  2349   // Note this will push 64bit on 64bit
  2350   InstructionMark im(this);
  2351   prefix(src);
  2352   emit_byte(0xFF);
  2353   emit_operand(rsi, src);
  2356 void Assembler::pxor(XMMRegister dst, Address src) {
  2357   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2358   InstructionMark im(this);
  2359   emit_byte(0x66);
  2360   prefix(src, dst);
  2361   emit_byte(0x0F);
  2362   emit_byte(0xEF);
  2363   emit_operand(dst, src);
  2366 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  2367   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2368   InstructionMark im(this);
  2369   emit_byte(0x66);
  2370   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2371   emit_byte(0x0F);
  2372   emit_byte(0xEF);
  2373   emit_byte(0xC0 | encode);
  2376 void Assembler::rcll(Register dst, int imm8) {
  2377   assert(isShiftCount(imm8), "illegal shift count");
  2378   int encode = prefix_and_encode(dst->encoding());
  2379   if (imm8 == 1) {
  2380     emit_byte(0xD1);
  2381     emit_byte(0xD0 | encode);
  2382   } else {
  2383     emit_byte(0xC1);
  2384     emit_byte(0xD0 | encode);
  2385     emit_byte(imm8);
  2389 // copies data from [esi] to [edi] using rcx pointer sized words
  2390 // generic
  2391 void Assembler::rep_mov() {
  2392   emit_byte(0xF3);
  2393   // MOVSQ
  2394   LP64_ONLY(prefix(REX_W));
  2395   emit_byte(0xA5);
  2398 // sets rcx pointer sized words with rax, value at [edi]
  2399 // generic
  2400 void Assembler::rep_set() { // rep_set
  2401   emit_byte(0xF3);
  2402   // STOSQ
  2403   LP64_ONLY(prefix(REX_W));
  2404   emit_byte(0xAB);
  2407 // scans rcx pointer sized words at [edi] for occurance of rax,
  2408 // generic
  2409 void Assembler::repne_scan() { // repne_scan
  2410   emit_byte(0xF2);
  2411   // SCASQ
  2412   LP64_ONLY(prefix(REX_W));
  2413   emit_byte(0xAF);
  2416 #ifdef _LP64
  2417 // scans rcx 4 byte words at [edi] for occurance of rax,
  2418 // generic
  2419 void Assembler::repne_scanl() { // repne_scan
  2420   emit_byte(0xF2);
  2421   // SCASL
  2422   emit_byte(0xAF);
  2424 #endif
  2426 void Assembler::ret(int imm16) {
  2427   if (imm16 == 0) {
  2428     emit_byte(0xC3);
  2429   } else {
  2430     emit_byte(0xC2);
  2431     emit_word(imm16);
  2435 void Assembler::sahf() {
  2436 #ifdef _LP64
  2437   // Not supported in 64bit mode
  2438   ShouldNotReachHere();
  2439 #endif
  2440   emit_byte(0x9E);
  2443 void Assembler::sarl(Register dst, int imm8) {
  2444   int encode = prefix_and_encode(dst->encoding());
  2445   assert(isShiftCount(imm8), "illegal shift count");
  2446   if (imm8 == 1) {
  2447     emit_byte(0xD1);
  2448     emit_byte(0xF8 | encode);
  2449   } else {
  2450     emit_byte(0xC1);
  2451     emit_byte(0xF8 | encode);
  2452     emit_byte(imm8);
  2456 void Assembler::sarl(Register dst) {
  2457   int encode = prefix_and_encode(dst->encoding());
  2458   emit_byte(0xD3);
  2459   emit_byte(0xF8 | encode);
  2462 void Assembler::sbbl(Address dst, int32_t imm32) {
  2463   InstructionMark im(this);
  2464   prefix(dst);
  2465   emit_arith_operand(0x81, rbx, dst, imm32);
  2468 void Assembler::sbbl(Register dst, int32_t imm32) {
  2469   prefix(dst);
  2470   emit_arith(0x81, 0xD8, dst, imm32);
  2474 void Assembler::sbbl(Register dst, Address src) {
  2475   InstructionMark im(this);
  2476   prefix(src, dst);
  2477   emit_byte(0x1B);
  2478   emit_operand(dst, src);
  2481 void Assembler::sbbl(Register dst, Register src) {
  2482   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2483   emit_arith(0x1B, 0xC0, dst, src);
  2486 void Assembler::setb(Condition cc, Register dst) {
  2487   assert(0 <= cc && cc < 16, "illegal cc");
  2488   int encode = prefix_and_encode(dst->encoding(), true);
  2489   emit_byte(0x0F);
  2490   emit_byte(0x90 | cc);
  2491   emit_byte(0xC0 | encode);
  2494 void Assembler::shll(Register dst, int imm8) {
  2495   assert(isShiftCount(imm8), "illegal shift count");
  2496   int encode = prefix_and_encode(dst->encoding());
  2497   if (imm8 == 1 ) {
  2498     emit_byte(0xD1);
  2499     emit_byte(0xE0 | encode);
  2500   } else {
  2501     emit_byte(0xC1);
  2502     emit_byte(0xE0 | encode);
  2503     emit_byte(imm8);
  2507 void Assembler::shll(Register dst) {
  2508   int encode = prefix_and_encode(dst->encoding());
  2509   emit_byte(0xD3);
  2510   emit_byte(0xE0 | encode);
  2513 void Assembler::shrl(Register dst, int imm8) {
  2514   assert(isShiftCount(imm8), "illegal shift count");
  2515   int encode = prefix_and_encode(dst->encoding());
  2516   emit_byte(0xC1);
  2517   emit_byte(0xE8 | encode);
  2518   emit_byte(imm8);
  2521 void Assembler::shrl(Register dst) {
  2522   int encode = prefix_and_encode(dst->encoding());
  2523   emit_byte(0xD3);
  2524   emit_byte(0xE8 | encode);
  2527 // copies a single word from [esi] to [edi]
  2528 void Assembler::smovl() {
  2529   emit_byte(0xA5);
  2532 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2533   // HMM Table D-1 says sse2
  2534   // NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2535   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2536   emit_byte(0xF2);
  2537   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2538   emit_byte(0x0F);
  2539   emit_byte(0x51);
  2540   emit_byte(0xC0 | encode);
  2543 void Assembler::stmxcsr( Address dst) {
  2544   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2545   InstructionMark im(this);
  2546   prefix(dst);
  2547   emit_byte(0x0F);
  2548   emit_byte(0xAE);
  2549   emit_operand(as_Register(3), dst);
  2552 void Assembler::subl(Address dst, int32_t imm32) {
  2553   InstructionMark im(this);
  2554   prefix(dst);
  2555   if (is8bit(imm32)) {
  2556     emit_byte(0x83);
  2557     emit_operand(rbp, dst, 1);
  2558     emit_byte(imm32 & 0xFF);
  2559   } else {
  2560     emit_byte(0x81);
  2561     emit_operand(rbp, dst, 4);
  2562     emit_long(imm32);
  2566 void Assembler::subl(Register dst, int32_t imm32) {
  2567   prefix(dst);
  2568   emit_arith(0x81, 0xE8, dst, imm32);
  2571 void Assembler::subl(Address dst, Register src) {
  2572   InstructionMark im(this);
  2573   prefix(dst, src);
  2574   emit_byte(0x29);
  2575   emit_operand(src, dst);
  2578 void Assembler::subl(Register dst, Address src) {
  2579   InstructionMark im(this);
  2580   prefix(src, dst);
  2581   emit_byte(0x2B);
  2582   emit_operand(dst, src);
  2585 void Assembler::subl(Register dst, Register src) {
  2586   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2587   emit_arith(0x2B, 0xC0, dst, src);
  2590 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2591   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2592   emit_byte(0xF2);
  2593   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2594   emit_byte(0x0F);
  2595   emit_byte(0x5C);
  2596   emit_byte(0xC0 | encode);
  2599 void Assembler::subsd(XMMRegister dst, Address src) {
  2600   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2601   InstructionMark im(this);
  2602   emit_byte(0xF2);
  2603   prefix(src, dst);
  2604   emit_byte(0x0F);
  2605   emit_byte(0x5C);
  2606   emit_operand(dst, src);
  2609 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2610   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2611   emit_byte(0xF3);
  2612   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2613   emit_byte(0x0F);
  2614   emit_byte(0x5C);
  2615   emit_byte(0xC0 | encode);
  2618 void Assembler::subss(XMMRegister dst, Address src) {
  2619   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2620   InstructionMark im(this);
  2621   emit_byte(0xF3);
  2622   prefix(src, dst);
  2623   emit_byte(0x0F);
  2624   emit_byte(0x5C);
  2625   emit_operand(dst, src);
  2628 void Assembler::testb(Register dst, int imm8) {
  2629   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2630   (void) prefix_and_encode(dst->encoding(), true);
  2631   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2634 void Assembler::testl(Register dst, int32_t imm32) {
  2635   // not using emit_arith because test
  2636   // doesn't support sign-extension of
  2637   // 8bit operands
  2638   int encode = dst->encoding();
  2639   if (encode == 0) {
  2640     emit_byte(0xA9);
  2641   } else {
  2642     encode = prefix_and_encode(encode);
  2643     emit_byte(0xF7);
  2644     emit_byte(0xC0 | encode);
  2646   emit_long(imm32);
  2649 void Assembler::testl(Register dst, Register src) {
  2650   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2651   emit_arith(0x85, 0xC0, dst, src);
  2654 void Assembler::testl(Register dst, Address  src) {
  2655   InstructionMark im(this);
  2656   prefix(src, dst);
  2657   emit_byte(0x85);
  2658   emit_operand(dst, src);
  2661 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2662   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2663   emit_byte(0x66);
  2664   ucomiss(dst, src);
  2667 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2668   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2669   emit_byte(0x66);
  2670   ucomiss(dst, src);
  2673 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2674   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2676   InstructionMark im(this);
  2677   prefix(src, dst);
  2678   emit_byte(0x0F);
  2679   emit_byte(0x2E);
  2680   emit_operand(dst, src);
  2683 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2684   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2685   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2686   emit_byte(0x0F);
  2687   emit_byte(0x2E);
  2688   emit_byte(0xC0 | encode);
  2692 void Assembler::xaddl(Address dst, Register src) {
  2693   InstructionMark im(this);
  2694   prefix(dst, src);
  2695   emit_byte(0x0F);
  2696   emit_byte(0xC1);
  2697   emit_operand(src, dst);
  2700 void Assembler::xchgl(Register dst, Address src) { // xchg
  2701   InstructionMark im(this);
  2702   prefix(src, dst);
  2703   emit_byte(0x87);
  2704   emit_operand(dst, src);
  2707 void Assembler::xchgl(Register dst, Register src) {
  2708   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2709   emit_byte(0x87);
  2710   emit_byte(0xc0 | encode);
  2713 void Assembler::xorl(Register dst, int32_t imm32) {
  2714   prefix(dst);
  2715   emit_arith(0x81, 0xF0, dst, imm32);
  2718 void Assembler::xorl(Register dst, Address src) {
  2719   InstructionMark im(this);
  2720   prefix(src, dst);
  2721   emit_byte(0x33);
  2722   emit_operand(dst, src);
  2725 void Assembler::xorl(Register dst, Register src) {
  2726   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2727   emit_arith(0x33, 0xC0, dst, src);
  2730 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  2731   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2732   emit_byte(0x66);
  2733   xorps(dst, src);
  2736 void Assembler::xorpd(XMMRegister dst, Address src) {
  2737   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2738   InstructionMark im(this);
  2739   emit_byte(0x66);
  2740   prefix(src, dst);
  2741   emit_byte(0x0F);
  2742   emit_byte(0x57);
  2743   emit_operand(dst, src);
  2747 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  2748   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2749   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2750   emit_byte(0x0F);
  2751   emit_byte(0x57);
  2752   emit_byte(0xC0 | encode);
  2755 void Assembler::xorps(XMMRegister dst, Address src) {
  2756   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2757   InstructionMark im(this);
  2758   prefix(src, dst);
  2759   emit_byte(0x0F);
  2760   emit_byte(0x57);
  2761   emit_operand(dst, src);
  2764 #ifndef _LP64
  2765 // 32bit only pieces of the assembler
  2767 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  2768   // NO PREFIX AS NEVER 64BIT
  2769   InstructionMark im(this);
  2770   emit_byte(0x81);
  2771   emit_byte(0xF8 | src1->encoding());
  2772   emit_data(imm32, rspec, 0);
  2775 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  2776   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  2777   InstructionMark im(this);
  2778   emit_byte(0x81);
  2779   emit_operand(rdi, src1);
  2780   emit_data(imm32, rspec, 0);
  2783 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  2784 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  2785 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  2786 void Assembler::cmpxchg8(Address adr) {
  2787   InstructionMark im(this);
  2788   emit_byte(0x0F);
  2789   emit_byte(0xc7);
  2790   emit_operand(rcx, adr);
  2793 void Assembler::decl(Register dst) {
  2794   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  2795  emit_byte(0x48 | dst->encoding());
  2798 #endif // _LP64
  2800 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  2802 void Assembler::fabs() {
  2803   emit_byte(0xD9);
  2804   emit_byte(0xE1);
  2807 void Assembler::fadd(int i) {
  2808   emit_farith(0xD8, 0xC0, i);
  2811 void Assembler::fadd_d(Address src) {
  2812   InstructionMark im(this);
  2813   emit_byte(0xDC);
  2814   emit_operand32(rax, src);
  2817 void Assembler::fadd_s(Address src) {
  2818   InstructionMark im(this);
  2819   emit_byte(0xD8);
  2820   emit_operand32(rax, src);
  2823 void Assembler::fadda(int i) {
  2824   emit_farith(0xDC, 0xC0, i);
  2827 void Assembler::faddp(int i) {
  2828   emit_farith(0xDE, 0xC0, i);
  2831 void Assembler::fchs() {
  2832   emit_byte(0xD9);
  2833   emit_byte(0xE0);
  2836 void Assembler::fcom(int i) {
  2837   emit_farith(0xD8, 0xD0, i);
  2840 void Assembler::fcomp(int i) {
  2841   emit_farith(0xD8, 0xD8, i);
  2844 void Assembler::fcomp_d(Address src) {
  2845   InstructionMark im(this);
  2846   emit_byte(0xDC);
  2847   emit_operand32(rbx, src);
  2850 void Assembler::fcomp_s(Address src) {
  2851   InstructionMark im(this);
  2852   emit_byte(0xD8);
  2853   emit_operand32(rbx, src);
  2856 void Assembler::fcompp() {
  2857   emit_byte(0xDE);
  2858   emit_byte(0xD9);
  2861 void Assembler::fcos() {
  2862   emit_byte(0xD9);
  2863   emit_byte(0xFF);
  2866 void Assembler::fdecstp() {
  2867   emit_byte(0xD9);
  2868   emit_byte(0xF6);
  2871 void Assembler::fdiv(int i) {
  2872   emit_farith(0xD8, 0xF0, i);
  2875 void Assembler::fdiv_d(Address src) {
  2876   InstructionMark im(this);
  2877   emit_byte(0xDC);
  2878   emit_operand32(rsi, src);
  2881 void Assembler::fdiv_s(Address src) {
  2882   InstructionMark im(this);
  2883   emit_byte(0xD8);
  2884   emit_operand32(rsi, src);
  2887 void Assembler::fdiva(int i) {
  2888   emit_farith(0xDC, 0xF8, i);
  2891 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  2892 //       is erroneous for some of the floating-point instructions below.
