src/share/vm/opto/subnode.cpp

Wed, 10 Aug 2016 14:59:21 +0200

author
simonis
date
Wed, 10 Aug 2016 14:59:21 +0200
changeset 8608
0d78aecb0948
parent 8435
64bd5b63923c
child 8604
04d83ba48607
child 8797
37ba410ffd43
permissions
-rw-r--r--

8152172: PPC64: Support AES intrinsics
Summary: Add support for AES intrinsics on PPC64.
Reviewed-by: kvn, mdoerr, simonis, zmajo
Contributed-by: Hiroshi H Horii <horii@jp.ibm.com>

     1 /*
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/cfgnode.hpp"
    31 #include "opto/connode.hpp"
    32 #include "opto/loopnode.hpp"
    33 #include "opto/matcher.hpp"
    34 #include "opto/mulnode.hpp"
    35 #include "opto/opcodes.hpp"
    36 #include "opto/phaseX.hpp"
    37 #include "opto/subnode.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    40 // Portions of code courtesy of Clifford Click
    42 // Optimization - Graph Style
    44 #include "math.h"
    46 //=============================================================================
    47 //------------------------------Identity---------------------------------------
    48 // If right input is a constant 0, return the left input.
    49 Node *SubNode::Identity( PhaseTransform *phase ) {
    50   assert(in(1) != this, "Must already have called Value");
    51   assert(in(2) != this, "Must already have called Value");
    53   // Remove double negation
    54   const Type *zero = add_id();
    55   if( phase->type( in(1) )->higher_equal( zero ) &&
    56       in(2)->Opcode() == Opcode() &&
    57       phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
    58     return in(2)->in(2);
    59   }
    61   // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
    62   if( in(1)->Opcode() == Op_AddI ) {
    63     if( phase->eqv(in(1)->in(2),in(2)) )
    64       return in(1)->in(1);
    65     if (phase->eqv(in(1)->in(1),in(2)))
    66       return in(1)->in(2);
    68     // Also catch: "(X + Opaque2(Y)) - Y".  In this case, 'Y' is a loop-varying
    69     // trip counter and X is likely to be loop-invariant (that's how O2 Nodes
    70     // are originally used, although the optimizer sometimes jiggers things).
    71     // This folding through an O2 removes a loop-exit use of a loop-varying
    72     // value and generally lowers register pressure in and around the loop.
    73     if( in(1)->in(2)->Opcode() == Op_Opaque2 &&
    74         phase->eqv(in(1)->in(2)->in(1),in(2)) )
    75       return in(1)->in(1);
    76   }
    78   return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
    79 }
    81 //------------------------------Value------------------------------------------
    82 // A subtract node differences it's two inputs.
    83 const Type* SubNode::Value_common(PhaseTransform *phase) const {
    84   const Node* in1 = in(1);
    85   const Node* in2 = in(2);
    86   // Either input is TOP ==> the result is TOP
    87   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
    88   if( t1 == Type::TOP ) return Type::TOP;
    89   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
    90   if( t2 == Type::TOP ) return Type::TOP;
    92   // Not correct for SubFnode and AddFNode (must check for infinity)
    93   // Equal?  Subtract is zero
    94   if (in1->eqv_uncast(in2))  return add_id();
    96   // Either input is BOTTOM ==> the result is the local BOTTOM
    97   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
    98     return bottom_type();
   100   return NULL;
   101 }
   103 const Type* SubNode::Value(PhaseTransform *phase) const {
   104   const Type* t = Value_common(phase);
   105   if (t != NULL) {
   106     return t;
   107   }
   108   const Type* t1 = phase->type(in(1));
   109   const Type* t2 = phase->type(in(2));
   110   return sub(t1,t2);            // Local flavor of type subtraction
   112 }
   114 //=============================================================================
   116 //------------------------------Helper function--------------------------------
   117 static bool ok_to_convert(Node* inc, Node* iv) {
   118     // Do not collapse (x+c0)-y if "+" is a loop increment, because the
   119     // "-" is loop invariant and collapsing extends the live-range of "x"
   120     // to overlap with the "+", forcing another register to be used in
   121     // the loop.
   122     // This test will be clearer with '&&' (apply DeMorgan's rule)
   123     // but I like the early cutouts that happen here.
   124     const PhiNode *phi;
   125     if( ( !inc->in(1)->is_Phi() ||
   126           !(phi=inc->in(1)->as_Phi()) ||
   127           phi->is_copy() ||
   128           !phi->region()->is_CountedLoop() ||
   129           inc != phi->region()->as_CountedLoop()->incr() )
   130        &&
   131         // Do not collapse (x+c0)-iv if "iv" is a loop induction variable,
   132         // because "x" maybe invariant.
   133         ( !iv->is_loop_iv() )
   134       ) {
   135       return true;
   136     } else {
   137       return false;
   138     }
   139 }
   140 //------------------------------Ideal------------------------------------------
   141 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
   142   Node *in1 = in(1);
   143   Node *in2 = in(2);
   144   uint op1 = in1->Opcode();
   145   uint op2 = in2->Opcode();
   147 #ifdef ASSERT
   148   // Check for dead loop
   149   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
   150       ( op1 == Op_AddI || op1 == Op_SubI ) &&
   151       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
   152         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1 ) ) )
   153     assert(false, "dead loop in SubINode::Ideal");
   154 #endif
   156   const Type *t2 = phase->type( in2 );
   157   if( t2 == Type::TOP ) return NULL;
   158   // Convert "x-c0" into "x+ -c0".
   159   if( t2->base() == Type::Int ){        // Might be bottom or top...
   160     const TypeInt *i = t2->is_int();
   161     if( i->is_con() )
   162       return new (phase->C) AddINode(in1, phase->intcon(-i->get_con()));
   163   }
   165   // Convert "(x+c0) - y" into (x-y) + c0"
   166   // Do not collapse (x+c0)-y if "+" is a loop increment or
   167   // if "y" is a loop induction variable.
   168   if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
   169     const Type *tadd = phase->type( in1->in(2) );
   170     if( tadd->singleton() && tadd != Type::TOP ) {
   171       Node *sub2 = phase->transform( new (phase->C) SubINode( in1->in(1), in2 ));
   172       return new (phase->C) AddINode( sub2, in1->in(2) );
   173     }
   174   }
   177   // Convert "x - (y+c0)" into "(x-y) - c0"
   178   // Need the same check as in above optimization but reversed.
