src/share/vm/opto/loopnode.cpp

Wed, 10 Aug 2016 14:59:21 +0200

author
simonis
date
Wed, 10 Aug 2016 14:59:21 +0200
changeset 8608
0d78aecb0948
parent 8311
c9035b8e388b
child 8604
04d83ba48607
child 8612
74370eafeae9
permissions
-rw-r--r--

8152172: PPC64: Support AES intrinsics
Summary: Add support for AES intrinsics on PPC64.
Reviewed-by: kvn, mdoerr, simonis, zmajo
Contributed-by: Hiroshi H Horii <horii@jp.ibm.com>

     1 /*
     2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/ciMethodData.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.inline.hpp"
    30 #include "opto/addnode.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/connode.hpp"
    33 #include "opto/divnode.hpp"
    34 #include "opto/idealGraphPrinter.hpp"
    35 #include "opto/loopnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/rootnode.hpp"
    38 #include "opto/superword.hpp"
    40 //=============================================================================
    41 //------------------------------is_loop_iv-------------------------------------
    42 // Determine if a node is Counted loop induction variable.
    43 // The method is declared in node.hpp.
    44 const Node* Node::is_loop_iv() const {
    45   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
    46       this->as_Phi()->region()->is_CountedLoop() &&
    47       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
    48     return this;
    49   } else {
    50     return NULL;
    51   }
    52 }
    54 //=============================================================================
    55 //------------------------------dump_spec--------------------------------------
    56 // Dump special per-node info
    57 #ifndef PRODUCT
    58 void LoopNode::dump_spec(outputStream *st) const {
    59   if (is_inner_loop()) st->print( "inner " );
    60   if (is_partial_peel_loop()) st->print( "partial_peel " );
    61   if (partial_peel_has_failed()) st->print( "partial_peel_failed " );
    62 }
    63 #endif
    65 //------------------------------is_valid_counted_loop-------------------------
    66 bool LoopNode::is_valid_counted_loop() const {
    67   if (is_CountedLoop()) {
    68     CountedLoopNode*    l  = as_CountedLoop();
    69     CountedLoopEndNode* le = l->loopexit();
    70     if (le != NULL &&
    71         le->proj_out(1 /* true */) == l->in(LoopNode::LoopBackControl)) {
    72       Node* phi  = l->phi();
    73       Node* exit = le->proj_out(0 /* false */);
    74       if (exit != NULL && exit->Opcode() == Op_IfFalse &&
    75           phi != NULL && phi->is_Phi() &&
    76           phi->in(LoopNode::LoopBackControl) == l->incr() &&
    77           le->loopnode() == l && le->stride_is_con()) {
    78         return true;
    79       }
    80     }
    81   }
    82   return false;
    83 }
    85 //------------------------------get_early_ctrl---------------------------------
    86 // Compute earliest legal control
    87 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
    88   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
    89   uint i;
    90   Node *early;
    91   if (n->in(0) && !n->is_expensive()) {
    92     early = n->in(0);
    93     if (!early->is_CFG()) // Might be a non-CFG multi-def
    94       early = get_ctrl(early);        // So treat input as a straight data input
    95     i = 1;
    96   } else {
    97     early = get_ctrl(n->in(1));
    98     i = 2;
    99   }
   100   uint e_d = dom_depth(early);
   101   assert( early, "" );
   102   for (; i < n->req(); i++) {
   103     Node *cin = get_ctrl(n->in(i));
   104     assert( cin, "" );
   105     // Keep deepest dominator depth
   106     uint c_d = dom_depth(cin);
   107     if (c_d > e_d) {           // Deeper guy?
   108       early = cin;              // Keep deepest found so far
   109       e_d = c_d;
   110     } else if (c_d == e_d &&    // Same depth?
   111                early != cin) { // If not equal, must use slower algorithm
   112       // If same depth but not equal, one _must_ dominate the other
   113       // and we want the deeper (i.e., dominated) guy.
   114       Node *n1 = early;
   115       Node *n2 = cin;
   116       while (1) {
   117         n1 = idom(n1);          // Walk up until break cycle
   118         n2 = idom(n2);
   119         if (n1 == cin ||        // Walked early up to cin
   120             dom_depth(n2) < c_d)
   121           break;                // early is deeper; keep him
   122         if (n2 == early ||      // Walked cin up to early
   123             dom_depth(n1) < c_d) {
   124           early = cin;          // cin is deeper; keep him
   125           break;
   126         }
   127       }
   128       e_d = dom_depth(early);   // Reset depth register cache
   129     }
   130   }
   132   // Return earliest legal location
   133   assert(early == find_non_split_ctrl(early), "unexpected early control");
   135   if (n->is_expensive()) {
   136     assert(n->in(0), "should have control input");
   137     early = get_early_ctrl_for_expensive(n, early);
   138   }
   140   return early;
   141 }
   143 //------------------------------get_early_ctrl_for_expensive---------------------------------
   144 // Move node up the dominator tree as high as legal while still beneficial
   145 Node *PhaseIdealLoop::get_early_ctrl_for_expensive(Node *n, Node* earliest) {
   146   assert(n->in(0) && n->is_expensive(), "expensive node with control input here");
   147   assert(OptimizeExpensiveOps, "optimization off?");
   149   Node* ctl = n->in(0);
   150   assert(ctl->is_CFG(), "expensive input 0 must be cfg");
   151   uint min_dom_depth = dom_depth(earliest);
   152 #ifdef ASSERT
   153   if (!is_dominator(ctl, earliest) && !is_dominator(earliest, ctl)) {
   154     dump_bad_graph("Bad graph detected in get_early_ctrl_for_expensive", n, earliest, ctl);
   155     assert(false, "Bad graph detected in get_early_ctrl_for_expensive");
   156   }
   157 #endif
   158   if (dom_depth(ctl) < min_dom_depth) {
   159     return earliest;
   160   }
   162   while (1) {
   163     Node *next = ctl;
   164     // Moving the node out of a loop on the projection of a If
   165     // confuses loop predication. So once we hit a Loop in a If branch
   166     // that doesn't branch to an UNC, we stop. The code that process
   167     // expensive nodes will notice the loop and skip over it to try to
   168     // move the node further up.