  2894 void Assembler::fdivp(int i) {
  2895   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  2898 void Assembler::fdivr(int i) {
  2899   emit_farith(0xD8, 0xF8, i);
  2902 void Assembler::fdivr_d(Address src) {
  2903   InstructionMark im(this);
  2904   emit_byte(0xDC);
  2905   emit_operand32(rdi, src);
  2908 void Assembler::fdivr_s(Address src) {
  2909   InstructionMark im(this);
  2910   emit_byte(0xD8);
  2911   emit_operand32(rdi, src);
  2914 void Assembler::fdivra(int i) {
  2915   emit_farith(0xDC, 0xF0, i);
  2918 void Assembler::fdivrp(int i) {
  2919   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  2922 void Assembler::ffree(int i) {
  2923   emit_farith(0xDD, 0xC0, i);
  2926 void Assembler::fild_d(Address adr) {
  2927   InstructionMark im(this);
  2928   emit_byte(0xDF);
  2929   emit_operand32(rbp, adr);
  2932 void Assembler::fild_s(Address adr) {
  2933   InstructionMark im(this);
  2934   emit_byte(0xDB);
  2935   emit_operand32(rax, adr);
  2938 void Assembler::fincstp() {
  2939   emit_byte(0xD9);
  2940   emit_byte(0xF7);
  2943 void Assembler::finit() {
  2944   emit_byte(0x9B);
  2945   emit_byte(0xDB);
  2946   emit_byte(0xE3);
  2949 void Assembler::fist_s(Address adr) {
  2950   InstructionMark im(this);
  2951   emit_byte(0xDB);
  2952   emit_operand32(rdx, adr);
  2955 void Assembler::fistp_d(Address adr) {
  2956   InstructionMark im(this);
  2957   emit_byte(0xDF);
  2958   emit_operand32(rdi, adr);
  2961 void Assembler::fistp_s(Address adr) {
  2962   InstructionMark im(this);
  2963   emit_byte(0xDB);
  2964   emit_operand32(rbx, adr);
  2967 void Assembler::fld1() {
  2968   emit_byte(0xD9);
  2969   emit_byte(0xE8);
  2972 void Assembler::fld_d(Address adr) {
  2973   InstructionMark im(this);
  2974   emit_byte(0xDD);
  2975   emit_operand32(rax, adr);
  2978 void Assembler::fld_s(Address adr) {
  2979   InstructionMark im(this);
  2980   emit_byte(0xD9);
  2981   emit_operand32(rax, adr);
  2985 void Assembler::fld_s(int index) {
  2986   emit_farith(0xD9, 0xC0, index);
  2989 void Assembler::fld_x(Address adr) {
  2990   InstructionMark im(this);
  2991   emit_byte(0xDB);
  2992   emit_operand32(rbp, adr);
  2995 void Assembler::fldcw(Address src) {
  2996   InstructionMark im(this);
  2997   emit_byte(0xd9);
  2998   emit_operand32(rbp, src);
  3001 void Assembler::fldenv(Address src) {
  3002   InstructionMark im(this);
  3003   emit_byte(0xD9);
  3004   emit_operand32(rsp, src);
  3007 void Assembler::fldlg2() {
  3008   emit_byte(0xD9);
  3009   emit_byte(0xEC);
  3012 void Assembler::fldln2() {
  3013   emit_byte(0xD9);
  3014   emit_byte(0xED);
  3017 void Assembler::fldz() {
  3018   emit_byte(0xD9);
  3019   emit_byte(0xEE);
  3022 void Assembler::flog() {
  3023   fldln2();
  3024   fxch();
  3025   fyl2x();
  3028 void Assembler::flog10() {
  3029   fldlg2();
  3030   fxch();
  3031   fyl2x();
  3034 void Assembler::fmul(int i) {
  3035   emit_farith(0xD8, 0xC8, i);
  3038 void Assembler::fmul_d(Address src) {
  3039   InstructionMark im(this);
  3040   emit_byte(0xDC);
  3041   emit_operand32(rcx, src);
  3044 void Assembler::fmul_s(Address src) {
  3045   InstructionMark im(this);
  3046   emit_byte(0xD8);
  3047   emit_operand32(rcx, src);
  3050 void Assembler::fmula(int i) {
  3051   emit_farith(0xDC, 0xC8, i);
  3054 void Assembler::fmulp(int i) {
  3055   emit_farith(0xDE, 0xC8, i);
  3058 void Assembler::fnsave(Address dst) {
  3059   InstructionMark im(this);
  3060   emit_byte(0xDD);
  3061   emit_operand32(rsi, dst);
  3064 void Assembler::fnstcw(Address src) {
  3065   InstructionMark im(this);
  3066   emit_byte(0x9B);
  3067   emit_byte(0xD9);
  3068   emit_operand32(rdi, src);
  3071 void Assembler::fnstsw_ax() {
  3072   emit_byte(0xdF);
  3073   emit_byte(0xE0);
  3076 void Assembler::fprem() {
  3077   emit_byte(0xD9);
  3078   emit_byte(0xF8);
  3081 void Assembler::fprem1() {
  3082   emit_byte(0xD9);
  3083   emit_byte(0xF5);
  3086 void Assembler::frstor(Address src) {
  3087   InstructionMark im(this);
  3088   emit_byte(0xDD);
  3089   emit_operand32(rsp, src);
  3092 void Assembler::fsin() {
  3093   emit_byte(0xD9);
  3094   emit_byte(0xFE);
  3097 void Assembler::fsqrt() {
  3098   emit_byte(0xD9);
  3099   emit_byte(0xFA);
  3102 void Assembler::fst_d(Address adr) {
  3103   InstructionMark im(this);
  3104   emit_byte(0xDD);
  3105   emit_operand32(rdx, adr);
  3108 void Assembler::fst_s(Address adr) {
  3109   InstructionMark im(this);
  3110   emit_byte(0xD9);
  3111   emit_operand32(rdx, adr);
  3114 void Assembler::fstp_d(Address adr) {
  3115   InstructionMark im(this);
  3116   emit_byte(0xDD);
  3117   emit_operand32(rbx, adr);
  3120 void Assembler::fstp_d(int index) {
  3121   emit_farith(0xDD, 0xD8, index);
  3124 void Assembler::fstp_s(Address adr) {
  3125   InstructionMark im(this);
  3126   emit_byte(0xD9);
  3127   emit_operand32(rbx, adr);
  3130 void Assembler::fstp_x(Address adr) {
  3131   InstructionMark im(this);
  3132   emit_byte(0xDB);
  3133   emit_operand32(rdi, adr);
  3136 void Assembler::fsub(int i) {
  3137   emit_farith(0xD8, 0xE0, i);
  3140 void Assembler::fsub_d(Address src) {
  3141   InstructionMark im(this);
  3142   emit_byte(0xDC);
  3143   emit_operand32(rsp, src);
  3146 void Assembler::fsub_s(Address src) {
  3147   InstructionMark im(this);
  3148   emit_byte(0xD8);
  3149   emit_operand32(rsp, src);
  3152 void Assembler::fsuba(int i) {
  3153   emit_farith(0xDC, 0xE8, i);
  3156 void Assembler::fsubp(int i) {
  3157   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  3160 void Assembler::fsubr(int i) {
  3161   emit_farith(0xD8, 0xE8, i);
  3164 void Assembler::fsubr_d(Address src) {
  3165   InstructionMark im(this);
  3166   emit_byte(0xDC);
  3167   emit_operand32(rbp, src);
  3170 void Assembler::fsubr_s(Address src) {
  3171   InstructionMark im(this);
  3172   emit_byte(0xD8);
  3173   emit_operand32(rbp, src);
  3176 void Assembler::fsubra(int i) {
  3177   emit_farith(0xDC, 0xE0, i);
  3180 void Assembler::fsubrp(int i) {
  3181   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  3184 void Assembler::ftan() {
  3185   emit_byte(0xD9);
  3186   emit_byte(0xF2);
  3187   emit_byte(0xDD);
  3188   emit_byte(0xD8);
  3191 void Assembler::ftst() {
  3192   emit_byte(0xD9);
  3193   emit_byte(0xE4);
  3196 void Assembler::fucomi(int i) {
  3197   // make sure the instruction is supported (introduced for P6, together with cmov)
  3198   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3199   emit_farith(0xDB, 0xE8, i);
  3202 void Assembler::fucomip(int i) {
  3203   // make sure the instruction is supported (introduced for P6, together with cmov)
  3204   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3205   emit_farith(0xDF, 0xE8, i);
  3208 void Assembler::fwait() {
  3209   emit_byte(0x9B);
  3212 void Assembler::fxch(int i) {
  3213   emit_farith(0xD9, 0xC8, i);
  3216 void Assembler::fyl2x() {
  3217   emit_byte(0xD9);
  3218   emit_byte(0xF1);
  3221 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec, int format) {
  3222   InstructionMark im(this);
  3223   int encode = prefix_and_encode(dst->encoding());
  3224   emit_byte(0xB8 | encode);
  3225   emit_data((int)imm32, rspec, format);
  3228 #ifndef _LP64
  3230 void Assembler::incl(Register dst) {
  3231   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  3232  emit_byte(0x40 | dst->encoding());
  3235 void Assembler::lea(Register dst, Address src) {
  3236   leal(dst, src);
  3239 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  3240   InstructionMark im(this);
  3241   emit_byte(0xC7);
  3242   emit_operand(rax, dst);
  3243   emit_data((int)imm32, rspec, 0);
  3247 void Assembler::popa() { // 32bit
  3248   emit_byte(0x61);
  3251 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  3252   InstructionMark im(this);
  3253   emit_byte(0x68);
  3254   emit_data(imm32, rspec, 0);
  3257 void Assembler::pusha() { // 32bit
  3258   emit_byte(0x60);
  3261 void Assembler::set_byte_if_not_zero(Register dst) {
  3262   emit_byte(0x0F);
  3263   emit_byte(0x95);
  3264   emit_byte(0xE0 | dst->encoding());
  3267 void Assembler::shldl(Register dst, Register src) {
  3268   emit_byte(0x0F);
  3269   emit_byte(0xA5);
  3270   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3273 void Assembler::shrdl(Register dst, Register src) {
  3274   emit_byte(0x0F);
  3275   emit_byte(0xAD);
  3276   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3279 #else // LP64
  3281 // 64bit only pieces of the assembler
  3282 // This should only be used by 64bit instructions that can use rip-relative
  3283 // it cannot be used by instructions that want an immediate value.
  3285 bool Assembler::reachable(AddressLiteral adr) {
  3286   int64_t disp;
  3287   // None will force a 64bit literal to the code stream. Likely a placeholder
  3288   // for something that will be patched later and we need to certain it will
  3289   // always be reachable.
  3290   if (adr.reloc() == relocInfo::none) {
  3291     return false;
  3293   if (adr.reloc() == relocInfo::internal_word_type) {
  3294     // This should be rip relative and easily reachable.
  3295     return true;
  3297   if (adr.reloc() == relocInfo::virtual_call_type ||
  3298       adr.reloc() == relocInfo::opt_virtual_call_type ||
  3299       adr.reloc() == relocInfo::static_call_type ||
  3300       adr.reloc() == relocInfo::static_stub_type ) {
  3301     // This should be rip relative within the code cache and easily
  3302     // reachable until we get huge code caches. (At which point
  3303     // ic code is going to have issues).
  3304     return true;
  3306   if (adr.reloc() != relocInfo::external_word_type &&
  3307       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  3308       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  3309       adr.reloc() != relocInfo::runtime_call_type ) {
  3310     return false;
  3313   // Stress the correction code
  3314   if (ForceUnreachable) {
  3315     // Must be runtimecall reloc, see if it is in the codecache
  3316     // Flipping stuff in the codecache to be unreachable causes issues
  3317     // with things like inline caches where the additional instructions
  3318     // are not handled.
  3319     if (CodeCache::find_blob(adr._target) == NULL) {
  3320       return false;
  3323   // For external_word_type/runtime_call_type if it is reachable from where we
  3324   // are now (possibly a temp buffer) and where we might end up
  3325   // anywhere in the codeCache then we are always reachable.
  3326   // This would have to change if we ever save/restore shared code
  3327   // to be more pessimistic.
  3329   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  3330   if (!is_simm32(disp)) return false;
  3331   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  3332   if (!is_simm32(disp)) return false;
  3334   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
  3336   // Because rip relative is a disp + address_of_next_instruction and we
  3337   // don't know the value of address_of_next_instruction we apply a fudge factor
  3338   // to make sure we will be ok no matter the size of the instruction we get placed into.
  3339   // We don't have to fudge the checks above here because they are already worst case.
  3341   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  3342   // + 4 because better safe than sorry.
  3343   const int fudge = 12 + 4;
  3344   if (disp < 0) {
  3345     disp -= fudge;
  3346   } else {
  3347     disp += fudge;
  3349   return is_simm32(disp);
  3352 void Assembler::emit_data64(jlong data,
  3353                             relocInfo::relocType rtype,
  3354                             int format) {
  3355   if (rtype == relocInfo::none) {
  3356     emit_long64(data);
  3357   } else {
  3358     emit_data64(data, Relocation::spec_simple(rtype), format);
  3362 void Assembler::emit_data64(jlong data,
  3363                             RelocationHolder const& rspec,
  3364                             int format) {
  3365   assert(imm_operand == 0, "default format must be immediate in this file");
  3366   assert(imm_operand == format, "must be immediate");
  3367   assert(inst_mark() != NULL, "must be inside InstructionMark");
  3368   // Do not use AbstractAssembler::relocate, which is not intended for
  3369   // embedded words.  Instead, relocate to the enclosing instruction.
  3370   code_section()->relocate(inst_mark(), rspec, format);
  3371 #ifdef ASSERT
  3372   check_relocation(rspec, format);
  3373 #endif
  3374   emit_long64(data);
  3377 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  3378   if (reg_enc >= 8) {
  3379     prefix(REX_B);
  3380     reg_enc -= 8;
  3381   } else if (byteinst && reg_enc >= 4) {
  3382     prefix(REX);
  3384   return reg_enc;
  3387 int Assembler::prefixq_and_encode(int reg_enc) {
  3388   if (reg_enc < 8) {
  3389     prefix(REX_W);
  3390   } else {
  3391     prefix(REX_WB);
  3392     reg_enc -= 8;
  3394   return reg_enc;
  3397 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  3398   if (dst_enc < 8) {
  3399     if (src_enc >= 8) {
  3400       prefix(REX_B);
  3401       src_enc -= 8;
  3402     } else if (byteinst && src_enc >= 4) {
  3403       prefix(REX);
  3405   } else {
  3406     if (src_enc < 8) {
  3407       prefix(REX_R);
  3408     } else {
  3409       prefix(REX_RB);
  3410       src_enc -= 8;
  3412     dst_enc -= 8;
  3414   return dst_enc << 3 | src_enc;
  3417 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  3418   if (dst_enc < 8) {
  3419     if (src_enc < 8) {
  3420       prefix(REX_W);
  3421     } else {
  3422       prefix(REX_WB);
  3423       src_enc -= 8;
  3425   } else {
  3426     if (src_enc < 8) {
  3427       prefix(REX_WR);
  3428     } else {
  3429       prefix(REX_WRB);
  3430       src_enc -= 8;
  3432     dst_enc -= 8;
  3434   return dst_enc << 3 | src_enc;
  3437 void Assembler::prefix(Register reg) {
  3438   if (reg->encoding() >= 8) {
  3439     prefix(REX_B);
  3443 void Assembler::prefix(Address adr) {
  3444   if (adr.base_needs_rex()) {
  3445     if (adr.index_needs_rex()) {
  3446       prefix(REX_XB);
  3447     } else {
  3448       prefix(REX_B);
  3450   } else {
  3451     if (adr.index_needs_rex()) {
  3452       prefix(REX_X);
  3457 void Assembler::prefixq(Address adr) {
  3458   if (adr.base_needs_rex()) {
  3459     if (adr.index_needs_rex()) {
  3460       prefix(REX_WXB);
  3461     } else {
  3462       prefix(REX_WB);
  3464   } else {
  3465     if (adr.index_needs_rex()) {
  3466       prefix(REX_WX);
  3467     } else {
  3468       prefix(REX_W);
  3474 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  3475   if (reg->encoding() < 8) {
  3476     if (adr.base_needs_rex()) {
  3477       if (adr.index_needs_rex()) {
  3478         prefix(REX_XB);
  3479       } else {
  3480         prefix(REX_B);
  3482     } else {
  3483       if (adr.index_needs_rex()) {
  3484         prefix(REX_X);
  3485       } else if (reg->encoding() >= 4 ) {
  3486         prefix(REX);
  3489   } else {
  3490     if (adr.base_needs_rex()) {
  3491       if (adr.index_needs_rex()) {
  3492         prefix(REX_RXB);
  3493       } else {
  3494         prefix(REX_RB);
  3496     } else {
  3497       if (adr.index_needs_rex()) {
  3498         prefix(REX_RX);
  3499       } else {
  3500         prefix(REX_R);
  3506 void Assembler::prefixq(Address adr, Register src) {
  3507   if (src->encoding() < 8) {
  3508     if (adr.base_needs_rex()) {
  3509       if (adr.index_needs_rex()) {
  3510         prefix(REX_WXB);
  3511       } else {
  3512         prefix(REX_WB);
  3514     } else {
  3515       if (adr.index_needs_rex()) {
  3516         prefix(REX_WX);
  3517       } else {
  3518         prefix(REX_W);
  3521   } else {
  3522     if (adr.base_needs_rex()) {
  3523       if (adr.index_needs_rex()) {
  3524         prefix(REX_WRXB);
  3525       } else {
  3526         prefix(REX_WRB);
  3528     } else {
  3529       if (adr.index_needs_rex()) {
  3530         prefix(REX_WRX);
  3531       } else {
  3532         prefix(REX_WR);
  3538 void Assembler::prefix(Address adr, XMMRegister reg) {
  3539   if (reg->encoding() < 8) {
  3540     if (adr.base_needs_rex()) {
  3541       if (adr.index_needs_rex()) {
  3542         prefix(REX_XB);
  3543       } else {
  3544         prefix(REX_B);
  3546     } else {
  3547       if (adr.index_needs_rex()) {
  3548         prefix(REX_X);
  3551   } else {
  3552     if (adr.base_needs_rex()) {
  3553       if (adr.index_needs_rex()) {
  3554         prefix(REX_RXB);
  3555       } else {
  3556         prefix(REX_RB);
  3558     } else {
  3559       if (adr.index_needs_rex()) {
  3560         prefix(REX_RX);
  3561       } else {
  3562         prefix(REX_R);
  3568 void Assembler::adcq(Register dst, int32_t imm32) {
  3569   (void) prefixq_and_encode(dst->encoding());
  3570   emit_arith(0x81, 0xD0, dst, imm32);
  3573 void Assembler::adcq(Register dst, Address src) {
  3574   InstructionMark im(this);
  3575   prefixq(src, dst);
  3576   emit_byte(0x13);
  3577   emit_operand(dst, src);
  3580 void Assembler::adcq(Register dst, Register src) {
  3581   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  3582   emit_arith(0x13, 0xC0, dst, src);
  3585 void Assembler::addq(Address dst, int32_t imm32) {
  3586   InstructionMark im(this);
  3587   prefixq(dst);
  3588   emit_arith_operand(0x81, rax, dst,imm32);
  3591 void Assembler::addq(Address dst, Register src) {
  3592   InstructionMark im(this);
  3593   prefixq(dst, src);
  3594   emit_byte(0x01);
  3595   emit_operand(src, dst);
  3598 void Assembler::addq(Register dst, int32_t imm32) {
  3599   (void) prefixq_and_encode(dst->encoding());
  3600   emit_arith(0x81, 0xC0, dst, imm32);
  3603 void Assembler::addq(Register dst, Address src) {
  3604   InstructionMark im(this);
  3605   prefixq(src, dst);
  3606   emit_byte(0x03);
  3607   emit_operand(dst, src);
  3610 void Assembler::addq(Register dst, Register src) {
  3611   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  3612   emit_arith(0x03, 0xC0, dst, src);
  3615 void Assembler::andq(Register dst, int32_t imm32) {
  3616   (void) prefixq_and_encode(dst->encoding());
  3617   emit_arith(0x81, 0xE0, dst, imm32);
  3620 void Assembler::andq(Register dst, Address src) {
  3621   InstructionMark im(this);
  3622   prefixq(src, dst);
  3623   emit_byte(0x23);
  3624   emit_operand(dst, src);
  3627 void Assembler::andq(Register dst, Register src) {
  3628   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  3629   emit_arith(0x23, 0xC0, dst, src);
  3632 void Assembler::bswapq(Register reg) {
  3633   int encode = prefixq_and_encode(reg->encoding());
  3634   emit_byte(0x0F);
  3635   emit_byte(0xC8 | encode);
  3638 void Assembler::cdqq() {
  3639   prefix(REX_W);
  3640   emit_byte(0x99);
  3643 void Assembler::clflush(Address adr) {
  3644   prefix(adr);
  3645   emit_byte(0x0F);
  3646   emit_byte(0xAE);
  3647   emit_operand(rdi, adr);
  3650 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  3651   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3652   emit_byte(0x0F);
  3653   emit_byte(0x40 | cc);
  3654   emit_byte(0xC0 | encode);
  3657 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  3658   InstructionMark im(this);
  3659   prefixq(src, dst);
  3660   emit_byte(0x0F);
  3661   emit_byte(0x40 | cc);
  3662   emit_operand(dst, src);
  3665 void Assembler::cmpq(Address dst, int32_t imm32) {
  3666   InstructionMark im(this);
  3667   prefixq(dst);
  3668   emit_byte(0x81);
  3669   emit_operand(rdi, dst, 4);
  3670   emit_long(imm32);
  3673 void Assembler::cmpq(Register dst, int32_t imm32) {
  3674   (void) prefixq_and_encode(dst->encoding());
  3675   emit_arith(0x81, 0xF8, dst, imm32);
  3678 void Assembler::cmpq(Address dst, Register src) {
  3679   InstructionMark im(this);
  3680   prefixq(dst, src);
  3681   emit_byte(0x3B);
  3682   emit_operand(src, dst);
  3685 void Assembler::cmpq(Register dst, Register src) {
  3686   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  3687   emit_arith(0x3B, 0xC0, dst, src);
  3690 void Assembler::cmpq(Register dst, Address  src) {
  3691   InstructionMark im(this);
  3692   prefixq(src, dst);
  3693   emit_byte(0x3B);
  3694   emit_operand(dst, src);
  3697 void Assembler::cmpxchgq(Register reg, Address adr) {
  3698   InstructionMark im(this);
  3699   prefixq(adr, reg);
  3700   emit_byte(0x0F);
  3701   emit_byte(0xB1);
  3702   emit_operand(reg, adr);
  3705 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  3706   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3707   emit_byte(0xF2);
  3708   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3709   emit_byte(0x0F);
  3710   emit_byte(0x2A);
  3711   emit_byte(0xC0 | encode);
  3714 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  3715   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3716   emit_byte(0xF3);
  3717   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3718   emit_byte(0x0F);
  3719   emit_byte(0x2A);
  3720   emit_byte(0xC0 | encode);
  3723 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  3724   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3725   emit_byte(0xF2);
  3726   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3727   emit_byte(0x0F);
  3728   emit_byte(0x2C);
  3729   emit_byte(0xC0 | encode);
  3732 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  3733   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3734   emit_byte(0xF3);
  3735   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3736   emit_byte(0x0F);
  3737   emit_byte(0x2C);
  3738   emit_byte(0xC0 | encode);
  3741 void Assembler::decl(Register dst) {
  3742   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3743   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  3744   int encode = prefix_and_encode(dst->encoding());
  3745   emit_byte(0xFF);
  3746   emit_byte(0xC8 | encode);
  3749 void Assembler::decq(Register dst) {
  3750   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  3751   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3752   int encode = prefixq_and_encode(dst->encoding());
  3753   emit_byte(0xFF);
  3754   emit_byte(0xC8 | encode);
  3757 void Assembler::decq(Address dst) {
  3758   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  3759   InstructionMark im(this);
  3760   prefixq(dst);
  3761   emit_byte(0xFF);
  3762   emit_operand(rcx, dst);
  3765 void Assembler::fxrstor(Address src) {
  3766   prefixq(src);
  3767   emit_byte(0x0F);
  3768   emit_byte(0xAE);
  3769   emit_operand(as_Register(1), src);
  3772 void Assembler::fxsave(Address dst) {
  3773   prefixq(dst);
  3774   emit_byte(0x0F);
  3775   emit_byte(0xAE);
  3776   emit_operand(as_Register(0), dst);
  3779 void Assembler::idivq(Register src) {
  3780   int encode = prefixq_and_encode(src->encoding());
  3781   emit_byte(0xF7);
  3782   emit_byte(0xF8 | encode);
  3785 void Assembler::imulq(Register dst, Register src) {
  3786   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3787   emit_byte(0x0F);
  3788   emit_byte(0xAF);
  3789   emit_byte(0xC0 | encode);
  3792 void Assembler::imulq(Register dst, Register src, int value) {
  3793   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3794   if (is8bit(value)) {
  3795     emit_byte(0x6B);
  3796     emit_byte(0xC0 | encode);
  3797     emit_byte(value);
  3798   } else {
  3799     emit_byte(0x69);
  3800     emit_byte(0xC0 | encode);
  3801     emit_long(value);
  3805 void Assembler::incl(Register dst) {
  3806   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  3807   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3808   int encode = prefix_and_encode(dst->encoding());
  3809   emit_byte(0xFF);
  3810   emit_byte(0xC0 | encode);
  3813 void Assembler::incq(Register dst) {
  3814   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  3815   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3816   int encode = prefixq_and_encode(dst->encoding());
  3817   emit_byte(0xFF);
  3818   emit_byte(0xC0 | encode);
  3821 void Assembler::incq(Address dst) {
  3822   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  3823   InstructionMark im(this);
  3824   prefixq(dst);
  3825   emit_byte(0xFF);
  3826   emit_operand(rax, dst);
  3829 void Assembler::lea(Register dst, Address src) {
  3830   leaq(dst, src);
  3833 void Assembler::leaq(Register dst, Address src) {
  3834   InstructionMark im(this);
  3835   prefixq(src, dst);
  3836   emit_byte(0x8D);
  3837   emit_operand(dst, src);
  3840 void Assembler::mov64(Register dst, int64_t imm64) {
  3841   InstructionMark im(this);
  3842   int encode = prefixq_and_encode(dst->encoding());
  3843   emit_byte(0xB8 | encode);
  3844   emit_long64(imm64);
  3847 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  3848   InstructionMark im(this);
  3849   int encode = prefixq_and_encode(dst->encoding());
  3850   emit_byte(0xB8 | encode);
  3851   emit_data64(imm64, rspec);
  3854 void Assembler::movdq(XMMRegister dst, Register src) {
  3855   // table D-1 says MMX/SSE2
  3856   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  3857   emit_byte(0x66);
  3858   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3859   emit_byte(0x0F);
  3860   emit_byte(0x6E);
  3861   emit_byte(0xC0 | encode);
  3864 void Assembler::movdq(Register dst, XMMRegister src) {
  3865   // table D-1 says MMX/SSE2
  3866   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  3867   emit_byte(0x66);
  3868   // swap src/dst to get correct prefix
  3869   int encode = prefixq_and_encode(src->encoding(), dst->encoding());
  3870   emit_byte(0x0F);
  3871   emit_byte(0x7E);
  3872   emit_byte(0xC0 | encode);
  3875 void Assembler::movq(Register dst, Register src) {
  3876   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3877   emit_byte(0x8B);
  3878   emit_byte(0xC0 | encode);
  3881 void Assembler::movq(Register dst, Address src) {
  3882   InstructionMark im(this);
  3883   prefixq(src, dst);
  3884   emit_byte(0x8B);
  3885   emit_operand(dst, src);
  3888 void Assembler::movq(Address dst, Register src) {
  3889   InstructionMark im(this);
  3890   prefixq(dst, src);
  3891   emit_byte(0x89);
  3892   emit_operand(src, dst);
  3895 void Assembler::movslq(Register dst, int32_t imm32) {
  3896   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  3897   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  3898   // as a result we shouldn't use until tested at runtime...