   179   if (op2 == Op_AddI && ok_to_convert(in2, in1)) {
   180     Node* in21 = in2->in(1);
   181     Node* in22 = in2->in(2);
   182     const TypeInt* tcon = phase->type(in22)->isa_int();
   183     if (tcon != NULL && tcon->is_con()) {
   184       Node* sub2 = phase->transform( new (phase->C) SubINode(in1, in21) );
   185       Node* neg_c0 = phase->intcon(- tcon->get_con());
   186       return new (phase->C) AddINode(sub2, neg_c0);
   187     }
   188   }
   190   const Type *t1 = phase->type( in1 );
   191   if( t1 == Type::TOP ) return NULL;
   193 #ifdef ASSERT
   194   // Check for dead loop
   195   if( ( op2 == Op_AddI || op2 == Op_SubI ) &&
   196       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
   197         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
   198     assert(false, "dead loop in SubINode::Ideal");
   199 #endif
   201   // Convert "x - (x+y)" into "-y"
   202   if( op2 == Op_AddI &&
   203       phase->eqv( in1, in2->in(1) ) )
   204     return new (phase->C) SubINode( phase->intcon(0),in2->in(2));
   205   // Convert "(x-y) - x" into "-y"
   206   if( op1 == Op_SubI &&
   207       phase->eqv( in1->in(1), in2 ) )
   208     return new (phase->C) SubINode( phase->intcon(0),in1->in(2));
   209   // Convert "x - (y+x)" into "-y"
   210   if( op2 == Op_AddI &&
   211       phase->eqv( in1, in2->in(2) ) )
   212     return new (phase->C) SubINode( phase->intcon(0),in2->in(1));
   214   // Convert "0 - (x-y)" into "y-x"
   215   if( t1 == TypeInt::ZERO && op2 == Op_SubI )
   216     return new (phase->C) SubINode( in2->in(2), in2->in(1) );
   218   // Convert "0 - (x+con)" into "-con-x"
   219   jint con;
   220   if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
   221       (con = in2->in(2)->find_int_con(0)) != 0 )
   222     return new (phase->C) SubINode( phase->intcon(-con), in2->in(1) );
   224   // Convert "(X+A) - (X+B)" into "A - B"
   225   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
   226     return new (phase->C) SubINode( in1->in(2), in2->in(2) );
   228   // Convert "(A+X) - (B+X)" into "A - B"
   229   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
   230     return new (phase->C) SubINode( in1->in(1), in2->in(1) );
   232   // Convert "(A+X) - (X+B)" into "A - B"
   233   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
   234     return new (phase->C) SubINode( in1->in(1), in2->in(2) );
   236   // Convert "(X+A) - (B+X)" into "A - B"
   237   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
   238     return new (phase->C) SubINode( in1->in(2), in2->in(1) );
   240   // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
   241   // nicer to optimize than subtract.
   242   if( op2 == Op_SubI && in2->outcnt() == 1) {
   243     Node *add1 = phase->transform( new (phase->C) AddINode( in1, in2->in(2) ) );
   244     return new (phase->C) SubINode( add1, in2->in(1) );
   245   }
   247   return NULL;
   248 }
   250 //------------------------------sub--------------------------------------------
   251 // A subtract node differences it's two inputs.
   252 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
   253   const TypeInt *r0 = t1->is_int(); // Handy access
   254   const TypeInt *r1 = t2->is_int();
   255   int32 lo = r0->_lo - r1->_hi;
   256   int32 hi = r0->_hi - r1->_lo;
   258   // We next check for 32-bit overflow.
   259   // If that happens, we just assume all integers are possible.
   260   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
   261        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
   262       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
   263        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
   264     return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
   265   else                          // Overflow; assume all integers
   266     return TypeInt::INT;
   267 }
   269 //=============================================================================
   270 //------------------------------Ideal------------------------------------------
   271 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   272   Node *in1 = in(1);
   273   Node *in2 = in(2);
   274   uint op1 = in1->Opcode();
   275   uint op2 = in2->Opcode();
   277 #ifdef ASSERT
   278   // Check for dead loop
   279   if( phase->eqv( in1, this ) || phase->eqv( in2, this ) ||
   280       ( op1 == Op_AddL || op1 == Op_SubL ) &&
   281       ( phase->eqv( in1->in(1), this ) || phase->eqv( in1->in(2), this ) ||
   282         phase->eqv( in1->in(1), in1  ) || phase->eqv( in1->in(2), in1  ) ) )
   283     assert(false, "dead loop in SubLNode::Ideal");
   284 #endif
   286   if( phase->type( in2 ) == Type::TOP ) return NULL;
   287   const TypeLong *i = phase->type( in2 )->isa_long();
   288   // Convert "x-c0" into "x+ -c0".
   289   if( i &&                      // Might be bottom or top...
   290       i->is_con() )
   291     return new (phase->C) AddLNode(in1, phase->longcon(-i->get_con()));
   293   // Convert "(x+c0) - y" into (x-y) + c0"
   294   // Do not collapse (x+c0)-y if "+" is a loop increment or
   295   // if "y" is a loop induction variable.
   296   if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
   297     Node *in11 = in1->in(1);
   298     const Type *tadd = phase->type( in1->in(2) );
   299     if( tadd->singleton() && tadd != Type::TOP ) {
   300       Node *sub2 = phase->transform( new (phase->C) SubLNode( in11, in2 ));
   301       return new (phase->C) AddLNode( sub2, in1->in(2) );
   302     }
   303   }
   305   // Convert "x - (y+c0)" into "(x-y) - c0"
   306   // Need the same check as in above optimization but reversed.
   307   if (op2 == Op_AddL && ok_to_convert(in2, in1)) {
   308     Node* in21 = in2->in(1);
   309     Node* in22 = in2->in(2);
   310     const TypeLong* tcon = phase->type(in22)->isa_long();
   311     if (tcon != NULL && tcon->is_con()) {
   312       Node* sub2 = phase->transform( new (phase->C) SubLNode(in1, in21) );
   313       Node* neg_c0 = phase->longcon(- tcon->get_con());
   314       return new (phase->C) AddLNode(sub2, neg_c0);
   315     }
   316   }
   318   const Type *t1 = phase->type( in1 );
   319   if( t1 == Type::TOP ) return NULL;
   321 #ifdef ASSERT
   322   // Check for dead loop
   323   if( ( op2 == Op_AddL || op2 == Op_SubL ) &&
   324       ( phase->eqv( in2->in(1), this ) || phase->eqv( in2->in(2), this ) ||
   325         phase->eqv( in2->in(1), in2  ) || phase->eqv( in2->in(2), in2  ) ) )
   326     assert(false, "dead loop in SubLNode::Ideal");
   327 #endif
   329   // Convert "x - (x+y)" into "-y"
   330   if( op2 == Op_AddL &&
   331       phase->eqv( in1, in2->in(1) ) )
   332     return new (phase->C) SubLNode( phase->makecon(TypeLong::ZERO), in2->in(2));
   333   // Convert "x - (y+x)" into "-y"
   334   if( op2 == Op_AddL &&
   335       phase->eqv( in1, in2->in(2) ) )
   336     return new (phase->C) SubLNode( phase->makecon(TypeLong::ZERO),in2->in(1));
   338   // Convert "0 - (x-y)" into "y-x"
   339   if( phase->type( in1 ) == TypeLong::ZERO && op2 == Op_SubL )
   340     return new (phase->C) SubLNode( in2->in(2), in2->in(1) );
   342   // Convert "(X+A) - (X+B)" into "A - B"
   343   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
   344     return new (phase->C) SubLNode( in1->in(2), in2->in(2) );
   346   // Convert "(A+X) - (B+X)" into "A - B"
   347   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
   348     return new (phase->C) SubLNode( in1->in(1), in2->in(1) );
   350   // Convert "A-(B-C)" into (A+C)-B"
   351   if( op2 == Op_SubL && in2->outcnt() == 1) {
   352     Node *add1 = phase->transform( new (phase->C) AddLNode( in1, in2->in(2) ) );
   353     return new (phase->C) SubLNode( add1, in2->in(1) );
   354   }
   356   return NULL;
   357 }
   359 //------------------------------sub--------------------------------------------
   360 // A subtract node differences it's two inputs.
   361 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
   362   const TypeLong *r0 = t1->is_long(); // Handy access
   363   const TypeLong *r1 = t2->is_long();
   364   jlong lo = r0->_lo - r1->_hi;
   365   jlong hi = r0->_hi - r1->_lo;
   367   // We next check for 32-bit overflow.
   368   // If that happens, we just assume all integers are possible.
   369   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
   370        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
   371       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
   372        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
   373     return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
   374   else                          // Overflow; assume all integers
   375     return TypeLong::LONG;
   376 }
   378 //=============================================================================
   379 //------------------------------Value------------------------------------------
   380 // A subtract node differences its two inputs.
