src/share/vm/opto/runtime.cpp

Wed, 10 Aug 2016 14:59:21 +0200

author
simonis
date
Wed, 10 Aug 2016 14:59:21 +0200
changeset 8608
0d78aecb0948
parent 8419
65a0107d52ed
child 8604
04d83ba48607
child 8903
9575483cce09
permissions
-rw-r--r--

8152172: PPC64: Support AES intrinsics
Summary: Add support for AES intrinsics on PPC64.
Reviewed-by: kvn, mdoerr, simonis, zmajo
Contributed-by: Hiroshi H Horii <horii@jp.ibm.com>

     1 /*
     2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "code/compiledIC.hpp"
    29 #include "code/icBuffer.hpp"
    30 #include "code/nmethod.hpp"
    31 #include "code/pcDesc.hpp"
    32 #include "code/scopeDesc.hpp"
    33 #include "code/vtableStubs.hpp"
    34 #include "compiler/compileBroker.hpp"
    35 #include "compiler/compilerOracle.hpp"
    36 #include "compiler/oopMap.hpp"
    37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    38 #include "gc_implementation/g1/heapRegion.hpp"
    39 #include "gc_interface/collectedHeap.hpp"
    40 #include "interpreter/bytecode.hpp"
    41 #include "interpreter/interpreter.hpp"
    42 #include "interpreter/linkResolver.hpp"
    43 #include "memory/barrierSet.hpp"
    44 #include "memory/gcLocker.inline.hpp"
    45 #include "memory/oopFactory.hpp"
    46 #include "oops/objArrayKlass.hpp"
    47 #include "oops/oop.inline.hpp"
    48 #include "opto/addnode.hpp"
    49 #include "opto/callnode.hpp"
    50 #include "opto/cfgnode.hpp"
    51 #include "opto/connode.hpp"
    52 #include "opto/graphKit.hpp"
    53 #include "opto/machnode.hpp"
    54 #include "opto/matcher.hpp"
    55 #include "opto/memnode.hpp"
    56 #include "opto/mulnode.hpp"
    57 #include "opto/runtime.hpp"
    58 #include "opto/subnode.hpp"
    59 #include "runtime/fprofiler.hpp"
    60 #include "runtime/handles.inline.hpp"
    61 #include "runtime/interfaceSupport.hpp"
    62 #include "runtime/javaCalls.hpp"
    63 #include "runtime/sharedRuntime.hpp"
    64 #include "runtime/signature.hpp"
    65 #include "runtime/threadCritical.hpp"
    66 #include "runtime/vframe.hpp"
    67 #include "runtime/vframeArray.hpp"
    68 #include "runtime/vframe_hp.hpp"
    69 #include "utilities/copy.hpp"
    70 #include "utilities/preserveException.hpp"
    71 #if defined AD_MD_HPP
    72 # include AD_MD_HPP
    73 #elif defined TARGET_ARCH_MODEL_x86_32
    74 # include "adfiles/ad_x86_32.hpp"
    75 #elif defined TARGET_ARCH_MODEL_x86_64
    76 # include "adfiles/ad_x86_64.hpp"
    77 #elif defined TARGET_ARCH_MODEL_sparc
    78 # include "adfiles/ad_sparc.hpp"
    79 #elif defined TARGET_ARCH_MODEL_zero
    80 # include "adfiles/ad_zero.hpp"
    81 #elif defined TARGET_ARCH_MODEL_ppc_64
    82 # include "adfiles/ad_ppc_64.hpp"
    83 #endif
    86 // For debugging purposes:
    87 //  To force FullGCALot inside a runtime function, add the following two lines
    88 //
    89 //  Universe::release_fullgc_alot_dummy();
    90 //  MarkSweep::invoke(0, "Debugging");
    91 //
    92 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
    97 // Compiled code entry points
    98 address OptoRuntime::_new_instance_Java                           = NULL;
    99 address OptoRuntime::_new_array_Java                              = NULL;
   100 address OptoRuntime::_new_array_nozero_Java                       = NULL;
   101 address OptoRuntime::_multianewarray2_Java                        = NULL;
   102 address OptoRuntime::_multianewarray3_Java                        = NULL;
   103 address OptoRuntime::_multianewarray4_Java                        = NULL;
   104 address OptoRuntime::_multianewarray5_Java                        = NULL;
   105 address OptoRuntime::_multianewarrayN_Java                        = NULL;
   106 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
   107 address OptoRuntime::_g1_wb_post_Java                             = NULL;
   108 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
   109 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
   110 address OptoRuntime::_rethrow_Java                                = NULL;
   112 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
   113 address OptoRuntime::_register_finalizer_Java                     = NULL;
   115 # ifdef ENABLE_ZAP_DEAD_LOCALS
   116 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
   117 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
   118 # endif
   120 ExceptionBlob* OptoRuntime::_exception_blob;
   122 // This should be called in an assertion at the start of OptoRuntime routines
   123 // which are entered from compiled code (all of them)
   124 #ifdef ASSERT
   125 static bool check_compiled_frame(JavaThread* thread) {
   126   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
   127   RegisterMap map(thread, false);
   128   frame caller = thread->last_frame().sender(&map);
   129   assert(caller.is_compiled_frame(), "not being called from compiled like code");
   130   return true;
   131 }
   132 #endif // ASSERT
   135 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
   136   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
   137   if (var == NULL) { return false; }
   139 bool OptoRuntime::generate(ciEnv* env) {
   141   generate_exception_blob();
   143   // Note: tls: Means fetching the return oop out of the thread-local storage
   144   //
   145   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
   146   // -------------------------------------------------------------------------------------------------------------------------------
   147   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
   148   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
   149   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
   150   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
   151   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
   152   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
   153   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
   154   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
   155   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
   156   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
   157   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
   158   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
   160   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
   161   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
   163 # ifdef ENABLE_ZAP_DEAD_LOCALS
   164   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
   165   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
   166 # endif
   167   return true;
   168 }
   170 #undef gen
   173 // Helper method to do generation of RunTimeStub's
   174 address OptoRuntime::generate_stub( ciEnv* env,
   175                                     TypeFunc_generator gen, address C_function,
   176                                     const char *name, int is_fancy_jump,
   177                                     bool pass_tls,
   178                                     bool save_argument_registers,
   179                                     bool return_pc ) {
   180   ResourceMark rm;
   181   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
   182   return  C.stub_entry_point();
   183 }
   185 const char* OptoRuntime::stub_name(address entry) {
   186 #ifndef PRODUCT
   187   CodeBlob* cb = CodeCache::find_blob(entry);
   188   RuntimeStub* rs =(RuntimeStub *)cb;
   189   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
   190   return rs->name();
   191 #else
   192   // Fast implementation for product mode (maybe it should be inlined too)
   193   return "runtime stub";
   194 #endif
   195 }
   198 //=============================================================================
   199 // Opto compiler runtime routines
   200 //=============================================================================
   203 //=============================allocation======================================
   204 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
   205 // and try allocation again.