  3899   ShouldNotReachHere();
  3900   InstructionMark im(this);
  3901   int encode = prefixq_and_encode(dst->encoding());
  3902   emit_byte(0xC7 | encode);
  3903   emit_long(imm32);
  3906 void Assembler::movslq(Address dst, int32_t imm32) {
  3907   assert(is_simm32(imm32), "lost bits");
  3908   InstructionMark im(this);
  3909   prefixq(dst);
  3910   emit_byte(0xC7);
  3911   emit_operand(rax, dst, 4);
  3912   emit_long(imm32);
  3915 void Assembler::movslq(Register dst, Address src) {
  3916   InstructionMark im(this);
  3917   prefixq(src, dst);
  3918   emit_byte(0x63);
  3919   emit_operand(dst, src);
  3922 void Assembler::movslq(Register dst, Register src) {
  3923   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3924   emit_byte(0x63);
  3925   emit_byte(0xC0 | encode);
  3928 void Assembler::negq(Register dst) {
  3929   int encode = prefixq_and_encode(dst->encoding());
  3930   emit_byte(0xF7);
  3931   emit_byte(0xD8 | encode);
  3934 void Assembler::notq(Register dst) {
  3935   int encode = prefixq_and_encode(dst->encoding());
  3936   emit_byte(0xF7);
  3937   emit_byte(0xD0 | encode);
  3940 void Assembler::orq(Address dst, int32_t imm32) {
  3941   InstructionMark im(this);
  3942   prefixq(dst);
  3943   emit_byte(0x81);
  3944   emit_operand(rcx, dst, 4);
  3945   emit_long(imm32);
  3948 void Assembler::orq(Register dst, int32_t imm32) {
  3949   (void) prefixq_and_encode(dst->encoding());
  3950   emit_arith(0x81, 0xC8, dst, imm32);
  3953 void Assembler::orq(Register dst, Address src) {
  3954   InstructionMark im(this);
  3955   prefixq(src, dst);
  3956   emit_byte(0x0B);
  3957   emit_operand(dst, src);
  3960 void Assembler::orq(Register dst, Register src) {
  3961   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  3962   emit_arith(0x0B, 0xC0, dst, src);
  3965 void Assembler::popa() { // 64bit
  3966   movq(r15, Address(rsp, 0));
  3967   movq(r14, Address(rsp, wordSize));
  3968   movq(r13, Address(rsp, 2 * wordSize));
  3969   movq(r12, Address(rsp, 3 * wordSize));
  3970   movq(r11, Address(rsp, 4 * wordSize));
  3971   movq(r10, Address(rsp, 5 * wordSize));
  3972   movq(r9,  Address(rsp, 6 * wordSize));
  3973   movq(r8,  Address(rsp, 7 * wordSize));
  3974   movq(rdi, Address(rsp, 8 * wordSize));
  3975   movq(rsi, Address(rsp, 9 * wordSize));
  3976   movq(rbp, Address(rsp, 10 * wordSize));
  3977   // skip rsp
  3978   movq(rbx, Address(rsp, 12 * wordSize));
  3979   movq(rdx, Address(rsp, 13 * wordSize));
  3980   movq(rcx, Address(rsp, 14 * wordSize));
  3981   movq(rax, Address(rsp, 15 * wordSize));
  3983   addq(rsp, 16 * wordSize);
  3986 void Assembler::popq(Address dst) {
  3987   InstructionMark im(this);
  3988   prefixq(dst);
  3989   emit_byte(0x8F);
  3990   emit_operand(rax, dst);
  3993 void Assembler::pusha() { // 64bit
  3994   // we have to store original rsp.  ABI says that 128 bytes
  3995   // below rsp are local scratch.
  3996   movq(Address(rsp, -5 * wordSize), rsp);
  3998   subq(rsp, 16 * wordSize);
  4000   movq(Address(rsp, 15 * wordSize), rax);
  4001   movq(Address(rsp, 14 * wordSize), rcx);
  4002   movq(Address(rsp, 13 * wordSize), rdx);
  4003   movq(Address(rsp, 12 * wordSize), rbx);
  4004   // skip rsp
  4005   movq(Address(rsp, 10 * wordSize), rbp);
  4006   movq(Address(rsp, 9 * wordSize), rsi);
  4007   movq(Address(rsp, 8 * wordSize), rdi);
  4008   movq(Address(rsp, 7 * wordSize), r8);
  4009   movq(Address(rsp, 6 * wordSize), r9);
  4010   movq(Address(rsp, 5 * wordSize), r10);
  4011   movq(Address(rsp, 4 * wordSize), r11);
  4012   movq(Address(rsp, 3 * wordSize), r12);
  4013   movq(Address(rsp, 2 * wordSize), r13);
  4014   movq(Address(rsp, wordSize), r14);
  4015   movq(Address(rsp, 0), r15);
  4018 void Assembler::pushq(Address src) {
  4019   InstructionMark im(this);
  4020   prefixq(src);
  4021   emit_byte(0xFF);
  4022   emit_operand(rsi, src);
  4025 void Assembler::rclq(Register dst, int imm8) {
  4026   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4027   int encode = prefixq_and_encode(dst->encoding());
  4028   if (imm8 == 1) {
  4029     emit_byte(0xD1);
  4030     emit_byte(0xD0 | encode);
  4031   } else {
  4032     emit_byte(0xC1);
  4033     emit_byte(0xD0 | encode);
  4034     emit_byte(imm8);
  4037 void Assembler::sarq(Register dst, int imm8) {
  4038   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4039   int encode = prefixq_and_encode(dst->encoding());
  4040   if (imm8 == 1) {
  4041     emit_byte(0xD1);
  4042     emit_byte(0xF8 | encode);
  4043   } else {
  4044     emit_byte(0xC1);
  4045     emit_byte(0xF8 | encode);
  4046     emit_byte(imm8);
  4050 void Assembler::sarq(Register dst) {
  4051   int encode = prefixq_and_encode(dst->encoding());
  4052   emit_byte(0xD3);
  4053   emit_byte(0xF8 | encode);
  4055 void Assembler::sbbq(Address dst, int32_t imm32) {
  4056   InstructionMark im(this);
  4057   prefixq(dst);
  4058   emit_arith_operand(0x81, rbx, dst, imm32);
  4061 void Assembler::sbbq(Register dst, int32_t imm32) {
  4062   (void) prefixq_and_encode(dst->encoding());
  4063   emit_arith(0x81, 0xD8, dst, imm32);
  4066 void Assembler::sbbq(Register dst, Address src) {
  4067   InstructionMark im(this);
  4068   prefixq(src, dst);
  4069   emit_byte(0x1B);
  4070   emit_operand(dst, src);
  4073 void Assembler::sbbq(Register dst, Register src) {
  4074   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4075   emit_arith(0x1B, 0xC0, dst, src);
  4078 void Assembler::shlq(Register dst, int imm8) {
  4079   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4080   int encode = prefixq_and_encode(dst->encoding());
  4081   if (imm8 == 1) {
  4082     emit_byte(0xD1);
  4083     emit_byte(0xE0 | encode);
  4084   } else {
  4085     emit_byte(0xC1);
  4086     emit_byte(0xE0 | encode);
  4087     emit_byte(imm8);
  4091 void Assembler::shlq(Register dst) {
  4092   int encode = prefixq_and_encode(dst->encoding());
  4093   emit_byte(0xD3);
  4094   emit_byte(0xE0 | encode);
  4097 void Assembler::shrq(Register dst, int imm8) {
  4098   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4099   int encode = prefixq_and_encode(dst->encoding());
  4100   emit_byte(0xC1);
  4101   emit_byte(0xE8 | encode);
  4102   emit_byte(imm8);
  4105 void Assembler::shrq(Register dst) {
  4106   int encode = prefixq_and_encode(dst->encoding());
  4107   emit_byte(0xD3);
  4108   emit_byte(0xE8 | encode);
  4111 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  4112   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  4113   InstructionMark im(this);
  4114   emit_byte(0xF2);
  4115   prefix(src, dst);
  4116   emit_byte(0x0F);
  4117   emit_byte(0x51);
  4118   emit_operand(dst, src);
  4121 void Assembler::subq(Address dst, int32_t imm32) {
  4122   InstructionMark im(this);
  4123   prefixq(dst);
  4124   if (is8bit(imm32)) {
  4125     emit_byte(0x83);
  4126     emit_operand(rbp, dst, 1);
  4127     emit_byte(imm32 & 0xFF);
  4128   } else {
  4129     emit_byte(0x81);
  4130     emit_operand(rbp, dst, 4);
  4131     emit_long(imm32);
  4135 void Assembler::subq(Register dst, int32_t imm32) {
  4136   (void) prefixq_and_encode(dst->encoding());
  4137   emit_arith(0x81, 0xE8, dst, imm32);
  4140 void Assembler::subq(Address dst, Register src) {
  4141   InstructionMark im(this);
  4142   prefixq(dst, src);
  4143   emit_byte(0x29);
  4144   emit_operand(src, dst);
  4147 void Assembler::subq(Register dst, Address src) {
  4148   InstructionMark im(this);
  4149   prefixq(src, dst);
  4150   emit_byte(0x2B);
  4151   emit_operand(dst, src);
  4154 void Assembler::subq(Register dst, Register src) {
  4155   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4156   emit_arith(0x2B, 0xC0, dst, src);
  4159 void Assembler::testq(Register dst, int32_t imm32) {
  4160   // not using emit_arith because test
  4161   // doesn't support sign-extension of
  4162   // 8bit operands
  4163   int encode = dst->encoding();
  4164   if (encode == 0) {
  4165     prefix(REX_W);
  4166     emit_byte(0xA9);
  4167   } else {
  4168     encode = prefixq_and_encode(encode);
  4169     emit_byte(0xF7);
  4170     emit_byte(0xC0 | encode);
  4172   emit_long(imm32);
  4175 void Assembler::testq(Register dst, Register src) {
  4176   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4177   emit_arith(0x85, 0xC0, dst, src);
  4180 void Assembler::xaddq(Address dst, Register src) {
  4181   InstructionMark im(this);
  4182   prefixq(dst, src);
  4183   emit_byte(0x0F);
  4184   emit_byte(0xC1);
  4185   emit_operand(src, dst);
  4188 void Assembler::xchgq(Register dst, Address src) {
  4189   InstructionMark im(this);
  4190   prefixq(src, dst);
  4191   emit_byte(0x87);
  4192   emit_operand(dst, src);
  4195 void Assembler::xchgq(Register dst, Register src) {
  4196   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4197   emit_byte(0x87);
  4198   emit_byte(0xc0 | encode);
  4201 void Assembler::xorq(Register dst, Register src) {
  4202   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4203   emit_arith(0x33, 0xC0, dst, src);
  4206 void Assembler::xorq(Register dst, Address src) {
  4207   InstructionMark im(this);
  4208   prefixq(src, dst);
  4209   emit_byte(0x33);
  4210   emit_operand(dst, src);
  4213 #endif // !LP64
  4215 static Assembler::Condition reverse[] = {
  4216     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  4217     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  4218     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  4219     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  4220     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  4221     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  4222     Assembler::above          /* belowEqual    = 0x6 */ ,
  4223     Assembler::belowEqual     /* above         = 0x7 */ ,
  4224     Assembler::positive       /* negative      = 0x8 */ ,
  4225     Assembler::negative       /* positive      = 0x9 */ ,
  4226     Assembler::noParity       /* parity        = 0xa */ ,
  4227     Assembler::parity         /* noParity      = 0xb */ ,
  4228     Assembler::greaterEqual   /* less          = 0xc */ ,
  4229     Assembler::less           /* greaterEqual  = 0xd */ ,
  4230     Assembler::greater        /* lessEqual     = 0xe */ ,
  4231     Assembler::lessEqual      /* greater       = 0xf, */
  4233 };
  4236 // Implementation of MacroAssembler
  4238 // First all the versions that have distinct versions depending on 32/64 bit
  4239 // Unless the difference is trivial (1 line or so).
  4241 #ifndef _LP64
  4243 // 32bit versions
  4245 Address MacroAssembler::as_Address(AddressLiteral adr) {
  4246   return Address(adr.target(), adr.rspec());
  4249 Address MacroAssembler::as_Address(ArrayAddress adr) {
  4250   return Address::make_array(adr);
  4253 int MacroAssembler::biased_locking_enter(Register lock_reg,
  4254                                          Register obj_reg,
  4255                                          Register swap_reg,
  4256                                          Register tmp_reg,
  4257                                          bool swap_reg_contains_mark,
  4258                                          Label& done,
  4259                                          Label* slow_case,
  4260                                          BiasedLockingCounters* counters) {
  4261   assert(UseBiasedLocking, "why call this otherwise?");
  4262   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
  4263   assert_different_registers(lock_reg, obj_reg, swap_reg);
  4265   if (PrintBiasedLockingStatistics && counters == NULL)
  4266     counters = BiasedLocking::counters();
  4268   bool need_tmp_reg = false;
  4269   if (tmp_reg == noreg) {
  4270     need_tmp_reg = true;
  4271     tmp_reg = lock_reg;
  4272   } else {
  4273     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  4275   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  4276   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  4277   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
  4278   Address saved_mark_addr(lock_reg, 0);
  4280   // Biased locking
  4281   // See whether the lock is currently biased toward our thread and
  4282   // whether the epoch is still valid
  4283   // Note that the runtime guarantees sufficient alignment of JavaThread
  4284   // pointers to allow age to be placed into low bits
  4285   // First check to see whether biasing is even enabled for this object
  4286   Label cas_label;
  4287   int null_check_offset = -1;
  4288   if (!swap_reg_contains_mark) {
  4289     null_check_offset = offset();
  4290     movl(swap_reg, mark_addr);
  4292   if (need_tmp_reg) {
  4293     push(tmp_reg);
  4295   movl(tmp_reg, swap_reg);
  4296   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  4297   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
  4298   if (need_tmp_reg) {
  4299     pop(tmp_reg);
  4301   jcc(Assembler::notEqual, cas_label);
  4302   // The bias pattern is present in the object's header. Need to check
  4303   // whether the bias owner and the epoch are both still current.
  4304   // Note that because there is no current thread register on x86 we
  4305   // need to store off the mark word we read out of the object to
  4306   // avoid reloading it and needing to recheck invariants below. This
  4307   // store is unfortunate but it makes the overall code shorter and
  4308   // simpler.
  4309   movl(saved_mark_addr, swap_reg);
  4310   if (need_tmp_reg) {
  4311     push(tmp_reg);
  4313   get_thread(tmp_reg);
  4314   xorl(swap_reg, tmp_reg);
  4315   if (swap_reg_contains_mark) {
  4316     null_check_offset = offset();
  4318   movl(tmp_reg, klass_addr);
  4319   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4320   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
  4321   if (need_tmp_reg) {
  4322     pop(tmp_reg);
  4324   if (counters != NULL) {
  4325     cond_inc32(Assembler::zero,
  4326                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
  4328   jcc(Assembler::equal, done);
  4330   Label try_revoke_bias;
  4331   Label try_rebias;
  4333   // At this point we know that the header has the bias pattern and
  4334   // that we are not the bias owner in the current epoch. We need to
  4335   // figure out more details about the state of the header in order to
  4336   // know what operations can be legally performed on the object's
  4337   // header.
  4339   // If the low three bits in the xor result aren't clear, that means
  4340   // the prototype header is no longer biased and we have to revoke
  4341   // the bias on this object.
  4342   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
  4343   jcc(Assembler::notZero, try_revoke_bias);
  4345   // Biasing is still enabled for this data type. See whether the
  4346   // epoch of the current bias is still valid, meaning that the epoch
  4347   // bits of the mark word are equal to the epoch bits of the
  4348   // prototype header. (Note that the prototype header's epoch bits
  4349   // only change at a safepoint.) If not, attempt to rebias the object
  4350   // toward the current thread. Note that we must be absolutely sure
  4351   // that the current epoch is invalid in order to do this because
  4352   // otherwise the manipulations it performs on the mark word are
  4353   // illegal.
  4354   testl(swap_reg, markOopDesc::epoch_mask_in_place);
  4355   jcc(Assembler::notZero, try_rebias);
  4357   // The epoch of the current bias is still valid but we know nothing
  4358   // about the owner; it might be set or it might be clear. Try to
  4359   // acquire the bias of the object using an atomic operation. If this
  4360   // fails we will go in to the runtime to revoke the object's bias.
