src/share/vm/opto/memnode.hpp

Wed, 10 Aug 2016 14:59:21 +0200

author
simonis
date
Wed, 10 Aug 2016 14:59:21 +0200
changeset 8608
0d78aecb0948
parent 7859
c1c199dde5c9
child 7994
04ff2f6cd0eb
child 8653
0ffee573412b
permissions
-rw-r--r--

8152172: PPC64: Support AES intrinsics
Summary: Add support for AES intrinsics on PPC64.
Reviewed-by: kvn, mdoerr, simonis, zmajo
Contributed-by: Hiroshi H Horii <horii@jp.ibm.com>

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
    26 #define SHARE_VM_OPTO_MEMNODE_HPP
    28 #include "opto/multnode.hpp"
    29 #include "opto/node.hpp"
    30 #include "opto/opcodes.hpp"
    31 #include "opto/type.hpp"
    33 // Portions of code courtesy of Clifford Click
    35 class MultiNode;
    36 class PhaseCCP;
    37 class PhaseTransform;
    39 //------------------------------MemNode----------------------------------------
    40 // Load or Store, possibly throwing a NULL pointer exception
    41 class MemNode : public Node {
    42 protected:
    43 #ifdef ASSERT
    44   const TypePtr* _adr_type;     // What kind of memory is being addressed?
    45 #endif
    46   virtual uint size_of() const; // Size is bigger (ASSERT only)
    47 public:
    48   enum { Control,               // When is it safe to do this load?
    49          Memory,                // Chunk of memory is being loaded from
    50          Address,               // Actually address, derived from base
    51          ValueIn,               // Value to store
    52          OopStore               // Preceeding oop store, only in StoreCM
    53   };
    54   typedef enum { unordered = 0,
    55                  acquire,       // Load has to acquire or be succeeded by MemBarAcquire.
    56                  release        // Store has to release or be preceded by MemBarRelease.
    57   } MemOrd;
    58 protected:
    59   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
    60     : Node(c0,c1,c2   ) {
    61     init_class_id(Class_Mem);
    62     debug_only(_adr_type=at; adr_type();)
    63   }
    64   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
    65     : Node(c0,c1,c2,c3) {
    66     init_class_id(Class_Mem);
    67     debug_only(_adr_type=at; adr_type();)
    68   }
    69   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
    70     : Node(c0,c1,c2,c3,c4) {
    71     init_class_id(Class_Mem);
    72     debug_only(_adr_type=at; adr_type();)
    73   }
    75 public:
    76   // Helpers for the optimizer.  Documented in memnode.cpp.
    77   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
    78                                       Node* p2, AllocateNode* a2,
    79                                       PhaseTransform* phase);
    80   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
    82   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
    83   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
    84   // This one should probably be a phase-specific function:
    85   static bool all_controls_dominate(Node* dom, Node* sub);
    87   // Find any cast-away of null-ness and keep its control.
    88   static  Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
    89   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
    91   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
    93   // Shared code for Ideal methods:
    94   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
    96   // Helper function for adr_type() implementations.
    97   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
    99   // Raw access function, to allow copying of adr_type efficiently in
   100   // product builds and retain the debug info for debug builds.
   101   const TypePtr *raw_adr_type() const {
   102 #ifdef ASSERT
   103     return _adr_type;
   104 #else
   105     return 0;
   106 #endif
   107   }
   109   // Map a load or store opcode to its corresponding store opcode.
   110   // (Return -1 if unknown.)
   111   virtual int store_Opcode() const { return -1; }
   113   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
   114   virtual BasicType memory_type() const = 0;
   115   virtual int memory_size() const {
   116 #ifdef ASSERT
   117     return type2aelembytes(memory_type(), true);
   118 #else
   119     return type2aelembytes(memory_type());
   120 #endif
   121   }
   123   // Search through memory states which precede this node (load or store).
   124   // Look for an exact match for the address, with no intervening
   125   // aliased stores.
   126   Node* find_previous_store(PhaseTransform* phase);
   128   // Can this node (load or store) accurately see a stored value in
   129   // the given memory state?  (The state may or may not be in(Memory).)
   130   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
   132 #ifndef PRODUCT
   133   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
   134   virtual void dump_spec(outputStream *st) const;
   135 #endif
   136 };
   138 //------------------------------LoadNode---------------------------------------
   139 // Load value; requires Memory and Address
   140 class LoadNode : public MemNode {
   141 public:
   142   // Some loads (from unsafe) should be pinned: they don't depend only
   143   // on the dominating test.  The boolean field _depends_only_on_test
   144   // below records whether that node depends only on the dominating
   145   // test.
   146   // Methods used to build LoadNodes pass an argument of type enum
   147   // ControlDependency instead of a boolean because those methods
   148   // typically have multiple boolean parameters with default values:
   149   // passing the wrong boolean to one of these parameters by mistake
   150   // goes easily unnoticed. Using an enum, the compiler can check that
   151   // the type of a value and the type of the parameter match.
   152   enum ControlDependency {
   153     Pinned,
   154     DependsOnlyOnTest
   155   };
   156 private:
   157   // LoadNode::hash() doesn't take the _depends_only_on_test field
   158   // into account: If the graph already has a non-pinned LoadNode and
   159   // we add a pinned LoadNode with the same inputs, it's safe for GVN
   160   // to replace the pinned LoadNode with the non-pinned LoadNode,
   161   // otherwise it wouldn't be safe to have a non pinned LoadNode with
   162   // those inputs in the first place. If the graph already has a
   163   // pinned LoadNode and we add a non pinned LoadNode with the same
   164   // inputs, it's safe (but suboptimal) for GVN to replace the
   165   // non-pinned LoadNode by the pinned LoadNode.
   166   bool _depends_only_on_test;
   168   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
   169   // loads that can be reordered, and such requiring acquire semantics to
   170   // adhere to the Java specification.  The required behaviour is stored in
   171   // this field.
   172   const MemOrd _mo;
   174 protected:
   175   virtual uint cmp(const Node &n) const;
   176   virtual uint size_of() const; // Size is bigger
   177   // Should LoadNode::Ideal() attempt to remove control edges?
   178   virtual bool can_remove_control() const;
   179   const Type* const _type;      // What kind of value is loaded?
   180 public:
   182   LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
   183     : MemNode(c,mem,adr,at), _type(rt), _mo(mo), _depends_only_on_test(control_dependency == DependsOnlyOnTest) {
   184     init_class_id(Class_Load);
   185   }
   186   inline bool is_unordered() const { return !is_acquire(); }
   187   inline bool is_acquire() const {
   188     assert(_mo == unordered || _mo == acquire, "unexpected");
   189     return _mo == acquire;
   190   }
   192   // Polymorphic factory method:
   193    static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
   194                      const TypePtr* at, const Type *rt, BasicType bt,
   195                      MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
   197   virtual uint hash()   const;  // Check the type
   199   // Handle algebraic identities here.  If we have an identity, return the Node
   200   // we are equivalent to.  We look for Load of a Store.