   169     if (ctl->is_CountedLoop() && ctl->in(1) != NULL && ctl->in(1)->in(0) != NULL && ctl->in(1)->in(0)->is_If()) {
   170       if (!ctl->in(1)->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
   171         break;
   172       }
   173       next = idom(ctl->in(1)->in(0));
   174     } else if (ctl->is_Proj()) {
   175       // We only move it up along a projection if the projection is
   176       // the single control projection for its parent: same code path,
   177       // if it's a If with UNC or fallthrough of a call.
   178       Node* parent_ctl = ctl->in(0);
   179       if (parent_ctl == NULL) {
   180         break;
   181       } else if (parent_ctl->is_CountedLoopEnd() && parent_ctl->as_CountedLoopEnd()->loopnode() != NULL) {
   182         next = parent_ctl->as_CountedLoopEnd()->loopnode()->init_control();
   183       } else if (parent_ctl->is_If()) {
   184         if (!ctl->as_Proj()->is_uncommon_trap_if_pattern(Deoptimization::Reason_none)) {
   185           break;
   186         }
   187         assert(idom(ctl) == parent_ctl, "strange");
   188         next = idom(parent_ctl);
   189       } else if (ctl->is_CatchProj()) {
   190         if (ctl->as_Proj()->_con != CatchProjNode::fall_through_index) {
   191           break;
   192         }
   193         assert(parent_ctl->in(0)->in(0)->is_Call(), "strange graph");
   194         next = parent_ctl->in(0)->in(0)->in(0);
   195       } else {
   196         // Check if parent control has a single projection (this
   197         // control is the only possible successor of the parent
   198         // control). If so, we can try to move the node above the
   199         // parent control.
   200         int nb_ctl_proj = 0;
   201         for (DUIterator_Fast imax, i = parent_ctl->fast_outs(imax); i < imax; i++) {
   202           Node *p = parent_ctl->fast_out(i);
   203           if (p->is_Proj() && p->is_CFG()) {
   204             nb_ctl_proj++;
   205             if (nb_ctl_proj > 1) {
   206               break;
   207             }
   208           }
   209         }
   211         if (nb_ctl_proj > 1) {
   212           break;
   213         }
   214         assert(parent_ctl->is_Start() || parent_ctl->is_MemBar() || parent_ctl->is_Call(), "unexpected node");
   215         assert(idom(ctl) == parent_ctl, "strange");
   216         next = idom(parent_ctl);
   217       }
   218     } else {
   219       next = idom(ctl);
   220     }
   221     if (next->is_Root() || next->is_Start() || dom_depth(next) < min_dom_depth) {
   222       break;
   223     }
   224     ctl = next;
   225   }
   227   if (ctl != n->in(0)) {
   228     _igvn.hash_delete(n);
   229     n->set_req(0, ctl);
   230     _igvn.hash_insert(n);
   231   }
   233   return ctl;
   234 }
   237 //------------------------------set_early_ctrl---------------------------------
   238 // Set earliest legal control
   239 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
   240   Node *early = get_early_ctrl(n);
   242   // Record earliest legal location
   243   set_ctrl(n, early);
   244 }
   246 //------------------------------set_subtree_ctrl-------------------------------
   247 // set missing _ctrl entries on new nodes
   248 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
   249   // Already set?  Get out.
   250   if( _nodes[n->_idx] ) return;
   251   // Recursively set _nodes array to indicate where the Node goes
   252   uint i;
   253   for( i = 0; i < n->req(); ++i ) {
   254     Node *m = n->in(i);
   255     if( m && m != C->root() )
   256       set_subtree_ctrl( m );
   257   }
   259   // Fixup self
   260   set_early_ctrl( n );
   261 }
   263 //------------------------------is_counted_loop--------------------------------
   264 bool PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
   265   PhaseGVN *gvn = &_igvn;
   267   // Counted loop head must be a good RegionNode with only 3 not NULL
   268   // control input edges: Self, Entry, LoopBack.
   269   if (x->in(LoopNode::Self) == NULL || x->req() != 3 || loop->_irreducible) {
   270     return false;
   271   }
   272   Node *init_control = x->in(LoopNode::EntryControl);
   273   Node *back_control = x->in(LoopNode::LoopBackControl);
   274   if (init_control == NULL || back_control == NULL)    // Partially dead
   275     return false;
   276   // Must also check for TOP when looking for a dead loop
   277   if (init_control->is_top() || back_control->is_top())
   278     return false;
   280   // Allow funny placement of Safepoint
   281   if (back_control->Opcode() == Op_SafePoint)
   282     back_control = back_control->in(TypeFunc::Control);
   284   // Controlling test for loop
   285   Node *iftrue = back_control;
   286   uint iftrue_op = iftrue->Opcode();
   287   if (iftrue_op != Op_IfTrue &&
   288       iftrue_op != Op_IfFalse)
   289     // I have a weird back-control.  Probably the loop-exit test is in
   290     // the middle of the loop and I am looking at some trailing control-flow
   291     // merge point.  To fix this I would have to partially peel the loop.
   292     return false; // Obscure back-control
   294   // Get boolean guarding loop-back test
   295   Node *iff = iftrue->in(0);
   296   if (get_loop(iff) != loop || !iff->in(1)->is_Bool())
   297     return false;
   298   BoolNode *test = iff->in(1)->as_Bool();
   299   BoolTest::mask bt = test->_test._test;
   300   float cl_prob = iff->as_If()->_prob;
   301   if (iftrue_op == Op_IfFalse) {
   302     bt = BoolTest(bt).negate();
   303     cl_prob = 1.0 - cl_prob;
   304   }
   305   // Get backedge compare
   306   Node *cmp = test->in(1);
   307   int cmp_op = cmp->Opcode();
   308   if (cmp_op != Op_CmpI)
   309     return false;                // Avoid pointer & float compares
   311   // Find the trip-counter increment & limit.  Limit must be loop invariant.
   312   Node *incr  = cmp->in(1);
   313   Node *limit = cmp->in(2);
   315   // ---------
   316   // need 'loop()' test to tell if limit is loop invariant
   317   // ---------
   319   if (!is_member(loop, get_ctrl(incr))) { // Swapped trip counter and limit?