  4361   // Note that we first construct the presumed unbiased header so we
  4362   // don't accidentally blow away another thread's valid bias.
  4363   movl(swap_reg, saved_mark_addr);
  4364   andl(swap_reg,
  4365        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  4366   if (need_tmp_reg) {
  4367     push(tmp_reg);
  4369   get_thread(tmp_reg);
  4370   orl(tmp_reg, swap_reg);
  4371   if (os::is_MP()) {
  4372     lock();
  4374   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4375   if (need_tmp_reg) {
  4376     pop(tmp_reg);
  4378   // If the biasing toward our thread failed, this means that
  4379   // another thread succeeded in biasing it toward itself and we
  4380   // need to revoke that bias. The revocation will occur in the
  4381   // interpreter runtime in the slow case.
  4382   if (counters != NULL) {
  4383     cond_inc32(Assembler::zero,
  4384                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
  4386   if (slow_case != NULL) {
  4387     jcc(Assembler::notZero, *slow_case);
  4389   jmp(done);
  4391   bind(try_rebias);
  4392   // At this point we know the epoch has expired, meaning that the
  4393   // current "bias owner", if any, is actually invalid. Under these
  4394   // circumstances _only_, we are allowed to use the current header's
  4395   // value as the comparison value when doing the cas to acquire the
  4396   // bias in the current epoch. In other words, we allow transfer of
  4397   // the bias from one thread to another directly in this situation.
  4398   //
  4399   // FIXME: due to a lack of registers we currently blow away the age
  4400   // bits in this situation. Should attempt to preserve them.
  4401   if (need_tmp_reg) {
  4402     push(tmp_reg);
  4404   get_thread(tmp_reg);
  4405   movl(swap_reg, klass_addr);
  4406   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4407   movl(swap_reg, saved_mark_addr);
  4408   if (os::is_MP()) {
  4409     lock();
  4411   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4412   if (need_tmp_reg) {
  4413     pop(tmp_reg);
  4415   // If the biasing toward our thread failed, then another thread
  4416   // succeeded in biasing it toward itself and we need to revoke that
  4417   // bias. The revocation will occur in the runtime in the slow case.
  4418   if (counters != NULL) {
  4419     cond_inc32(Assembler::zero,
  4420                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
  4422   if (slow_case != NULL) {
  4423     jcc(Assembler::notZero, *slow_case);
  4425   jmp(done);
  4427   bind(try_revoke_bias);
  4428   // The prototype mark in the klass doesn't have the bias bit set any
  4429   // more, indicating that objects of this data type are not supposed
  4430   // to be biased any more. We are going to try to reset the mark of
  4431   // this object to the prototype value and fall through to the
  4432   // CAS-based locking scheme. Note that if our CAS fails, it means
  4433   // that another thread raced us for the privilege of revoking the
  4434   // bias of this particular object, so it's okay to continue in the
  4435   // normal locking code.
  4436   //
  4437   // FIXME: due to a lack of registers we currently blow away the age
  4438   // bits in this situation. Should attempt to preserve them.
  4439   movl(swap_reg, saved_mark_addr);
  4440   if (need_tmp_reg) {
  4441     push(tmp_reg);
  4443   movl(tmp_reg, klass_addr);
  4444   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4445   if (os::is_MP()) {
  4446     lock();
  4448   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4449   if (need_tmp_reg) {
  4450     pop(tmp_reg);
  4452   // Fall through to the normal CAS-based lock, because no matter what
  4453   // the result of the above CAS, some thread must have succeeded in
  4454   // removing the bias bit from the object's header.
  4455   if (counters != NULL) {
  4456     cond_inc32(Assembler::zero,
  4457                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
  4460   bind(cas_label);
  4462   return null_check_offset;
  4464 void MacroAssembler::call_VM_leaf_base(address entry_point,
  4465                                        int number_of_arguments) {
  4466   call(RuntimeAddress(entry_point));
  4467   increment(rsp, number_of_arguments * wordSize);
  4470 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  4471   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4474 void MacroAssembler::cmpoop(Register src1, jobject obj) {
  4475   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4478 void MacroAssembler::extend_sign(Register hi, Register lo) {
  4479   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  4480   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  4481     cdql();
  4482   } else {
  4483     movl(hi, lo);
  4484     sarl(hi, 31);
  4488 void MacroAssembler::fat_nop() {
  4489   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  4490   emit_byte(0x26); // es:
  4491   emit_byte(0x2e); // cs:
  4492   emit_byte(0x64); // fs:
  4493   emit_byte(0x65); // gs:
  4494   emit_byte(0x90);
  4497 void MacroAssembler::jC2(Register tmp, Label& L) {
  4498   // set parity bit if FPU flag C2 is set (via rax)
  4499   save_rax(tmp);
  4500   fwait(); fnstsw_ax();
  4501   sahf();
  4502   restore_rax(tmp);
  4503   // branch
  4504   jcc(Assembler::parity, L);
  4507 void MacroAssembler::jnC2(Register tmp, Label& L) {
  4508   // set parity bit if FPU flag C2 is set (via rax)
  4509   save_rax(tmp);
  4510   fwait(); fnstsw_ax();
  4511   sahf();
  4512   restore_rax(tmp);
  4513   // branch
  4514   jcc(Assembler::noParity, L);
  4517 // 32bit can do a case table jump in one instruction but we no longer allow the base
  4518 // to be installed in the Address class
  4519 void MacroAssembler::jump(ArrayAddress entry) {
  4520   jmp(as_Address(entry));
  4523 // Note: y_lo will be destroyed
  4524 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  4525   // Long compare for Java (semantics as described in JVM spec.)
  4526   Label high, low, done;
  4528   cmpl(x_hi, y_hi);
  4529   jcc(Assembler::less, low);
  4530   jcc(Assembler::greater, high);
  4531   // x_hi is the return register
  4532   xorl(x_hi, x_hi);
  4533   cmpl(x_lo, y_lo);
  4534   jcc(Assembler::below, low);
  4535   jcc(Assembler::equal, done);
  4537   bind(high);
  4538   xorl(x_hi, x_hi);
  4539   increment(x_hi);
  4540   jmp(done);
  4542   bind(low);
  4543   xorl(x_hi, x_hi);
  4544   decrementl(x_hi);
  4546   bind(done);
  4549 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  4550     mov_literal32(dst, (int32_t)src.target(), src.rspec());
  4553 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  4554   // leal(dst, as_Address(adr));
  4555   // see note in movl as to why we must use a move
  4556   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
  4559 void MacroAssembler::leave() {
  4560   mov(rsp, rbp);
  4561   pop(rbp);
  4564 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  4565   // Multiplication of two Java long values stored on the stack
  4566   // as illustrated below. Result is in rdx:rax.
  4567   //
  4568   // rsp ---> [  ??  ] \               \
  4569   //            ....    | y_rsp_offset  |
  4570   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  4571   //          [ y_hi ]                  | (in bytes)
  4572   //            ....                    |
  4573   //          [ x_lo ]                 /
  4574   //          [ x_hi ]
  4575   //            ....
  4576   //
  4577   // Basic idea: lo(result) = lo(x_lo * y_lo)
  4578   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  4579   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  4580   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  4581   Label quick;
  4582   // load x_hi, y_hi and check if quick
  4583   // multiplication is possible
  4584   movl(rbx, x_hi);
  4585   movl(rcx, y_hi);
  4586   movl(rax, rbx);
  4587   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  4588   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  4589   // do full multiplication
  4590   // 1st step
  4591   mull(y_lo);                                    // x_hi * y_lo
  4592   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  4593   // 2nd step
  4594   movl(rax, x_lo);
  4595   mull(rcx);                                     // x_lo * y_hi
  4596   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  4597   // 3rd step
  4598   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  4599   movl(rax, x_lo);
  4600   mull(y_lo);                                    // x_lo * y_lo
  4601   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  4604 void MacroAssembler::lneg(Register hi, Register lo) {
  4605   negl(lo);
  4606   adcl(hi, 0);
  4607   negl(hi);
  4610 void MacroAssembler::lshl(Register hi, Register lo) {
  4611   // Java shift left long support (semantics as described in JVM spec., p.305)
  4612   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  4613   // shift value is in rcx !
  4614   assert(hi != rcx, "must not use rcx");
  4615   assert(lo != rcx, "must not use rcx");
  4616   const Register s = rcx;                        // shift count
  4617   const int      n = BitsPerWord;
  4618   Label L;
  4619   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  4620   cmpl(s, n);                                    // if (s < n)
  4621   jcc(Assembler::less, L);                       // else (s >= n)
  4622   movl(hi, lo);                                  // x := x << n
  4623   xorl(lo, lo);
  4624   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  4625   bind(L);                                       // s (mod n) < n
  4626   shldl(hi, lo);                                 // x := x << s
  4627   shll(lo);
  4631 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  4632   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  4633   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  4634   assert(hi != rcx, "must not use rcx");
  4635   assert(lo != rcx, "must not use rcx");
  4636   const Register s = rcx;                        // shift count
  4637   const int      n = BitsPerWord;
  4638   Label L;
  4639   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  4640   cmpl(s, n);                                    // if (s < n)
  4641   jcc(Assembler::less, L);                       // else (s >= n)
  4642   movl(lo, hi);                                  // x := x >> n
  4643   if (sign_extension) sarl(hi, 31);
  4644   else                xorl(hi, hi);
  4645   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  4646   bind(L);                                       // s (mod n) < n
  4647   shrdl(lo, hi);                                 // x := x >> s
  4648   if (sign_extension) sarl(hi);
  4649   else                shrl(hi);
  4652 void MacroAssembler::movoop(Register dst, jobject obj) {
  4653   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4656 void MacroAssembler::movoop(Address dst, jobject obj) {
  4657   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4660 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  4661   if (src.is_lval()) {
  4662     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  4663   } else {
  4664     movl(dst, as_Address(src));
  4668 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  4669   movl(as_Address(dst), src);
  4672 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  4673   movl(dst, as_Address(src));
  4676 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  4677 void MacroAssembler::movptr(Address dst, intptr_t src) {
  4678   movl(dst, src);
  4682 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
  4683   movsd(dst, as_Address(src));
  4686 void MacroAssembler::pop_callee_saved_registers() {
  4687   pop(rcx);
  4688   pop(rdx);
  4689   pop(rdi);
  4690   pop(rsi);
  4693 void MacroAssembler::pop_fTOS() {
  4694   fld_d(Address(rsp, 0));
  4695   addl(rsp, 2 * wordSize);
  4698 void MacroAssembler::push_callee_saved_registers() {
  4699   push(rsi);
  4700   push(rdi);
  4701   push(rdx);
  4702   push(rcx);
  4705 void MacroAssembler::push_fTOS() {
  4706   subl(rsp, 2 * wordSize);
  4707   fstp_d(Address(rsp, 0));
  4711 void MacroAssembler::pushoop(jobject obj) {
  4712   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  4716 void MacroAssembler::pushptr(AddressLiteral src) {
  4717   if (src.is_lval()) {
  4718     push_literal32((int32_t)src.target(), src.rspec());
  4719   } else {
  4720     pushl(as_Address(src));
  4724 void MacroAssembler::set_word_if_not_zero(Register dst) {
  4725   xorl(dst, dst);
  4726   set_byte_if_not_zero(dst);
  4729 static void pass_arg0(MacroAssembler* masm, Register arg) {
  4730   masm->push(arg);
  4733 static void pass_arg1(MacroAssembler* masm, Register arg) {
  4734   masm->push(arg);
  4737 static void pass_arg2(MacroAssembler* masm, Register arg) {
  4738   masm->push(arg);
  4741 static void pass_arg3(MacroAssembler* masm, Register arg) {
  4742   masm->push(arg);
  4745 #ifndef PRODUCT
  4746 extern "C" void findpc(intptr_t x);
  4747 #endif
  4749 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  4750   // In order to get locks to work, we need to fake a in_VM state
  4751   JavaThread* thread = JavaThread::current();
  4752   JavaThreadState saved_state = thread->thread_state();
  4753   thread->set_thread_state(_thread_in_vm);
  4754   if (ShowMessageBoxOnError) {
  4755     JavaThread* thread = JavaThread::current();
  4756     JavaThreadState saved_state = thread->thread_state();
  4757     thread->set_thread_state(_thread_in_vm);
  4758     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  4759       ttyLocker ttyl;
  4760       BytecodeCounter::print();
  4762     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  4763     // This is the value of eip which points to where verify_oop will return.
  4764     if (os::message_box(msg, "Execution stopped, print registers?")) {
  4765       ttyLocker ttyl;
  4766       tty->print_cr("eip = 0x%08x", eip);
  4767 #ifndef PRODUCT
  4768       tty->cr();
  4769       findpc(eip);
  4770       tty->cr();
  4771 #endif
  4772       tty->print_cr("rax, = 0x%08x", rax);
  4773       tty->print_cr("rbx, = 0x%08x", rbx);
  4774       tty->print_cr("rcx = 0x%08x", rcx);
  4775       tty->print_cr("rdx = 0x%08x", rdx);
  4776       tty->print_cr("rdi = 0x%08x", rdi);
  4777       tty->print_cr("rsi = 0x%08x", rsi);
  4778       tty->print_cr("rbp, = 0x%08x", rbp);
  4779       tty->print_cr("rsp = 0x%08x", rsp);
  4780       BREAKPOINT;
  4782   } else {
  4783     ttyLocker ttyl;
  4784     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  4785     assert(false, "DEBUG MESSAGE");
  4787   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  4790 void MacroAssembler::stop(const char* msg) {
  4791   ExternalAddress message((address)msg);
  4792   // push address of message
  4793   pushptr(message.addr());
  4794   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  4795   pusha();                                           // push registers
  4796   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  4797   hlt();
  4800 void MacroAssembler::warn(const char* msg) {
  4801   push_CPU_state();
  4803   ExternalAddress message((address) msg);
  4804   // push address of message
  4805   pushptr(message.addr());
  4807   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  4808   addl(rsp, wordSize);       // discard argument
  4809   pop_CPU_state();
  4812 #else // _LP64
  4814 // 64 bit versions
  4816 Address MacroAssembler::as_Address(AddressLiteral adr) {
  4817   // amd64 always does this as a pc-rel
  4818   // we can be absolute or disp based on the instruction type
  4819   // jmp/call are displacements others are absolute
  4820   assert(!adr.is_lval(), "must be rval");
  4821   assert(reachable(adr), "must be");
  4822   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
  4826 Address MacroAssembler::as_Address(ArrayAddress adr) {
  4827   AddressLiteral base = adr.base();
  4828   lea(rscratch1, base);
  4829   Address index = adr.index();
  4830   assert(index._disp == 0, "must not have disp"); // maybe it can?
  4831   Address array(rscratch1, index._index, index._scale, index._disp);
  4832   return array;
  4835 int MacroAssembler::biased_locking_enter(Register lock_reg,
  4836                                          Register obj_reg,
  4837                                          Register swap_reg,
  4838                                          Register tmp_reg,
  4839                                          bool swap_reg_contains_mark,
  4840                                          Label& done,
  4841                                          Label* slow_case,
  4842                                          BiasedLockingCounters* counters) {
  4843   assert(UseBiasedLocking, "why call this otherwise?");
  4844   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  4845   assert(tmp_reg != noreg, "tmp_reg must be supplied");
  4846   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  4847   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  4848   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  4849   Address saved_mark_addr(lock_reg, 0);
  4851   if (PrintBiasedLockingStatistics && counters == NULL)
  4852     counters = BiasedLocking::counters();
  4854   // Biased locking
  4855   // See whether the lock is currently biased toward our thread and
  4856   // whether the epoch is still valid
  4857   // Note that the runtime guarantees sufficient alignment of JavaThread
  4858   // pointers to allow age to be placed into low bits
  4859   // First check to see whether biasing is even enabled for this object
  4860   Label cas_label;
  4861   int null_check_offset = -1;
  4862   if (!swap_reg_contains_mark) {
  4863     null_check_offset = offset();
  4864     movq(swap_reg, mark_addr);
  4866   movq(tmp_reg, swap_reg);
  4867   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  4868   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  4869   jcc(Assembler::notEqual, cas_label);
  4870   // The bias pattern is present in the object's header. Need to check
  4871   // whether the bias owner and the epoch are both still current.
  4872   load_prototype_header(tmp_reg, obj_reg);
  4873   orq(tmp_reg, r15_thread);
  4874   xorq(tmp_reg, swap_reg);
  4875   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  4876   if (counters != NULL) {
  4877     cond_inc32(Assembler::zero,
  4878                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  4880   jcc(Assembler::equal, done);
  4882   Label try_revoke_bias;
  4883   Label try_rebias;
  4885   // At this point we know that the header has the bias pattern and
  4886   // that we are not the bias owner in the current epoch. We need to
  4887   // figure out more details about the state of the header in order to
  4888   // know what operations can be legally performed on the object's
  4889   // header.
  4891   // If the low three bits in the xor result aren't clear, that means
  4892   // the prototype header is no longer biased and we have to revoke
  4893   // the bias on this object.
  4894   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  4895   jcc(Assembler::notZero, try_revoke_bias);
  4897   // Biasing is still enabled for this data type. See whether the
  4898   // epoch of the current bias is still valid, meaning that the epoch
  4899   // bits of the mark word are equal to the epoch bits of the
  4900   // prototype header. (Note that the prototype header's epoch bits
  4901   // only change at a safepoint.) If not, attempt to rebias the object
  4902   // toward the current thread. Note that we must be absolutely sure
  4903   // that the current epoch is invalid in order to do this because
  4904   // otherwise the manipulations it performs on the mark word are
  4905   // illegal.
  4906   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  4907   jcc(Assembler::notZero, try_rebias);
  4909   // The epoch of the current bias is still valid but we know nothing
  4910   // about the owner; it might be set or it might be clear. Try to
  4911   // acquire the bias of the object using an atomic operation. If this
  4912   // fails we will go in to the runtime to revoke the object's bias.
  4913   // Note that we first construct the presumed unbiased header so we
  4914   // don't accidentally blow away another thread's valid bias.
  4915   andq(swap_reg,
  4916        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  4917   movq(tmp_reg, swap_reg);
  4918   orq(tmp_reg, r15_thread);
  4919   if (os::is_MP()) {
  4920     lock();
  4922   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  4923   // If the biasing toward our thread failed, this means that
  4924   // another thread succeeded in biasing it toward itself and we
  4925   // need to revoke that bias. The revocation will occur in the
  4926   // interpreter runtime in the slow case.
  4927   if (counters != NULL) {
  4928     cond_inc32(Assembler::zero,
  4929                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  4931   if (slow_case != NULL) {
  4932     jcc(Assembler::notZero, *slow_case);
  4934   jmp(done);
  4936   bind(try_rebias);
  4937   // At this point we know the epoch has expired, meaning that the
  4938   // current "bias owner", if any, is actually invalid. Under these
  4939   // circumstances _only_, we are allowed to use the current header's
  4940   // value as the comparison value when doing the cas to acquire the
  4941   // bias in the current epoch. In other words, we allow transfer of
  4942   // the bias from one thread to another directly in this situation.
  4943   //
  4944   // FIXME: due to a lack of registers we currently blow away the age
  4945   // bits in this situation. Should attempt to preserve them.
  4946   load_prototype_header(tmp_reg, obj_reg);
  4947   orq(tmp_reg, r15_thread);
  4948   if (os::is_MP()) {
  4949     lock();
  4951   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  4952   // If the biasing toward our thread failed, then another thread
  4953   // succeeded in biasing it toward itself and we need to revoke that
  4954   // bias. The revocation will occur in the runtime in the slow case.
  4955   if (counters != NULL) {
  4956     cond_inc32(Assembler::zero,
  4957                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  4959   if (slow_case != NULL) {
  4960     jcc(Assembler::notZero, *slow_case);
  4962   jmp(done);
  4964   bind(try_revoke_bias);
  4965   // The prototype mark in the klass doesn't have the bias bit set any
  4966   // more, indicating that objects of this data type are not supposed
  4967   // to be biased any more. We are going to try to reset the mark of
  4968   // this object to the prototype value and fall through to the
  4969   // CAS-based locking scheme. Note that if our CAS fails, it means
  4970   // that another thread raced us for the privilege of revoking the
  4971   // bias of this particular object, so it's okay to continue in the
  4972   // normal locking code.