   201   virtual Node *Identity( PhaseTransform *phase );
   203   // If the load is from Field memory and the pointer is non-null, it might be possible to
   204   // zero out the control input.
   205   // If the offset is constant and the base is an object allocation,
   206   // try to hook me up to the exact initializing store.
   207   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   209   // Split instance field load through Phi.
   210   Node* split_through_phi(PhaseGVN *phase);
   212   // Recover original value from boxed values
   213   Node *eliminate_autobox(PhaseGVN *phase);
   215   // Compute a new Type for this node.  Basically we just do the pre-check,
   216   // then call the virtual add() to set the type.
   217   virtual const Type *Value( PhaseTransform *phase ) const;
   219   // Common methods for LoadKlass and LoadNKlass nodes.
   220   const Type *klass_value_common( PhaseTransform *phase ) const;
   221   Node *klass_identity_common( PhaseTransform *phase );
   223   virtual uint ideal_reg() const;
   224   virtual const Type *bottom_type() const;
   225   // Following method is copied from TypeNode:
   226   void set_type(const Type* t) {
   227     assert(t != NULL, "sanity");
   228     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   229     *(const Type**)&_type = t;   // cast away const-ness
   230     // If this node is in the hash table, make sure it doesn't need a rehash.
   231     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
   232   }
   233   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
   235   // Do not match memory edge
   236   virtual uint match_edge(uint idx) const;
   238   // Map a load opcode to its corresponding store opcode.
   239   virtual int store_Opcode() const = 0;
   241   // Check if the load's memory input is a Phi node with the same control.
   242   bool is_instance_field_load_with_local_phi(Node* ctrl);
   244 #ifndef PRODUCT
   245   virtual void dump_spec(outputStream *st) const;
   246 #endif
   247 #ifdef ASSERT
   248   // Helper function to allow a raw load without control edge for some cases
   249   static bool is_immutable_value(Node* adr);
   250 #endif
   251 protected:
   252   const Type* load_array_final_field(const TypeKlassPtr *tkls,
   253                                      ciKlass* klass) const;
   254   // depends_only_on_test is almost always true, and needs to be almost always
   255   // true to enable key hoisting & commoning optimizations.  However, for the
   256   // special case of RawPtr loads from TLS top & end, and other loads performed by
   257   // GC barriers, the control edge carries the dependence preventing hoisting past
   258   // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
   259   // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
   260   // which produce results (new raw memory state) inside of loops preventing all
   261   // manner of other optimizations).  Basically, it's ugly but so is the alternative.
   262   // See comment in macro.cpp, around line 125 expand_allocate_common().
   263   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM && _depends_only_on_test; }
   264 };
   266 //------------------------------LoadBNode--------------------------------------
   267 // Load a byte (8bits signed) from memory
   268 class LoadBNode : public LoadNode {
   269 public:
   270   LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   271     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
   272   virtual int Opcode() const;
   273   virtual uint ideal_reg() const { return Op_RegI; }
   274   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   275   virtual const Type *Value(PhaseTransform *phase) const;
   276   virtual int store_Opcode() const { return Op_StoreB; }
   277   virtual BasicType memory_type() const { return T_BYTE; }
   278 };
   280 //------------------------------LoadUBNode-------------------------------------
   281 // Load a unsigned byte (8bits unsigned) from memory
   282 class LoadUBNode : public LoadNode {
   283 public:
   284   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   285     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
   286   virtual int Opcode() const;
   287   virtual uint ideal_reg() const { return Op_RegI; }
   288   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
   289   virtual const Type *Value(PhaseTransform *phase) const;
   290   virtual int store_Opcode() const { return Op_StoreB; }
   291   virtual BasicType memory_type() const { return T_BYTE; }
   292 };
   294 //------------------------------LoadUSNode-------------------------------------
   295 // Load an unsigned short/char (16bits unsigned) from memory
   296 class LoadUSNode : public LoadNode {
   297 public:
   298   LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   299     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
   300   virtual int Opcode() const;
   301   virtual uint ideal_reg() const { return Op_RegI; }
   302   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   303   virtual const Type *Value(PhaseTransform *phase) const;
   304   virtual int store_Opcode() const { return Op_StoreC; }
   305   virtual BasicType memory_type() const { return T_CHAR; }
   306 };
   308 //------------------------------LoadSNode--------------------------------------
   309 // Load a short (16bits signed) from memory
   310 class LoadSNode : public LoadNode {
   311 public:
   312   LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   313     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
   314   virtual int Opcode() const;
   315   virtual uint ideal_reg() const { return Op_RegI; }
   316   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   317   virtual const Type *Value(PhaseTransform *phase) const;
   318   virtual int store_Opcode() const { return Op_StoreC; }
   319   virtual BasicType memory_type() const { return T_SHORT; }
   320 };
   322 //------------------------------LoadINode--------------------------------------
   323 // Load an integer from memory
   324 class LoadINode : public LoadNode {
   325 public:
   326   LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   327     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
   328   virtual int Opcode() const;
   329   virtual uint ideal_reg() const { return Op_RegI; }
   330   virtual int store_Opcode() const { return Op_StoreI; }
   331   virtual BasicType memory_type() const { return T_INT; }
   332 };
   334 //------------------------------LoadRangeNode----------------------------------
   335 // Load an array length from the array
   336 class LoadRangeNode : public LoadINode {
   337 public:
   338   LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
   339     : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
   340   virtual int Opcode() const;
   341   virtual const Type *Value( PhaseTransform *phase ) const;
   342   virtual Node *Identity( PhaseTransform *phase );
   343   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   344 };
   346 //------------------------------LoadLNode--------------------------------------
   347 // Load a long from memory
   348 class LoadLNode : public LoadNode {
   349   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
   350   virtual uint cmp( const Node &n ) const {
   351     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
   352       && LoadNode::cmp(n);
   353   }
   354   virtual uint size_of() const { return sizeof(*this); }
   355   const bool _require_atomic_access;  // is piecewise load forbidden?