   207 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
   208   // After any safepoint, just before going back to compiled code,
   209   // we inform the GC that we will be doing initializing writes to
   210   // this object in the future without emitting card-marks, so
   211   // GC may take any compensating steps.
   212   // NOTE: Keep this code consistent with GraphKit::store_barrier.
   214   oop new_obj = thread->vm_result();
   215   if (new_obj == NULL)  return;
   217   assert(Universe::heap()->can_elide_tlab_store_barriers(),
   218          "compiler must check this first");
   219   // GC may decide to give back a safer copy of new_obj.
   220   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
   221   thread->set_vm_result(new_obj);
   222 }
   224 // object allocation
   225 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
   226   JRT_BLOCK;
   227 #ifndef PRODUCT
   228   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
   229 #endif
   230   assert(check_compiled_frame(thread), "incorrect caller");
   232   // These checks are cheap to make and support reflective allocation.
   233   int lh = klass->layout_helper();
   234   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
   235     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
   236     klass->check_valid_for_instantiation(false, THREAD);
   237     if (!HAS_PENDING_EXCEPTION) {
   238       InstanceKlass::cast(klass)->initialize(THREAD);
   239     }
   240   }
   242   if (!HAS_PENDING_EXCEPTION) {
   243     // Scavenge and allocate an instance.
   244     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
   245     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
   246     thread->set_vm_result(result);
   248     // Pass oops back through thread local storage.  Our apparent type to Java
   249     // is that we return an oop, but we can block on exit from this routine and
   250     // a GC can trash the oop in C's return register.  The generated stub will
   251     // fetch the oop from TLS after any possible GC.
   252   }
   254   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   255   JRT_BLOCK_END;
   257   if (GraphKit::use_ReduceInitialCardMarks()) {
   258     // inform GC that we won't do card marks for initializing writes.
   259     new_store_pre_barrier(thread);
   260   }
   261 JRT_END
   264 // array allocation
   265 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
   266   JRT_BLOCK;
   267 #ifndef PRODUCT
   268   SharedRuntime::_new_array_ctr++;            // new array requires GC
   269 #endif
   270   assert(check_compiled_frame(thread), "incorrect caller");
   272   // Scavenge and allocate an instance.
   273   oop result;
   275   if (array_type->oop_is_typeArray()) {
   276     // The oopFactory likes to work with the element type.
   277     // (We could bypass the oopFactory, since it doesn't add much value.)
   278     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   279     result = oopFactory::new_typeArray(elem_type, len, THREAD);
   280   } else {
   281     // Although the oopFactory likes to work with the elem_type,
   282     // the compiler prefers the array_type, since it must already have
   283     // that latter value in hand for the fast path.
   284     Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
   285     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
   286     result = oopFactory::new_objArray(elem_type, len, THREAD);
   287   }
   289   // Pass oops back through thread local storage.  Our apparent type to Java
   290   // is that we return an oop, but we can block on exit from this routine and
   291   // a GC can trash the oop in C's return register.  The generated stub will
   292   // fetch the oop from TLS after any possible GC.
   293   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   294   thread->set_vm_result(result);
   295   JRT_BLOCK_END;
   297   if (GraphKit::use_ReduceInitialCardMarks()) {
   298     // inform GC that we won't do card marks for initializing writes.
   299     new_store_pre_barrier(thread);
   300   }
   301 JRT_END
   303 // array allocation without zeroing
   304 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
   305   JRT_BLOCK;
   306 #ifndef PRODUCT
   307   SharedRuntime::_new_array_ctr++;            // new array requires GC
   308 #endif
   309   assert(check_compiled_frame(thread), "incorrect caller");
   311   // Scavenge and allocate an instance.
   312   oop result;
   314   assert(array_type->oop_is_typeArray(), "should be called only for type array");
   315   // The oopFactory likes to work with the element type.
   316   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   317   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
   319   // Pass oops back through thread local storage.  Our apparent type to Java
   320   // is that we return an oop, but we can block on exit from this routine and
   321   // a GC can trash the oop in C's return register.  The generated stub will
   322   // fetch the oop from TLS after any possible GC.
   323   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   324   thread->set_vm_result(result);
   325   JRT_BLOCK_END;
   327   if (GraphKit::use_ReduceInitialCardMarks()) {
   328     // inform GC that we won't do card marks for initializing writes.
   329     new_store_pre_barrier(thread);
   330   }
   332   oop result = thread->vm_result();
   333   if ((len > 0) && (result != NULL) &&
   334       is_deoptimized_caller_frame(thread)) {
   335     // Zero array here if the caller is deoptimized.
   336     int size = ((typeArrayOop)result)->object_size();
   337     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
   338     const size_t hs = arrayOopDesc::header_size(elem_type);
   339     // Align to next 8 bytes to avoid trashing arrays's length.
   340     const size_t aligned_hs = align_object_offset(hs);
   341     HeapWord* obj = (HeapWord*)result;
   342     if (aligned_hs > hs) {
   343       Copy::zero_to_words(obj+hs, aligned_hs-hs);
   344     }
   345     // Optimized zeroing.