  4973   //
  4974   // FIXME: due to a lack of registers we currently blow away the age
  4975   // bits in this situation. Should attempt to preserve them.
  4976   load_prototype_header(tmp_reg, obj_reg);
  4977   if (os::is_MP()) {
  4978     lock();
  4980   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  4981   // Fall through to the normal CAS-based lock, because no matter what
  4982   // the result of the above CAS, some thread must have succeeded in
  4983   // removing the bias bit from the object's header.
  4984   if (counters != NULL) {
  4985     cond_inc32(Assembler::zero,
  4986                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  4989   bind(cas_label);
  4991   return null_check_offset;
  4994 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  4995   Label L, E;
  4997 #ifdef _WIN64
  4998   // Windows always allocates space for it's register args
  4999   assert(num_args <= 4, "only register arguments supported");
  5000   subq(rsp,  frame::arg_reg_save_area_bytes);
  5001 #endif
  5003   // Align stack if necessary
  5004   testl(rsp, 15);
  5005   jcc(Assembler::zero, L);
  5007   subq(rsp, 8);
  5009     call(RuntimeAddress(entry_point));
  5011   addq(rsp, 8);
  5012   jmp(E);
  5014   bind(L);
  5016     call(RuntimeAddress(entry_point));
  5019   bind(E);
  5021 #ifdef _WIN64
  5022   // restore stack pointer
  5023   addq(rsp, frame::arg_reg_save_area_bytes);
  5024 #endif
  5028 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  5029   assert(!src2.is_lval(), "should use cmpptr");
  5031   if (reachable(src2)) {
  5032     cmpq(src1, as_Address(src2));
  5033   } else {
  5034     lea(rscratch1, src2);
  5035     Assembler::cmpq(src1, Address(rscratch1, 0));
  5039 int MacroAssembler::corrected_idivq(Register reg) {
  5040   // Full implementation of Java ldiv and lrem; checks for special
  5041   // case as described in JVM spec., p.243 & p.271.  The function
  5042   // returns the (pc) offset of the idivl instruction - may be needed
  5043   // for implicit exceptions.
  5044   //
  5045   //         normal case                           special case
  5046   //
  5047   // input : rax: dividend                         min_long
  5048   //         reg: divisor   (may not be eax/edx)   -1
  5049   //
  5050   // output: rax: quotient  (= rax idiv reg)       min_long
  5051   //         rdx: remainder (= rax irem reg)       0
  5052   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  5053   static const int64_t min_long = 0x8000000000000000;
  5054   Label normal_case, special_case;
  5056   // check for special case
  5057   cmp64(rax, ExternalAddress((address) &min_long));
  5058   jcc(Assembler::notEqual, normal_case);
  5059   xorl(rdx, rdx); // prepare rdx for possible special case (where
  5060                   // remainder = 0)
  5061   cmpq(reg, -1);
  5062   jcc(Assembler::equal, special_case);
  5064   // handle normal case
  5065   bind(normal_case);
  5066   cdqq();
  5067   int idivq_offset = offset();
  5068   idivq(reg);
  5070   // normal and special case exit
  5071   bind(special_case);
  5073   return idivq_offset;
  5076 void MacroAssembler::decrementq(Register reg, int value) {
  5077   if (value == min_jint) { subq(reg, value); return; }
  5078   if (value <  0) { incrementq(reg, -value); return; }
  5079   if (value == 0) {                        ; return; }
  5080   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  5081   /* else */      { subq(reg, value)       ; return; }
  5084 void MacroAssembler::decrementq(Address dst, int value) {
  5085   if (value == min_jint) { subq(dst, value); return; }
  5086   if (value <  0) { incrementq(dst, -value); return; }
  5087   if (value == 0) {                        ; return; }
  5088   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  5089   /* else */      { subq(dst, value)       ; return; }
  5092 void MacroAssembler::fat_nop() {
  5093   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  5094   // Recommened sequence from 'Software Optimization Guide for the AMD
  5095   // Hammer Processor'
  5096   emit_byte(0x66);
  5097   emit_byte(0x66);
  5098   emit_byte(0x90);
  5099   emit_byte(0x66);
  5100   emit_byte(0x90);
  5103 void MacroAssembler::incrementq(Register reg, int value) {
  5104   if (value == min_jint) { addq(reg, value); return; }
  5105   if (value <  0) { decrementq(reg, -value); return; }
  5106   if (value == 0) {                        ; return; }
  5107   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  5108   /* else */      { addq(reg, value)       ; return; }
  5111 void MacroAssembler::incrementq(Address dst, int value) {
  5112   if (value == min_jint) { addq(dst, value); return; }
  5113   if (value <  0) { decrementq(dst, -value); return; }
  5114   if (value == 0) {                        ; return; }
  5115   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  5116   /* else */      { addq(dst, value)       ; return; }
  5119 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5120 // to be installed in the Address class
  5121 void MacroAssembler::jump(ArrayAddress entry) {
  5122   lea(rscratch1, entry.base());
  5123   Address dispatch = entry.index();
  5124   assert(dispatch._base == noreg, "must be");
  5125   dispatch._base = rscratch1;
  5126   jmp(dispatch);
  5129 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5130   ShouldNotReachHere(); // 64bit doesn't use two regs
  5131   cmpq(x_lo, y_lo);
  5134 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5135     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5138 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5139   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  5140   movptr(dst, rscratch1);
  5143 void MacroAssembler::leave() {
  5144   // %%% is this really better? Why not on 32bit too?
  5145   emit_byte(0xC9); // LEAVE
  5148 void MacroAssembler::lneg(Register hi, Register lo) {
  5149   ShouldNotReachHere(); // 64bit doesn't use two regs
  5150   negq(lo);
  5153 void MacroAssembler::movoop(Register dst, jobject obj) {
  5154   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5157 void MacroAssembler::movoop(Address dst, jobject obj) {
  5158   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5159   movq(dst, rscratch1);
  5162 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5163   if (src.is_lval()) {
  5164     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5165   } else {
  5166     if (reachable(src)) {
  5167       movq(dst, as_Address(src));
  5168     } else {
  5169       lea(rscratch1, src);
  5170       movq(dst, Address(rscratch1,0));
  5175 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5176   movq(as_Address(dst), src);
  5179 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5180   movq(dst, as_Address(src));
  5183 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5184 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5185   mov64(rscratch1, src);
  5186   movq(dst, rscratch1);
  5189 // These are mostly for initializing NULL
  5190 void MacroAssembler::movptr(Address dst, int32_t src) {
  5191   movslq(dst, src);
  5194 void MacroAssembler::movptr(Register dst, int32_t src) {
  5195   mov64(dst, (intptr_t)src);
  5198 void MacroAssembler::pushoop(jobject obj) {
  5199   movoop(rscratch1, obj);
  5200   push(rscratch1);
  5203 void MacroAssembler::pushptr(AddressLiteral src) {
  5204   lea(rscratch1, src);
  5205   if (src.is_lval()) {
  5206     push(rscratch1);
  5207   } else {
  5208     pushq(Address(rscratch1, 0));
  5212 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  5213                                            bool clear_pc) {
  5214   // we must set sp to zero to clear frame
  5215   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  5216   // must clear fp, so that compiled frames are not confused; it is
  5217   // possible that we need it only for debugging
  5218   if (clear_fp) {
  5219     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  5222   if (clear_pc) {
  5223     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  5227 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  5228                                          Register last_java_fp,
  5229                                          address  last_java_pc) {
  5230   // determine last_java_sp register
  5231   if (!last_java_sp->is_valid()) {
  5232     last_java_sp = rsp;
  5235   // last_java_fp is optional
  5236   if (last_java_fp->is_valid()) {
  5237     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  5238            last_java_fp);
  5241   // last_java_pc is optional
  5242   if (last_java_pc != NULL) {
  5243     Address java_pc(r15_thread,
  5244                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  5245     lea(rscratch1, InternalAddress(last_java_pc));
  5246     movptr(java_pc, rscratch1);
  5249   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  5252 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5253   if (c_rarg0 != arg ) {
  5254     masm->mov(c_rarg0, arg);
  5258 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5259   if (c_rarg1 != arg ) {
  5260     masm->mov(c_rarg1, arg);
  5264 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5265   if (c_rarg2 != arg ) {
  5266     masm->mov(c_rarg2, arg);
  5270 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5271   if (c_rarg3 != arg ) {
  5272     masm->mov(c_rarg3, arg);
  5276 void MacroAssembler::stop(const char* msg) {
  5277   address rip = pc();
  5278   pusha(); // get regs on stack
  5279   lea(c_rarg0, ExternalAddress((address) msg));
  5280   lea(c_rarg1, InternalAddress(rip));
  5281   movq(c_rarg2, rsp); // pass pointer to regs array
  5282   andq(rsp, -16); // align stack as required by ABI
  5283   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  5284   hlt();
  5287 void MacroAssembler::warn(const char* msg) {
  5288   push(r12);
  5289   movq(r12, rsp);
  5290   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  5292   push_CPU_state();   // keeps alignment at 16 bytes
  5293   lea(c_rarg0, ExternalAddress((address) msg));
  5294   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  5295   pop_CPU_state();
  5297   movq(rsp, r12);
  5298   pop(r12);
  5301 #ifndef PRODUCT
  5302 extern "C" void findpc(intptr_t x);
  5303 #endif
  5305 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  5306   // In order to get locks to work, we need to fake a in_VM state
  5307   if (ShowMessageBoxOnError ) {
  5308     JavaThread* thread = JavaThread::current();
  5309     JavaThreadState saved_state = thread->thread_state();
  5310     thread->set_thread_state(_thread_in_vm);
  5311 #ifndef PRODUCT
  5312     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5313       ttyLocker ttyl;
  5314       BytecodeCounter::print();
  5316 #endif
  5317     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5318     // XXX correct this offset for amd64
  5319     // This is the value of eip which points to where verify_oop will return.
  5320     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5321       ttyLocker ttyl;
  5322       tty->print_cr("rip = 0x%016lx", pc);
  5323 #ifndef PRODUCT
  5324       tty->cr();
  5325       findpc(pc);
  5326       tty->cr();
  5327 #endif
  5328       tty->print_cr("rax = 0x%016lx", regs[15]);
  5329       tty->print_cr("rbx = 0x%016lx", regs[12]);
  5330       tty->print_cr("rcx = 0x%016lx", regs[14]);
  5331       tty->print_cr("rdx = 0x%016lx", regs[13]);
  5332       tty->print_cr("rdi = 0x%016lx", regs[8]);
  5333       tty->print_cr("rsi = 0x%016lx", regs[9]);
  5334       tty->print_cr("rbp = 0x%016lx", regs[10]);
  5335       tty->print_cr("rsp = 0x%016lx", regs[11]);
  5336       tty->print_cr("r8  = 0x%016lx", regs[7]);
  5337       tty->print_cr("r9  = 0x%016lx", regs[6]);
  5338       tty->print_cr("r10 = 0x%016lx", regs[5]);
  5339       tty->print_cr("r11 = 0x%016lx", regs[4]);
  5340       tty->print_cr("r12 = 0x%016lx", regs[3]);
  5341       tty->print_cr("r13 = 0x%016lx", regs[2]);
  5342       tty->print_cr("r14 = 0x%016lx", regs[1]);
  5343       tty->print_cr("r15 = 0x%016lx", regs[0]);
  5344       BREAKPOINT;
  5346     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5347   } else {
  5348     ttyLocker ttyl;
  5349     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  5350                     msg);
  5354 #endif // _LP64
  5356 // Now versions that are common to 32/64 bit
  5358 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  5359   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  5362 void MacroAssembler::addptr(Register dst, Register src) {
  5363   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5366 void MacroAssembler::addptr(Address dst, Register src) {
  5367   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5370 void MacroAssembler::align(int modulus) {
  5371   if (offset() % modulus != 0) {
  5372     nop(modulus - (offset() % modulus));
  5376 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  5377   andpd(dst, as_Address(src));
  5380 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  5381   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  5384 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  5385   pushf();
  5386   if (os::is_MP())
  5387     lock();
  5388   incrementl(counter_addr);
  5389   popf();
  5392 // Writes to stack successive pages until offset reached to check for
  5393 // stack overflow + shadow pages.  This clobbers tmp.
  5394 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  5395   movptr(tmp, rsp);
  5396   // Bang stack for total size given plus shadow page size.
  5397   // Bang one page at a time because large size can bang beyond yellow and
  5398   // red zones.
  5399   Label loop;
  5400   bind(loop);
  5401   movl(Address(tmp, (-os::vm_page_size())), size );
  5402   subptr(tmp, os::vm_page_size());
  5403   subl(size, os::vm_page_size());
  5404   jcc(Assembler::greater, loop);
  5406   // Bang down shadow pages too.
  5407   // The -1 because we already subtracted 1 page.
  5408   for (int i = 0; i< StackShadowPages-1; i++) {
  5409     // this could be any sized move but this is can be a debugging crumb
  5410     // so the bigger the better.
  5411     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  5415 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  5416   assert(UseBiasedLocking, "why call this otherwise?");
  5418   // Check for biased locking unlock case, which is a no-op
  5419   // Note: we do not have to check the thread ID for two reasons.
  5420   // First, the interpreter checks for IllegalMonitorStateException at
  5421   // a higher level. Second, if the bias was revoked while we held the
  5422   // lock, the object could not be rebiased toward another thread, so
  5423   // the bias bit would be clear.
  5424   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  5425   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  5426   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  5427   jcc(Assembler::equal, done);
  5430 void MacroAssembler::c2bool(Register x) {
  5431   // implements x == 0 ? 0 : 1
  5432   // note: must only look at least-significant byte of x
  5433   //       since C-style booleans are stored in one byte
  5434   //       only! (was bug)
  5435   andl(x, 0xFF);
  5436   setb(Assembler::notZero, x);
  5439 // Wouldn't need if AddressLiteral version had new name
  5440 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  5441   Assembler::call(L, rtype);
  5444 void MacroAssembler::call(Register entry) {
  5445   Assembler::call(entry);
  5448 void MacroAssembler::call(AddressLiteral entry) {
  5449   if (reachable(entry)) {
  5450     Assembler::call_literal(entry.target(), entry.rspec());
  5451   } else {
  5452     lea(rscratch1, entry);
  5453     Assembler::call(rscratch1);
  5457 // Implementation of call_VM versions
  5459 void MacroAssembler::call_VM(Register oop_result,
  5460                              address entry_point,
  5461                              bool check_exceptions) {
  5462   Label C, E;
  5463   call(C, relocInfo::none);
  5464   jmp(E);
  5466   bind(C);
  5467   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  5468   ret(0);
  5470   bind(E);
  5473 void MacroAssembler::call_VM(Register oop_result,
  5474                              address entry_point,
  5475                              Register arg_1,
  5476                              bool check_exceptions) {
  5477   Label C, E;
  5478   call(C, relocInfo::none);
  5479   jmp(E);
  5481   bind(C);
  5482   pass_arg1(this, arg_1);
  5483   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  5484   ret(0);
  5486   bind(E);
  5489 void MacroAssembler::call_VM(Register oop_result,
  5490                              address entry_point,
  5491                              Register arg_1,
  5492                              Register arg_2,
  5493                              bool check_exceptions) {
  5494   Label C, E;
  5495   call(C, relocInfo::none);
  5496   jmp(E);
  5498   bind(C);
  5500   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5502   pass_arg2(this, arg_2);
  5503   pass_arg1(this, arg_1);
  5504   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  5505   ret(0);
  5507   bind(E);
  5510 void MacroAssembler::call_VM(Register oop_result,
  5511                              address entry_point,
  5512                              Register arg_1,
  5513                              Register arg_2,
  5514                              Register arg_3,
  5515                              bool check_exceptions) {
  5516   Label C, E;
  5517   call(C, relocInfo::none);
  5518   jmp(E);
  5520   bind(C);
  5522   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  5523   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  5524   pass_arg3(this, arg_3);
  5526   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5527   pass_arg2(this, arg_2);
  5529   pass_arg1(this, arg_1);
  5530   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  5531   ret(0);
  5533   bind(E);
  5536 void MacroAssembler::call_VM(Register oop_result,
  5537                              Register last_java_sp,
  5538                              address entry_point,
  5539                              int number_of_arguments,
  5540                              bool check_exceptions) {
  5541   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  5542   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  5545 void MacroAssembler::call_VM(Register oop_result,
  5546                              Register last_java_sp,
  5547                              address entry_point,
  5548                              Register arg_1,
  5549                              bool check_exceptions) {
  5550   pass_arg1(this, arg_1);
  5551   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  5554 void MacroAssembler::call_VM(Register oop_result,
  5555                              Register last_java_sp,
  5556                              address entry_point,
  5557                              Register arg_1,
  5558                              Register arg_2,
  5559                              bool check_exceptions) {
  5561   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5562   pass_arg2(this, arg_2);
  5563   pass_arg1(this, arg_1);
  5564   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  5567 void MacroAssembler::call_VM(Register oop_result,
  5568                              Register last_java_sp,
  5569                              address entry_point,
  5570                              Register arg_1,
  5571                              Register arg_2,
  5572                              Register arg_3,
  5573                              bool check_exceptions) {
  5574   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  5575   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  5576   pass_arg3(this, arg_3);
  5577   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5578   pass_arg2(this, arg_2);
  5579   pass_arg1(this, arg_1);
  5580   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  5583 void MacroAssembler::call_VM_base(Register oop_result,
  5584                                   Register java_thread,
  5585                                   Register last_java_sp,
  5586                                   address  entry_point,
  5587                                   int      number_of_arguments,
  5588                                   bool     check_exceptions) {
  5589   // determine java_thread register
  5590   if (!java_thread->is_valid()) {
  5591 #ifdef _LP64
  5592     java_thread = r15_thread;
  5593 #else
  5594     java_thread = rdi;
  5595     get_thread(java_thread);
  5596 #endif // LP64
  5598   // determine last_java_sp register
  5599   if (!last_java_sp->is_valid()) {
  5600     last_java_sp = rsp;
  5602   // debugging support
  5603   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  5604   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  5605   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  5606   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  5608   // push java thread (becomes first argument of C function)
  5610   NOT_LP64(push(java_thread); number_of_arguments++);
  5611   LP64_ONLY(mov(c_rarg0, r15_thread));
  5613   // set last Java frame before call
  5614   assert(last_java_sp != rbp, "can't use ebp/rbp");
  5616   // Only interpreter should have to set fp
  5617   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  5619   // do the call, remove parameters
  5620   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  5622   // restore the thread (cannot use the pushed argument since arguments
  5623   // may be overwritten by C code generated by an optimizing compiler);
  5624   // however can use the register value directly if it is callee saved.
  5625   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  5626     // rdi & rsi (also r15) are callee saved -> nothing to do
  5627 #ifdef ASSERT
  5628     guarantee(java_thread != rax, "change this code");
  5629     push(rax);
  5630     { Label L;
  5631       get_thread(rax);
  5632       cmpptr(java_thread, rax);
  5633       jcc(Assembler::equal, L);
  5634       stop("MacroAssembler::call_VM_base: rdi not callee saved?");
  5635       bind(L);
  5637     pop(rax);
  5638 #endif
  5639   } else {
  5640     get_thread(java_thread);
  5642   // reset last Java frame
  5643   // Only interpreter should have to clear fp
  5644   reset_last_Java_frame(java_thread, true, false);
  5646 #ifndef CC_INTERP
  5647    // C++ interp handles this in the interpreter
  5648   check_and_handle_popframe(java_thread);
  5649   check_and_handle_earlyret(java_thread);
  5650 #endif /* CC_INTERP */
  5652   if (check_exceptions) {
  5653     // check for pending exceptions (java_thread is set upon return)
  5654     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  5655 #ifndef _LP64
  5656     jump_cc(Assembler::notEqual,
  5657             RuntimeAddress(StubRoutines::forward_exception_entry()));
  5658 #else
  5659     // This used to conditionally jump to forward_exception however it is
  5660     // possible if we relocate that the branch will not reach. So we must jump
  5661     // around so we can always reach
  5663     Label ok;
  5664     jcc(Assembler::equal, ok);
  5665     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  5666     bind(ok);
  5667 #endif // LP64
  5670   // get oop result if there is one and reset the value in the thread
  5671   if (oop_result->is_valid()) {
  5672     movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  5673     movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  5674     verify_oop(oop_result, "broken oop in call_VM_base");
  5678 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  5680   // Calculate the value for last_Java_sp
  5681   // somewhat subtle. call_VM does an intermediate call
  5682   // which places a return address on the stack just under the
  5683   // stack pointer as the user finsihed with it. This allows
  5684   // use to retrieve last_Java_pc from last_Java_sp[-1].