   357 public:
   358   LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
   359             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
   360     : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
   361   virtual int Opcode() const;
   362   virtual uint ideal_reg() const { return Op_RegL; }
   363   virtual int store_Opcode() const { return Op_StoreL; }
   364   virtual BasicType memory_type() const { return T_LONG; }
   365   bool require_atomic_access() const { return _require_atomic_access; }
   366   static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
   367                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
   368 #ifndef PRODUCT
   369   virtual void dump_spec(outputStream *st) const {
   370     LoadNode::dump_spec(st);
   371     if (_require_atomic_access)  st->print(" Atomic!");
   372   }
   373 #endif
   374 };
   376 //------------------------------LoadL_unalignedNode----------------------------
   377 // Load a long from unaligned memory
   378 class LoadL_unalignedNode : public LoadLNode {
   379 public:
   380   LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   381     : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
   382   virtual int Opcode() const;
   383 };
   385 //------------------------------LoadFNode--------------------------------------
   386 // Load a float (64 bits) from memory
   387 class LoadFNode : public LoadNode {
   388 public:
   389   LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   390     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
   391   virtual int Opcode() const;
   392   virtual uint ideal_reg() const { return Op_RegF; }
   393   virtual int store_Opcode() const { return Op_StoreF; }
   394   virtual BasicType memory_type() const { return T_FLOAT; }
   395 };
   397 //------------------------------LoadDNode--------------------------------------
   398 // Load a double (64 bits) from memory
   399 class LoadDNode : public LoadNode {
   400   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
   401   virtual uint cmp( const Node &n ) const {
   402     return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
   403       && LoadNode::cmp(n);
   404   }
   405   virtual uint size_of() const { return sizeof(*this); }
   406   const bool _require_atomic_access;  // is piecewise load forbidden?
   408 public:
   409   LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
   410             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
   411     : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
   412   virtual int Opcode() const;
   413   virtual uint ideal_reg() const { return Op_RegD; }
   414   virtual int store_Opcode() const { return Op_StoreD; }
   415   virtual BasicType memory_type() const { return T_DOUBLE; }
   416   bool require_atomic_access() const { return _require_atomic_access; }
   417   static LoadDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
   418                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
   419 #ifndef PRODUCT
   420   virtual void dump_spec(outputStream *st) const {
   421     LoadNode::dump_spec(st);
   422     if (_require_atomic_access)  st->print(" Atomic!");
   423   }
   424 #endif
   425 };
   427 //------------------------------LoadD_unalignedNode----------------------------
   428 // Load a double from unaligned memory
   429 class LoadD_unalignedNode : public LoadDNode {
   430 public:
   431   LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   432     : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
   433   virtual int Opcode() const;
   434 };
   436 //------------------------------LoadPNode--------------------------------------
   437 // Load a pointer from memory (either object or array)
   438 class LoadPNode : public LoadNode {
   439 public:
   440   LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   441     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
   442   virtual int Opcode() const;
   443   virtual uint ideal_reg() const { return Op_RegP; }
   444   virtual int store_Opcode() const { return Op_StoreP; }
   445   virtual BasicType memory_type() const { return T_ADDRESS; }
   446 };
   449 //------------------------------LoadNNode--------------------------------------
   450 // Load a narrow oop from memory (either object or array)
   451 class LoadNNode : public LoadNode {
   452 public:
   453   LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   454     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
   455   virtual int Opcode() const;
   456   virtual uint ideal_reg() const { return Op_RegN; }
   457   virtual int store_Opcode() const { return Op_StoreN; }
   458   virtual BasicType memory_type() const { return T_NARROWOOP; }
   459 };
   461 //------------------------------LoadKlassNode----------------------------------
   462 // Load a Klass from an object
   463 class LoadKlassNode : public LoadPNode {
   464 protected:
   465   // In most cases, LoadKlassNode does not have the control input set. If the control
   466   // input is set, it must not be removed (by LoadNode::Ideal()).
   467   virtual bool can_remove_control() const;
   468 public:
   469   LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
   470     : LoadPNode(c, mem, adr, at, tk, mo) {}
   471   virtual int Opcode() const;
   472   virtual const Type *Value( PhaseTransform *phase ) const;
   473   virtual Node *Identity( PhaseTransform *phase );
   474   virtual bool depends_only_on_test() const { return true; }
   476   // Polymorphic factory method:
   477   static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
   478                     const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
   479 };
   481 //------------------------------LoadNKlassNode---------------------------------
   482 // Load a narrow Klass from an object.
   483 class LoadNKlassNode : public LoadNNode {
   484 public:
   485   LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
   486     : LoadNNode(c, mem, adr, at, tk, mo) {}
   487   virtual int Opcode() const;
   488   virtual uint ideal_reg() const { return Op_RegN; }
   489   virtual int store_Opcode() const { return Op_StoreNKlass; }
   490   virtual BasicType memory_type() const { return T_NARROWKLASS; }
   492   virtual const Type *Value( PhaseTransform *phase ) const;
   493   virtual Node *Identity( PhaseTransform *phase );
   494   virtual bool depends_only_on_test() const { return true; }
   495 };
   498 //------------------------------StoreNode--------------------------------------
   499 // Store value; requires Store, Address and Value
   500 class StoreNode : public MemNode {
   501 private:
   502   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
   503   // stores that can be reordered, and such requiring release semantics to
   504   // adhere to the Java specification.  The required behaviour is stored in
   505   // this field.
   506   const MemOrd _mo;
   507   // Needed for proper cloning.
   508   virtual uint size_of() const { return sizeof(*this); }
   509 protected:
   510   virtual uint cmp( const Node &n ) const;
   511   virtual bool depends_only_on_test() const { return false; }
   513   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
   514   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
   516 public:
   517   // We must ensure that stores of object references will be visible
   518   // only after the object's initialization. So the callers of this
   519   // procedure must indicate that the store requires `release'
   520   // semantics, if the stored value is an object reference that might
   521   // point to a new object and may become externally visible.
   522   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   523     : MemNode(c, mem, adr, at, val), _mo(mo) {
   524     init_class_id(Class_Store);
   525   }
   526   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
   527     : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
   528     init_class_id(Class_Store);
   529   }
   531   inline bool is_unordered() const { return !is_release(); }
   532   inline bool is_release() const {
   533     assert((_mo == unordered || _mo == release), "unexpected");
   534     return _mo == release;
   535   }
   537   // Conservatively release stores of object references in order to
   538   // ensure visibility of object initialization.
   539   static inline MemOrd release_if_reference(const BasicType t) {
   540     const MemOrd mo = (t == T_ARRAY ||
   541                        t == T_ADDRESS || // Might be the address of an object reference (`boxing').
   542                        t == T_OBJECT) ? release : unordered;
   543     return mo;
   544   }
   546   // Polymorphic factory method
   547   //
   548   // We must ensure that stores of object references will be visible
   549   // only after the object's initialization. So the callers of this
   550   // procedure must indicate that the store requires `release'
   551   // semantics, if the stored value is an object reference that might
   552   // point to a new object and may become externally visible.
   553   static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
   554                          const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
   556   virtual uint hash() const;    // Check the type
   558   // If the store is to Field memory and the pointer is non-null, we can
   559   // zero out the control input.
   560   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   562   // Compute a new Type for this node.  Basically we just do the pre-check,
   563   // then call the virtual add() to set the type.