   320     Node *tmp = incr;            // Then reverse order into the CmpI
   321     incr = limit;
   322     limit = tmp;
   323     bt = BoolTest(bt).commute(); // And commute the exit test
   324   }
   325   if (is_member(loop, get_ctrl(limit))) // Limit must be loop-invariant
   326     return false;
   327   if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   328     return false;
   330   Node* phi_incr = NULL;
   331   // Trip-counter increment must be commutative & associative.
   332   if (incr->is_Phi()) {
   333     if (incr->as_Phi()->region() != x || incr->req() != 3)
   334       return false; // Not simple trip counter expression
   335     phi_incr = incr;
   336     incr = phi_incr->in(LoopNode::LoopBackControl); // Assume incr is on backedge of Phi
   337     if (!is_member(loop, get_ctrl(incr))) // Trip counter must be loop-variant
   338       return false;
   339   }
   341   Node* trunc1 = NULL;
   342   Node* trunc2 = NULL;
   343   const TypeInt* iv_trunc_t = NULL;
   344   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
   345     return false; // Funny increment opcode
   346   }
   347   assert(incr->Opcode() == Op_AddI, "wrong increment code");
   349   // Get merge point
   350   Node *xphi = incr->in(1);
   351   Node *stride = incr->in(2);
   352   if (!stride->is_Con()) {     // Oops, swap these
   353     if (!xphi->is_Con())       // Is the other guy a constant?
   354       return false;             // Nope, unknown stride, bail out
   355     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
   356     xphi = stride;
   357     stride = tmp;
   358   }
   359   // Stride must be constant
   360   int stride_con = stride->get_int();
   361   if (stride_con == 0)
   362     return false; // missed some peephole opt
   364   if (!xphi->is_Phi())
   365     return false; // Too much math on the trip counter
   366   if (phi_incr != NULL && phi_incr != xphi)
   367     return false;
   368   PhiNode *phi = xphi->as_Phi();
   370   // Phi must be of loop header; backedge must wrap to increment
   371   if (phi->region() != x)
   372     return false;
   373   if (trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
   374       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1) {
   375     return false;
   376   }
   377   Node *init_trip = phi->in(LoopNode::EntryControl);
   379   // If iv trunc type is smaller than int, check for possible wrap.
   380   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
   381     assert(trunc1 != NULL, "must have found some truncation");
   383     // Get a better type for the phi (filtered thru if's)
   384     const TypeInt* phi_ft = filtered_type(phi);
   386     // Can iv take on a value that will wrap?
   387     //
   388     // Ensure iv's limit is not within "stride" of the wrap value.
   389     //
   390     // Example for "short" type
   391     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
   392     //    If the stride is +10, then the last value of the induction
   393     //    variable before the increment (phi_ft->_hi) must be
   394     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
   395     //    ensure no truncation occurs after the increment.
   397     if (stride_con > 0) {
   398       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
   399           iv_trunc_t->_lo > phi_ft->_lo) {
   400         return false;  // truncation may occur
   401       }
   402     } else if (stride_con < 0) {
   403       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
   404           iv_trunc_t->_hi < phi_ft->_hi) {
   405         return false;  // truncation may occur
   406       }
   407     }
   408     // No possibility of wrap so truncation can be discarded
   409     // Promote iv type to Int
   410   } else {
   411     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
   412   }
   414   // If the condition is inverted and we will be rolling
   415   // through MININT to MAXINT, then bail out.
   416   if (bt == BoolTest::eq || // Bail out, but this loop trips at most twice!
   417       // Odd stride
   418       bt == BoolTest::ne && stride_con != 1 && stride_con != -1 ||
   419       // Count down loop rolls through MAXINT
   420       (bt == BoolTest::le || bt == BoolTest::lt) && stride_con < 0 ||
   421       // Count up loop rolls through MININT
   422       (bt == BoolTest::ge || bt == BoolTest::gt) && stride_con > 0) {
   423     return false; // Bail out
   424   }
   426   const TypeInt* init_t = gvn->type(init_trip)->is_int();
   427   const TypeInt* limit_t = gvn->type(limit)->is_int();
   429   if (stride_con > 0) {
   430     jlong init_p = (jlong)init_t->_lo + stride_con;
   431     if (init_p > (jlong)max_jint || init_p > (jlong)limit_t->_hi)
   432       return false; // cyclic loop or this loop trips only once
   433   } else {
   434     jlong init_p = (jlong)init_t->_hi + stride_con;
   435     if (init_p < (jlong)min_jint || init_p < (jlong)limit_t->_lo)
   436       return false; // cyclic loop or this loop trips only once
   437   }
   439   if (phi_incr != NULL) {
   440     // check if there is a possiblity of IV overflowing after the first increment
   441     if (stride_con > 0) {
   442       if (init_t->_hi > max_jint - stride_con) {
   443         return false;
   444       }
   445     } else {
   446       if (init_t->_lo < min_jint - stride_con) {
   447         return false;
   448       }
   449     }
   450   }
   452   // =================================================
   453   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
   454   //
   455   assert(x->Opcode() == Op_Loop, "regular loops only");
   456   C->print_method(PHASE_BEFORE_CLOOPS, 3);
   458   Node *hook = new (C) Node(6);
   460   if (LoopLimitCheck) {
   462   // ===================================================
   463   // Generate loop limit check to avoid integer overflow
   464   // in cases like next (cyclic loops):
   465   //
   466   // for (i=0; i <= max_jint; i++) {}
   467   // for (i=0; i <  max_jint; i+=2) {}
   468   //
   469   //
   470   // Limit check predicate depends on the loop test:
   471   //
   472   // for(;i != limit; i++)       --> limit <= (max_jint)
   473   // for(;i <  limit; i+=stride) --> limit <= (max_jint - stride + 1)
   474   // for(;i <= limit; i+=stride) --> limit <= (max_jint - stride    )
   475   //
   477   // Check if limit is excluded to do more precise int overflow check.
   478   bool incl_limit = (bt == BoolTest::le || bt == BoolTest::ge);
   479   int stride_m  = stride_con - (incl_limit ? 0 : (stride_con > 0 ? 1 : -1));
   481   // If compare points directly to the phi we need to adjust
   482   // the compare so that it points to the incr. Limit have
   483   // to be adjusted to keep trip count the same and the
   484   // adjusted limit should be checked for int overflow.