   346     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
   347   }
   349 JRT_END
   351 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
   353 // multianewarray for 2 dimensions
   354 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
   355 #ifndef PRODUCT
   356   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
   357 #endif
   358   assert(check_compiled_frame(thread), "incorrect caller");
   359   assert(elem_type->is_klass(), "not a class");
   360   jint dims[2];
   361   dims[0] = len1;
   362   dims[1] = len2;
   363   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   364   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
   365   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   366   thread->set_vm_result(obj);
   367 JRT_END
   369 // multianewarray for 3 dimensions
   370 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
   371 #ifndef PRODUCT
   372   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
   373 #endif
   374   assert(check_compiled_frame(thread), "incorrect caller");
   375   assert(elem_type->is_klass(), "not a class");
   376   jint dims[3];
   377   dims[0] = len1;
   378   dims[1] = len2;
   379   dims[2] = len3;
   380   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   381   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
   382   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   383   thread->set_vm_result(obj);
   384 JRT_END
   386 // multianewarray for 4 dimensions
   387 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
   388 #ifndef PRODUCT
   389   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
   390 #endif
   391   assert(check_compiled_frame(thread), "incorrect caller");
   392   assert(elem_type->is_klass(), "not a class");
   393   jint dims[4];
   394   dims[0] = len1;
   395   dims[1] = len2;
   396   dims[2] = len3;
   397   dims[3] = len4;
   398   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   399   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
   400   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   401   thread->set_vm_result(obj);
   402 JRT_END
   404 // multianewarray for 5 dimensions
   405 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
   406 #ifndef PRODUCT
   407   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
   408 #endif
   409   assert(check_compiled_frame(thread), "incorrect caller");
   410   assert(elem_type->is_klass(), "not a class");
   411   jint dims[5];
   412   dims[0] = len1;
   413   dims[1] = len2;
   414   dims[2] = len3;
   415   dims[3] = len4;
   416   dims[4] = len5;
   417   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   418   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
   419   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   420   thread->set_vm_result(obj);
   421 JRT_END
   423 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
   424   assert(check_compiled_frame(thread), "incorrect caller");
   425   assert(elem_type->is_klass(), "not a class");
   426   assert(oop(dims)->is_typeArray(), "not an array");
   428   ResourceMark rm;
   429   jint len = dims->length();
   430   assert(len > 0, "Dimensions array should contain data");
   431   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
   432   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
   433   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
   435   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
   436   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
   437   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
   438   thread->set_vm_result(obj);
   439 JRT_END
   442 const TypeFunc *OptoRuntime::new_instance_Type() {
   443   // create input type (domain)
   444   const Type **fields = TypeTuple::fields(1);
   445   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   446   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   448   // create result type (range)
   449   fields = TypeTuple::fields(1);
   450   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   452   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   454   return TypeFunc::make(domain, range);
   455 }
   458 const TypeFunc *OptoRuntime::athrow_Type() {
   459   // create input type (domain)
   460   const Type **fields = TypeTuple::fields(1);
   461   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
   462   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   464   // create result type (range)
   465   fields = TypeTuple::fields(0);
   467   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   469   return TypeFunc::make(domain, range);
   470 }
   473 const TypeFunc *OptoRuntime::new_array_Type() {
   474   // create input type (domain)
   475   const Type **fields = TypeTuple::fields(2);
   476   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   477   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
   478   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   480   // create result type (range)
   481   fields = TypeTuple::fields(1);
   482   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   484   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   486   return TypeFunc::make(domain, range);
   487 }
   489 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
   490   // create input type (domain)
   491   const int nargs = ndim + 1;
   492   const Type **fields = TypeTuple::fields(nargs);
   493   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   494   for( int i = 1; i < nargs; i++ )
   495     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
   496   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
   498   // create result type (range)
   499   fields = TypeTuple::fields(1);
   500   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   501   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   503   return TypeFunc::make(domain, range);
   504 }
   506 const TypeFunc *OptoRuntime::multianewarray2_Type() {
   507   return multianewarray_Type(2);
   508 }
   510 const TypeFunc *OptoRuntime::multianewarray3_Type() {
   511   return multianewarray_Type(3);
   512 }
   514 const TypeFunc *OptoRuntime::multianewarray4_Type() {
   515   return multianewarray_Type(4);
   516 }
   518 const TypeFunc *OptoRuntime::multianewarray5_Type() {
   519   return multianewarray_Type(5);
   520 }
   522 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
   523   // create input type (domain)
   524   const Type **fields = TypeTuple::fields(2);
   525   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
   526   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
   527   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   529   // create result type (range)
   530   fields = TypeTuple::fields(1);
   531   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
   532   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   534   return TypeFunc::make(domain, range);
   535 }
   537 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
   538   const Type **fields = TypeTuple::fields(2);
   539   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
   540   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
   541   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   543   // create result type (range)
   544   fields = TypeTuple::fields(0);
   545   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   547   return TypeFunc::make(domain, range);
   548 }
   550 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
   552   const Type **fields = TypeTuple::fields(2);
   553   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
   554   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
   555   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   557   // create result type (range)
   558   fields = TypeTuple::fields(0);
   559   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   561   return TypeFunc::make(domain, range);
   562 }
   564 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
   565   // create input type (domain)
   566   const Type **fields = TypeTuple::fields(1);
   567   // Symbol* name of class to be loaded
   568   fields[TypeFunc::Parms+0] = TypeInt::INT;
   569   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
   571   // create result type (range)
   572   fields = TypeTuple::fields(0);
   573   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
   575   return TypeFunc::make(domain, range);
   576 }
   578 # ifdef ENABLE_ZAP_DEAD_LOCALS
   579 // Type used for stub generation for zap_dead_locals.