   564   virtual const Type *Value( PhaseTransform *phase ) const;
   566   // Check for identity function on memory (Load then Store at same address)
   567   virtual Node *Identity( PhaseTransform *phase );
   569   // Do not match memory edge
   570   virtual uint match_edge(uint idx) const;
   572   virtual const Type *bottom_type() const;  // returns Type::MEMORY
   574   // Map a store opcode to its corresponding own opcode, trivially.
   575   virtual int store_Opcode() const { return Opcode(); }
   577   // have all possible loads of the value stored been optimized away?
   578   bool value_never_loaded(PhaseTransform *phase) const;
   579 };
   581 //------------------------------StoreBNode-------------------------------------
   582 // Store byte to memory
   583 class StoreBNode : public StoreNode {
   584 public:
   585   StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   586     : StoreNode(c, mem, adr, at, val, mo) {}
   587   virtual int Opcode() const;
   588   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   589   virtual BasicType memory_type() const { return T_BYTE; }
   590 };
   592 //------------------------------StoreCNode-------------------------------------
   593 // Store char/short to memory
   594 class StoreCNode : public StoreNode {
   595 public:
   596   StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   597     : StoreNode(c, mem, adr, at, val, mo) {}
   598   virtual int Opcode() const;
   599   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   600   virtual BasicType memory_type() const { return T_CHAR; }
   601 };
   603 //------------------------------StoreINode-------------------------------------
   604 // Store int to memory
   605 class StoreINode : public StoreNode {
   606 public:
   607   StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   608     : StoreNode(c, mem, adr, at, val, mo) {}
   609   virtual int Opcode() const;
   610   virtual BasicType memory_type() const { return T_INT; }
   611 };
   613 //------------------------------StoreLNode-------------------------------------
   614 // Store long to memory
   615 class StoreLNode : public StoreNode {
   616   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
   617   virtual uint cmp( const Node &n ) const {
   618     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
   619       && StoreNode::cmp(n);
   620   }
   621   virtual uint size_of() const { return sizeof(*this); }
   622   const bool _require_atomic_access;  // is piecewise store forbidden?
   624 public:
   625   StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
   626     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
   627   virtual int Opcode() const;
   628   virtual BasicType memory_type() const { return T_LONG; }
   629   bool require_atomic_access() const { return _require_atomic_access; }
   630   static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
   631 #ifndef PRODUCT
   632   virtual void dump_spec(outputStream *st) const {
   633     StoreNode::dump_spec(st);
   634     if (_require_atomic_access)  st->print(" Atomic!");
   635   }
   636 #endif
   637 };
   639 //------------------------------StoreFNode-------------------------------------
   640 // Store float to memory
   641 class StoreFNode : public StoreNode {
   642 public:
   643   StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   644     : StoreNode(c, mem, adr, at, val, mo) {}
   645   virtual int Opcode() const;
   646   virtual BasicType memory_type() const { return T_FLOAT; }
   647 };
   649 //------------------------------StoreDNode-------------------------------------
   650 // Store double to memory
   651 class StoreDNode : public StoreNode {
   652   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
   653   virtual uint cmp( const Node &n ) const {
   654     return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
   655       && StoreNode::cmp(n);
   656   }
   657   virtual uint size_of() const { return sizeof(*this); }
   658   const bool _require_atomic_access;  // is piecewise store forbidden?
   659 public:
   660   StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
   661              MemOrd mo, bool require_atomic_access = false)
   662     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
   663   virtual int Opcode() const;
   664   virtual BasicType memory_type() const { return T_DOUBLE; }
   665   bool require_atomic_access() const { return _require_atomic_access; }
   666   static StoreDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
   667 #ifndef PRODUCT
   668   virtual void dump_spec(outputStream *st) const {
   669     StoreNode::dump_spec(st);
   670     if (_require_atomic_access)  st->print(" Atomic!");
   671   }
   672 #endif
   674 };
   676 //------------------------------StorePNode-------------------------------------
   677 // Store pointer to memory
   678 class StorePNode : public StoreNode {
   679 public:
   680   StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   681     : StoreNode(c, mem, adr, at, val, mo) {}
   682   virtual int Opcode() const;
   683   virtual BasicType memory_type() const { return T_ADDRESS; }
   684 };
   686 //------------------------------StoreNNode-------------------------------------
   687 // Store narrow oop to memory
   688 class StoreNNode : public StoreNode {
   689 public:
   690   StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   691     : StoreNode(c, mem, adr, at, val, mo) {}
   692   virtual int Opcode() const;
   693   virtual BasicType memory_type() const { return T_NARROWOOP; }
   694 };
   696 //------------------------------StoreNKlassNode--------------------------------------
   697 // Store narrow klass to memory
   698 class StoreNKlassNode : public StoreNNode {
   699 public:
   700   StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   701     : StoreNNode(c, mem, adr, at, val, mo) {}
   702   virtual int Opcode() const;
   703   virtual BasicType memory_type() const { return T_NARROWKLASS; }
   704 };
   706 //------------------------------StoreCMNode-----------------------------------
   707 // Store card-mark byte to memory for CM
   708 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
   709 // Preceeding equivalent StoreCMs may be eliminated.
   710 class StoreCMNode : public StoreNode {
   711  private:
   712   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
   713   virtual uint cmp( const Node &n ) const {
   714     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
   715       && StoreNode::cmp(n);
   716   }
   717   virtual uint size_of() const { return sizeof(*this); }
   718   int _oop_alias_idx;   // The alias_idx of OopStore
   720 public:
   721   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
   722     StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
   723     _oop_alias_idx(oop_alias_idx) {
   724     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
   725            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
   726            "bad oop alias idx");
   727   }
   728   virtual int Opcode() const;
   729   virtual Node *Identity( PhaseTransform *phase );
   730   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   731   virtual const Type *Value( PhaseTransform *phase ) const;
   732   virtual BasicType memory_type() const { return T_VOID; } // unspecific
   733   int oop_alias_idx() const { return _oop_alias_idx; }
   734 };
   736 //------------------------------LoadPLockedNode---------------------------------
   737 // Load-locked a pointer from memory (either object or array).
   738 // On Sparc & Intel this is implemented as a normal pointer load.
   739 // On PowerPC and friends it's a real load-locked.
   740 class LoadPLockedNode : public LoadPNode {
   741 public:
   742   LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
   743     : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
   744   virtual int Opcode() const;
   745   virtual int store_Opcode() const { return Op_StorePConditional; }
   746   virtual bool depends_only_on_test() const { return true; }
   747 };
   749 //------------------------------SCMemProjNode---------------------------------------
   750 // This class defines a projection of the memory  state of a store conditional node.
   751 // These nodes return a value, but also update memory.