   485   if (phi_incr != NULL) {
   486     stride_m  += stride_con;
   487   }
   489   if (limit->is_Con()) {
   490     int limit_con = limit->get_int();
   491     if ((stride_con > 0 && limit_con > (max_jint - stride_m)) ||
   492         (stride_con < 0 && limit_con < (min_jint - stride_m))) {
   493       // Bailout: it could be integer overflow.
   494       return false;
   495     }
   496   } else if ((stride_con > 0 && limit_t->_hi <= (max_jint - stride_m)) ||
   497              (stride_con < 0 && limit_t->_lo >= (min_jint - stride_m))) {
   498       // Limit's type may satisfy the condition, for example,
   499       // when it is an array length.
   500   } else {
   501     // Generate loop's limit check.
   502     // Loop limit check predicate should be near the loop.
   503     ProjNode *limit_check_proj = find_predicate_insertion_point(init_control, Deoptimization::Reason_loop_limit_check);
   504     if (!limit_check_proj) {
   505       // The limit check predicate is not generated if this method trapped here before.
   506 #ifdef ASSERT
   507       if (TraceLoopLimitCheck) {
   508         tty->print("missing loop limit check:");
   509         loop->dump_head();
   510         x->dump(1);
   511       }
   512 #endif
   513       return false;
   514     }
   516     IfNode* check_iff = limit_check_proj->in(0)->as_If();
   517     Node* cmp_limit;
   518     Node* bol;
   520     if (stride_con > 0) {
   521       cmp_limit = new (C) CmpINode(limit, _igvn.intcon(max_jint - stride_m));
   522       bol = new (C) BoolNode(cmp_limit, BoolTest::le);
   523     } else {
   524       cmp_limit = new (C) CmpINode(limit, _igvn.intcon(min_jint - stride_m));
   525       bol = new (C) BoolNode(cmp_limit, BoolTest::ge);
   526     }
   527     cmp_limit = _igvn.register_new_node_with_optimizer(cmp_limit);
   528     bol = _igvn.register_new_node_with_optimizer(bol);
   529     set_subtree_ctrl(bol);
   531     // Replace condition in original predicate but preserve Opaque node
   532     // so that previous predicates could be found.
   533     assert(check_iff->in(1)->Opcode() == Op_Conv2B &&
   534            check_iff->in(1)->in(1)->Opcode() == Op_Opaque1, "");
   535     Node* opq = check_iff->in(1)->in(1);
   536     _igvn.hash_delete(opq);
   537     opq->set_req(1, bol);
   538     // Update ctrl.
   539     set_ctrl(opq, check_iff->in(0));
   540     set_ctrl(check_iff->in(1), check_iff->in(0));
   542 #ifndef PRODUCT
   543     // report that the loop predication has been actually performed
   544     // for this loop
   545     if (TraceLoopLimitCheck) {
   546       tty->print_cr("Counted Loop Limit Check generated:");
   547       debug_only( bol->dump(2); )
   548     }
   549 #endif
   550   }
   552   if (phi_incr != NULL) {
   553     // If compare points directly to the phi we need to adjust
   554     // the compare so that it points to the incr. Limit have
   555     // to be adjusted to keep trip count the same and we
   556     // should avoid int overflow.
   557     //
   558     //   i = init; do {} while(i++ < limit);
   559     // is converted to
   560     //   i = init; do {} while(++i < limit+1);
   561     //
   562     limit = gvn->transform(new (C) AddINode(limit, stride));
   563   }
   565   // Now we need to canonicalize loop condition.
   566   if (bt == BoolTest::ne) {
   567     assert(stride_con == 1 || stride_con == -1, "simple increment only");
   568     // 'ne' can be replaced with 'lt' only when init < limit.
   569     if (stride_con > 0 && init_t->_hi < limit_t->_lo)
   570       bt = BoolTest::lt;
   571     // 'ne' can be replaced with 'gt' only when init > limit.
   572     if (stride_con < 0 && init_t->_lo > limit_t->_hi)
   573       bt = BoolTest::gt;
   574   }
   576   if (incl_limit) {
   577     // The limit check guaranties that 'limit <= (max_jint - stride)' so
   578     // we can convert 'i <= limit' to 'i < limit+1' since stride != 0.
   579     //
   580     Node* one = (stride_con > 0) ? gvn->intcon( 1) : gvn->intcon(-1);
   581     limit = gvn->transform(new (C) AddINode(limit, one));
   582     if (bt == BoolTest::le)
   583       bt = BoolTest::lt;
   584     else if (bt == BoolTest::ge)
   585       bt = BoolTest::gt;
   586     else
   587       ShouldNotReachHere();
   588   }
   589   set_subtree_ctrl( limit );
   591   } else { // LoopLimitCheck
   593   // If compare points to incr, we are ok.  Otherwise the compare
   594   // can directly point to the phi; in this case adjust the compare so that
   595   // it points to the incr by adjusting the limit.
   596   if (cmp->in(1) == phi || cmp->in(2) == phi)
   597     limit = gvn->transform(new (C) AddINode(limit,stride));
   599   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
   600   // Final value for iterator should be: trip_count * stride + init_trip.