   381 const Type *SubFPNode::Value( PhaseTransform *phase ) const {
   382   const Node* in1 = in(1);
   383   const Node* in2 = in(2);
   384   // Either input is TOP ==> the result is TOP
   385   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
   386   if( t1 == Type::TOP ) return Type::TOP;
   387   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
   388   if( t2 == Type::TOP ) return Type::TOP;
   390   // if both operands are infinity of same sign, the result is NaN; do
   391   // not replace with zero
   392   if( (t1->is_finite() && t2->is_finite()) ) {
   393     if( phase->eqv(in1, in2) ) return add_id();
   394   }
   396   // Either input is BOTTOM ==> the result is the local BOTTOM
   397   const Type *bot = bottom_type();
   398   if( (t1 == bot) || (t2 == bot) ||
   399       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
   400     return bot;
   402   return sub(t1,t2);            // Local flavor of type subtraction
   403 }
   406 //=============================================================================
   407 //------------------------------Ideal------------------------------------------
   408 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   409   const Type *t2 = phase->type( in(2) );
   410   // Convert "x-c0" into "x+ -c0".
   411   if( t2->base() == Type::FloatCon ) {  // Might be bottom or top...
   412     // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
   413   }
   415   // Not associative because of boundary conditions (infinity)
   416   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   417     // Convert "x - (x+y)" into "-y"
   418     if( in(2)->is_Add() &&
   419         phase->eqv(in(1),in(2)->in(1) ) )
   420       return new (phase->C) SubFNode( phase->makecon(TypeF::ZERO),in(2)->in(2));
   421   }
   423   // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
   424   // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
   425   //if( phase->type(in(1)) == TypeF::ZERO )
   426   //return new (phase->C, 2) NegFNode(in(2));
   428   return NULL;
   429 }
   431 //------------------------------sub--------------------------------------------
   432 // A subtract node differences its two inputs.
   433 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
   434   // no folding if one of operands is infinity or NaN, do not do constant folding
   435   if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
   436     return TypeF::make( t1->getf() - t2->getf() );
   437   }
   438   else if( g_isnan(t1->getf()) ) {
   439     return t1;
   440   }
   441   else if( g_isnan(t2->getf()) ) {
   442     return t2;
   443   }
   444   else {
   445     return Type::FLOAT;
   446   }
   447 }
   449 //=============================================================================
   450 //------------------------------Ideal------------------------------------------
   451 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
   452   const Type *t2 = phase->type( in(2) );
   453   // Convert "x-c0" into "x+ -c0".
   454   if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
   455     // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
   456   }
   458   // Not associative because of boundary conditions (infinity)
   459   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
   460     // Convert "x - (x+y)" into "-y"
   461     if( in(2)->is_Add() &&
   462         phase->eqv(in(1),in(2)->in(1) ) )
   463       return new (phase->C) SubDNode( phase->makecon(TypeD::ZERO),in(2)->in(2));
   464   }
   466   // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
   467   // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
   468   //if( phase->type(in(1)) == TypeD::ZERO )
   469   //return new (phase->C, 2) NegDNode(in(2));
   471   return NULL;
   472 }
   474 //------------------------------sub--------------------------------------------
   475 // A subtract node differences its two inputs.
   476 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
   477   // no folding if one of operands is infinity or NaN, do not do constant folding
   478   if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
   479     return TypeD::make( t1->getd() - t2->getd() );
   480   }
   481   else if( g_isnan(t1->getd()) ) {
   482     return t1;
   483   }
   484   else if( g_isnan(t2->getd()) ) {
   485     return t2;
   486   }
   487   else {
   488     return Type::DOUBLE;
   489   }
   490 }
   492 //=============================================================================
   493 //------------------------------Idealize---------------------------------------
   494 // Unlike SubNodes, compare must still flatten return value to the
   495 // range -1, 0, 1.
   496 // And optimizations like those for (X + Y) - X fail if overflow happens.
   497 Node *CmpNode::Identity( PhaseTransform *phase ) {
   498   return this;
   499 }
   501 //=============================================================================
   502 //------------------------------cmp--------------------------------------------
   503 // Simplify a CmpI (compare 2 integers) node, based on local information.
   504 // If both inputs are constants, compare them.
   505 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
   506   const TypeInt *r0 = t1->is_int(); // Handy access
   507   const TypeInt *r1 = t2->is_int();
   509   if( r0->_hi < r1->_lo )       // Range is always low?
   510     return TypeInt::CC_LT;
   511   else if( r0->_lo > r1->_hi )  // Range is always high?
   512     return TypeInt::CC_GT;
   514   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
   515     assert(r0->get_con() == r1->get_con(), "must be equal");
   516     return TypeInt::CC_EQ;      // Equal results.
   517   } else if( r0->_hi == r1->_lo ) // Range is never high?
   518     return TypeInt::CC_LE;
   519   else if( r0->_lo == r1->_hi ) // Range is never low?
   520     return TypeInt::CC_GE;
   521   return TypeInt::CC;           // else use worst case results
   522 }
   524 // Simplify a CmpU (compare 2 integers) node, based on local information.
   525 // If both inputs are constants, compare them.
   526 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
   527   assert(!t1->isa_ptr(), "obsolete usage of CmpU");
   529   // comparing two unsigned ints
   530   const TypeInt *r0 = t1->is_int();   // Handy access
   531   const TypeInt *r1 = t2->is_int();
   533   // Current installed version
   534   // Compare ranges for non-overlap
   535   juint lo0 = r0->_lo;
   536   juint hi0 = r0->_hi;
   537   juint lo1 = r1->_lo;
   538   juint hi1 = r1->_hi;
   540   // If either one has both negative and positive values,
   541   // it therefore contains both 0 and -1, and since [0..-1] is the
   542   // full unsigned range, the type must act as an unsigned bottom.
   543   bool bot0 = ((jint)(lo0 ^ hi0) < 0);
   544   bool bot1 = ((jint)(lo1 ^ hi1) < 0);
   546   if (bot0 || bot1) {
   547     // All unsigned values are LE -1 and GE 0.
   548     if (lo0 == 0 && hi0 == 0) {
   549       return TypeInt::CC_LE;            //   0 <= bot
   550     } else if ((jint)lo0 == -1 && (jint)hi0 == -1) {
   551       return TypeInt::CC_GE;            // -1 >= bot
   552     } else if (lo1 == 0 && hi1 == 0) {
   553       return TypeInt::CC_GE;            // bot >= 0
   554     } else if ((jint)lo1 == -1 && (jint)hi1 == -1) {
   555       return TypeInt::CC_LE;            // bot <= -1
   556     }
   557   } else {
   558     // We can use ranges of the form [lo..hi] if signs are the same.
   559     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
   560     // results are reversed, '-' > '+' for unsigned compare
   561     if (hi0 < lo1) {
   562       return TypeInt::CC_LT;            // smaller
   563     } else if (lo0 > hi1) {
   564       return TypeInt::CC_GT;            // greater
   565     } else if (hi0 == lo1 && lo0 == hi1) {
   566       return TypeInt::CC_EQ;            // Equal results
   567     } else if (lo0 >= hi1) {
   568       return TypeInt::CC_GE;
   569     } else if (hi0 <= lo1) {
   570       // Check for special case in Hashtable::get.  (See below.)
   571       if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
   572         return TypeInt::CC_LT;
   573       return TypeInt::CC_LE;
   574     }
   575   }
   576   // Check for special case in Hashtable::get - the hash index is
   577   // mod'ed to the table size so the following range check is useless.
   578   // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
   579   // to be positive.
   580   // (This is a gross hack, since the sub method never
   581   // looks at the structure of the node in any other case.)