   752 class SCMemProjNode : public ProjNode {
   753 public:
   754   enum {SCMEMPROJCON = (uint)-2};
   755   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
   756   virtual int Opcode() const;
   757   virtual bool      is_CFG() const  { return false; }
   758   virtual const Type *bottom_type() const {return Type::MEMORY;}
   759   virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
   760   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
   761   virtual const Type *Value( PhaseTransform *phase ) const;
   762 #ifndef PRODUCT
   763   virtual void dump_spec(outputStream *st) const {};
   764 #endif
   765 };
   767 //------------------------------LoadStoreNode---------------------------
   768 // Note: is_Mem() method returns 'true' for this class.
   769 class LoadStoreNode : public Node {
   770 private:
   771   const Type* const _type;      // What kind of value is loaded?
   772   const TypePtr* _adr_type;     // What kind of memory is being addressed?
   773   virtual uint size_of() const; // Size is bigger
   774 public:
   775   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
   776   virtual bool depends_only_on_test() const { return false; }
   777   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
   779   virtual const Type *bottom_type() const { return _type; }
   780   virtual uint ideal_reg() const;
   781   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
   783   bool result_not_used() const;
   784 };
   786 class LoadStoreConditionalNode : public LoadStoreNode {
   787 public:
   788   enum {
   789     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
   790   };
   791   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
   792 };
   794 //------------------------------StorePConditionalNode---------------------------
   795 // Conditionally store pointer to memory, if no change since prior
   796 // load-locked.  Sets flags for success or failure of the store.
   797 class StorePConditionalNode : public LoadStoreConditionalNode {
   798 public:
   799   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
   800   virtual int Opcode() const;
   801   // Produces flags
   802   virtual uint ideal_reg() const { return Op_RegFlags; }
   803 };
   805 //------------------------------StoreIConditionalNode---------------------------
   806 // Conditionally store int to memory, if no change since prior
   807 // load-locked.  Sets flags for success or failure of the store.
   808 class StoreIConditionalNode : public LoadStoreConditionalNode {
   809 public:
   810   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
   811   virtual int Opcode() const;
   812   // Produces flags
   813   virtual uint ideal_reg() const { return Op_RegFlags; }
   814 };
   816 //------------------------------StoreLConditionalNode---------------------------
   817 // Conditionally store long to memory, if no change since prior
   818 // load-locked.  Sets flags for success or failure of the store.
   819 class StoreLConditionalNode : public LoadStoreConditionalNode {
   820 public:
   821   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
   822   virtual int Opcode() const;
   823   // Produces flags
   824   virtual uint ideal_reg() const { return Op_RegFlags; }
   825 };
   828 //------------------------------CompareAndSwapLNode---------------------------
   829 class CompareAndSwapLNode : public LoadStoreConditionalNode {
   830 public:
   831   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   832   virtual int Opcode() const;
   833 };
   836 //------------------------------CompareAndSwapINode---------------------------
   837 class CompareAndSwapINode : public LoadStoreConditionalNode {
   838 public:
   839   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   840   virtual int Opcode() const;
   841 };
   844 //------------------------------CompareAndSwapPNode---------------------------
   845 class CompareAndSwapPNode : public LoadStoreConditionalNode {
   846 public:
   847   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   848   virtual int Opcode() const;
   849 };
   851 //------------------------------CompareAndSwapNNode---------------------------
   852 class CompareAndSwapNNode : public LoadStoreConditionalNode {
   853 public:
   854   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   855   virtual int Opcode() const;
   856 };
   858 //------------------------------GetAndAddINode---------------------------
   859 class GetAndAddINode : public LoadStoreNode {
   860 public:
   861   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
   862   virtual int Opcode() const;
   863 };
   865 //------------------------------GetAndAddLNode---------------------------
   866 class GetAndAddLNode : public LoadStoreNode {
   867 public:
   868   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
   869   virtual int Opcode() const;
   870 };
   873 //------------------------------GetAndSetINode---------------------------
   874 class GetAndSetINode : public LoadStoreNode {
   875 public:
   876   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
   877   virtual int Opcode() const;
   878 };
   880 //------------------------------GetAndSetINode---------------------------
   881 class GetAndSetLNode : public LoadStoreNode {
   882 public:
   883   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
   884   virtual int Opcode() const;
   885 };
   887 //------------------------------GetAndSetPNode---------------------------
   888 class GetAndSetPNode : public LoadStoreNode {
   889 public:
   890   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
   891   virtual int Opcode() const;
   892 };
   894 //------------------------------GetAndSetNNode---------------------------
   895 class GetAndSetNNode : public LoadStoreNode {
   896 public:
   897   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
   898   virtual int Opcode() const;
   899 };
   901 //------------------------------ClearArray-------------------------------------
   902 class ClearArrayNode: public Node {
   903 public:
   904   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
   905     : Node(ctrl,arymem,word_cnt,base) {
   906     init_class_id(Class_ClearArray);
   907   }
   908   virtual int         Opcode() const;
   909   virtual const Type *bottom_type() const { return Type::MEMORY; }
   910   // ClearArray modifies array elements, and so affects only the
   911   // array memory addressed by the bottom_type of its base address.
   912   virtual const class TypePtr *adr_type() const;
   913   virtual Node *Identity( PhaseTransform *phase );
   914   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   915   virtual uint match_edge(uint idx) const;
   917   // Clear the given area of an object or array.
   918   // The start offset must always be aligned mod BytesPerInt.
   919   // The end offset must always be aligned mod BytesPerLong.
   920   // Return the new memory.
   921   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   922                             intptr_t start_offset,
   923                             intptr_t end_offset,
   924                             PhaseGVN* phase);
   925   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   926                             intptr_t start_offset,
   927                             Node* end_offset,
   928                             PhaseGVN* phase);
   929   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   930                             Node* start_offset,
   931                             Node* end_offset,
   932                             PhaseGVN* phase);
   933   // Return allocation input memory edge if it is different instance
   934   // or itself if it is the one we are looking for.
   935   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
   936 };
   938 //------------------------------StrIntrinsic-------------------------------
   939 // Base class for Ideal nodes used in String instrinsic code.