   601   Node *one_p = gvn->intcon( 1);
   602   Node *one_m = gvn->intcon(-1);
   604   Node *trip_count = NULL;
   605   switch( bt ) {
   606   case BoolTest::eq:
   607     ShouldNotReachHere();
   608   case BoolTest::ne:            // Ahh, the case we desire
   609     if (stride_con == 1)
   610       trip_count = gvn->transform(new (C) SubINode(limit,init_trip));
   611     else if (stride_con == -1)
   612       trip_count = gvn->transform(new (C) SubINode(init_trip,limit));
   613     else
   614       ShouldNotReachHere();
   615     set_subtree_ctrl(trip_count);
   616     //_loop.map(trip_count->_idx,loop(limit));
   617     break;
   618   case BoolTest::le:            // Maybe convert to '<' case
   619     limit = gvn->transform(new (C) AddINode(limit,one_p));
   620     set_subtree_ctrl( limit );
   621     hook->init_req(4, limit);
   623     bt = BoolTest::lt;
   624     // Make the new limit be in the same loop nest as the old limit
   625     //_loop.map(limit->_idx,limit_loop);
   626     // Fall into next case
   627   case BoolTest::lt: {          // Maybe convert to '!=' case
   628     if (stride_con < 0) // Count down loop rolls through MAXINT
   629       ShouldNotReachHere();
   630     Node *range = gvn->transform(new (C) SubINode(limit,init_trip));
   631     set_subtree_ctrl( range );
   632     hook->init_req(0, range);
   634     Node *bias  = gvn->transform(new (C) AddINode(range,stride));
   635     set_subtree_ctrl( bias );
   636     hook->init_req(1, bias);
   638     Node *bias1 = gvn->transform(new (C) AddINode(bias,one_m));
   639     set_subtree_ctrl( bias1 );
   640     hook->init_req(2, bias1);
   642     trip_count  = gvn->transform(new (C) DivINode(0,bias1,stride));
   643     set_subtree_ctrl( trip_count );
   644     hook->init_req(3, trip_count);
   645     break;
   646   }
   648   case BoolTest::ge:            // Maybe convert to '>' case
   649     limit = gvn->transform(new (C) AddINode(limit,one_m));
   650     set_subtree_ctrl( limit );
   651     hook->init_req(4 ,limit);
   653     bt = BoolTest::gt;
   654     // Make the new limit be in the same loop nest as the old limit
   655     //_loop.map(limit->_idx,limit_loop);
   656     // Fall into next case
   657   case BoolTest::gt: {          // Maybe convert to '!=' case
   658     if (stride_con > 0) // count up loop rolls through MININT
   659       ShouldNotReachHere();
   660     Node *range = gvn->transform(new (C) SubINode(limit,init_trip));
   661     set_subtree_ctrl( range );
   662     hook->init_req(0, range);
   664     Node *bias  = gvn->transform(new (C) AddINode(range,stride));
   665     set_subtree_ctrl( bias );
   666     hook->init_req(1, bias);
   668     Node *bias1 = gvn->transform(new (C) AddINode(bias,one_p));
   669     set_subtree_ctrl( bias1 );
   670     hook->init_req(2, bias1);
   672     trip_count  = gvn->transform(new (C) DivINode(0,bias1,stride));
   673     set_subtree_ctrl( trip_count );
   674     hook->init_req(3, trip_count);
   675     break;
   676   }
   677   } // switch( bt )
   679   Node *span = gvn->transform(new (C) MulINode(trip_count,stride));
   680   set_subtree_ctrl( span );
   681   hook->init_req(5, span);
   683   limit = gvn->transform(new (C) AddINode(span,init_trip));
   684   set_subtree_ctrl( limit );
   686   } // LoopLimitCheck
   688   if (!UseCountedLoopSafepoints) {
   689     // Check for SafePoint on backedge and remove
   690     Node *sfpt = x->in(LoopNode::LoopBackControl);
   691     if (sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
   692       lazy_replace( sfpt, iftrue );
   693       if (loop->_safepts != NULL) {
   694         loop->_safepts->yank(sfpt);
   695       }
   696       loop->_tail = iftrue;
   697     }
   698   }
   700   // Build a canonical trip test.
   701   // Clone code, as old values may be in use.
   702   incr = incr->clone();
   703   incr->set_req(1,phi);
   704   incr->set_req(2,stride);
   705   incr = _igvn.register_new_node_with_optimizer(incr);
   706   set_early_ctrl( incr );
   707   _igvn.hash_delete(phi);
   708   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
   710   // If phi type is more restrictive than Int, raise to
   711   // Int to prevent (almost) infinite recursion in igvn
   712   // which can only handle integer types for constants or minint..maxint.
   713   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
   714     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
   715     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
   716     nphi = _igvn.register_new_node_with_optimizer(nphi);
   717     set_ctrl(nphi, get_ctrl(phi));
   718     _igvn.replace_node(phi, nphi);
   719     phi = nphi->as_Phi();
   720   }
   721   cmp = cmp->clone();
   722   cmp->set_req(1,incr);
   723   cmp->set_req(2,limit);
   724   cmp = _igvn.register_new_node_with_optimizer(cmp);
   725   set_ctrl(cmp, iff->in(0));
   727   test = test->clone()->as_Bool();
   728   (*(BoolTest*)&test->_test)._test = bt;
   729   test->set_req(1,cmp);
   730   _igvn.register_new_node_with_optimizer(test);
   731   set_ctrl(test, iff->in(0));
   733   // Replace the old IfNode with a new LoopEndNode
   734   Node *lex = _igvn.register_new_node_with_optimizer(new (C) CountedLoopEndNode( iff->in(0), test, cl_prob, iff->as_If()->_fcnt ));
   735   IfNode *le = lex->as_If();
   736   uint dd = dom_depth(iff);
   737   set_idom(le, le->in(0), dd); // Update dominance for loop exit
   738   set_loop(le, loop);
   740   // Get the loop-exit control
   741   Node *iffalse = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
   743   // Need to swap loop-exit and loop-back control?
   744   if (iftrue_op == Op_IfFalse) {
   745     Node *ift2=_igvn.register_new_node_with_optimizer(new (C) IfTrueNode (le));
   746     Node *iff2=_igvn.register_new_node_with_optimizer(new (C) IfFalseNode(le));
   748     loop->_tail = back_control = ift2;
   749     set_loop(ift2, loop);
   750     set_loop(iff2, get_loop(iffalse));
   752     // Lazy update of 'get_ctrl' mechanism.
   753     lazy_replace(iffalse, iff2);
   754     lazy_replace(iftrue,  ift2);
   756     // Swap names
   757     iffalse = iff2;
   758     iftrue  = ift2;
   759   } else {
   760     _igvn.hash_delete(iffalse);
   761     _igvn.hash_delete(iftrue);
   762     iffalse->set_req_X( 0, le, &_igvn );
   763     iftrue ->set_req_X( 0, le, &_igvn );
   764   }
   766   set_idom(iftrue,  le, dd+1);
   767   set_idom(iffalse, le, dd+1);
   768   assert(iff->outcnt() == 0, "should be dead now");
   769   lazy_replace( iff, le ); // fix 'get_ctrl'
   771   // Now setup a new CountedLoopNode to replace the existing LoopNode
   772   CountedLoopNode *l = new (C) CountedLoopNode(init_control, back_control);
   773   l->set_unswitch_count(x->as_Loop()->unswitch_count()); // Preserve
   774   // The following assert is approximately true, and defines the intention
   775   // of can_be_counted_loop.  It fails, however, because phase->type
   776   // is not yet initialized for this loop and its parts.