  5685   // On 32bit we then have to push additional args on the stack to accomplish
  5686   // the actual requested call. On 64bit call_VM only can use register args
  5687   // so the only extra space is the return address that call_VM created.
  5688   // This hopefully explains the calculations here.
  5690 #ifdef _LP64
  5691   // We've pushed one address, correct last_Java_sp
  5692   lea(rax, Address(rsp, wordSize));
  5693 #else
  5694   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  5695 #endif // LP64
  5697   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  5701 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  5702   call_VM_leaf_base(entry_point, number_of_arguments);
  5705 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  5706   pass_arg0(this, arg_0);
  5707   call_VM_leaf(entry_point, 1);
  5710 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  5712   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  5713   pass_arg1(this, arg_1);
  5714   pass_arg0(this, arg_0);
  5715   call_VM_leaf(entry_point, 2);
  5718 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  5719   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  5720   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5721   pass_arg2(this, arg_2);
  5722   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  5723   pass_arg1(this, arg_1);
  5724   pass_arg0(this, arg_0);
  5725   call_VM_leaf(entry_point, 3);
  5728 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  5731 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  5734 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  5735   if (reachable(src1)) {
  5736     cmpl(as_Address(src1), imm);
  5737   } else {
  5738     lea(rscratch1, src1);
  5739     cmpl(Address(rscratch1, 0), imm);
  5743 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  5744   assert(!src2.is_lval(), "use cmpptr");
  5745   if (reachable(src2)) {
  5746     cmpl(src1, as_Address(src2));
  5747   } else {
  5748     lea(rscratch1, src2);
  5749     cmpl(src1, Address(rscratch1, 0));
  5753 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  5754   Assembler::cmpl(src1, imm);
  5757 void MacroAssembler::cmp32(Register src1, Address src2) {
  5758   Assembler::cmpl(src1, src2);
  5761 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  5762   ucomisd(opr1, opr2);
  5764   Label L;
  5765   if (unordered_is_less) {
  5766     movl(dst, -1);
  5767     jcc(Assembler::parity, L);
  5768     jcc(Assembler::below , L);
  5769     movl(dst, 0);
  5770     jcc(Assembler::equal , L);
  5771     increment(dst);
  5772   } else { // unordered is greater
  5773     movl(dst, 1);
  5774     jcc(Assembler::parity, L);
  5775     jcc(Assembler::above , L);
  5776     movl(dst, 0);
  5777     jcc(Assembler::equal , L);
  5778     decrementl(dst);
  5780   bind(L);
  5783 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  5784   ucomiss(opr1, opr2);
  5786   Label L;
  5787   if (unordered_is_less) {
  5788     movl(dst, -1);
  5789     jcc(Assembler::parity, L);
  5790     jcc(Assembler::below , L);
  5791     movl(dst, 0);
  5792     jcc(Assembler::equal , L);
  5793     increment(dst);
  5794   } else { // unordered is greater
  5795     movl(dst, 1);
  5796     jcc(Assembler::parity, L);
  5797     jcc(Assembler::above , L);
  5798     movl(dst, 0);
  5799     jcc(Assembler::equal , L);
  5800     decrementl(dst);
  5802   bind(L);
  5806 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  5807   if (reachable(src1)) {
  5808     cmpb(as_Address(src1), imm);
  5809   } else {
  5810     lea(rscratch1, src1);
  5811     cmpb(Address(rscratch1, 0), imm);
  5815 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  5816 #ifdef _LP64
  5817   if (src2.is_lval()) {
  5818     movptr(rscratch1, src2);
  5819     Assembler::cmpq(src1, rscratch1);
  5820   } else if (reachable(src2)) {
  5821     cmpq(src1, as_Address(src2));
  5822   } else {
  5823     lea(rscratch1, src2);
  5824     Assembler::cmpq(src1, Address(rscratch1, 0));
  5826 #else
  5827   if (src2.is_lval()) {
  5828     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  5829   } else {
  5830     cmpl(src1, as_Address(src2));
  5832 #endif // _LP64
  5835 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  5836   assert(src2.is_lval(), "not a mem-mem compare");
  5837 #ifdef _LP64
  5838   // moves src2's literal address
  5839   movptr(rscratch1, src2);
  5840   Assembler::cmpq(src1, rscratch1);
  5841 #else
  5842   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  5843 #endif // _LP64
  5846 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  5847   if (reachable(adr)) {
  5848     if (os::is_MP())
  5849       lock();
  5850     cmpxchgptr(reg, as_Address(adr));
  5851   } else {
  5852     lea(rscratch1, adr);
  5853     if (os::is_MP())
  5854       lock();
  5855     cmpxchgptr(reg, Address(rscratch1, 0));
  5859 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  5860   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  5863 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  5864   comisd(dst, as_Address(src));
  5867 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  5868   comiss(dst, as_Address(src));
  5872 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  5873   Condition negated_cond = negate_condition(cond);
  5874   Label L;
  5875   jcc(negated_cond, L);
  5876   atomic_incl(counter_addr);
  5877   bind(L);
  5880 int MacroAssembler::corrected_idivl(Register reg) {
  5881   // Full implementation of Java idiv and irem; checks for
  5882   // special case as described in JVM spec., p.243 & p.271.
  5883   // The function returns the (pc) offset of the idivl
  5884   // instruction - may be needed for implicit exceptions.
  5885   //
  5886   //         normal case                           special case
  5887   //
  5888   // input : rax,: dividend                         min_int
  5889   //         reg: divisor   (may not be rax,/rdx)   -1
  5890   //
  5891   // output: rax,: quotient  (= rax, idiv reg)       min_int
  5892   //         rdx: remainder (= rax, irem reg)       0
  5893   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  5894   const int min_int = 0x80000000;
  5895   Label normal_case, special_case;
  5897   // check for special case
  5898   cmpl(rax, min_int);
  5899   jcc(Assembler::notEqual, normal_case);
  5900   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  5901   cmpl(reg, -1);
  5902   jcc(Assembler::equal, special_case);
  5904   // handle normal case
  5905   bind(normal_case);
  5906   cdql();
  5907   int idivl_offset = offset();
  5908   idivl(reg);
  5910   // normal and special case exit
  5911   bind(special_case);
  5913   return idivl_offset;
  5918 void MacroAssembler::decrementl(Register reg, int value) {
  5919   if (value == min_jint) {subl(reg, value) ; return; }
  5920   if (value <  0) { incrementl(reg, -value); return; }
  5921   if (value == 0) {                        ; return; }
  5922   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  5923   /* else */      { subl(reg, value)       ; return; }
  5926 void MacroAssembler::decrementl(Address dst, int value) {
  5927   if (value == min_jint) {subl(dst, value) ; return; }
  5928   if (value <  0) { incrementl(dst, -value); return; }
  5929   if (value == 0) {                        ; return; }
  5930   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  5931   /* else */      { subl(dst, value)       ; return; }
  5934 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  5935   assert (shift_value > 0, "illegal shift value");
  5936   Label _is_positive;
  5937   testl (reg, reg);
  5938   jcc (Assembler::positive, _is_positive);
  5939   int offset = (1 << shift_value) - 1 ;
  5941   if (offset == 1) {
  5942     incrementl(reg);
  5943   } else {
  5944     addl(reg, offset);
  5947   bind (_is_positive);
  5948   sarl(reg, shift_value);
  5951 // !defined(COMPILER2) is because of stupid core builds
  5952 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  5953 void MacroAssembler::empty_FPU_stack() {
  5954   if (VM_Version::supports_mmx()) {
  5955     emms();
  5956   } else {
  5957     for (int i = 8; i-- > 0; ) ffree(i);
  5960 #endif // !LP64 || C1 || !C2
  5963 // Defines obj, preserves var_size_in_bytes
  5964 void MacroAssembler::eden_allocate(Register obj,
  5965                                    Register var_size_in_bytes,
  5966                                    int con_size_in_bytes,
  5967                                    Register t1,
  5968                                    Label& slow_case) {
  5969   assert(obj == rax, "obj must be in rax, for cmpxchg");
  5970   assert_different_registers(obj, var_size_in_bytes, t1);
  5971   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  5972     jmp(slow_case);
  5973   } else {
  5974     Register end = t1;
  5975     Label retry;
  5976     bind(retry);
  5977     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  5978     movptr(obj, heap_top);
  5979     if (var_size_in_bytes == noreg) {
  5980       lea(end, Address(obj, con_size_in_bytes));
  5981     } else {
  5982       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  5984     // if end < obj then we wrapped around => object too long => slow case
  5985     cmpptr(end, obj);
  5986     jcc(Assembler::below, slow_case);
  5987     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  5988     jcc(Assembler::above, slow_case);
  5989     // Compare obj with the top addr, and if still equal, store the new top addr in
  5990     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  5991     // it otherwise. Use lock prefix for atomicity on MPs.
  5992     locked_cmpxchgptr(end, heap_top);
  5993     jcc(Assembler::notEqual, retry);
  5997 void MacroAssembler::enter() {
  5998   push(rbp);
  5999   mov(rbp, rsp);
  6002 void MacroAssembler::fcmp(Register tmp) {
  6003   fcmp(tmp, 1, true, true);
  6006 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  6007   assert(!pop_right || pop_left, "usage error");
  6008   if (VM_Version::supports_cmov()) {
  6009     assert(tmp == noreg, "unneeded temp");
  6010     if (pop_left) {
  6011       fucomip(index);
  6012     } else {
  6013       fucomi(index);
  6015     if (pop_right) {
  6016       fpop();
  6018   } else {
  6019     assert(tmp != noreg, "need temp");
  6020     if (pop_left) {
  6021       if (pop_right) {
  6022         fcompp();
  6023       } else {
  6024         fcomp(index);
  6026     } else {
  6027       fcom(index);
  6029     // convert FPU condition into eflags condition via rax,
  6030     save_rax(tmp);
  6031     fwait(); fnstsw_ax();
  6032     sahf();
  6033     restore_rax(tmp);
  6035   // condition codes set as follows:
  6036   //
  6037   // CF (corresponds to C0) if x < y
  6038   // PF (corresponds to C2) if unordered
  6039   // ZF (corresponds to C3) if x = y
  6042 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  6043   fcmp2int(dst, unordered_is_less, 1, true, true);
  6046 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  6047   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  6048   Label L;
  6049   if (unordered_is_less) {
  6050     movl(dst, -1);
  6051     jcc(Assembler::parity, L);
  6052     jcc(Assembler::below , L);
  6053     movl(dst, 0);
  6054     jcc(Assembler::equal , L);
  6055     increment(dst);
  6056   } else { // unordered is greater
  6057     movl(dst, 1);
  6058     jcc(Assembler::parity, L);
  6059     jcc(Assembler::above , L);
  6060     movl(dst, 0);
  6061     jcc(Assembler::equal , L);
  6062     decrementl(dst);
  6064   bind(L);
  6067 void MacroAssembler::fld_d(AddressLiteral src) {
  6068   fld_d(as_Address(src));
  6071 void MacroAssembler::fld_s(AddressLiteral src) {
  6072   fld_s(as_Address(src));
  6075 void MacroAssembler::fld_x(AddressLiteral src) {
  6076   Assembler::fld_x(as_Address(src));
  6079 void MacroAssembler::fldcw(AddressLiteral src) {
  6080   Assembler::fldcw(as_Address(src));
  6083 void MacroAssembler::fpop() {
  6084   ffree();
  6085   fincstp();
  6088 void MacroAssembler::fremr(Register tmp) {
  6089   save_rax(tmp);
  6090   { Label L;
  6091     bind(L);
  6092     fprem();
  6093     fwait(); fnstsw_ax();
  6094 #ifdef _LP64
  6095     testl(rax, 0x400);
  6096     jcc(Assembler::notEqual, L);
  6097 #else
  6098     sahf();
  6099     jcc(Assembler::parity, L);
  6100 #endif // _LP64
  6102   restore_rax(tmp);
  6103   // Result is in ST0.
  6104   // Note: fxch & fpop to get rid of ST1
  6105   // (otherwise FPU stack could overflow eventually)
  6106   fxch(1);
  6107   fpop();
  6111 void MacroAssembler::incrementl(AddressLiteral dst) {
  6112   if (reachable(dst)) {
  6113     incrementl(as_Address(dst));
  6114   } else {
  6115     lea(rscratch1, dst);
  6116     incrementl(Address(rscratch1, 0));
  6120 void MacroAssembler::incrementl(ArrayAddress dst) {
  6121   incrementl(as_Address(dst));
  6124 void MacroAssembler::incrementl(Register reg, int value) {
  6125   if (value == min_jint) {addl(reg, value) ; return; }
  6126   if (value <  0) { decrementl(reg, -value); return; }
  6127   if (value == 0) {                        ; return; }
  6128   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  6129   /* else */      { addl(reg, value)       ; return; }
  6132 void MacroAssembler::incrementl(Address dst, int value) {
  6133   if (value == min_jint) {addl(dst, value) ; return; }
  6134   if (value <  0) { decrementl(dst, -value); return; }
  6135   if (value == 0) {                        ; return; }
  6136   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  6137   /* else */      { addl(dst, value)       ; return; }
  6140 void MacroAssembler::jump(AddressLiteral dst) {
  6141   if (reachable(dst)) {
  6142     jmp_literal(dst.target(), dst.rspec());
  6143   } else {
  6144     lea(rscratch1, dst);
  6145     jmp(rscratch1);
  6149 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  6150   if (reachable(dst)) {
  6151     InstructionMark im(this);
  6152     relocate(dst.reloc());
  6153     const int short_size = 2;
  6154     const int long_size = 6;
  6155     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
  6156     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  6157       // 0111 tttn #8-bit disp
  6158       emit_byte(0x70 | cc);
  6159       emit_byte((offs - short_size) & 0xFF);
  6160     } else {
  6161       // 0000 1111 1000 tttn #32-bit disp
  6162       emit_byte(0x0F);
  6163       emit_byte(0x80 | cc);
  6164       emit_long(offs - long_size);
  6166   } else {
  6167 #ifdef ASSERT
  6168     warning("reversing conditional branch");
  6169 #endif /* ASSERT */
  6170     Label skip;
  6171     jccb(reverse[cc], skip);
  6172     lea(rscratch1, dst);
  6173     Assembler::jmp(rscratch1);
  6174     bind(skip);
  6178 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  6179   if (reachable(src)) {
  6180     Assembler::ldmxcsr(as_Address(src));
  6181   } else {
  6182     lea(rscratch1, src);
  6183     Assembler::ldmxcsr(Address(rscratch1, 0));
  6187 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  6188   int off;
  6189   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6190     off = offset();
  6191     movsbl(dst, src); // movsxb
  6192   } else {
  6193     off = load_unsigned_byte(dst, src);
  6194     shll(dst, 24);
  6195     sarl(dst, 24);
  6197   return off;
  6200 // word => int32 which seems bad for 64bit
  6201 int MacroAssembler::load_signed_word(Register dst, Address src) {
  6202   int off;
  6203   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6204     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  6205     // version but this is what 64bit has always done. This seems to imply
  6206     // that users are only using 32bits worth.
  6207     off = offset();
  6208     movswl(dst, src); // movsxw
  6209   } else {
  6210     off = load_unsigned_word(dst, src);
  6211     shll(dst, 16);
  6212     sarl(dst, 16);
  6214   return off;
  6217 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  6218   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  6219   // and "3.9 Partial Register Penalties", p. 22).
  6220   int off;
  6221   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  6222     off = offset();
  6223     movzbl(dst, src); // movzxb
  6224   } else {
  6225     xorl(dst, dst);
  6226     off = offset();
  6227     movb(dst, src);
  6229   return off;
  6232 int MacroAssembler::load_unsigned_word(Register dst, Address src) {
  6233   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  6234   // and "3.9 Partial Register Penalties", p. 22).
  6235   int off;
  6236   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  6237     off = offset();
  6238     movzwl(dst, src); // movzxw
  6239   } else {
  6240     xorl(dst, dst);
  6241     off = offset();
  6242     movw(dst, src);
  6244   return off;
  6247 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  6248   if (reachable(dst)) {
  6249     movl(as_Address(dst), src);
  6250   } else {
  6251     lea(rscratch1, dst);
  6252     movl(Address(rscratch1, 0), src);
  6256 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  6257   if (reachable(src)) {
  6258     movl(dst, as_Address(src));
  6259   } else {
  6260     lea(rscratch1, src);
  6261     movl(dst, Address(rscratch1, 0));
  6265 // C++ bool manipulation
  6267 void MacroAssembler::movbool(Register dst, Address src) {
  6268   if(sizeof(bool) == 1)
  6269     movb(dst, src);
  6270   else if(sizeof(bool) == 2)
  6271     movw(dst, src);
  6272   else if(sizeof(bool) == 4)
  6273     movl(dst, src);
  6274   else
  6275     // unsupported
  6276     ShouldNotReachHere();
  6279 void MacroAssembler::movbool(Address dst, bool boolconst) {
  6280   if(sizeof(bool) == 1)
  6281     movb(dst, (int) boolconst);
  6282   else if(sizeof(bool) == 2)
  6283     movw(dst, (int) boolconst);
  6284   else if(sizeof(bool) == 4)
  6285     movl(dst, (int) boolconst);
  6286   else
  6287     // unsupported
  6288     ShouldNotReachHere();
  6291 void MacroAssembler::movbool(Address dst, Register src) {
  6292   if(sizeof(bool) == 1)
  6293     movb(dst, src);
  6294   else if(sizeof(bool) == 2)
  6295     movw(dst, src);
  6296   else if(sizeof(bool) == 4)
  6297     movl(dst, src);
  6298   else
  6299     // unsupported
  6300     ShouldNotReachHere();
  6303 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  6304   movb(as_Address(dst), src);
  6307 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  6308   if (reachable(src)) {
  6309     if (UseXmmLoadAndClearUpper) {
  6310       movsd (dst, as_Address(src));
  6311     } else {
  6312       movlpd(dst, as_Address(src));
  6314   } else {
  6315     lea(rscratch1, src);
  6316     if (UseXmmLoadAndClearUpper) {
  6317       movsd (dst, Address(rscratch1, 0));
  6318     } else {
  6319       movlpd(dst, Address(rscratch1, 0));
  6324 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  6325   if (reachable(src)) {
  6326     movss(dst, as_Address(src));
  6327   } else {
  6328     lea(rscratch1, src);
  6329     movss(dst, Address(rscratch1, 0));
  6333 void MacroAssembler::movptr(Register dst, Register src) {
  6334   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6337 void MacroAssembler::movptr(Register dst, Address src) {
  6338   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6341 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  6342 void MacroAssembler::movptr(Register dst, intptr_t src) {
  6343   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  6346 void MacroAssembler::movptr(Address dst, Register src) {
  6347   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6350 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  6351   if (reachable(src)) {
  6352     movss(dst, as_Address(src));
  6353   } else {
  6354     lea(rscratch1, src);
  6355     movss(dst, Address(rscratch1, 0));
  6359 void MacroAssembler::null_check(Register reg, int offset) {
  6360   if (needs_explicit_null_check(offset)) {
  6361     // provoke OS NULL exception if reg = NULL by
  6362     // accessing M[reg] w/o changing any (non-CC) registers
  6363     // NOTE: cmpl is plenty here to provoke a segv
  6364     cmpptr(rax, Address(reg, 0));
  6365     // Note: should probably use testl(rax, Address(reg, 0));
  6366     //       may be shorter code (however, this version of
  6367     //       testl needs to be implemented first)
  6368   } else {
  6369     // nothing to do, (later) access of M[reg + offset]
  6370     // will provoke OS NULL exception if reg = NULL
  6374 void MacroAssembler::os_breakpoint() {
  6375   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  6376   // (e.g., MSVC can't call ps() otherwise)
  6377   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  6380 void MacroAssembler::pop_CPU_state() {
  6381   pop_FPU_state();
  6382   pop_IU_state();
  6385 void MacroAssembler::pop_FPU_state() {
  6386   NOT_LP64(frstor(Address(rsp, 0));)
  6387   LP64_ONLY(fxrstor(Address(rsp, 0));)
  6388   addptr(rsp, FPUStateSizeInWords * wordSize);
  6391 void MacroAssembler::pop_IU_state() {
  6392   popa();
  6393   LP64_ONLY(addq(rsp, 8));
  6394   popf();
  6397 // Save Integer and Float state
  6398 // Warning: Stack must be 16 byte aligned (64bit)
  6399 void MacroAssembler::push_CPU_state() {
  6400   push_IU_state();
  6401   push_FPU_state();
  6404 void MacroAssembler::push_FPU_state() {
  6405   subptr(rsp, FPUStateSizeInWords * wordSize);
  6406 #ifndef _LP64
  6407   fnsave(Address(rsp, 0));
  6408   fwait();
  6409 #else
  6410   fxsave(Address(rsp, 0));
  6411 #endif // LP64
  6414 void MacroAssembler::push_IU_state() {
  6415   // Push flags first because pusha kills them
  6416   pushf();
  6417   // Make sure rsp stays 16-byte aligned
  6418   LP64_ONLY(subq(rsp, 8));
  6419   pusha();
  6422 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  6423   // determine java_thread register
  6424   if (!java_thread->is_valid()) {
  6425     java_thread = rdi;
  6426     get_thread(java_thread);
  6428   // we must set sp to zero to clear frame
  6429   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  6430   if (clear_fp) {
  6431     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  6434   if (clear_pc)
  6435     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  6439 void MacroAssembler::restore_rax(Register tmp) {
  6440   if (tmp == noreg) pop(rax);
  6441   else if (tmp != rax) mov(rax, tmp);
  6444 void MacroAssembler::round_to(Register reg, int modulus) {
  6445   addptr(reg, modulus - 1);
  6446   andptr(reg, -modulus);
  6449 void MacroAssembler::save_rax(Register tmp) {
  6450   if (tmp == noreg) push(rax);
  6451   else if (tmp != rax) mov(tmp, rax);
  6454 // Write serialization page so VM thread can do a pseudo remote membar.