   580 // No inputs or outputs
   581 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
   582   // create input type (domain)
   583   const Type **fields = TypeTuple::fields(0);
   584   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
   586   // create result type (range)
   587   fields = TypeTuple::fields(0);
   588   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
   590   return TypeFunc::make(domain,range);
   591 }
   592 # endif
   595 //-----------------------------------------------------------------------------
   596 // Monitor Handling
   597 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
   598   // create input type (domain)
   599   const Type **fields = TypeTuple::fields(2);
   600   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   601   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   602   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   604   // create result type (range)
   605   fields = TypeTuple::fields(0);
   607   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   609   return TypeFunc::make(domain,range);
   610 }
   613 //-----------------------------------------------------------------------------
   614 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
   615   // create input type (domain)
   616   const Type **fields = TypeTuple::fields(2);
   617   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
   618   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
   619   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
   621   // create result type (range)
   622   fields = TypeTuple::fields(0);
   624   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
   626   return TypeFunc::make(domain,range);
   627 }
   629 const TypeFunc* OptoRuntime::flush_windows_Type() {
   630   // create input type (domain)
   631   const Type** fields = TypeTuple::fields(1);
   632   fields[TypeFunc::Parms+0] = NULL; // void
   633   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
   635   // create result type
   636   fields = TypeTuple::fields(1);
   637   fields[TypeFunc::Parms+0] = NULL; // void
   638   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   640   return TypeFunc::make(domain, range);
   641 }
   643 const TypeFunc* OptoRuntime::l2f_Type() {
   644   // create input type (domain)
   645   const Type **fields = TypeTuple::fields(2);
   646   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   647   fields[TypeFunc::Parms+1] = Type::HALF;
   648   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   650   // create result type (range)
   651   fields = TypeTuple::fields(1);
   652   fields[TypeFunc::Parms+0] = Type::FLOAT;
   653   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   655   return TypeFunc::make(domain, range);
   656 }
   658 const TypeFunc* OptoRuntime::modf_Type() {
   659   const Type **fields = TypeTuple::fields(2);
   660   fields[TypeFunc::Parms+0] = Type::FLOAT;
   661   fields[TypeFunc::Parms+1] = Type::FLOAT;
   662   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   664   // create result type (range)
   665   fields = TypeTuple::fields(1);
   666   fields[TypeFunc::Parms+0] = Type::FLOAT;
   668   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
   670   return TypeFunc::make(domain, range);
   671 }
   673 const TypeFunc *OptoRuntime::Math_D_D_Type() {
   674   // create input type (domain)
   675   const Type **fields = TypeTuple::fields(2);
   676   // Symbol* name of class to be loaded
   677   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   678   fields[TypeFunc::Parms+1] = Type::HALF;
   679   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
   681   // create result type (range)
   682   fields = TypeTuple::fields(2);
   683   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   684   fields[TypeFunc::Parms+1] = Type::HALF;
   685   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   687   return TypeFunc::make(domain, range);
   688 }
   690 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
   691   const Type **fields = TypeTuple::fields(4);
   692   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   693   fields[TypeFunc::Parms+1] = Type::HALF;
   694   fields[TypeFunc::Parms+2] = Type::DOUBLE;
   695   fields[TypeFunc::Parms+3] = Type::HALF;
   696   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
   698   // create result type (range)
   699   fields = TypeTuple::fields(2);
   700   fields[TypeFunc::Parms+0] = Type::DOUBLE;
   701   fields[TypeFunc::Parms+1] = Type::HALF;
   702   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   704   return TypeFunc::make(domain, range);
   705 }
   707 //-------------- currentTimeMillis, currentTimeNanos, etc
   709 const TypeFunc* OptoRuntime::void_long_Type() {
   710   // create input type (domain)
   711   const Type **fields = TypeTuple::fields(0);
   712   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
   714   // create result type (range)
   715   fields = TypeTuple::fields(2);
   716   fields[TypeFunc::Parms+0] = TypeLong::LONG;
   717   fields[TypeFunc::Parms+1] = Type::HALF;
   718   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
   720   return TypeFunc::make(domain, range);
   721 }
   723 // arraycopy stub variations:
   724 enum ArrayCopyType {
   725   ac_fast,                      // void(ptr, ptr, size_t)
   726   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
   727   ac_slow,                      // void(ptr, int, ptr, int, int)
   728   ac_generic                    //  int(ptr, int, ptr, int, int)
   729 };
   731 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
   732   // create input type (domain)
   733   int num_args      = (act == ac_fast ? 3 : 5);
   734   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
   735   int argcnt = num_args;
   736   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
   737   const Type** fields = TypeTuple::fields(argcnt);
   738   int argp = TypeFunc::Parms;
   739   fields[argp++] = TypePtr::NOTNULL;    // src
   740   if (num_size_args == 0) {
   741     fields[argp++] = TypeInt::INT;      // src_pos
   742   }
   743   fields[argp++] = TypePtr::NOTNULL;    // dest
   744   if (num_size_args == 0) {
   745     fields[argp++] = TypeInt::INT;      // dest_pos
   746     fields[argp++] = TypeInt::INT;      // length
   747   }
   748   while (num_size_args-- > 0) {
   749     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   750     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   751   }
   752   if (act == ac_checkcast) {
   753     fields[argp++] = TypePtr::NOTNULL;  // super_klass
   754   }
   755   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
   756   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   758   // create result type if needed
   759   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
   760   fields = TypeTuple::fields(1);
   761   if (retcnt == 0)
   762     fields[TypeFunc::Parms+0] = NULL; // void
   763   else
   764     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
   765   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
   766   return TypeFunc::make(domain, range);
   767 }
   769 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
   770   // This signature is simple:  Two base pointers and a size_t.
   771   return make_arraycopy_Type(ac_fast);
   772 }
   774 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
   775   // An extension of fast_arraycopy_Type which adds type checking.
   776   return make_arraycopy_Type(ac_checkcast);
   777 }
   779 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
   780   // This signature is exactly the same as System.arraycopy.
   781   // There are no intptr_t (int/long) arguments.
   782   return make_arraycopy_Type(ac_slow);
   783 }
   785 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
   786   // This signature is like System.arraycopy, except that it returns status.