   940 class StrIntrinsicNode: public Node {
   941 public:
   942   StrIntrinsicNode(Node* control, Node* char_array_mem,
   943                    Node* s1, Node* c1, Node* s2, Node* c2):
   944     Node(control, char_array_mem, s1, c1, s2, c2) {
   945   }
   947   StrIntrinsicNode(Node* control, Node* char_array_mem,
   948                    Node* s1, Node* s2, Node* c):
   949     Node(control, char_array_mem, s1, s2, c) {
   950   }
   952   StrIntrinsicNode(Node* control, Node* char_array_mem,
   953                    Node* s1, Node* s2):
   954     Node(control, char_array_mem, s1, s2) {
   955   }
   957   virtual bool depends_only_on_test() const { return false; }
   958   virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
   959   virtual uint match_edge(uint idx) const;
   960   virtual uint ideal_reg() const { return Op_RegI; }
   961   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   962   virtual const Type *Value(PhaseTransform *phase) const;
   963 };
   965 //------------------------------StrComp-------------------------------------
   966 class StrCompNode: public StrIntrinsicNode {
   967 public:
   968   StrCompNode(Node* control, Node* char_array_mem,
   969               Node* s1, Node* c1, Node* s2, Node* c2):
   970     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
   971   virtual int Opcode() const;
   972   virtual const Type* bottom_type() const { return TypeInt::INT; }
   973 };
   975 //------------------------------StrEquals-------------------------------------
   976 class StrEqualsNode: public StrIntrinsicNode {
   977 public:
   978   StrEqualsNode(Node* control, Node* char_array_mem,
   979                 Node* s1, Node* s2, Node* c):
   980     StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
   981   virtual int Opcode() const;
   982   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
   983 };
   985 //------------------------------StrIndexOf-------------------------------------
   986 class StrIndexOfNode: public StrIntrinsicNode {
   987 public:
   988   StrIndexOfNode(Node* control, Node* char_array_mem,
   989               Node* s1, Node* c1, Node* s2, Node* c2):
   990     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
   991   virtual int Opcode() const;
   992   virtual const Type* bottom_type() const { return TypeInt::INT; }
   993 };
   995 //------------------------------AryEq---------------------------------------
   996 class AryEqNode: public StrIntrinsicNode {
   997 public:
   998   AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
   999     StrIntrinsicNode(control, char_array_mem, s1, s2) {};
  1000   virtual int Opcode() const;
  1001   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
  1002 };
  1005 //------------------------------EncodeISOArray--------------------------------
  1006 // encode char[] to byte[] in ISO_8859_1
  1007 class EncodeISOArrayNode: public Node {
  1008 public:
  1009   EncodeISOArrayNode(Node *control, Node* arymem, Node* s1, Node* s2, Node* c): Node(control, arymem, s1, s2, c) {};
  1010   virtual int Opcode() const;
  1011   virtual bool depends_only_on_test() const { return false; }
  1012   virtual const Type* bottom_type() const { return TypeInt::INT; }
  1013   virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
  1014   virtual uint match_edge(uint idx) const;
  1015   virtual uint ideal_reg() const { return Op_RegI; }
  1016   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  1017   virtual const Type *Value(PhaseTransform *phase) const;
  1018 };
  1020 //------------------------------MemBar-----------------------------------------
  1021 // There are different flavors of Memory Barriers to match the Java Memory
  1022 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
  1023 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
  1024 // volatile-load.  Monitor-exit and volatile-store act as Release: no
  1025 // preceding ref can be moved to after them.  We insert a MemBar-Release
  1026 // before a FastUnlock or volatile-store.  All volatiles need to be
  1027 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
  1028 // separate it from any following volatile-load.
  1029 class MemBarNode: public MultiNode {
  1030   virtual uint hash() const ;                  // { return NO_HASH; }
  1031   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
  1033   virtual uint size_of() const { return sizeof(*this); }
  1034   // Memory type this node is serializing.  Usually either rawptr or bottom.
  1035   const TypePtr* _adr_type;
  1037 public:
  1038   enum {
  1039     Precedent = TypeFunc::Parms  // optional edge to force precedence
  1040   };
  1041   MemBarNode(Compile* C, int alias_idx, Node* precedent);
  1042   virtual int Opcode() const = 0;
  1043   virtual const class TypePtr *adr_type() const { return _adr_type; }
  1044   virtual const Type *Value( PhaseTransform *phase ) const;
  1045   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  1046   virtual uint match_edge(uint idx) const { return 0; }
  1047   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
  1048   virtual Node *match( const ProjNode *proj, const Matcher *m );
  1049   // Factory method.  Builds a wide or narrow membar.
  1050   // Optional 'precedent' becomes an extra edge if not null.
  1051   static MemBarNode* make(Compile* C, int opcode,
  1052                           int alias_idx = Compile::AliasIdxBot,
  1053                           Node* precedent = NULL);
  1054 };
  1056 // "Acquire" - no following ref can move before (but earlier refs can
  1057 // follow, like an early Load stalled in cache).  Requires multi-cpu
  1058 // visibility.  Inserted after a volatile load.
  1059 class MemBarAcquireNode: public MemBarNode {
  1060 public:
  1061   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
  1062     : MemBarNode(C, alias_idx, precedent) {}
  1063   virtual int Opcode() const;
  1064 };
  1066 // "Acquire" - no following ref can move before (but earlier refs can
  1067 // follow, like an early Load stalled in cache).  Requires multi-cpu
  1068 // visibility.  Inserted independ of any load, as required
  1069 // for intrinsic sun.misc.Unsafe.loadFence().
  1070 class LoadFenceNode: public MemBarNode {
  1071 public:
  1072   LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
  1073     : MemBarNode(C, alias_idx, precedent) {}
  1074   virtual int Opcode() const;
  1075 };
  1077 // "Release" - no earlier ref can move after (but later refs can move
  1078 // up, like a speculative pipelined cache-hitting Load).  Requires
  1079 // multi-cpu visibility.  Inserted before a volatile store.
  1080 class MemBarReleaseNode: public MemBarNode {
  1081 public:
  1082   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
  1083     : MemBarNode(C, alias_idx, precedent) {}
  1084   virtual int Opcode() const;
  1085 };
  1087 // "Release" - no earlier ref can move after (but later refs can move
  1088 // up, like a speculative pipelined cache-hitting Load).  Requires
  1089 // multi-cpu visibility.  Inserted independent of any store, as required
  1090 // for intrinsic sun.misc.Unsafe.storeFence().
  1091 class StoreFenceNode: public MemBarNode {
  1092 public:
  1093   StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
  1094     : MemBarNode(C, alias_idx, precedent) {}
  1095   virtual int Opcode() const;
  1096 };
  1098 // "Acquire" - no following ref can move before (but earlier refs can
  1099 // follow, like an early Load stalled in cache).  Requires multi-cpu
  1100 // visibility.  Inserted after a FastLock.
  1101 class MemBarAcquireLockNode: public MemBarNode {
  1102 public:
  1103   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
  1104     : MemBarNode(C, alias_idx, precedent) {}
  1105   virtual int Opcode() const;
  1106 };
  1108 // "Release" - no earlier ref can move after (but later refs can move
  1109 // up, like a speculative pipelined cache-hitting Load).  Requires
  1110 // multi-cpu visibility.  Inserted before a FastUnLock.