   582   if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
   583     return TypeInt::CC_LT;
   584   return TypeInt::CC;                   // else use worst case results
   585 }
   587 const Type* CmpUNode::Value(PhaseTransform *phase) const {
   588   const Type* t = SubNode::Value_common(phase);
   589   if (t != NULL) {
   590     return t;
   591   }
   592   const Node* in1 = in(1);
   593   const Node* in2 = in(2);
   594   const Type* t1 = phase->type(in1);
   595   const Type* t2 = phase->type(in2);
   596   assert(t1->isa_int(), "CmpU has only Int type inputs");
   597   if (t2 == TypeInt::INT) { // Compare to bottom?
   598     return bottom_type();
   599   }
   600   uint in1_op = in1->Opcode();
   601   if (in1_op == Op_AddI || in1_op == Op_SubI) {
   602     // The problem rise when result of AddI(SubI) may overflow
   603     // signed integer value. Let say the input type is
   604     // [256, maxint] then +128 will create 2 ranges due to
   605     // overflow: [minint, minint+127] and [384, maxint].
   606     // But C2 type system keep only 1 type range and as result
   607     // it use general [minint, maxint] for this case which we
   608     // can't optimize.
   609     //
   610     // Make 2 separate type ranges based on types of AddI(SubI) inputs
   611     // and compare results of their compare. If results are the same
   612     // CmpU node can be optimized.
   613     const Node* in11 = in1->in(1);
   614     const Node* in12 = in1->in(2);
   615     const Type* t11 = (in11 == in1) ? Type::TOP : phase->type(in11);
   616     const Type* t12 = (in12 == in1) ? Type::TOP : phase->type(in12);
   617     // Skip cases when input types are top or bottom.
   618     if ((t11 != Type::TOP) && (t11 != TypeInt::INT) &&
   619         (t12 != Type::TOP) && (t12 != TypeInt::INT)) {
   620       const TypeInt *r0 = t11->is_int();
   621       const TypeInt *r1 = t12->is_int();
   622       jlong lo_r0 = r0->_lo;
   623       jlong hi_r0 = r0->_hi;
   624       jlong lo_r1 = r1->_lo;
   625       jlong hi_r1 = r1->_hi;
   626       if (in1_op == Op_SubI) {
   627         jlong tmp = hi_r1;
   628         hi_r1 = -lo_r1;
   629         lo_r1 = -tmp;
   630         // Note, for substructing [minint,x] type range
   631         // long arithmetic provides correct overflow answer.
   632         // The confusion come from the fact that in 32-bit
   633         // -minint == minint but in 64-bit -minint == maxint+1.
   634       }
   635       jlong lo_long = lo_r0 + lo_r1;
   636       jlong hi_long = hi_r0 + hi_r1;
   637       int lo_tr1 = min_jint;
   638       int hi_tr1 = (int)hi_long;
   639       int lo_tr2 = (int)lo_long;
   640       int hi_tr2 = max_jint;
   641       bool underflow = lo_long != (jlong)lo_tr2;
   642       bool overflow  = hi_long != (jlong)hi_tr1;
   643       // Use sub(t1, t2) when there is no overflow (one type range)
   644       // or when both overflow and underflow (too complex).
   645       if ((underflow != overflow) && (hi_tr1 < lo_tr2)) {
   646         // Overflow only on one boundary, compare 2 separate type ranges.
   647         int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
   648         const TypeInt* tr1 = TypeInt::make(lo_tr1, hi_tr1, w);
   649         const TypeInt* tr2 = TypeInt::make(lo_tr2, hi_tr2, w);
   650         const Type* cmp1 = sub(tr1, t2);
   651         const Type* cmp2 = sub(tr2, t2);
   652         if (cmp1 == cmp2) {
   653           return cmp1; // Hit!
   654         }
   655       }
   656     }
   657   }
   659   return sub(t1, t2);            // Local flavor of type subtraction
   660 }
   662 bool CmpUNode::is_index_range_check() const {
   663   // Check for the "(X ModI Y) CmpU Y" shape
   664   return (in(1)->Opcode() == Op_ModI &&
   665           in(1)->in(2)->eqv_uncast(in(2)));
   666 }
   668 //------------------------------Idealize---------------------------------------
   669 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
   670   if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
   671     switch (in(1)->Opcode()) {
   672     case Op_CmpL3:              // Collapse a CmpL3/CmpI into a CmpL
   673       return new (phase->C) CmpLNode(in(1)->in(1),in(1)->in(2));
   674     case Op_CmpF3:              // Collapse a CmpF3/CmpI into a CmpF
   675       return new (phase->C) CmpFNode(in(1)->in(1),in(1)->in(2));
   676     case Op_CmpD3:              // Collapse a CmpD3/CmpI into a CmpD
   677       return new (phase->C) CmpDNode(in(1)->in(1),in(1)->in(2));
   678     //case Op_SubI:
   679       // If (x - y) cannot overflow, then ((x - y) <?> 0)
   680       // can be turned into (x <?> y).
   681       // This is handled (with more general cases) by Ideal_sub_algebra.
   682     }
   683   }
   684   return NULL;                  // No change
   685 }
   688 //=============================================================================
   689 // Simplify a CmpL (compare 2 longs ) node, based on local information.
   690 // If both inputs are constants, compare them.
   691 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
   692   const TypeLong *r0 = t1->is_long(); // Handy access
   693   const TypeLong *r1 = t2->is_long();
   695   if( r0->_hi < r1->_lo )       // Range is always low?
   696     return TypeInt::CC_LT;
   697   else if( r0->_lo > r1->_hi )  // Range is always high?
   698     return TypeInt::CC_GT;
   700   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
   701     assert(r0->get_con() == r1->get_con(), "must be equal");
   702     return TypeInt::CC_EQ;      // Equal results.
   703   } else if( r0->_hi == r1->_lo ) // Range is never high?
   704     return TypeInt::CC_LE;
   705   else if( r0->_lo == r1->_hi ) // Range is never low?
   706     return TypeInt::CC_GE;
   707   return TypeInt::CC;           // else use worst case results
   708 }
   710 //=============================================================================
   711 //------------------------------sub--------------------------------------------
   712 // Simplify an CmpP (compare 2 pointers) node, based on local information.
   713 // If both inputs are constants, compare them.
   714 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
   715   const TypePtr *r0 = t1->is_ptr(); // Handy access
   716   const TypePtr *r1 = t2->is_ptr();
   718   // Undefined inputs makes for an undefined result
   719   if( TypePtr::above_centerline(r0->_ptr) ||
   720       TypePtr::above_centerline(r1->_ptr) )
   721     return Type::TOP;
   723   if (r0 == r1 && r0->singleton()) {
   724     // Equal pointer constants (klasses, nulls, etc.)
   725     return TypeInt::CC_EQ;
   726   }
   728   // See if it is 2 unrelated classes.
   729   const TypeOopPtr* p0 = r0->isa_oopptr();
   730   const TypeOopPtr* p1 = r1->isa_oopptr();
   731   if (p0 && p1) {
   732     Node* in1 = in(1)->uncast();
   733     Node* in2 = in(2)->uncast();
   734     AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1, NULL);
   735     AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2, NULL);
   736     if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, NULL)) {
   737       return TypeInt::CC_GT;  // different pointers
   738     }
   739     ciKlass* klass0 = p0->klass();
   740     bool    xklass0 = p0->klass_is_exact();
   741     ciKlass* klass1 = p1->klass();
   742     bool    xklass1 = p1->klass_is_exact();
   743     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
   744     if (klass0 && klass1 &&
   745         kps != 1 &&             // both or neither are klass pointers
   746         klass0->is_loaded() && !klass0->is_interface() && // do not trust interfaces
   747         klass1->is_loaded() && !klass1->is_interface() &&
   748         (!klass0->is_obj_array_klass() ||
   749          !klass0->as_obj_array_klass()->base_element_klass()->is_interface()) &&
   750         (!klass1->is_obj_array_klass() ||
   751          !klass1->as_obj_array_klass()->base_element_klass()->is_interface())) {
   752       bool unrelated_classes = false;
   753       // See if neither subclasses the other, or if the class on top
   754       // is precise.  In either of these cases, the compare is known
   755       // to fail if at least one of the pointers is provably not null.