  6455 // We use the current thread pointer to calculate a thread specific
  6456 // offset to write to within the page. This minimizes bus traffic
  6457 // due to cache line collision.
  6458 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  6459   movl(tmp, thread);
  6460   shrl(tmp, os::get_serialize_page_shift_count());
  6461   andl(tmp, (os::vm_page_size() - sizeof(int)));
  6463   Address index(noreg, tmp, Address::times_1);
  6464   ExternalAddress page(os::get_memory_serialize_page());
  6466   movptr(ArrayAddress(page, index), tmp);
  6469 // Calls to C land
  6470 //
  6471 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  6472 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  6473 // has to be reset to 0. This is required to allow proper stack traversal.
  6474 void MacroAssembler::set_last_Java_frame(Register java_thread,
  6475                                          Register last_java_sp,
  6476                                          Register last_java_fp,
  6477                                          address  last_java_pc) {
  6478   // determine java_thread register
  6479   if (!java_thread->is_valid()) {
  6480     java_thread = rdi;
  6481     get_thread(java_thread);
  6483   // determine last_java_sp register
  6484   if (!last_java_sp->is_valid()) {
  6485     last_java_sp = rsp;
  6488   // last_java_fp is optional
  6490   if (last_java_fp->is_valid()) {
  6491     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  6494   // last_java_pc is optional
  6496   if (last_java_pc != NULL) {
  6497     lea(Address(java_thread,
  6498                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  6499         InternalAddress(last_java_pc));
  6502   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  6505 void MacroAssembler::shlptr(Register dst, int imm8) {
  6506   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  6509 void MacroAssembler::shrptr(Register dst, int imm8) {
  6510   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  6513 void MacroAssembler::sign_extend_byte(Register reg) {
  6514   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  6515     movsbl(reg, reg); // movsxb
  6516   } else {
  6517     shll(reg, 24);
  6518     sarl(reg, 24);
  6522 void MacroAssembler::sign_extend_short(Register reg) {
  6523   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6524     movswl(reg, reg); // movsxw
  6525   } else {
  6526     shll(reg, 16);
  6527     sarl(reg, 16);
  6531 //////////////////////////////////////////////////////////////////////////////////
  6532 #ifndef SERIALGC
  6534 void MacroAssembler::g1_write_barrier_pre(Register obj,
  6535 #ifndef _LP64
  6536                                           Register thread,
  6537 #endif
  6538                                           Register tmp,
  6539                                           Register tmp2,
  6540                                           bool tosca_live) {
  6541   LP64_ONLY(Register thread = r15_thread;)
  6542   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6543                                        PtrQueue::byte_offset_of_active()));
  6545   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6546                                        PtrQueue::byte_offset_of_index()));
  6547   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6548                                        PtrQueue::byte_offset_of_buf()));
  6551   Label done;
  6552   Label runtime;
  6554   // if (!marking_in_progress) goto done;
  6555   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  6556     cmpl(in_progress, 0);
  6557   } else {
  6558     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  6559     cmpb(in_progress, 0);
  6561   jcc(Assembler::equal, done);
  6563   // if (x.f == NULL) goto done;
  6564   cmpptr(Address(obj, 0), NULL_WORD);
  6565   jcc(Assembler::equal, done);
  6567   // Can we store original value in the thread's buffer?
  6569   LP64_ONLY(movslq(tmp, index);)
  6570   movptr(tmp2, Address(obj, 0));
  6571 #ifdef _LP64
  6572   cmpq(tmp, 0);
  6573 #else
  6574   cmpl(index, 0);
  6575 #endif
  6576   jcc(Assembler::equal, runtime);
  6577 #ifdef _LP64
  6578   subq(tmp, wordSize);
  6579   movl(index, tmp);
  6580   addq(tmp, buffer);
  6581 #else
  6582   subl(index, wordSize);
  6583   movl(tmp, buffer);
  6584   addl(tmp, index);
  6585 #endif
  6586   movptr(Address(tmp, 0), tmp2);
  6587   jmp(done);
  6588   bind(runtime);
  6589   // save the live input values
  6590   if(tosca_live) push(rax);
  6591   push(obj);
  6592 #ifdef _LP64
  6593   movq(c_rarg0, Address(obj, 0));
  6594   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), c_rarg0, r15_thread);
  6595 #else
  6596   push(thread);
  6597   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), tmp2, thread);
  6598   pop(thread);
  6599 #endif
  6600   pop(obj);
  6601   if(tosca_live) pop(rax);
  6602   bind(done);
  6606 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  6607                                            Register new_val,
  6608 #ifndef _LP64
  6609                                            Register thread,
  6610 #endif
  6611                                            Register tmp,
  6612                                            Register tmp2) {
  6614   LP64_ONLY(Register thread = r15_thread;)
  6615   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  6616                                        PtrQueue::byte_offset_of_index()));
  6617   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  6618                                        PtrQueue::byte_offset_of_buf()));
  6619   BarrierSet* bs = Universe::heap()->barrier_set();
  6620   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  6621   Label done;
  6622   Label runtime;
  6624   // Does store cross heap regions?
  6626   movptr(tmp, store_addr);
  6627   xorptr(tmp, new_val);
  6628   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  6629   jcc(Assembler::equal, done);
  6631   // crosses regions, storing NULL?
  6633   cmpptr(new_val, (int32_t) NULL_WORD);
  6634   jcc(Assembler::equal, done);
  6636   // storing region crossing non-NULL, is card already dirty?
  6638   ExternalAddress cardtable((address) ct->byte_map_base);
  6639   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  6640 #ifdef _LP64
  6641   const Register card_addr = tmp;
  6643   movq(card_addr, store_addr);
  6644   shrq(card_addr, CardTableModRefBS::card_shift);
  6646   lea(tmp2, cardtable);
  6648   // get the address of the card
  6649   addq(card_addr, tmp2);
  6650 #else
  6651   const Register card_index = tmp;
  6653   movl(card_index, store_addr);
  6654   shrl(card_index, CardTableModRefBS::card_shift);
  6656   Address index(noreg, card_index, Address::times_1);
  6657   const Register card_addr = tmp;
  6658   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  6659 #endif
  6660   cmpb(Address(card_addr, 0), 0);
  6661   jcc(Assembler::equal, done);
  6663   // storing a region crossing, non-NULL oop, card is clean.
  6664   // dirty card and log.
  6666   movb(Address(card_addr, 0), 0);
  6668   cmpl(queue_index, 0);
  6669   jcc(Assembler::equal, runtime);
  6670   subl(queue_index, wordSize);
  6671   movptr(tmp2, buffer);
  6672 #ifdef _LP64
  6673   movslq(rscratch1, queue_index);
  6674   addq(tmp2, rscratch1);
  6675   movq(Address(tmp2, 0), card_addr);
  6676 #else
  6677   addl(tmp2, queue_index);
  6678   movl(Address(tmp2, 0), card_index);
  6679 #endif
  6680   jmp(done);
  6682   bind(runtime);
  6683   // save the live input values
  6684   push(store_addr);
  6685   push(new_val);
  6686 #ifdef _LP64
  6687   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  6688 #else
  6689   push(thread);
  6690   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  6691   pop(thread);
  6692 #endif
  6693   pop(new_val);
  6694   pop(store_addr);
  6696   bind(done);
  6700 #endif // SERIALGC
  6701 //////////////////////////////////////////////////////////////////////////////////
  6704 void MacroAssembler::store_check(Register obj) {
  6705   // Does a store check for the oop in register obj. The content of
  6706   // register obj is destroyed afterwards.
  6707   store_check_part_1(obj);
  6708   store_check_part_2(obj);
  6711 void MacroAssembler::store_check(Register obj, Address dst) {
  6712   store_check(obj);
  6716 // split the store check operation so that other instructions can be scheduled inbetween
  6717 void MacroAssembler::store_check_part_1(Register obj) {
  6718   BarrierSet* bs = Universe::heap()->barrier_set();
  6719   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  6720   shrptr(obj, CardTableModRefBS::card_shift);
  6723 void MacroAssembler::store_check_part_2(Register obj) {
  6724   BarrierSet* bs = Universe::heap()->barrier_set();
  6725   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  6726   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  6727   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  6729   // The calculation for byte_map_base is as follows:
  6730   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  6731   // So this essentially converts an address to a displacement and
  6732   // it will never need to be relocated. On 64bit however the value may be too
  6733   // large for a 32bit displacement
  6735   intptr_t disp = (intptr_t) ct->byte_map_base;
  6736   if (is_simm32(disp)) {
  6737     Address cardtable(noreg, obj, Address::times_1, disp);
  6738     movb(cardtable, 0);
  6739   } else {
  6740     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  6741     // displacement and done in a single instruction given favorable mapping and
  6742     // a smarter version of as_Address. Worst case it is two instructions which
  6743     // is no worse off then loading disp into a register and doing as a simple
  6744     // Address() as above.
  6745     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  6746     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  6747     // in some cases we'll get a single instruction version.
  6749     ExternalAddress cardtable((address)disp);
  6750     Address index(noreg, obj, Address::times_1);
  6751     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  6755 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  6756   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  6759 void MacroAssembler::subptr(Register dst, Register src) {
  6760   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  6763 void MacroAssembler::test32(Register src1, AddressLiteral src2) {
  6764   // src2 must be rval
  6766   if (reachable(src2)) {
  6767     testl(src1, as_Address(src2));
  6768   } else {
  6769     lea(rscratch1, src2);
  6770     testl(src1, Address(rscratch1, 0));
  6774 // C++ bool manipulation
  6775 void MacroAssembler::testbool(Register dst) {
  6776   if(sizeof(bool) == 1)
  6777     testb(dst, 0xff);
  6778   else if(sizeof(bool) == 2) {
  6779     // testw implementation needed for two byte bools
  6780     ShouldNotReachHere();
  6781   } else if(sizeof(bool) == 4)
  6782     testl(dst, dst);
  6783   else
  6784     // unsupported
  6785     ShouldNotReachHere();
  6788 void MacroAssembler::testptr(Register dst, Register src) {
  6789   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  6792 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  6793 void MacroAssembler::tlab_allocate(Register obj,
  6794                                    Register var_size_in_bytes,
  6795                                    int con_size_in_bytes,
  6796                                    Register t1,
  6797                                    Register t2,
  6798                                    Label& slow_case) {
  6799   assert_different_registers(obj, t1, t2);
  6800   assert_different_registers(obj, var_size_in_bytes, t1);
  6801   Register end = t2;
  6802   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  6804   verify_tlab();
  6806   NOT_LP64(get_thread(thread));
  6808   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  6809   if (var_size_in_bytes == noreg) {
  6810     lea(end, Address(obj, con_size_in_bytes));
  6811   } else {
  6812     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  6814   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  6815   jcc(Assembler::above, slow_case);
  6817   // update the tlab top pointer
  6818   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  6820   // recover var_size_in_bytes if necessary
  6821   if (var_size_in_bytes == end) {
  6822     subptr(var_size_in_bytes, obj);
  6824   verify_tlab();
  6827 // Preserves rbx, and rdx.
  6828 void MacroAssembler::tlab_refill(Label& retry,
  6829                                  Label& try_eden,
  6830                                  Label& slow_case) {
  6831   Register top = rax;
  6832   Register t1  = rcx;
  6833   Register t2  = rsi;
  6834   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  6835   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  6836   Label do_refill, discard_tlab;
  6838   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  6839     // No allocation in the shared eden.
  6840     jmp(slow_case);
  6843   NOT_LP64(get_thread(thread_reg));
  6845   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  6846   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  6848   // calculate amount of free space
  6849   subptr(t1, top);
  6850   shrptr(t1, LogHeapWordSize);
  6852   // Retain tlab and allocate object in shared space if
  6853   // the amount free in the tlab is too large to discard.
  6854   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  6855   jcc(Assembler::lessEqual, discard_tlab);
  6857   // Retain
  6858   // %%% yuck as movptr...
  6859   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  6860   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  6861   if (TLABStats) {
  6862     // increment number of slow_allocations
  6863     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  6865   jmp(try_eden);
  6867   bind(discard_tlab);
  6868   if (TLABStats) {
  6869     // increment number of refills
  6870     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  6871     // accumulate wastage -- t1 is amount free in tlab
  6872     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  6875   // if tlab is currently allocated (top or end != null) then
  6876   // fill [top, end + alignment_reserve) with array object
  6877   testptr (top, top);
  6878   jcc(Assembler::zero, do_refill);
  6880   // set up the mark word
  6881   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  6882   // set the length to the remaining space
  6883   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  6884   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  6885   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  6886   movptr(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  6887   // set klass to intArrayKlass
  6888   // dubious reloc why not an oop reloc?
  6889   movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
  6890   // store klass last.  concurrent gcs assumes klass length is valid if
  6891   // klass field is not null.
  6892   store_klass(top, t1);
  6894   // refill the tlab with an eden allocation
  6895   bind(do_refill);
  6896   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  6897   shlptr(t1, LogHeapWordSize);
  6898   // add object_size ??
  6899   eden_allocate(top, t1, 0, t2, slow_case);
  6901   // Check that t1 was preserved in eden_allocate.
  6902 #ifdef ASSERT
  6903   if (UseTLAB) {
  6904     Label ok;
  6905     Register tsize = rsi;
  6906     assert_different_registers(tsize, thread_reg, t1);
  6907     push(tsize);
  6908     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  6909     shlptr(tsize, LogHeapWordSize);
  6910     cmpptr(t1, tsize);
  6911     jcc(Assembler::equal, ok);
  6912     stop("assert(t1 != tlab size)");
  6913     should_not_reach_here();
  6915     bind(ok);
  6916     pop(tsize);
  6918 #endif
  6919   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  6920   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  6921   addptr(top, t1);
  6922   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  6923   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  6924   verify_tlab();
  6925   jmp(retry);
  6928 static const double     pi_4 =  0.7853981633974483;
  6930 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  6931   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  6932   // was attempted in this code; unfortunately it appears that the
  6933   // switch to 80-bit precision and back causes this to be
  6934   // unprofitable compared with simply performing a runtime call if
  6935   // the argument is out of the (-pi/4, pi/4) range.
  6937   Register tmp = noreg;
  6938   if (!VM_Version::supports_cmov()) {
  6939     // fcmp needs a temporary so preserve rbx,
  6940     tmp = rbx;
  6941     push(tmp);
  6944   Label slow_case, done;
  6946   ExternalAddress pi4_adr = (address)&pi_4;
  6947   if (reachable(pi4_adr)) {
  6948     // x ?<= pi/4
  6949     fld_d(pi4_adr);
  6950     fld_s(1);                // Stack:  X  PI/4  X
  6951     fabs();                  // Stack: |X| PI/4  X
  6952     fcmp(tmp);
  6953     jcc(Assembler::above, slow_case);
  6955     // fastest case: -pi/4 <= x <= pi/4
  6956     switch(trig) {
  6957     case 's':
  6958       fsin();
  6959       break;
  6960     case 'c':
  6961       fcos();
  6962       break;
  6963     case 't':
  6964       ftan();
  6965       break;
  6966     default:
  6967       assert(false, "bad intrinsic");
  6968       break;
  6970     jmp(done);
  6973   // slow case: runtime call
  6974   bind(slow_case);
  6975   // Preserve registers across runtime call
  6976   pusha();
  6977   int incoming_argument_and_return_value_offset = -1;
  6978   if (num_fpu_regs_in_use > 1) {
  6979     // Must preserve all other FPU regs (could alternatively convert
  6980     // SharedRuntime::dsin and dcos into assembly routines known not to trash
  6981     // FPU state, but can not trust C compiler)
  6982     NEEDS_CLEANUP;
  6983     // NOTE that in this case we also push the incoming argument to
  6984     // the stack and restore it later; we also use this stack slot to
  6985     // hold the return value from dsin or dcos.