   787   return make_arraycopy_Type(ac_generic);
   788 }
   791 const TypeFunc* OptoRuntime::array_fill_Type() {
   792   const Type** fields;
   793   int argp = TypeFunc::Parms;
   794   if (CCallingConventionRequiresIntsAsLongs) {
   795   // create input type (domain): pointer, int, size_t
   796     fields = TypeTuple::fields(3 LP64_ONLY( + 2));
   797     fields[argp++] = TypePtr::NOTNULL;
   798     fields[argp++] = TypeLong::LONG;
   799     fields[argp++] = Type::HALF;
   800   } else {
   801     // create input type (domain): pointer, int, size_t
   802     fields = TypeTuple::fields(3 LP64_ONLY( + 1));
   803     fields[argp++] = TypePtr::NOTNULL;
   804     fields[argp++] = TypeInt::INT;
   805   }
   806   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
   807   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
   808   const TypeTuple *domain = TypeTuple::make(argp, fields);
   810   // create result type
   811   fields = TypeTuple::fields(1);
   812   fields[TypeFunc::Parms+0] = NULL; // void
   813   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
   815   return TypeFunc::make(domain, range);
   816 }
   818 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
   819 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
   820   // create input type (domain)
   821   int num_args      = 3;
   822   if (Matcher::pass_original_key_for_aes()) {
   823     num_args = 4;
   824   }
   825   int argcnt = num_args;
   826   const Type** fields = TypeTuple::fields(argcnt);
   827   int argp = TypeFunc::Parms;
   828   fields[argp++] = TypePtr::NOTNULL;    // src
   829   fields[argp++] = TypePtr::NOTNULL;    // dest
   830   fields[argp++] = TypePtr::NOTNULL;    // k array
   831   if (Matcher::pass_original_key_for_aes()) {
   832     fields[argp++] = TypePtr::NOTNULL;    // original k array
   833   }
   834   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   835   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   837   // no result type needed
   838   fields = TypeTuple::fields(1);
   839   fields[TypeFunc::Parms+0] = NULL; // void
   840   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   841   return TypeFunc::make(domain, range);
   842 }
   844 /**
   845  * int updateBytesCRC32(int crc, byte* b, int len)
   846  */
   847 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
   848   // create input type (domain)
   849   int num_args      = 3;
   850   int argcnt = num_args;
   851   const Type** fields = TypeTuple::fields(argcnt);
   852   int argp = TypeFunc::Parms;
   853   fields[argp++] = TypeInt::INT;        // crc
   854   fields[argp++] = TypePtr::NOTNULL;    // src
   855   fields[argp++] = TypeInt::INT;        // len
   856   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   857   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   859   // result type needed
   860   fields = TypeTuple::fields(1);
   861   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
   862   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   863   return TypeFunc::make(domain, range);
   864 }
   866 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
   867 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
   868   // create input type (domain)
   869   int num_args      = 5;
   870   if (Matcher::pass_original_key_for_aes()) {
   871     num_args = 6;
   872   }
   873   int argcnt = num_args;
   874   const Type** fields = TypeTuple::fields(argcnt);
   875   int argp = TypeFunc::Parms;
   876   fields[argp++] = TypePtr::NOTNULL;    // src
   877   fields[argp++] = TypePtr::NOTNULL;    // dest
   878   fields[argp++] = TypePtr::NOTNULL;    // k array
   879   fields[argp++] = TypePtr::NOTNULL;    // r array
   880   fields[argp++] = TypeInt::INT;        // src len
   881   if (Matcher::pass_original_key_for_aes()) {
   882     fields[argp++] = TypePtr::NOTNULL;    // original k array
   883   }
   884   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   885   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   887   // returning cipher len (int)
   888   fields = TypeTuple::fields(1);
   889   fields[TypeFunc::Parms+0] = TypeInt::INT;
   890   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   891   return TypeFunc::make(domain, range);
   892 }
   894 /*
   895  * void implCompress(byte[] buf, int ofs)
   896  */
   897 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
   898   // create input type (domain)
   899   int num_args = 2;
   900   int argcnt = num_args;
   901   const Type** fields = TypeTuple::fields(argcnt);
   902   int argp = TypeFunc::Parms;
   903   fields[argp++] = TypePtr::NOTNULL; // buf
   904   fields[argp++] = TypePtr::NOTNULL; // state
   905   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   906   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   908   // no result type needed
   909   fields = TypeTuple::fields(1);
   910   fields[TypeFunc::Parms+0] = NULL; // void
   911   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   912   return TypeFunc::make(domain, range);
   913 }
   915 /*
   916  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
   917  */
   918 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
   919   // create input type (domain)
   920   int num_args = 4;
   921   int argcnt = num_args;
   922   const Type** fields = TypeTuple::fields(argcnt);
   923   int argp = TypeFunc::Parms;
   924   fields[argp++] = TypePtr::NOTNULL; // buf
   925   fields[argp++] = TypePtr::NOTNULL; // state
   926   fields[argp++] = TypeInt::INT;     // ofs
   927   fields[argp++] = TypeInt::INT;     // limit
   928   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   929   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   931   // returning ofs (int)
   932   fields = TypeTuple::fields(1);
   933   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
   934   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   935   return TypeFunc::make(domain, range);
   936 }
   938 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
   939   // create input type (domain)
   940   int num_args      = 6;
   941   int argcnt = num_args;
   942   const Type** fields = TypeTuple::fields(argcnt);
   943   int argp = TypeFunc::Parms;
   944   fields[argp++] = TypePtr::NOTNULL;    // x
   945   fields[argp++] = TypeInt::INT;        // xlen
   946   fields[argp++] = TypePtr::NOTNULL;    // y
   947   fields[argp++] = TypeInt::INT;        // ylen
   948   fields[argp++] = TypePtr::NOTNULL;    // z
   949   fields[argp++] = TypeInt::INT;        // zlen
   950   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   951   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   953   // no result type needed
   954   fields = TypeTuple::fields(1);
   955   fields[TypeFunc::Parms+0] = NULL;
   956   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   957   return TypeFunc::make(domain, range);
   958 }
   960 const TypeFunc* OptoRuntime::squareToLen_Type() {
   961   // create input type (domain)
   962   int num_args      = 4;
   963   int argcnt = num_args;
   964   const Type** fields = TypeTuple::fields(argcnt);
   965   int argp = TypeFunc::Parms;
   966   fields[argp++] = TypePtr::NOTNULL;    // x
   967   fields[argp++] = TypeInt::INT;        // len
   968   fields[argp++] = TypePtr::NOTNULL;    // z
   969   fields[argp++] = TypeInt::INT;        // zlen
   970   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   971   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   973   // no result type needed
   974   fields = TypeTuple::fields(1);
   975   fields[TypeFunc::Parms+0] = NULL;
   976   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
   977   return TypeFunc::make(domain, range);
   978 }
   980 // for mulAdd calls, 2 pointers and 3 ints, returning int
   981 const TypeFunc* OptoRuntime::mulAdd_Type() {
   982   // create input type (domain)
   983   int num_args      = 5;
   984   int argcnt = num_args;
   985   const Type** fields = TypeTuple::fields(argcnt);
   986   int argp = TypeFunc::Parms;
   987   fields[argp++] = TypePtr::NOTNULL;    // out
   988   fields[argp++] = TypePtr::NOTNULL;    // in
   989   fields[argp++] = TypeInt::INT;        // offset