   756       if (klass0->equals(klass1)) {  // if types are unequal but klasses are equal
   757         // Do nothing; we know nothing for imprecise types
   758       } else if (klass0->is_subtype_of(klass1)) {
   759         // If klass1's type is PRECISE, then classes are unrelated.
   760         unrelated_classes = xklass1;
   761       } else if (klass1->is_subtype_of(klass0)) {
   762         // If klass0's type is PRECISE, then classes are unrelated.
   763         unrelated_classes = xklass0;
   764       } else {                  // Neither subtypes the other
   765         unrelated_classes = true;
   766       }
   767       if (unrelated_classes) {
   768         // The oops classes are known to be unrelated. If the joined PTRs of
   769         // two oops is not Null and not Bottom, then we are sure that one
   770         // of the two oops is non-null, and the comparison will always fail.
   771         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
   772         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
   773           return TypeInt::CC_GT;
   774         }
   775       }
   776     }
   777   }
   779   // Known constants can be compared exactly
   780   // Null can be distinguished from any NotNull pointers
   781   // Unknown inputs makes an unknown result
   782   if( r0->singleton() ) {
   783     intptr_t bits0 = r0->get_con();
   784     if( r1->singleton() )
   785       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
   786     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
   787   } else if( r1->singleton() ) {
   788     intptr_t bits1 = r1->get_con();
   789     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
   790   } else
   791     return TypeInt::CC;
   792 }
   794 static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) {
   795   // Return the klass node for
   796   //   LoadP(AddP(foo:Klass, #java_mirror))
   797   //   or NULL if not matching.
   798   if (n->Opcode() != Op_LoadP) return NULL;
   800   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
   801   if (!tp || tp->klass() != phase->C->env()->Class_klass()) return NULL;
   803   Node* adr = n->in(MemNode::Address);
   804   intptr_t off = 0;
   805   Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off);
   806   if (k == NULL)  return NULL;
   807   const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr();
   808   if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return NULL;
   810   // We've found the klass node of a Java mirror load.
   811   return k;
   812 }
   814 static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) {
   815   // for ConP(Foo.class) return ConP(Foo.klass)
   816   // otherwise return NULL
   817   if (!n->is_Con()) return NULL;
   819   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
   820   if (!tp) return NULL;
   822   ciType* mirror_type = tp->java_mirror_type();
   823   // TypeInstPtr::java_mirror_type() returns non-NULL for compile-
   824   // time Class constants only.
   825   if (!mirror_type) return NULL;
   827   // x.getClass() == int.class can never be true (for all primitive types)
   828   // Return a ConP(NULL) node for this case.
   829   if (mirror_type->is_classless()) {
   830     return phase->makecon(TypePtr::NULL_PTR);
   831   }
   833   // return the ConP(Foo.klass)
   834   assert(mirror_type->is_klass(), "mirror_type should represent a Klass*");
   835   return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass()));
   836 }
   838 //------------------------------Ideal------------------------------------------
   839 // Normalize comparisons between Java mirror loads to compare the klass instead.
   840 //
   841 // Also check for the case of comparing an unknown klass loaded from the primary
   842 // super-type array vs a known klass with no subtypes.  This amounts to
   843 // checking to see an unknown klass subtypes a known klass with no subtypes;
   844 // this only happens on an exact match.  We can shorten this test by 1 load.
   845 Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
   846   // Normalize comparisons between Java mirrors into comparisons of the low-
   847   // level klass, where a dependent load could be shortened.
   848   //
   849   // The new pattern has a nice effect of matching the same pattern used in the
   850   // fast path of instanceof/checkcast/Class.isInstance(), which allows
   851   // redundant exact type check be optimized away by GVN.
   852   // For example, in
   853   //   if (x.getClass() == Foo.class) {
   854   //     Foo foo = (Foo) x;
   855   //     // ... use a ...
   856   //   }
   857   // a CmpPNode could be shared between if_acmpne and checkcast
   858   {
   859     Node* k1 = isa_java_mirror_load(phase, in(1));
   860     Node* k2 = isa_java_mirror_load(phase, in(2));
   861     Node* conk2 = isa_const_java_mirror(phase, in(2));
   863     if (k1 && (k2 || conk2)) {
   864       Node* lhs = k1;
   865       Node* rhs = (k2 != NULL) ? k2 : conk2;
   866       this->set_req(1, lhs);
   867       this->set_req(2, rhs);
   868       return this;
   869     }
   870   }
   872   // Constant pointer on right?
   873   const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
   874   if (t2 == NULL || !t2->klass_is_exact())
   875     return NULL;
   876   // Get the constant klass we are comparing to.
   877   ciKlass* superklass = t2->klass();
   879   // Now check for LoadKlass on left.
   880   Node* ldk1 = in(1);
   881   if (ldk1->is_DecodeNKlass()) {
   882     ldk1 = ldk1->in(1);
   883     if (ldk1->Opcode() != Op_LoadNKlass )
   884       return NULL;
   885   } else if (ldk1->Opcode() != Op_LoadKlass )
   886     return NULL;
   887   // Take apart the address of the LoadKlass:
   888   Node* adr1 = ldk1->in(MemNode::Address);
   889   intptr_t con2 = 0;
   890   Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
   891   if (ldk2 == NULL)
   892     return NULL;
   893   if (con2 == oopDesc::klass_offset_in_bytes()) {
   894     // We are inspecting an object's concrete class.
   895     // Short-circuit the check if the query is abstract.
   896     if (superklass->is_interface() ||
   897         superklass->is_abstract()) {
   898       // Make it come out always false:
   899       this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
   900       return this;
   901     }
   902   }
   904   // Check for a LoadKlass from primary supertype array.
   905   // Any nested loadklass from loadklass+con must be from the p.s. array.
   906   if (ldk2->is_DecodeNKlass()) {
   907     // Keep ldk2 as DecodeN since it could be used in CmpP below.
   908     if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
   909       return NULL;
   910   } else if (ldk2->Opcode() != Op_LoadKlass)
   911     return NULL;
   913   // Verify that we understand the situation
   914   if (con2 != (intptr_t) superklass->super_check_offset())
   915     return NULL;                // Might be element-klass loading from array klass
   917   // If 'superklass' has no subklasses and is not an interface, then we are
   918   // assured that the only input which will pass the type check is
   919   // 'superklass' itself.
   920   //
   921   // We could be more liberal here, and allow the optimization on interfaces
   922   // which have a single implementor.  This would require us to increase the
   923   // expressiveness of the add_dependency() mechanism.
   924   // %%% Do this after we fix TypeOopPtr:  Deps are expressive enough now.
   926   // Object arrays must have their base element have no subtypes
   927   while (superklass->is_obj_array_klass()) {
   928     ciType* elem = superklass->as_obj_array_klass()->element_type();
   929     superklass = elem->as_klass();
   930   }
   931   if (superklass->is_instance_klass()) {
   932     ciInstanceKlass* ik = superklass->as_instance_klass();
   933     if (ik->has_subklass() || ik->is_interface())  return NULL;
   934     // Add a dependency if there is a chance that a subclass will be added later.