  6986     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  6987       subptr(rsp, sizeof(jdouble));
  6988       fstp_d(Address(rsp, 0));
  6990     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  6991     fld_d(Address(rsp, incoming_argument_and_return_value_offset));
  6993   subptr(rsp, sizeof(jdouble));
  6994   fstp_d(Address(rsp, 0));
  6995 #ifdef _LP64
  6996   movdbl(xmm0, Address(rsp, 0));
  6997 #endif // _LP64
  6999   // NOTE: we must not use call_VM_leaf here because that requires a
  7000   // complete interpreter frame in debug mode -- same bug as 4387334
  7001   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  7002   // do proper 64bit abi
  7004   NEEDS_CLEANUP;
  7005   // Need to add stack banging before this runtime call if it needs to
  7006   // be taken; however, there is no generic stack banging routine at
  7007   // the MacroAssembler level
  7008   switch(trig) {
  7009   case 's':
  7011       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 0);
  7013     break;
  7014   case 'c':
  7016       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 0);
  7018     break;
  7019   case 't':
  7021       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 0);
  7023     break;
  7024   default:
  7025     assert(false, "bad intrinsic");
  7026     break;
  7028 #ifdef _LP64
  7029     movsd(Address(rsp, 0), xmm0);
  7030     fld_d(Address(rsp, 0));
  7031 #endif // _LP64
  7032   addptr(rsp, sizeof(jdouble));
  7033   if (num_fpu_regs_in_use > 1) {
  7034     // Must save return value to stack and then restore entire FPU stack
  7035     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  7036     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  7037       fld_d(Address(rsp, 0));
  7038       addptr(rsp, sizeof(jdouble));
  7041   popa();
  7043   // Come here with result in F-TOS
  7044   bind(done);
  7046   if (tmp != noreg) {
  7047     pop(tmp);
  7052 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  7053   ucomisd(dst, as_Address(src));
  7056 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  7057   ucomiss(dst, as_Address(src));
  7060 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  7061   if (reachable(src)) {
  7062     xorpd(dst, as_Address(src));
  7063   } else {
  7064     lea(rscratch1, src);
  7065     xorpd(dst, Address(rscratch1, 0));
  7069 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  7070   if (reachable(src)) {
  7071     xorps(dst, as_Address(src));
  7072   } else {
  7073     lea(rscratch1, src);
  7074     xorps(dst, Address(rscratch1, 0));
  7078 void MacroAssembler::verify_oop(Register reg, const char* s) {
  7079   if (!VerifyOops) return;
  7081   // Pass register number to verify_oop_subroutine
  7082   char* b = new char[strlen(s) + 50];
  7083   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  7084   push(rax);                          // save rax,
  7085   push(reg);                          // pass register argument
  7086   ExternalAddress buffer((address) b);
  7087   // avoid using pushptr, as it modifies scratch registers
  7088   // and our contract is not to modify anything
  7089   movptr(rax, buffer.addr());
  7090   push(rax);
  7091   // call indirectly to solve generation ordering problem
  7092   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  7093   call(rax);
  7097 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  7098   if (!VerifyOops) return;
  7100   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  7101   // Pass register number to verify_oop_subroutine
  7102   char* b = new char[strlen(s) + 50];
  7103   sprintf(b, "verify_oop_addr: %s", s);
  7105   push(rax);                          // save rax,
  7106   // addr may contain rsp so we will have to adjust it based on the push
  7107   // we just did
  7108   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  7109   // stores rax into addr which is backwards of what was intended.
  7110   if (addr.uses(rsp)) {
  7111     lea(rax, addr);
  7112     pushptr(Address(rax, BytesPerWord));
  7113   } else {
  7114     pushptr(addr);
  7117   ExternalAddress buffer((address) b);
  7118   // pass msg argument
  7119   // avoid using pushptr, as it modifies scratch registers
  7120   // and our contract is not to modify anything
  7121   movptr(rax, buffer.addr());
  7122   push(rax);
  7124   // call indirectly to solve generation ordering problem
  7125   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  7126   call(rax);
  7127   // Caller pops the arguments and restores rax, from the stack
  7130 void MacroAssembler::verify_tlab() {
  7131 #ifdef ASSERT
  7132   if (UseTLAB && VerifyOops) {
  7133     Label next, ok;
  7134     Register t1 = rsi;
  7135     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  7137     push(t1);
  7138     NOT_LP64(push(thread_reg));
  7139     NOT_LP64(get_thread(thread_reg));
  7141     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7142     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  7143     jcc(Assembler::aboveEqual, next);
  7144     stop("assert(top >= start)");
  7145     should_not_reach_here();
  7147     bind(next);
  7148     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  7149     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7150     jcc(Assembler::aboveEqual, ok);
  7151     stop("assert(top <= end)");
  7152     should_not_reach_here();
  7154     bind(ok);
  7155     NOT_LP64(pop(thread_reg));
  7156     pop(t1);
  7158 #endif
  7161 class ControlWord {
  7162  public:
  7163   int32_t _value;
  7165   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  7166   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  7167   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  7168   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  7169   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  7170   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  7171   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  7172   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  7174   void print() const {
  7175     // rounding control
  7176     const char* rc;
  7177     switch (rounding_control()) {
  7178       case 0: rc = "round near"; break;
  7179       case 1: rc = "round down"; break;
  7180       case 2: rc = "round up  "; break;
  7181       case 3: rc = "chop      "; break;
  7182     };
  7183     // precision control
  7184     const char* pc;
  7185     switch (precision_control()) {
  7186       case 0: pc = "24 bits "; break;
  7187       case 1: pc = "reserved"; break;
  7188       case 2: pc = "53 bits "; break;
  7189       case 3: pc = "64 bits "; break;
  7190     };
  7191     // flags
  7192     char f[9];
  7193     f[0] = ' ';
  7194     f[1] = ' ';
  7195     f[2] = (precision   ()) ? 'P' : 'p';
  7196     f[3] = (underflow   ()) ? 'U' : 'u';
  7197     f[4] = (overflow    ()) ? 'O' : 'o';
  7198     f[5] = (zero_divide ()) ? 'Z' : 'z';
  7199     f[6] = (denormalized()) ? 'D' : 'd';
  7200     f[7] = (invalid     ()) ? 'I' : 'i';
  7201     f[8] = '\x0';
  7202     // output
  7203     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  7206 };
  7208 class StatusWord {
  7209  public:
  7210   int32_t _value;
  7212   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  7213   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  7214   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  7215   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  7216   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  7217   int  top() const                     { return  (_value >> 11) & 7      ; }
  7218   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  7219   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  7220   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  7221   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  7222   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  7223   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  7224   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  7225   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  7227   void print() const {
  7228     // condition codes
  7229     char c[5];
  7230     c[0] = (C3()) ? '3' : '-';
  7231     c[1] = (C2()) ? '2' : '-';
  7232     c[2] = (C1()) ? '1' : '-';
  7233     c[3] = (C0()) ? '0' : '-';
  7234     c[4] = '\x0';
  7235     // flags
  7236     char f[9];
  7237     f[0] = (error_status()) ? 'E' : '-';
  7238     f[1] = (stack_fault ()) ? 'S' : '-';
  7239     f[2] = (precision   ()) ? 'P' : '-';
  7240     f[3] = (underflow   ()) ? 'U' : '-';
  7241     f[4] = (overflow    ()) ? 'O' : '-';
  7242     f[5] = (zero_divide ()) ? 'Z' : '-';
  7243     f[6] = (denormalized()) ? 'D' : '-';
  7244     f[7] = (invalid     ()) ? 'I' : '-';
  7245     f[8] = '\x0';
  7246     // output
  7247     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  7250 };
  7252 class TagWord {
  7253  public:
  7254   int32_t _value;
  7256   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  7258   void print() const {
  7259     printf("%04x", _value & 0xFFFF);
  7262 };
  7264 class FPU_Register {
  7265  public:
  7266   int32_t _m0;
  7267   int32_t _m1;
  7268   int16_t _ex;
  7270   bool is_indefinite() const           {
  7271     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  7274   void print() const {
  7275     char  sign = (_ex < 0) ? '-' : '+';
  7276     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  7277     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  7278   };
  7280 };
  7282 class FPU_State {
  7283  public:
  7284   enum {
  7285     register_size       = 10,
  7286     number_of_registers =  8,
  7287     register_mask       =  7
  7288   };
  7290   ControlWord  _control_word;
  7291   StatusWord   _status_word;
  7292   TagWord      _tag_word;
  7293   int32_t      _error_offset;
  7294   int32_t      _error_selector;
  7295   int32_t      _data_offset;
  7296   int32_t      _data_selector;
  7297   int8_t       _register[register_size * number_of_registers];
  7299   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  7300   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  7302   const char* tag_as_string(int tag) const {
  7303     switch (tag) {
  7304       case 0: return "valid";
  7305       case 1: return "zero";
  7306       case 2: return "special";
  7307       case 3: return "empty";
  7309     ShouldNotReachHere()
  7310     return NULL;
  7313   void print() const {
  7314     // print computation registers
  7315     { int t = _status_word.top();
  7316       for (int i = 0; i < number_of_registers; i++) {
  7317         int j = (i - t) & register_mask;
  7318         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  7319         st(j)->print();
  7320         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  7323     printf("\n");
  7324     // print control registers
  7325     printf("ctrl = "); _control_word.print(); printf("\n");
  7326     printf("stat = "); _status_word .print(); printf("\n");
  7327     printf("tags = "); _tag_word    .print(); printf("\n");
  7330 };
  7332 class Flag_Register {
  7333  public:
  7334   int32_t _value;
  7336   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  7337   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  7338   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  7339   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  7340   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  7341   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  7342   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  7344   void print() const {
  7345     // flags
  7346     char f[8];
  7347     f[0] = (overflow       ()) ? 'O' : '-';
  7348     f[1] = (direction      ()) ? 'D' : '-';
  7349     f[2] = (sign           ()) ? 'S' : '-';
  7350     f[3] = (zero           ()) ? 'Z' : '-';
  7351     f[4] = (auxiliary_carry()) ? 'A' : '-';
  7352     f[5] = (parity         ()) ? 'P' : '-';
  7353     f[6] = (carry          ()) ? 'C' : '-';
  7354     f[7] = '\x0';
  7355     // output
  7356     printf("%08x  flags = %s", _value, f);
  7359 };
  7361 class IU_Register {
  7362  public:
  7363   int32_t _value;
  7365   void print() const {
  7366     printf("%08x  %11d", _value, _value);
  7369 };
  7371 class IU_State {
  7372  public:
  7373   Flag_Register _eflags;
  7374   IU_Register   _rdi;
  7375   IU_Register   _rsi;
  7376   IU_Register   _rbp;
  7377   IU_Register   _rsp;
  7378   IU_Register   _rbx;
  7379   IU_Register   _rdx;
  7380   IU_Register   _rcx;
  7381   IU_Register   _rax;
  7383   void print() const {
  7384     // computation registers
  7385     printf("rax,  = "); _rax.print(); printf("\n");
  7386     printf("rbx,  = "); _rbx.print(); printf("\n");
  7387     printf("rcx  = "); _rcx.print(); printf("\n");
  7388     printf("rdx  = "); _rdx.print(); printf("\n");
  7389     printf("rdi  = "); _rdi.print(); printf("\n");
  7390     printf("rsi  = "); _rsi.print(); printf("\n");
  7391     printf("rbp,  = "); _rbp.print(); printf("\n");
  7392     printf("rsp  = "); _rsp.print(); printf("\n");
  7393     printf("\n");
  7394     // control registers
  7395     printf("flgs = "); _eflags.print(); printf("\n");
  7397 };
  7400 class CPU_State {
  7401  public:
  7402   FPU_State _fpu_state;
  7403   IU_State  _iu_state;
  7405   void print() const {
  7406     printf("--------------------------------------------------\n");
  7407     _iu_state .print();
  7408     printf("\n");
  7409     _fpu_state.print();
  7410     printf("--------------------------------------------------\n");
  7413 };
  7416 static void _print_CPU_state(CPU_State* state) {
  7417   state->print();
  7418 };
  7421 void MacroAssembler::print_CPU_state() {
  7422   push_CPU_state();
  7423   push(rsp);                // pass CPU state
  7424   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  7425   addptr(rsp, wordSize);       // discard argument
  7426   pop_CPU_state();
  7430 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  7431   static int counter = 0;
  7432   FPU_State* fs = &state->_fpu_state;
  7433   counter++;
  7434   // For leaf calls, only verify that the top few elements remain empty.
  7435   // We only need 1 empty at the top for C2 code.
  7436   if( stack_depth < 0 ) {
  7437     if( fs->tag_for_st(7) != 3 ) {
  7438       printf("FPR7 not empty\n");
  7439       state->print();
  7440       assert(false, "error");
  7441       return false;
  7443     return true;                // All other stack states do not matter
  7446   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  7447          "bad FPU control word");
  7449   // compute stack depth
  7450   int i = 0;
  7451   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  7452   int d = i;
  7453   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  7454   // verify findings
  7455   if (i != FPU_State::number_of_registers) {
  7456     // stack not contiguous
  7457     printf("%s: stack not contiguous at ST%d\n", s, i);
  7458     state->print();
  7459     assert(false, "error");
  7460     return false;
  7462   // check if computed stack depth corresponds to expected stack depth
  7463   if (stack_depth < 0) {
  7464     // expected stack depth is -stack_depth or less
  7465     if (d > -stack_depth) {
  7466       // too many elements on the stack
  7467       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  7468       state->print();
  7469       assert(false, "error");
  7470       return false;
  7472   } else {
  7473     // expected stack depth is stack_depth
  7474     if (d != stack_depth) {
  7475       // wrong stack depth
  7476       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  7477       state->print();
  7478       assert(false, "error");
  7479       return false;
  7482   // everything is cool
  7483   return true;
  7487 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  7488   if (!VerifyFPU) return;
  7489   push_CPU_state();
  7490   push(rsp);                // pass CPU state
  7491   ExternalAddress msg((address) s);
  7492   // pass message string s
  7493   pushptr(msg.addr());
  7494   push(stack_depth);        // pass stack depth
  7495   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  7496   addptr(rsp, 3 * wordSize);   // discard arguments
  7497   // check for error
  7498   { Label L;
  7499     testl(rax, rax);
  7500     jcc(Assembler::notZero, L);
  7501     int3();                  // break if error condition
  7502     bind(L);
  7504   pop_CPU_state();
  7507 void MacroAssembler::load_klass(Register dst, Register src) {
  7508 #ifdef _LP64
  7509   if (UseCompressedOops) {
  7510     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  7511     decode_heap_oop_not_null(dst);
  7512   } else
  7513 #endif
  7514     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  7517 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  7518 #ifdef _LP64
  7519   if (UseCompressedOops) {
  7520     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  7521     movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  7522   } else
  7523 #endif
  7525       movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  7526       movptr(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  7530 void MacroAssembler::store_klass(Register dst, Register src) {
  7531 #ifdef _LP64
  7532   if (UseCompressedOops) {
  7533     encode_heap_oop_not_null(src);
  7534     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  7535   } else
  7536 #endif
  7537     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  7540 #ifdef _LP64
  7541 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  7542   if (UseCompressedOops) {
  7543     // Store to klass gap in destination
  7544     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  7548 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  7549   if (UseCompressedOops) {
  7550     movl(dst, src);
  7551     decode_heap_oop(dst);
  7552   } else {
  7553     movq(dst, src);
  7557 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  7558   if (UseCompressedOops) {
  7559     assert(!dst.uses(src), "not enough registers");
  7560     encode_heap_oop(src);
  7561     movl(dst, src);
  7562   } else {
  7563     movq(dst, src);
  7567 // Algorithm must match oop.inline.hpp encode_heap_oop.
  7568 void MacroAssembler::encode_heap_oop(Register r) {
  7569   assert (UseCompressedOops, "should be compressed");
  7570 #ifdef ASSERT
  7571   if (CheckCompressedOops) {
  7572     Label ok;
  7573     push(rscratch1); // cmpptr trashes rscratch1
  7574     cmpptr(r12_heapbase, ExternalAddress((address)Universe::heap_base_addr()));
  7575     jcc(Assembler::equal, ok);
  7576     stop("MacroAssembler::encode_heap_oop: heap base corrupted?");
  7577     bind(ok);
  7578     pop(rscratch1);
  7580 #endif
  7581   verify_oop(r, "broken oop in encode_heap_oop");
  7582   testq(r, r);
  7583   cmovq(Assembler::equal, r, r12_heapbase);
  7584   subq(r, r12_heapbase);
  7585   shrq(r, LogMinObjAlignmentInBytes);
  7588 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  7589   assert (UseCompressedOops, "should be compressed");
  7590 #ifdef ASSERT
  7591   if (CheckCompressedOops) {
  7592     Label ok;
  7593     testq(r, r);
  7594     jcc(Assembler::notEqual, ok);
  7595     stop("null oop passed to encode_heap_oop_not_null");
  7596     bind(ok);
  7598 #endif
  7599   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  7600   subq(r, r12_heapbase);
  7601   shrq(r, LogMinObjAlignmentInBytes);
  7604 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  7605   assert (UseCompressedOops, "should be compressed");
  7606 #ifdef ASSERT
  7607   if (CheckCompressedOops) {
  7608     Label ok;
  7609     testq(src, src);
  7610     jcc(Assembler::notEqual, ok);
  7611     stop("null oop passed to encode_heap_oop_not_null2");
  7612     bind(ok);
  7614 #endif
  7615   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  7616   if (dst != src) {
  7617     movq(dst, src);
  7619   subq(dst, r12_heapbase);
  7620   shrq(dst, LogMinObjAlignmentInBytes);
  7623 void  MacroAssembler::decode_heap_oop(Register r) {
  7624   assert (UseCompressedOops, "should be compressed");
  7625 #ifdef ASSERT
  7626   if (CheckCompressedOops) {
  7627     Label ok;
  7628     push(rscratch1);
  7629     cmpptr(r12_heapbase,
  7630            ExternalAddress((address)Universe::heap_base_addr()));
  7631     jcc(Assembler::equal, ok);
  7632     stop("MacroAssembler::decode_heap_oop: heap base corrupted?");
  7633     bind(ok);
  7634     pop(rscratch1);
  7636 #endif
  7638   Label done;
  7639   shlq(r, LogMinObjAlignmentInBytes);
  7640   jccb(Assembler::equal, done);
  7641   addq(r, r12_heapbase);
  7642 #if 0
  7643    // alternate decoding probably a wash.
  7644    testq(r, r);
  7645    jccb(Assembler::equal, done);
  7646    leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
  7647 #endif
  7648   bind(done);
  7649   verify_oop(r, "broken oop in decode_heap_oop");
  7652 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  7653   assert (UseCompressedOops, "should only be used for compressed headers");
  7654   // Cannot assert, unverified entry point counts instructions (see .ad file)
  7655   // vtableStubs also counts instructions in pd_code_size_limit.
  7656   // Also do not verify_oop as this is called by verify_oop.
  7657   assert(Address::times_8 == LogMinObjAlignmentInBytes, "decode alg wrong");
  7658   leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
  7661 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  7662   assert (UseCompressedOops, "should only be used for compressed headers");
  7663   // Cannot assert, unverified entry point counts instructions (see .ad file)
  7664   // vtableStubs also counts instructions in pd_code_size_limit.
  7665   // Also do not verify_oop as this is called by verify_oop.
  7666   assert(Address::times_8 == LogMinObjAlignmentInBytes, "decode alg wrong");
  7667   leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  7670 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  7671   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  7672   int oop_index = oop_recorder()->find_index(obj);
  7673   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  7674   mov_literal32(dst, oop_index, rspec, narrow_oop_operand);
  7677 void MacroAssembler::reinit_heapbase() {
  7678   if (UseCompressedOops) {
  7679     movptr(r12_heapbase, ExternalAddress((address)Universe::heap_base_addr()));
  7682 #endif // _LP64
  7684 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  7685   switch (cond) {
  7686     // Note some conditions are synonyms for others
  7687     case Assembler::zero:         return Assembler::notZero;
  7688     case Assembler::notZero:      return Assembler::zero;
  7689     case Assembler::less:         return Assembler::greaterEqual;
  7690     case Assembler::lessEqual:    return Assembler::greater;
  7691     case Assembler::greater:      return Assembler::lessEqual;
  7692     case Assembler::greaterEqual: return Assembler::less;
  7693     case Assembler::below:        return Assembler::aboveEqual;
  7694     case Assembler::belowEqual:   return Assembler::above;
  7695     case Assembler::above:        return Assembler::belowEqual;
  7696     case Assembler::aboveEqual:   return Assembler::below;
  7697     case Assembler::overflow:     return Assembler::noOverflow;
  7698     case Assembler::noOverflow:   return Assembler::overflow;
  7699     case Assembler::negative:     return Assembler::positive;
  7700     case Assembler::positive:     return Assembler::negative;
  7701     case Assembler::parity:       return Assembler::noParity;
  7702     case Assembler::noParity:     return Assembler::parity;
  7704   ShouldNotReachHere(); return Assembler::overflow;
  7707 SkipIfEqual::SkipIfEqual(
  7708     MacroAssembler* masm, const bool* flag_addr, bool value) {
  7709   _masm = masm;
  7710   _masm->cmp8(ExternalAddress((address)flag_addr), value);
  7711   _masm->jcc(Assembler::equal, _label);
  7714 SkipIfEqual::~SkipIfEqual() {
  7715   _masm->bind(_label);

mercurial