  1111 class MemBarReleaseLockNode: public MemBarNode {
  1112 public:
  1113   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
  1114     : MemBarNode(C, alias_idx, precedent) {}
  1115   virtual int Opcode() const;
  1116 };
  1118 class MemBarStoreStoreNode: public MemBarNode {
  1119 public:
  1120   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
  1121     : MemBarNode(C, alias_idx, precedent) {
  1122     init_class_id(Class_MemBarStoreStore);
  1124   virtual int Opcode() const;
  1125 };
  1127 // Ordering between a volatile store and a following volatile load.
  1128 // Requires multi-CPU visibility?
  1129 class MemBarVolatileNode: public MemBarNode {
  1130 public:
  1131   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
  1132     : MemBarNode(C, alias_idx, precedent) {}
  1133   virtual int Opcode() const;
  1134 };
  1136 // Ordering within the same CPU.  Used to order unsafe memory references
  1137 // inside the compiler when we lack alias info.  Not needed "outside" the
  1138 // compiler because the CPU does all the ordering for us.
  1139 class MemBarCPUOrderNode: public MemBarNode {
  1140 public:
  1141   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
  1142     : MemBarNode(C, alias_idx, precedent) {}
  1143   virtual int Opcode() const;
  1144   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
  1145 };
  1147 // Isolation of object setup after an AllocateNode and before next safepoint.
  1148 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
  1149 class InitializeNode: public MemBarNode {
  1150   friend class AllocateNode;
  1152   enum {
  1153     Incomplete    = 0,
  1154     Complete      = 1,
  1155     WithArraycopy = 2
  1156   };
  1157   int _is_complete;
  1159   bool _does_not_escape;
  1161 public:
  1162   enum {
  1163     Control    = TypeFunc::Control,
  1164     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
  1165     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
  1166     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
  1167   };
  1169   InitializeNode(Compile* C, int adr_type, Node* rawoop);
  1170   virtual int Opcode() const;
  1171   virtual uint size_of() const { return sizeof(*this); }
  1172   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
  1173   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
  1175   // Manage incoming memory edges via a MergeMem on in(Memory):
  1176   Node* memory(uint alias_idx);
  1178   // The raw memory edge coming directly from the Allocation.
  1179   // The contents of this memory are *always* all-zero-bits.
  1180   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
  1182   // Return the corresponding allocation for this initialization (or null if none).
  1183   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
  1184   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
  1185   AllocateNode* allocation();
  1187   // Anything other than zeroing in this init?
  1188   bool is_non_zero();
  1190   // An InitializeNode must completed before macro expansion is done.
  1191   // Completion requires that the AllocateNode must be followed by
  1192   // initialization of the new memory to zero, then to any initializers.
  1193   bool is_complete() { return _is_complete != Incomplete; }
  1194   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
  1196   // Mark complete.  (Must not yet be complete.)
  1197   void set_complete(PhaseGVN* phase);
  1198   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
  1200   bool does_not_escape() { return _does_not_escape; }
  1201   void set_does_not_escape() { _does_not_escape = true; }
  1203 #ifdef ASSERT
  1204   // ensure all non-degenerate stores are ordered and non-overlapping
  1205   bool stores_are_sane(PhaseTransform* phase);
  1206 #endif //ASSERT
  1208   // See if this store can be captured; return offset where it initializes.
  1209   // Return 0 if the store cannot be moved (any sort of problem).
  1210   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
  1212   // Capture another store; reformat it to write my internal raw memory.
  1213   // Return the captured copy, else NULL if there is some sort of problem.
  1214   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
  1216   // Find captured store which corresponds to the range [start..start+size).
  1217   // Return my own memory projection (meaning the initial zero bits)
  1218   // if there is no such store.  Return NULL if there is a problem.
  1219   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
  1221   // Called when the associated AllocateNode is expanded into CFG.
  1222   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  1223                         intptr_t header_size, Node* size_in_bytes,
  1224                         PhaseGVN* phase);
  1226  private:
  1227   void remove_extra_zeroes();
  1229   // Find out where a captured store should be placed (or already is placed).
  1230   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
  1231                                      PhaseTransform* phase);
  1233   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
  1235   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
  1237   bool detect_init_independence(Node* n, int& count);
  1239   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
  1240                                PhaseGVN* phase);
  1242   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
  1243 };
  1245 //------------------------------MergeMem---------------------------------------
  1246 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
  1247 class MergeMemNode: public Node {
  1248   virtual uint hash() const ;                  // { return NO_HASH; }
  1249   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
  1250   friend class MergeMemStream;
  1251   MergeMemNode(Node* def);  // clients use MergeMemNode::make
  1253 public:
  1254   // If the input is a whole memory state, clone it with all its slices intact.
  1255   // Otherwise, make a new memory state with just that base memory input.
  1256   // In either case, the result is a newly created MergeMem.
  1257   static MergeMemNode* make(Compile* C, Node* base_memory);
  1259   virtual int Opcode() const;
  1260   virtual Node *Identity( PhaseTransform *phase );
  1261   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  1262   virtual uint ideal_reg() const { return NotAMachineReg; }
  1263   virtual uint match_edge(uint idx) const { return 0; }
  1264   virtual const RegMask &out_RegMask() const;
  1265   virtual const Type *bottom_type() const { return Type::MEMORY; }
  1266   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  1267   // sparse accessors
  1268   // Fetch the previously stored "set_memory_at", or else the base memory.
  1269   // (Caller should clone it if it is a phi-nest.)
  1270   Node* memory_at(uint alias_idx) const;
  1271   // set the memory, regardless of its previous value
  1272   void set_memory_at(uint alias_idx, Node* n);
  1273   // the "base" is the memory that provides the non-finite support
  1274   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
  1275   // warning: setting the base can implicitly set any of the other slices too
  1276   void set_base_memory(Node* def);
  1277   // sentinel value which denotes a copy of the base memory:
  1278   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
  1279   static Node* make_empty_memory(); // where the sentinel comes from
  1280   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
  1281   // hook for the iterator, to perform any necessary setup
  1282   void iteration_setup(const MergeMemNode* other = NULL);
  1283   // push sentinels until I am at least as long as the other (semantic no-op)
  1284   void grow_to_match(const MergeMemNode* other);
  1285   bool verify_sparse() const PRODUCT_RETURN0;
  1286 #ifndef PRODUCT
  1287   virtual void dump_spec(outputStream *st) const;
  1288 #endif
  1289 };
  1291 class MergeMemStream : public StackObj {
  1292  private:
  1293   MergeMemNode*       _mm;
  1294   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
  1295   Node*               _mm_base;  // loop-invariant base memory of _mm
  1296   int                 _idx;
  1297   int                 _cnt;
  1298   Node*               _mem;
  1299   Node*               _mem2;
  1300   int                 _cnt2;
  1302   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
  1303     // subsume_node will break sparseness at times, whenever a memory slice
  1304     // folds down to a copy of the base ("fat") memory.  In such a case,
  1305     // the raw edge will update to base, although it should be top.