   935     if (!ik->is_final()) {
   936       phase->C->dependencies()->assert_leaf_type(ik);
   937     }
   938   }
   940   // Bypass the dependent load, and compare directly
   941   this->set_req(1,ldk2);
   943   return this;
   944 }
   946 //=============================================================================
   947 //------------------------------sub--------------------------------------------
   948 // Simplify an CmpN (compare 2 pointers) node, based on local information.
   949 // If both inputs are constants, compare them.
   950 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
   951   const TypePtr *r0 = t1->make_ptr(); // Handy access
   952   const TypePtr *r1 = t2->make_ptr();
   954   // Undefined inputs makes for an undefined result
   955   if ((r0 == NULL) || (r1 == NULL) ||
   956       TypePtr::above_centerline(r0->_ptr) ||
   957       TypePtr::above_centerline(r1->_ptr)) {
   958     return Type::TOP;
   959   }
   960   if (r0 == r1 && r0->singleton()) {
   961     // Equal pointer constants (klasses, nulls, etc.)
   962     return TypeInt::CC_EQ;
   963   }
   965   // See if it is 2 unrelated classes.
   966   const TypeOopPtr* p0 = r0->isa_oopptr();
   967   const TypeOopPtr* p1 = r1->isa_oopptr();
   968   if (p0 && p1) {
   969     ciKlass* klass0 = p0->klass();
   970     bool    xklass0 = p0->klass_is_exact();
   971     ciKlass* klass1 = p1->klass();
   972     bool    xklass1 = p1->klass_is_exact();
   973     int kps = (p0->isa_klassptr()?1:0) + (p1->isa_klassptr()?1:0);
   974     if (klass0 && klass1 &&
   975         kps != 1 &&             // both or neither are klass pointers
   976         !klass0->is_interface() && // do not trust interfaces
   977         !klass1->is_interface()) {
   978       bool unrelated_classes = false;
   979       // See if neither subclasses the other, or if the class on top
   980       // is precise.  In either of these cases, the compare is known
   981       // to fail if at least one of the pointers is provably not null.
   982       if (klass0->equals(klass1)) { // if types are unequal but klasses are equal
   983         // Do nothing; we know nothing for imprecise types
   984       } else if (klass0->is_subtype_of(klass1)) {
   985         // If klass1's type is PRECISE, then classes are unrelated.
   986         unrelated_classes = xklass1;
   987       } else if (klass1->is_subtype_of(klass0)) {
   988         // If klass0's type is PRECISE, then classes are unrelated.
   989         unrelated_classes = xklass0;
   990       } else {                  // Neither subtypes the other
   991         unrelated_classes = true;
   992       }
   993       if (unrelated_classes) {
   994         // The oops classes are known to be unrelated. If the joined PTRs of
   995         // two oops is not Null and not Bottom, then we are sure that one
   996         // of the two oops is non-null, and the comparison will always fail.
   997         TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
   998         if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
   999           return TypeInt::CC_GT;
  1005   // Known constants can be compared exactly
  1006   // Null can be distinguished from any NotNull pointers
  1007   // Unknown inputs makes an unknown result
  1008   if( r0->singleton() ) {
  1009     intptr_t bits0 = r0->get_con();
  1010     if( r1->singleton() )
  1011       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
  1012     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
  1013   } else if( r1->singleton() ) {
  1014     intptr_t bits1 = r1->get_con();
  1015     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
  1016   } else
  1017     return TypeInt::CC;
  1020 //------------------------------Ideal------------------------------------------
  1021 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
  1022   return NULL;
  1025 //=============================================================================
  1026 //------------------------------Value------------------------------------------
  1027 // Simplify an CmpF (compare 2 floats ) node, based on local information.
  1028 // If both inputs are constants, compare them.
  1029 const Type *CmpFNode::Value( PhaseTransform *phase ) const {
  1030   const Node* in1 = in(1);
  1031   const Node* in2 = in(2);
  1032   // Either input is TOP ==> the result is TOP
  1033   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
  1034   if( t1 == Type::TOP ) return Type::TOP;
  1035   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
  1036   if( t2 == Type::TOP ) return Type::TOP;
  1038   // Not constants?  Don't know squat - even if they are the same
  1039   // value!  If they are NaN's they compare to LT instead of EQ.
  1040   const TypeF *tf1 = t1->isa_float_constant();
  1041   const TypeF *tf2 = t2->isa_float_constant();
  1042   if( !tf1 || !tf2 ) return TypeInt::CC;
  1044   // This implements the Java bytecode fcmpl, so unordered returns -1.
  1045   if( tf1->is_nan() || tf2->is_nan() )
  1046     return TypeInt::CC_LT;
  1048   if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
  1049   if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
  1050   assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
  1051   return TypeInt::CC_EQ;
  1055 //=============================================================================
  1056 //------------------------------Value------------------------------------------
  1057 // Simplify an CmpD (compare 2 doubles ) node, based on local information.
  1058 // If both inputs are constants, compare them.
  1059 const Type *CmpDNode::Value( PhaseTransform *phase ) const {
  1060   const Node* in1 = in(1);
  1061   const Node* in2 = in(2);
  1062   // Either input is TOP ==> the result is TOP
  1063   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
  1064   if( t1 == Type::TOP ) return Type::TOP;
  1065   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
  1066   if( t2 == Type::TOP ) return Type::TOP;
  1068   // Not constants?  Don't know squat - even if they are the same
  1069   // value!  If they are NaN's they compare to LT instead of EQ.
  1070   const TypeD *td1 = t1->isa_double_constant();
  1071   const TypeD *td2 = t2->isa_double_constant();
  1072   if( !td1 || !td2 ) return TypeInt::CC;
  1074   // This implements the Java bytecode dcmpl, so unordered returns -1.
  1075   if( td1->is_nan() || td2->is_nan() )
  1076     return TypeInt::CC_LT;
  1078   if( td1->_d < td2->_d ) return TypeInt::CC_LT;
  1079   if( td1->_d > td2->_d ) return TypeInt::CC_GT;
  1080   assert( td1->_d == td2->_d, "do not understand FP behavior" );
  1081   return TypeInt::CC_EQ;
  1084 //------------------------------Ideal------------------------------------------
  1085 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
  1086   // Check if we can change this to a CmpF and remove a ConvD2F operation.
  1087   // Change  (CMPD (F2D (float)) (ConD value))
  1088   // To      (CMPF      (float)  (ConF value))
  1089   // Valid when 'value' does not lose precision as a float.
  1090   // Benefits: eliminates conversion, does not require 24-bit mode
  1092   // NaNs prevent commuting operands.  This transform works regardless of the
  1093   // order of ConD and ConvF2D inputs by preserving the original order.
  1094   int idx_f2d = 1;              // ConvF2D on left side?
  1095   if( in(idx_f2d)->Opcode() != Op_ConvF2D )
  1096     idx_f2d = 2;                // No, swap to check for reversed args
  1097   int idx_con = 3-idx_f2d;      // Check for the constant on other input
  1099   if( ConvertCmpD2CmpF &&
  1100       in(idx_f2d)->Opcode() == Op_ConvF2D &&
  1101       in(idx_con)->Opcode() == Op_ConD ) {
  1102     const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
  1103     double t2_value_as_double = t2->_d;
  1104     float  t2_value_as_float  = (float)t2_value_as_double;
  1105     if( t2_value_as_double == (double)t2_value_as_float ) {
  1106       // Test value can be represented as a float
  1107       // Eliminate the conversion to double and create new comparison
  1108       Node *new_in1 = in(idx_f2d)->in(1);
  1109       Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
  1110       if( idx_f2d != 1 ) {      // Must flip args to match original order
  1111         Node *tmp = new_in1;
  1112         new_in1 = new_in2;
  1113         new_in2 = tmp;
  1115       CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
  1116         ? new (phase->C) CmpF3Node( new_in1, new_in2 )
  1117         : new (phase->C) CmpFNode ( new_in1, new_in2 ) ;
  1118       return new_cmp;           // Changed to CmpFNode
  1120     // Testing value required the precision of a double
  1122   return NULL;                  // No change
  1126 //=============================================================================
  1127 //------------------------------cc2logical-------------------------------------
  1128 // Convert a condition code type to a logical type
  1129 const Type *BoolTest::cc2logical( const Type *CC ) const {
  1130   if( CC == Type::TOP ) return Type::TOP;
  1131   if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
  1132   const TypeInt *ti = CC->is_int();
  1133   if( ti->is_con() ) {          // Only 1 kind of condition codes set?