   777   //assert(l->can_be_counted_loop(this), "sanity");
   778   _igvn.register_new_node_with_optimizer(l);
   779   set_loop(l, loop);
   780   loop->_head = l;
   781   // Fix all data nodes placed at the old loop head.
   782   // Uses the lazy-update mechanism of 'get_ctrl'.
   783   lazy_replace( x, l );
   784   set_idom(l, init_control, dom_depth(x));
   786   if (!UseCountedLoopSafepoints) {
   787     // Check for immediately preceding SafePoint and remove
   788     Node *sfpt2 = le->in(0);
   789     if (sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2)) {
   790       lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
   791       if (loop->_safepts != NULL) {
   792         loop->_safepts->yank(sfpt2);
   793       }
   794     }
   795   }
   797   // Free up intermediate goo
   798   _igvn.remove_dead_node(hook);
   800 #ifdef ASSERT
   801   assert(l->is_valid_counted_loop(), "counted loop shape is messed up");
   802   assert(l == loop->_head && l->phi() == phi && l->loopexit() == lex, "" );
   803 #endif
   804 #ifndef PRODUCT
   805   if (TraceLoopOpts) {
   806     tty->print("Counted      ");
   807     loop->dump_head();
   808   }
   809 #endif
   811   C->print_method(PHASE_AFTER_CLOOPS, 3);
   813   return true;
   814 }
   816 //----------------------exact_limit-------------------------------------------
   817 Node* PhaseIdealLoop::exact_limit( IdealLoopTree *loop ) {
   818   assert(loop->_head->is_CountedLoop(), "");
   819   CountedLoopNode *cl = loop->_head->as_CountedLoop();
   820   assert(cl->is_valid_counted_loop(), "");
   822   if (!LoopLimitCheck || ABS(cl->stride_con()) == 1 ||
   823       cl->limit()->Opcode() == Op_LoopLimit) {
   824     // Old code has exact limit (it could be incorrect in case of int overflow).
   825     // Loop limit is exact with stride == 1. And loop may already have exact limit.
   826     return cl->limit();
   827   }
   828   Node *limit = NULL;
   829 #ifdef ASSERT
   830   BoolTest::mask bt = cl->loopexit()->test_trip();
   831   assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
   832 #endif
   833   if (cl->has_exact_trip_count()) {
   834     // Simple case: loop has constant boundaries.
   835     // Use jlongs to avoid integer overflow.
   836     int stride_con = cl->stride_con();
   837     jlong  init_con = cl->init_trip()->get_int();
   838     jlong limit_con = cl->limit()->get_int();
   839     julong trip_cnt = cl->trip_count();
   840     jlong final_con = init_con + trip_cnt*stride_con;
   841     int final_int = (int)final_con;
   842     // The final value should be in integer range since the loop
   843     // is counted and the limit was checked for overflow.
   844     assert(final_con == (jlong)final_int, "final value should be integer");
   845     limit = _igvn.intcon(final_int);
   846   } else {
   847     // Create new LoopLimit node to get exact limit (final iv value).
   848     limit = new (C) LoopLimitNode(C, cl->init_trip(), cl->limit(), cl->stride());
   849     register_new_node(limit, cl->in(LoopNode::EntryControl));
   850   }
   851   assert(limit != NULL, "sanity");
   852   return limit;
   853 }
   855 //------------------------------Ideal------------------------------------------
   856 // Return a node which is more "ideal" than the current node.
   857 // Attempt to convert into a counted-loop.
   858 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   859   if (!can_be_counted_loop(phase)) {
   860     phase->C->set_major_progress();
   861   }
   862   return RegionNode::Ideal(phase, can_reshape);
   863 }
   866 //=============================================================================
   867 //------------------------------Ideal------------------------------------------
   868 // Return a node which is more "ideal" than the current node.
   869 // Attempt to convert into a counted-loop.
   870 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   871   return RegionNode::Ideal(phase, can_reshape);
   872 }
   874 //------------------------------dump_spec--------------------------------------
   875 // Dump special per-node info
   876 #ifndef PRODUCT
   877 void CountedLoopNode::dump_spec(outputStream *st) const {
   878   LoopNode::dump_spec(st);
   879   if (stride_is_con()) {
   880     st->print("stride: %d ",stride_con());
   881   }
   882   if (is_pre_loop ()) st->print("pre of N%d" , _main_idx);
   883   if (is_main_loop()) st->print("main of N%d", _idx);
   884   if (is_post_loop()) st->print("post of N%d", _main_idx);
   885 }
   886 #endif
   888 //=============================================================================
   889 int CountedLoopEndNode::stride_con() const {
   890   return stride()->bottom_type()->is_int()->get_con();
   891 }
   893 //=============================================================================
   894 //------------------------------Value-----------------------------------------
   895 const Type *LoopLimitNode::Value( PhaseTransform *phase ) const {
   896   const Type* init_t   = phase->type(in(Init));
   897   const Type* limit_t  = phase->type(in(Limit));
   898   const Type* stride_t = phase->type(in(Stride));
   899   // Either input is TOP ==> the result is TOP
   900   if (init_t   == Type::TOP) return Type::TOP;
   901   if (limit_t  == Type::TOP) return Type::TOP;
   902   if (stride_t == Type::TOP) return Type::TOP;
   904   int stride_con = stride_t->is_int()->get_con();
   905   if (stride_con == 1)
   906     return NULL;  // Identity
   908   if (init_t->is_int()->is_con() && limit_t->is_int()->is_con()) {
   909     // Use jlongs to avoid integer overflow.