   990   fields[argp++] = TypeInt::INT;        // len
   991   fields[argp++] = TypeInt::INT;        // k
   992   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
   993   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
   995   // returning carry (int)
   996   fields = TypeTuple::fields(1);
   997   fields[TypeFunc::Parms+0] = TypeInt::INT;
   998   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
   999   return TypeFunc::make(domain, range);
  1002 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
  1003   // create input type (domain)
  1004   int num_args      = 7;
  1005   int argcnt = num_args;
  1006   const Type** fields = TypeTuple::fields(argcnt);
  1007   int argp = TypeFunc::Parms;
  1008   fields[argp++] = TypePtr::NOTNULL;    // a
  1009   fields[argp++] = TypePtr::NOTNULL;    // b
  1010   fields[argp++] = TypePtr::NOTNULL;    // n
  1011   fields[argp++] = TypeInt::INT;        // len
  1012   fields[argp++] = TypeLong::LONG;      // inv
  1013   fields[argp++] = Type::HALF;
  1014   fields[argp++] = TypePtr::NOTNULL;    // result
  1015   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
  1016   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
  1018   // result type needed
  1019   fields = TypeTuple::fields(1);
  1020   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
  1022   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
  1023   return TypeFunc::make(domain, range);
  1026 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
  1027   // create input type (domain)
  1028   int num_args      = 6;
  1029   int argcnt = num_args;
  1030   const Type** fields = TypeTuple::fields(argcnt);
  1031   int argp = TypeFunc::Parms;
  1032   fields[argp++] = TypePtr::NOTNULL;    // a
  1033   fields[argp++] = TypePtr::NOTNULL;    // n
  1034   fields[argp++] = TypeInt::INT;        // len
  1035   fields[argp++] = TypeLong::LONG;      // inv
  1036   fields[argp++] = Type::HALF;
  1037   fields[argp++] = TypePtr::NOTNULL;    // result
  1038   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
  1039   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
  1041   // result type needed
  1042   fields = TypeTuple::fields(1);
  1043   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
  1045   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
  1046   return TypeFunc::make(domain, range);
  1050 //------------- Interpreter state access for on stack replacement
  1051 const TypeFunc* OptoRuntime::osr_end_Type() {
  1052   // create input type (domain)
  1053   const Type **fields = TypeTuple::fields(1);
  1054   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
  1055   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
  1057   // create result type
  1058   fields = TypeTuple::fields(1);
  1059   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
  1060   fields[TypeFunc::Parms+0] = NULL; // void
  1061   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
  1062   return TypeFunc::make(domain, range);
  1065 //-------------- methodData update helpers
  1067 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
  1068   // create input type (domain)
  1069   const Type **fields = TypeTuple::fields(2);
  1070   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
  1071   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
  1072   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
  1074   // create result type
  1075   fields = TypeTuple::fields(1);
  1076   fields[TypeFunc::Parms+0] = NULL; // void
  1077   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
  1078   return TypeFunc::make(domain,range);
  1081 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
  1082   if (receiver == NULL) return;
  1083   Klass* receiver_klass = receiver->klass();
  1085   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
  1086   int empty_row = -1;           // free row, if any is encountered
  1088   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
  1089   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
  1090     // if (vc->receiver(row) == receiver_klass)
  1091     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
  1092     intptr_t row_recv = *(mdp + receiver_off);
  1093     if (row_recv == (intptr_t) receiver_klass) {
  1094       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
  1095       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
  1096       *(mdp + count_off) += DataLayout::counter_increment;
  1097       return;
  1098     } else if (row_recv == 0) {
  1099       // else if (vc->receiver(row) == NULL)
  1100       empty_row = (int) row;
  1104   if (empty_row != -1) {
  1105     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
  1106     // vc->set_receiver(empty_row, receiver_klass);
  1107     *(mdp + receiver_off) = (intptr_t) receiver_klass;
  1108     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
  1109     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
  1110     *(mdp + count_off) = DataLayout::counter_increment;
  1111   } else {
  1112     // Receiver did not match any saved receiver and there is no empty row for it.
  1113     // Increment total counter to indicate polymorphic case.
  1114     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
  1115     *count_p += DataLayout::counter_increment;
  1117 JRT_END
  1119 //-------------------------------------------------------------------------------------
  1120 // register policy
  1122 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
  1123   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
  1124   switch (register_save_policy[reg]) {
  1125     case 'C': return false; //SOC
  1126     case 'E': return true ; //SOE
  1127     case 'N': return false; //NS
  1128     case 'A': return false; //AS
  1130   ShouldNotReachHere();
  1131   return false;
  1134 //-----------------------------------------------------------------------
  1135 // Exceptions
  1136 //
  1138 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
  1140 // The method is an entry that is always called by a C++ method not
  1141 // directly from compiled code. Compiled code will call the C++ method following.
  1142 // We can't allow async exception to be installed during  exception processing.
  1143 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
  1145   // Do not confuse exception_oop with pending_exception. The exception_oop
  1146   // is only used to pass arguments into the method. Not for general
  1147   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
  1148   // the runtime stubs checks this on exit.
  1149   assert(thread->exception_oop() != NULL, "exception oop is found");
  1150   address handler_address = NULL;
  1152   Handle exception(thread, thread->exception_oop());
  1153   address pc = thread->exception_pc();
  1155   // Clear out the exception oop and pc since looking up an
  1156   // exception handler can cause class loading, which might throw an
  1157   // exception and those fields are expected to be clear during
  1158   // normal bytecode execution.
  1159   thread->clear_exception_oop_and_pc();
  1161   if (TraceExceptions) {
  1162     trace_exception(exception(), pc, "");
  1165   // for AbortVMOnException flag
  1166   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
  1168 #ifdef ASSERT
  1169   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1170     // should throw an exception here
  1171     ShouldNotReachHere();
  1173 #endif
  1175   // new exception handling: this method is entered only from adapters
  1176   // exceptions from compiled java methods are handled in compiled code
  1177   // using rethrow node
  1179   nm = CodeCache::find_nmethod(pc);
  1180   assert(nm != NULL, "No NMethod found");
  1181   if (nm->is_native_method()) {
  1182     fatal("Native method should not have path to exception handling");
  1183   } else {
  1184     // we are switching to old paradigm: search for exception handler in caller_frame
  1185     // instead in exception handler of caller_frame.sender()
  1187     if (JvmtiExport::can_post_on_exceptions()) {
  1188       // "Full-speed catching" is not necessary here,
  1189       // since we're notifying the VM on every catch.