  1306     // This iterator will recognize either top or base_memory as an
  1307     // "empty" slice.  See is_empty, is_empty2, and next below.
  1308     //
  1309     // The sparseness property is repaired in MergeMemNode::Ideal.
  1310     // As long as access to a MergeMem goes through this iterator
  1311     // or the memory_at accessor, flaws in the sparseness will
  1312     // never be observed.
  1313     //
  1314     // Also, iteration_setup repairs sparseness.
  1315     assert(mm->verify_sparse(), "please, no dups of base");
  1316     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
  1318     _mm  = mm;
  1319     _mm_base = mm->base_memory();
  1320     _mm2 = mm2;
  1321     _cnt = mm->req();
  1322     _idx = Compile::AliasIdxBot-1; // start at the base memory
  1323     _mem = NULL;
  1324     _mem2 = NULL;
  1327 #ifdef ASSERT
  1328   Node* check_memory() const {
  1329     if (at_base_memory())
  1330       return _mm->base_memory();
  1331     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
  1332       return _mm->memory_at(_idx);
  1333     else
  1334       return _mm_base;
  1336   Node* check_memory2() const {
  1337     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
  1339 #endif
  1341   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
  1342   void assert_synch() const {
  1343     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
  1344            "no side-effects except through the stream");
  1347  public:
  1349   // expected usages:
  1350   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
  1351   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
  1353   // iterate over one merge
  1354   MergeMemStream(MergeMemNode* mm) {
  1355     mm->iteration_setup();
  1356     init(mm);
  1357     debug_only(_cnt2 = 999);
  1359   // iterate in parallel over two merges
  1360   // only iterates through non-empty elements of mm2
  1361   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
  1362     assert(mm2, "second argument must be a MergeMem also");
  1363     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
  1364     mm->iteration_setup(mm2);
  1365     init(mm, mm2);
  1366     _cnt2 = mm2->req();
  1368 #ifdef ASSERT
  1369   ~MergeMemStream() {
  1370     assert_synch();
  1372 #endif
  1374   MergeMemNode* all_memory() const {
  1375     return _mm;
  1377   Node* base_memory() const {
  1378     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
  1379     return _mm_base;
  1381   const MergeMemNode* all_memory2() const {
  1382     assert(_mm2 != NULL, "");
  1383     return _mm2;
  1385   bool at_base_memory() const {
  1386     return _idx == Compile::AliasIdxBot;
  1388   int alias_idx() const {
  1389     assert(_mem, "must call next 1st");
  1390     return _idx;
  1393   const TypePtr* adr_type() const {
  1394     return Compile::current()->get_adr_type(alias_idx());
  1397   const TypePtr* adr_type(Compile* C) const {
  1398     return C->get_adr_type(alias_idx());
  1400   bool is_empty() const {
  1401     assert(_mem, "must call next 1st");
  1402     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
  1403     return _mem->is_top();
  1405   bool is_empty2() const {
  1406     assert(_mem2, "must call next 1st");
  1407     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
  1408     return _mem2->is_top();
  1410   Node* memory() const {
  1411     assert(!is_empty(), "must not be empty");
  1412     assert_synch();
  1413     return _mem;
  1415   // get the current memory, regardless of empty or non-empty status
  1416   Node* force_memory() const {
  1417     assert(!is_empty() || !at_base_memory(), "");
  1418     // Use _mm_base to defend against updates to _mem->base_memory().
  1419     Node *mem = _mem->is_top() ? _mm_base : _mem;
  1420     assert(mem == check_memory(), "");
  1421     return mem;
  1423   Node* memory2() const {
  1424     assert(_mem2 == check_memory2(), "");
  1425     return _mem2;
  1427   void set_memory(Node* mem) {
  1428     if (at_base_memory()) {
  1429       // Note that this does not change the invariant _mm_base.
  1430       _mm->set_base_memory(mem);
  1431     } else {
  1432       _mm->set_memory_at(_idx, mem);
  1434     _mem = mem;
  1435     assert_synch();
  1438   // Recover from a side effect to the MergeMemNode.
  1439   void set_memory() {
  1440     _mem = _mm->in(_idx);
  1443   bool next()  { return next(false); }
  1444   bool next2() { return next(true); }
  1446   bool next_non_empty()  { return next_non_empty(false); }
  1447   bool next_non_empty2() { return next_non_empty(true); }
  1448   // next_non_empty2 can yield states where is_empty() is true
  1450  private:
  1451   // find the next item, which might be empty
  1452   bool next(bool have_mm2) {
  1453     assert((_mm2 != NULL) == have_mm2, "use other next");
  1454     assert_synch();
  1455     if (++_idx < _cnt) {
  1456       // Note:  This iterator allows _mm to be non-sparse.
  1457       // It behaves the same whether _mem is top or base_memory.
  1458       _mem = _mm->in(_idx);
  1459       if (have_mm2)
  1460         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
  1461       return true;
  1463     return false;
  1466   // find the next non-empty item
  1467   bool next_non_empty(bool have_mm2) {
  1468     while (next(have_mm2)) {
  1469       if (!is_empty()) {
  1470         // make sure _mem2 is filled in sensibly
  1471         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
  1472         return true;
  1473       } else if (have_mm2 && !is_empty2()) {
  1474         return true;   // is_empty() == true
  1477     return false;
  1479 };
  1481 //------------------------------Prefetch---------------------------------------
  1483 // Non-faulting prefetch load.  Prefetch for many reads.
  1484 class PrefetchReadNode : public Node {
  1485 public:
  1486   PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1487   virtual int Opcode() const;
  1488   virtual uint ideal_reg() const { return NotAMachineReg; }
  1489   virtual uint match_edge(uint idx) const { return idx==2; }
  1490   virtual const Type *bottom_type() const { return Type::ABIO; }
  1491 };
  1493 // Non-faulting prefetch load.  Prefetch for many reads & many writes.
  1494 class PrefetchWriteNode : public Node {
  1495 public:
  1496   PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1497   virtual int Opcode() const;
  1498   virtual uint ideal_reg() const { return NotAMachineReg; }
  1499   virtual uint match_edge(uint idx) const { return idx==2; }
  1500   virtual const Type *bottom_type() const { return Type::ABIO; }
  1501 };
  1503 // Allocation prefetch which may fault, TLAB size have to be adjusted.
  1504 class PrefetchAllocationNode : public Node {
  1505 public:
  1506   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
  1507   virtual int Opcode() const;
  1508   virtual uint ideal_reg() const { return NotAMachineReg; }
  1509   virtual uint match_edge(uint idx) const { return idx==2; }
  1510   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
  1511 };
  1513 #endif // SHARE_VM_OPTO_MEMNODE_HPP

mercurial