   910     jlong init_con   =  init_t->is_int()->get_con();
   911     jlong limit_con  = limit_t->is_int()->get_con();
   912     int  stride_m   = stride_con - (stride_con > 0 ? 1 : -1);
   913     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
   914     jlong final_con  = init_con + stride_con*trip_count;
   915     int final_int = (int)final_con;
   916     // The final value should be in integer range since the loop
   917     // is counted and the limit was checked for overflow.
   918     assert(final_con == (jlong)final_int, "final value should be integer");
   919     return TypeInt::make(final_int);
   920   }
   922   return bottom_type(); // TypeInt::INT
   923 }
   925 //------------------------------Ideal------------------------------------------
   926 // Return a node which is more "ideal" than the current node.
   927 Node *LoopLimitNode::Ideal(PhaseGVN *phase, bool can_reshape) {
   928   if (phase->type(in(Init))   == Type::TOP ||
   929       phase->type(in(Limit))  == Type::TOP ||
   930       phase->type(in(Stride)) == Type::TOP)
   931     return NULL;  // Dead
   933   int stride_con = phase->type(in(Stride))->is_int()->get_con();
   934   if (stride_con == 1)
   935     return NULL;  // Identity
   937   if (in(Init)->is_Con() && in(Limit)->is_Con())
   938     return NULL;  // Value
   940   // Delay following optimizations until all loop optimizations
   941   // done to keep Ideal graph simple.
   942   if (!can_reshape || phase->C->major_progress())
   943     return NULL;
   945   const TypeInt* init_t  = phase->type(in(Init) )->is_int();
   946   const TypeInt* limit_t = phase->type(in(Limit))->is_int();
   947   int stride_p;
   948   jlong lim, ini;
   949   julong max;
   950   if (stride_con > 0) {
   951     stride_p = stride_con;
   952     lim = limit_t->_hi;
   953     ini = init_t->_lo;
   954     max = (julong)max_jint;
   955   } else {
   956     stride_p = -stride_con;
   957     lim = init_t->_hi;
   958     ini = limit_t->_lo;
   959     max = (julong)min_jint;
   960   }
   961   julong range = lim - ini + stride_p;
   962   if (range <= max) {
   963     // Convert to integer expression if it is not overflow.
   964     Node* stride_m = phase->intcon(stride_con - (stride_con > 0 ? 1 : -1));
   965     Node *range = phase->transform(new (phase->C) SubINode(in(Limit), in(Init)));
   966     Node *bias  = phase->transform(new (phase->C) AddINode(range, stride_m));
   967     Node *trip  = phase->transform(new (phase->C) DivINode(0, bias, in(Stride)));
   968     Node *span  = phase->transform(new (phase->C) MulINode(trip, in(Stride)));
   969     return new (phase->C) AddINode(span, in(Init)); // exact limit
   970   }
   972   if (is_power_of_2(stride_p) ||                // divisor is 2^n
   973       !Matcher::has_match_rule(Op_LoopLimit)) { // or no specialized Mach node?
   974     // Convert to long expression to avoid integer overflow
   975     // and let igvn optimizer convert this division.
   976     //
   977     Node*   init   = phase->transform( new (phase->C) ConvI2LNode(in(Init)));
   978     Node*  limit   = phase->transform( new (phase->C) ConvI2LNode(in(Limit)));
   979     Node* stride   = phase->longcon(stride_con);
   980     Node* stride_m = phase->longcon(stride_con - (stride_con > 0 ? 1 : -1));
   982     Node *range = phase->transform(new (phase->C) SubLNode(limit, init));
   983     Node *bias  = phase->transform(new (phase->C) AddLNode(range, stride_m));
   984     Node *span;
   985     if (stride_con > 0 && is_power_of_2(stride_p)) {
   986       // bias >= 0 if stride >0, so if stride is 2^n we can use &(-stride)
   987       // and avoid generating rounding for division. Zero trip guard should
   988       // guarantee that init < limit but sometimes the guard is missing and
   989       // we can get situation when init > limit. Note, for the empty loop
   990       // optimization zero trip guard is generated explicitly which leaves
   991       // only RCE predicate where exact limit is used and the predicate
   992       // will simply fail forcing recompilation.
   993       Node* neg_stride   = phase->longcon(-stride_con);
   994       span = phase->transform(new (phase->C) AndLNode(bias, neg_stride));
   995     } else {
   996       Node *trip  = phase->transform(new (phase->C) DivLNode(0, bias, stride));
   997       span = phase->transform(new (phase->C) MulLNode(trip, stride));
   998     }
   999     // Convert back to int
  1000     Node *span_int = phase->transform(new (phase->C) ConvL2INode(span));
  1001     return new (phase->C) AddINode(span_int, in(Init)); // exact limit
  1004   return NULL;    // No progress
  1007 //------------------------------Identity---------------------------------------
  1008 // If stride == 1 return limit node.
  1009 Node *LoopLimitNode::Identity( PhaseTransform *phase ) {
  1010   int stride_con = phase->type(in(Stride))->is_int()->get_con();
  1011   if (stride_con == 1 || stride_con == -1)
  1012     return in(Limit);
  1013   return this;
  1016 //=============================================================================
  1017 //----------------------match_incr_with_optional_truncation--------------------
  1018 // Match increment with optional truncation:
  1019 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
  1020 // Return NULL for failure. Success returns the increment node.
  1021 Node* CountedLoopNode::match_incr_with_optional_truncation(
  1022                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
  1023   // Quick cutouts:
  1024   if (expr == NULL || expr->req() != 3)  return NULL;
  1026   Node *t1 = NULL;
  1027   Node *t2 = NULL;
  1028   const TypeInt* trunc_t = TypeInt::INT;
  1029   Node* n1 = expr;
  1030   int   n1op = n1->Opcode();
  1032   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
  1033   if (n1op == Op_AndI &&
  1034       n1->in(2)->is_Con() &&
  1035       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
  1036     // %%% This check should match any mask of 2**K-1.
  1037     t1 = n1;
  1038     n1 = t1->in(1);
  1039     n1op = n1->Opcode();
  1040     trunc_t = TypeInt::CHAR;
  1041   } else if (n1op == Op_RShiftI &&
  1042              n1->in(1) != NULL &&
  1043              n1->in(1)->Opcode() == Op_LShiftI &&
  1044              n1->in(2) == n1->in(1)->in(2) &&
  1045              n1->in(2)->is_Con()) {
  1046     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
  1047     // %%% This check should match any shift in [1..31].