  1190       // Force deoptimization and the rest of the lookup
  1191       // will be fine.
  1192       deoptimize_caller_frame(thread);
  1195     // Check the stack guard pages.  If enabled, look for handler in this frame;
  1196     // otherwise, forcibly unwind the frame.
  1197     //
  1198     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
  1199     bool force_unwind = !thread->reguard_stack();
  1200     bool deopting = false;
  1201     if (nm->is_deopt_pc(pc)) {
  1202       deopting = true;
  1203       RegisterMap map(thread, false);
  1204       frame deoptee = thread->last_frame().sender(&map);
  1205       assert(deoptee.is_deoptimized_frame(), "must be deopted");
  1206       // Adjust the pc back to the original throwing pc
  1207       pc = deoptee.pc();
  1210     // If we are forcing an unwind because of stack overflow then deopt is
  1211     // irrelevant since we are throwing the frame away anyway.
  1213     if (deopting && !force_unwind) {
  1214       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1215     } else {
  1217       handler_address =
  1218         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
  1220       if (handler_address == NULL) {
  1221         Handle original_exception(thread, exception());
  1222         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
  1223         assert (handler_address != NULL, "must have compiled handler");
  1224         // Update the exception cache only when the unwind was not forced
  1225         // and there didn't happen another exception during the computation of the
  1226         // compiled exception handler.
  1227         if (!force_unwind && original_exception() == exception()) {
  1228           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
  1230       } else {
  1231         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
  1235     thread->set_exception_pc(pc);
  1236     thread->set_exception_handler_pc(handler_address);
  1238     // Check if the exception PC is a MethodHandle call site.
  1239     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
  1242   // Restore correct return pc.  Was saved above.
  1243   thread->set_exception_oop(exception());
  1244   return handler_address;
  1246 JRT_END
  1248 // We are entering here from exception_blob
  1249 // If there is a compiled exception handler in this method, we will continue there;
  1250 // otherwise we will unwind the stack and continue at the caller of top frame method
  1251 // Note we enter without the usual JRT wrapper. We will call a helper routine that
  1252 // will do the normal VM entry. We do it this way so that we can see if the nmethod
  1253 // we looked up the handler for has been deoptimized in the meantime. If it has been
  1254 // we must not use the handler and instead return the deopt blob.
  1255 address OptoRuntime::handle_exception_C(JavaThread* thread) {
  1256 //
  1257 // We are in Java not VM and in debug mode we have a NoHandleMark
  1258 //
  1259 #ifndef PRODUCT
  1260   SharedRuntime::_find_handler_ctr++;          // find exception handler
  1261 #endif
  1262   debug_only(NoHandleMark __hm;)
  1263   nmethod* nm = NULL;
  1264   address handler_address = NULL;
  1266     // Enter the VM
  1268     ResetNoHandleMark rnhm;
  1269     handler_address = handle_exception_C_helper(thread, nm);
  1272   // Back in java: Use no oops, DON'T safepoint
  1274   // Now check to see if the handler we are returning is in a now
  1275   // deoptimized frame
  1277   if (nm != NULL) {
  1278     RegisterMap map(thread, false);
  1279     frame caller = thread->last_frame().sender(&map);
  1280 #ifdef ASSERT
  1281     assert(caller.is_compiled_frame(), "must be");
  1282 #endif // ASSERT
  1283     if (caller.is_deoptimized_frame()) {
  1284       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
  1287   return handler_address;
  1290 //------------------------------rethrow----------------------------------------
  1291 // We get here after compiled code has executed a 'RethrowNode'.  The callee
  1292 // is either throwing or rethrowing an exception.  The callee-save registers
  1293 // have been restored, synchronized objects have been unlocked and the callee
  1294 // stack frame has been removed.  The return address was passed in.
  1295 // Exception oop is passed as the 1st argument.  This routine is then called
  1296 // from the stub.  On exit, we know where to jump in the caller's code.
  1297 // After this C code exits, the stub will pop his frame and end in a jump
  1298 // (instead of a return).  We enter the caller's default handler.
  1299 //
  1300 // This must be JRT_LEAF:
  1301 //     - caller will not change its state as we cannot block on exit,
  1302 //       therefore raw_exception_handler_for_return_address is all it takes
  1303 //       to handle deoptimized blobs
  1304 //
  1305 // However, there needs to be a safepoint check in the middle!  So compiled
  1306 // safepoints are completely watertight.
  1307 //
  1308 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
  1309 //
  1310 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
  1311 //
  1312 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
  1313 #ifndef PRODUCT
  1314   SharedRuntime::_rethrow_ctr++;               // count rethrows
  1315 #endif
  1316   assert (exception != NULL, "should have thrown a NULLPointerException");
  1317 #ifdef ASSERT
  1318   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
  1319     // should throw an exception here
  1320     ShouldNotReachHere();
  1322 #endif
  1324   thread->set_vm_result(exception);
  1325   // Frame not compiled (handles deoptimization blob)
  1326   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
  1330 const TypeFunc *OptoRuntime::rethrow_Type() {
  1331   // create input type (domain)
  1332   const Type **fields = TypeTuple::fields(1);
  1333   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1334   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1336   // create result type (range)
  1337   fields = TypeTuple::fields(1);
  1338   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
  1339   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
  1341   return TypeFunc::make(domain, range);
  1345 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
  1346   // Deoptimize the caller before continuing, as the compiled
  1347   // exception handler table may not be valid.
  1348   if (!StressCompiledExceptionHandlers && doit) {
  1349     deoptimize_caller_frame(thread);
  1353 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
  1354   // Called from within the owner thread, so no need for safepoint
  1355   RegisterMap reg_map(thread);
  1356   frame stub_frame = thread->last_frame();
  1357   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1358   frame caller_frame = stub_frame.sender(&reg_map);
  1360   // Deoptimize the caller frame.