  1134     // Match low order 2 bits
  1135     int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
  1136     if( _test & 4 ) tmp = 1-tmp;     // Optionally complement result
  1137     return TypeInt::make(tmp);       // Boolean result
  1140   if( CC == TypeInt::CC_GE ) {
  1141     if( _test == ge ) return TypeInt::ONE;
  1142     if( _test == lt ) return TypeInt::ZERO;
  1144   if( CC == TypeInt::CC_LE ) {
  1145     if( _test == le ) return TypeInt::ONE;
  1146     if( _test == gt ) return TypeInt::ZERO;
  1149   return TypeInt::BOOL;
  1152 //------------------------------dump_spec-------------------------------------
  1153 // Print special per-node info
  1154 void BoolTest::dump_on(outputStream *st) const {
  1155   const char *msg[] = {"eq","gt","of","lt","ne","le","nof","ge"};
  1156   st->print("%s", msg[_test]);
  1159 //=============================================================================
  1160 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
  1161 uint BoolNode::size_of() const { return sizeof(BoolNode); }
  1163 //------------------------------operator==-------------------------------------
  1164 uint BoolNode::cmp( const Node &n ) const {
  1165   const BoolNode *b = (const BoolNode *)&n; // Cast up
  1166   return (_test._test == b->_test._test);
  1169 //-------------------------------make_predicate--------------------------------
  1170 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
  1171   if (test_value->is_Con())   return test_value;
  1172   if (test_value->is_Bool())  return test_value;
  1173   Compile* C = phase->C;
  1174   if (test_value->is_CMove() &&
  1175       test_value->in(CMoveNode::Condition)->is_Bool()) {
  1176     BoolNode*   bol   = test_value->in(CMoveNode::Condition)->as_Bool();
  1177     const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
  1178     const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
  1179     if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
  1180       return bol;
  1181     } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
  1182       return phase->transform( bol->negate(phase) );
  1184     // Else fall through.  The CMove gets in the way of the test.
  1185     // It should be the case that make_predicate(bol->as_int_value()) == bol.
  1187   Node* cmp = new (C) CmpINode(test_value, phase->intcon(0));
  1188   cmp = phase->transform(cmp);
  1189   Node* bol = new (C) BoolNode(cmp, BoolTest::ne);
  1190   return phase->transform(bol);
  1193 //--------------------------------as_int_value---------------------------------
  1194 Node* BoolNode::as_int_value(PhaseGVN* phase) {
  1195   // Inverse to make_predicate.  The CMove probably boils down to a Conv2B.
  1196   Node* cmov = CMoveNode::make(phase->C, NULL, this,
  1197                                phase->intcon(0), phase->intcon(1),
  1198                                TypeInt::BOOL);
  1199   return phase->transform(cmov);
  1202 //----------------------------------negate-------------------------------------
  1203 BoolNode* BoolNode::negate(PhaseGVN* phase) {
  1204   Compile* C = phase->C;
  1205   return new (C) BoolNode(in(1), _test.negate());
  1209 //------------------------------Ideal------------------------------------------
  1210 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
  1211   // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
  1212   // This moves the constant to the right.  Helps value-numbering.
  1213   Node *cmp = in(1);
  1214   if( !cmp->is_Sub() ) return NULL;
  1215   int cop = cmp->Opcode();
  1216   if( cop == Op_FastLock || cop == Op_FastUnlock) return NULL;
  1217   Node *cmp1 = cmp->in(1);
  1218   Node *cmp2 = cmp->in(2);
  1219   if( !cmp1 ) return NULL;
  1221   if (_test._test == BoolTest::overflow || _test._test == BoolTest::no_overflow) {
  1222     return NULL;
  1225   // Constant on left?
  1226   Node *con = cmp1;
  1227   uint op2 = cmp2->Opcode();
  1228   // Move constants to the right of compare's to canonicalize.
  1229   // Do not muck with Opaque1 nodes, as this indicates a loop
  1230   // guard that cannot change shape.
  1231   if( con->is_Con() && !cmp2->is_Con() && op2 != Op_Opaque1 &&
  1232       // Because of NaN's, CmpD and CmpF are not commutative
  1233       cop != Op_CmpD && cop != Op_CmpF &&
  1234       // Protect against swapping inputs to a compare when it is used by a
  1235       // counted loop exit, which requires maintaining the loop-limit as in(2)
  1236       !is_counted_loop_exit_test() ) {
  1237     // Ok, commute the constant to the right of the cmp node.
  1238     // Clone the Node, getting a new Node of the same class
  1239     cmp = cmp->clone();
  1240     // Swap inputs to the clone
  1241     cmp->swap_edges(1, 2);
  1242     cmp = phase->transform( cmp );
  1243     return new (phase->C) BoolNode( cmp, _test.commute() );
  1246   // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
  1247   // The XOR-1 is an idiom used to flip the sense of a bool.  We flip the
  1248   // test instead.
  1249   int cmp1_op = cmp1->Opcode();
  1250   const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
  1251   if (cmp2_type == NULL)  return NULL;
  1252   Node* j_xor = cmp1;
  1253   if( cmp2_type == TypeInt::ZERO &&
  1254       cmp1_op == Op_XorI &&
  1255       j_xor->in(1) != j_xor &&          // An xor of itself is dead
  1256       phase->type( j_xor->in(1) ) == TypeInt::BOOL &&
  1257       phase->type( j_xor->in(2) ) == TypeInt::ONE &&
  1258       (_test._test == BoolTest::eq ||
  1259        _test._test == BoolTest::ne) ) {
  1260     Node *ncmp = phase->transform(new (phase->C) CmpINode(j_xor->in(1),cmp2));
  1261     return new (phase->C) BoolNode( ncmp, _test.negate() );
  1264   // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
  1265   // This is a standard idiom for branching on a boolean value.
  1266   Node *c2b = cmp1;
  1267   if( cmp2_type == TypeInt::ZERO &&
  1268       cmp1_op == Op_Conv2B &&
  1269       (_test._test == BoolTest::eq ||
  1270        _test._test == BoolTest::ne) ) {
  1271     Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
  1272        ? (Node*)new (phase->C) CmpINode(c2b->in(1),cmp2)
  1273        : (Node*)new (phase->C) CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
  1274     );
  1275     return new (phase->C) BoolNode( ncmp, _test._test );
  1278   // Comparing a SubI against a zero is equal to comparing the SubI
  1279   // arguments directly.  This only works for eq and ne comparisons
  1280   // due to possible integer overflow.
  1281   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
  1282         (cop == Op_CmpI) &&
  1283         (cmp1->Opcode() == Op_SubI) &&
  1284         ( cmp2_type == TypeInt::ZERO ) ) {
  1285     Node *ncmp = phase->transform( new (phase->C) CmpINode(cmp1->in(1),cmp1->in(2)));
  1286     return new (phase->C) BoolNode( ncmp, _test._test );
  1289   // Change (-A vs 0) into (A vs 0) by commuting the test.  Disallow in the
  1290   // most general case because negating 0x80000000 does nothing.  Needed for
  1291   // the CmpF3/SubI/CmpI idiom.