  1361   Deoptimization::deoptimize_frame(thread, caller_frame.id());
  1365 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
  1366   // Called from within the owner thread, so no need for safepoint
  1367   RegisterMap reg_map(thread);
  1368   frame stub_frame = thread->last_frame();
  1369   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
  1370   frame caller_frame = stub_frame.sender(&reg_map);
  1371   return caller_frame.is_deoptimized_frame();
  1375 const TypeFunc *OptoRuntime::register_finalizer_Type() {
  1376   // create input type (domain)
  1377   const Type **fields = TypeTuple::fields(1);
  1378   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
  1379   // // The JavaThread* is passed to each routine as the last argument
  1380   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
  1381   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
  1383   // create result type (range)
  1384   fields = TypeTuple::fields(0);
  1386   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1388   return TypeFunc::make(domain,range);
  1392 //-----------------------------------------------------------------------------
  1393 // Dtrace support.  entry and exit probes have the same signature
  1394 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
  1395   // create input type (domain)
  1396   const Type **fields = TypeTuple::fields(2);
  1397   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1398   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
  1399   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1401   // create result type (range)
  1402   fields = TypeTuple::fields(0);
  1404   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1406   return TypeFunc::make(domain,range);
  1409 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
  1410   // create input type (domain)
  1411   const Type **fields = TypeTuple::fields(2);
  1412   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
  1413   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
  1415   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
  1417   // create result type (range)
  1418   fields = TypeTuple::fields(0);
  1420   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
  1422   return TypeFunc::make(domain,range);
  1426 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
  1427   assert(obj->is_oop(), "must be a valid oop");
  1428   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
  1429   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
  1430 JRT_END
  1432 //-----------------------------------------------------------------------------
  1434 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
  1436 //
  1437 // dump the collected NamedCounters.
  1438 //
  1439 void OptoRuntime::print_named_counters() {
  1440   int total_lock_count = 0;
  1441   int eliminated_lock_count = 0;
  1443   NamedCounter* c = _named_counters;
  1444   while (c) {
  1445     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
  1446       int count = c->count();
  1447       if (count > 0) {
  1448         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
  1449         if (Verbose) {
  1450           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
  1452         total_lock_count += count;
  1453         if (eliminated) {
  1454           eliminated_lock_count += count;
  1457     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
  1458       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
  1459       if (blc->nonzero()) {
  1460         tty->print_cr("%s", c->name());
  1461         blc->print_on(tty);
  1463 #if INCLUDE_RTM_OPT
  1464     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
  1465       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
  1466       if (rlc->nonzero()) {
  1467         tty->print_cr("%s", c->name());
  1468         rlc->print_on(tty);
  1470 #endif
  1472     c = c->next();
  1474   if (total_lock_count > 0) {
  1475     tty->print_cr("dynamic locks: %d", total_lock_count);
  1476     if (eliminated_lock_count) {
  1477       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
  1478                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
  1483 //
  1484 //  Allocate a new NamedCounter.  The JVMState is used to generate the
  1485 //  name which consists of method@line for the inlining tree.
  1486 //
  1488 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
  1489   int max_depth = youngest_jvms->depth();
  1491   // Visit scopes from youngest to oldest.
  1492   bool first = true;
  1493   stringStream st;
  1494   for (int depth = max_depth; depth >= 1; depth--) {
  1495     JVMState* jvms = youngest_jvms->of_depth(depth);
  1496     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
  1497     if (!first) {
  1498       st.print(" ");
  1499     } else {
  1500       first = false;
  1502     int bci = jvms->bci();
  1503     if (bci < 0) bci = 0;
  1504     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
  1505     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
  1507   NamedCounter* c;
  1508   if (tag == NamedCounter::BiasedLockingCounter) {
  1509     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
  1510   } else if (tag == NamedCounter::RTMLockingCounter) {
  1511     c = new RTMLockingNamedCounter(strdup(st.as_string()));
  1512   } else {
  1513     c = new NamedCounter(strdup(st.as_string()), tag);
  1516   // atomically add the new counter to the head of the list.  We only
  1517   // add counters so this is safe.
  1518   NamedCounter* head;
  1519   do {
  1520     c->set_next(NULL);
  1521     head = _named_counters;
  1522     c->set_next(head);
  1523   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
  1524   return c;
  1527 //-----------------------------------------------------------------------------
  1528 // Non-product code
  1529 #ifndef PRODUCT
  1531 int trace_exception_counter = 0;
  1532 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
  1533   ttyLocker ttyl;
  1534   trace_exception_counter++;
  1535   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
  1536   exception_oop->print_value();
  1537   tty->print(" in ");
  1538   CodeBlob* blob = CodeCache::find_blob(exception_pc);
  1539   if (blob->is_nmethod()) {
  1540     nmethod* nm = blob->as_nmethod_or_null();
  1541     nm->method()->print_value();
  1542   } else if (blob->is_runtime_stub()) {
  1543     tty->print("<runtime-stub>");
  1544   } else {
  1545     tty->print("<unknown>");
  1547   tty->print(" at " INTPTR_FORMAT,  p2i(exception_pc));
  1548   tty->print_cr("]");
  1551 #endif  // PRODUCT
  1554 # ifdef ENABLE_ZAP_DEAD_LOCALS
  1555 // Called from call sites in compiled code with oop maps (actually safepoints)
  1556 // Zaps dead locals in first java frame.
  1557 // Is entry because may need to lock to generate oop maps
  1558 // Currently, only used for compiler frames, but someday may be used
  1559 // for interpreter frames, too.
  1561 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
  1563 // avoid pointers to member funcs with these helpers
  1564 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
  1565 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
  1568 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
  1569                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
  1570   assert(JavaThread::current() == thread, "is this needed?");
  1572   if ( !ZapDeadCompiledLocals )  return;
  1574   bool skip = false;
  1576        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
  1577   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
  1578   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
  1579     warning("starting zapping after skipping");
  1581        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
  1582   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
  1583   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
  1584     warning("about to zap last zap");
  1586   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
  1588   if ( skip )  return;
  1590   // find java frame and zap it
  1592   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
  1593     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
  1594       sfs.current()->zap_dead_locals(thread, sfs.register_map());
  1595       return;
  1598   warning("no frame found to zap in zap_dead_Java_locals_C");
  1601 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
  1602   zap_dead_java_or_native_locals(thread, is_java_frame);
  1603 JRT_END
  1605 // The following does not work because for one thing, the
  1606 // thread state is wrong; it expects java, but it is native.
  1607 // Also, the invariants in a native stub are different and
  1608 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
  1609 // in there.
  1610 // So for now, we do not zap in native stubs.
  1612 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
  1613   zap_dead_java_or_native_locals(thread, is_native_frame);
  1614 JRT_END
  1616 # endif

mercurial