  1292   if( cop == Op_CmpI &&
  1293       cmp1->Opcode() == Op_SubI &&
  1294       cmp2_type == TypeInt::ZERO &&
  1295       phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
  1296       phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
  1297     Node *ncmp = phase->transform( new (phase->C) CmpINode(cmp1->in(2),cmp2));
  1298     return new (phase->C) BoolNode( ncmp, _test.commute() );
  1301   //  The transformation below is not valid for either signed or unsigned
  1302   //  comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
  1303   //  This transformation can be resurrected when we are able to
  1304   //  make inferences about the range of values being subtracted from
  1305   //  (or added to) relative to the wraparound point.
  1306   //
  1307   //    // Remove +/-1's if possible.
  1308   //    // "X <= Y-1" becomes "X <  Y"
  1309   //    // "X+1 <= Y" becomes "X <  Y"
  1310   //    // "X <  Y+1" becomes "X <= Y"
  1311   //    // "X-1 <  Y" becomes "X <= Y"
  1312   //    // Do not this to compares off of the counted-loop-end.  These guys are
  1313   //    // checking the trip counter and they want to use the post-incremented
  1314   //    // counter.  If they use the PRE-incremented counter, then the counter has
  1315   //    // to be incremented in a private block on a loop backedge.
  1316   //    if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
  1317   //      return NULL;
  1318   //  #ifndef PRODUCT
  1319   //    // Do not do this in a wash GVN pass during verification.
  1320   //    // Gets triggered by too many simple optimizations to be bothered with
  1321   //    // re-trying it again and again.
  1322   //    if( !phase->allow_progress() ) return NULL;
  1323   //  #endif
  1324   //    // Not valid for unsigned compare because of corner cases in involving zero.
  1325   //    // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
  1326   //    // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
  1327   //    // "0 <=u Y" is always true).
  1328   //    if( cmp->Opcode() == Op_CmpU ) return NULL;
  1329   //    int cmp2_op = cmp2->Opcode();
  1330   //    if( _test._test == BoolTest::le ) {
  1331   //      if( cmp1_op == Op_AddI &&
  1332   //          phase->type( cmp1->in(2) ) == TypeInt::ONE )
  1333   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
  1334   //      else if( cmp2_op == Op_AddI &&
  1335   //         phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
  1336   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
  1337   //    } else if( _test._test == BoolTest::lt ) {
  1338   //      if( cmp1_op == Op_AddI &&
  1339   //          phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
  1340   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
  1341   //      else if( cmp2_op == Op_AddI &&
  1342   //         phase->type( cmp2->in(2) ) == TypeInt::ONE )
  1343   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
  1344   //    }
  1346   return NULL;
  1349 //------------------------------Value------------------------------------------
  1350 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
  1351 // based on local information.   If the input is constant, do it.
  1352 const Type *BoolNode::Value( PhaseTransform *phase ) const {
  1353   return _test.cc2logical( phase->type( in(1) ) );
  1356 //------------------------------dump_spec--------------------------------------
  1357 // Dump special per-node info
  1358 #ifndef PRODUCT
  1359 void BoolNode::dump_spec(outputStream *st) const {
  1360   st->print("[");
  1361   _test.dump_on(st);
  1362   st->print("]");
  1364 #endif
  1366 //------------------------------is_counted_loop_exit_test--------------------------------------
  1367 // Returns true if node is used by a counted loop node.
  1368 bool BoolNode::is_counted_loop_exit_test() {
  1369   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
  1370     Node* use = fast_out(i);
  1371     if (use->is_CountedLoopEnd()) {
  1372       return true;
  1375   return false;
  1378 //=============================================================================
  1379 //------------------------------Value------------------------------------------
  1380 // Compute sqrt
  1381 const Type *SqrtDNode::Value( PhaseTransform *phase ) const {
  1382   const Type *t1 = phase->type( in(1) );
  1383   if( t1 == Type::TOP ) return Type::TOP;
  1384   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1385   double d = t1->getd();
  1386   if( d < 0.0 ) return Type::DOUBLE;
  1387   return TypeD::make( sqrt( d ) );
  1390 //=============================================================================
  1391 //------------------------------Value------------------------------------------
  1392 // Compute cos
  1393 const Type *CosDNode::Value( PhaseTransform *phase ) const {
  1394   const Type *t1 = phase->type( in(1) );
  1395   if( t1 == Type::TOP ) return Type::TOP;
  1396   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1397   double d = t1->getd();
  1398   return TypeD::make( StubRoutines::intrinsic_cos( d ) );
  1401 //=============================================================================
  1402 //------------------------------Value------------------------------------------
  1403 // Compute sin
  1404 const Type *SinDNode::Value( PhaseTransform *phase ) const {
  1405   const Type *t1 = phase->type( in(1) );
  1406   if( t1 == Type::TOP ) return Type::TOP;
  1407   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1408   double d = t1->getd();
  1409   return TypeD::make( StubRoutines::intrinsic_sin( d ) );
  1412 //=============================================================================
  1413 //------------------------------Value------------------------------------------
  1414 // Compute tan
  1415 const Type *TanDNode::Value( PhaseTransform *phase ) const {
  1416   const Type *t1 = phase->type( in(1) );
  1417   if( t1 == Type::TOP ) return Type::TOP;
  1418   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1419   double d = t1->getd();
  1420   return TypeD::make( StubRoutines::intrinsic_tan( d ) );
  1423 //=============================================================================
  1424 //------------------------------Value------------------------------------------
  1425 // Compute log
  1426 const Type *LogDNode::Value( PhaseTransform *phase ) const {
  1427   const Type *t1 = phase->type( in(1) );
  1428   if( t1 == Type::TOP ) return Type::TOP;
  1429   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1430   double d = t1->getd();
  1431   return TypeD::make( StubRoutines::intrinsic_log( d ) );
  1434 //=============================================================================
  1435 //------------------------------Value------------------------------------------
  1436 // Compute log10
  1437 const Type *Log10DNode::Value( PhaseTransform *phase ) const {
  1438   const Type *t1 = phase->type( in(1) );
  1439   if( t1 == Type::TOP ) return Type::TOP;
  1440   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1441   double d = t1->getd();
  1442   return TypeD::make( StubRoutines::intrinsic_log10( d ) );
  1445 //=============================================================================
  1446 //------------------------------Value------------------------------------------
  1447 // Compute exp
  1448 const Type *ExpDNode::Value( PhaseTransform *phase ) const {
  1449   const Type *t1 = phase->type( in(1) );
  1450   if( t1 == Type::TOP ) return Type::TOP;
  1451   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1452   double d = t1->getd();
  1453   return TypeD::make( StubRoutines::intrinsic_exp( d ) );
  1457 //=============================================================================
  1458 //------------------------------Value------------------------------------------
  1459 // Compute pow
  1460 const Type *PowDNode::Value( PhaseTransform *phase ) const {
  1461   const Type *t1 = phase->type( in(1) );
  1462   if( t1 == Type::TOP ) return Type::TOP;
  1463   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
  1464   const Type *t2 = phase->type( in(2) );
  1465   if( t2 == Type::TOP ) return Type::TOP;
  1466   if( t2->base() != Type::DoubleCon ) return Type::DOUBLE;
  1467   double d1 = t1->getd();
  1468   double d2 = t2->getd();
  1469   return TypeD::make( StubRoutines::intrinsic_pow( d1, d2 ) );

mercurial