  1048     if (shift == 16 || shift == 8) {
  1049       t1 = n1;
  1050       t2 = t1->in(1);
  1051       n1 = t2->in(1);
  1052       n1op = n1->Opcode();
  1053       if (shift == 16) {
  1054         trunc_t = TypeInt::SHORT;
  1055       } else if (shift == 8) {
  1056         trunc_t = TypeInt::BYTE;
  1061   // If (maybe after stripping) it is an AddI, we won:
  1062   if (n1op == Op_AddI) {
  1063     *trunc1 = t1;
  1064     *trunc2 = t2;
  1065     *trunc_type = trunc_t;
  1066     return n1;
  1069   // failed
  1070   return NULL;
  1074 //------------------------------filtered_type--------------------------------
  1075 // Return a type based on condition control flow
  1076 // A successful return will be a type that is restricted due
  1077 // to a series of dominating if-tests, such as:
  1078 //    if (i < 10) {
  1079 //       if (i > 0) {
  1080 //          here: "i" type is [1..10)
  1081 //       }
  1082 //    }
  1083 // or a control flow merge
  1084 //    if (i < 10) {
  1085 //       do {
  1086 //          phi( , ) -- at top of loop type is [min_int..10)
  1087 //         i = ?
  1088 //       } while ( i < 10)
  1089 //
  1090 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
  1091   assert(n && n->bottom_type()->is_int(), "must be int");
  1092   const TypeInt* filtered_t = NULL;
  1093   if (!n->is_Phi()) {
  1094     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
  1095     filtered_t = filtered_type_from_dominators(n, n_ctrl);
  1097   } else {
  1098     Node* phi    = n->as_Phi();
  1099     Node* region = phi->in(0);
  1100     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
  1101     if (region && region != C->top()) {
  1102       for (uint i = 1; i < phi->req(); i++) {
  1103         Node* val   = phi->in(i);
  1104         Node* use_c = region->in(i);
  1105         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
  1106         if (val_t != NULL) {
  1107           if (filtered_t == NULL) {
  1108             filtered_t = val_t;
  1109           } else {
  1110             filtered_t = filtered_t->meet(val_t)->is_int();
  1116   const TypeInt* n_t = _igvn.type(n)->is_int();
  1117   if (filtered_t != NULL) {
  1118     n_t = n_t->join(filtered_t)->is_int();
  1120   return n_t;
  1124 //------------------------------filtered_type_from_dominators--------------------------------
  1125 // Return a possibly more restrictive type for val based on condition control flow of dominators
  1126 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
  1127   if (val->is_Con()) {
  1128      return val->bottom_type()->is_int();
  1130   uint if_limit = 10; // Max number of dominating if's visited
  1131   const TypeInt* rtn_t = NULL;
  1133   if (use_ctrl && use_ctrl != C->top()) {
  1134     Node* val_ctrl = get_ctrl(val);
  1135     uint val_dom_depth = dom_depth(val_ctrl);
  1136     Node* pred = use_ctrl;
  1137     uint if_cnt = 0;
  1138     while (if_cnt < if_limit) {
  1139       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
  1140         if_cnt++;
  1141         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
  1142         if (if_t != NULL) {
  1143           if (rtn_t == NULL) {
  1144             rtn_t = if_t;
  1145           } else {
  1146             rtn_t = rtn_t->join(if_t)->is_int();
  1150       pred = idom(pred);
  1151       if (pred == NULL || pred == C->top()) {
  1152         break;
  1154       // Stop if going beyond definition block of val
  1155       if (dom_depth(pred) < val_dom_depth) {
  1156         break;
  1160   return rtn_t;
  1164 //------------------------------dump_spec--------------------------------------
  1165 // Dump special per-node info
  1166 #ifndef PRODUCT
  1167 void CountedLoopEndNode::dump_spec(outputStream *st) const {
  1168   if( in(TestValue)->is_Bool() ) {
  1169     BoolTest bt( test_trip()); // Added this for g++.
  1171     st->print("[");
  1172     bt.dump_on(st);
  1173     st->print("]");
  1175   st->print(" ");
  1176   IfNode::dump_spec(st);
  1178 #endif
  1180 //=============================================================================
  1181 //------------------------------is_member--------------------------------------
  1182 // Is 'l' a member of 'this'?
  1183 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
  1184   while( l->_nest > _nest ) l = l->_parent;
  1185   return l == this;
  1188 //------------------------------set_nest---------------------------------------
  1189 // Set loop tree nesting depth.  Accumulate _has_call bits.
  1190 int IdealLoopTree::set_nest( uint depth ) {
  1191   _nest = depth;
  1192   int bits = _has_call;
  1193   if( _child ) bits |= _child->set_nest(depth+1);
  1194   if( bits ) _has_call = 1;
  1195   if( _next  ) bits |= _next ->set_nest(depth  );
  1196   return bits;
  1199 //------------------------------split_fall_in----------------------------------
  1200 // Split out multiple fall-in edges from the loop header.  Move them to a
  1201 // private RegionNode before the loop.  This becomes the loop landing pad.
  1202 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
  1203   PhaseIterGVN &igvn = phase->_igvn;
  1204   uint i;
  1206   // Make a new RegionNode to be the landing pad.
  1207   Node *landing_pad = new (phase->C) RegionNode( fall_in_cnt+1 );
  1208   phase->set_loop(landing_pad,_parent);
  1209   // Gather all the fall-in control paths into the landing pad
  1210   uint icnt = fall_in_cnt;
  1211   uint oreq = _head->req();
  1212   for( i = oreq-1; i>0; i-- )
  1213     if( !phase->is_member( this, _head->in(i) ) )
  1214       landing_pad->set_req(icnt--,_head->in(i));
  1216   // Peel off PhiNode edges as well
  1217   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1218     Node *oj = _head->fast_out(j);
  1219     if( oj->is_Phi() ) {
  1220       PhiNode* old_phi = oj->as_Phi();
  1221       assert( old_phi->region() == _head, "" );
  1222       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
  1223       Node *p = PhiNode::make_blank(landing_pad, old_phi);
  1224       uint icnt = fall_in_cnt;
  1225       for( i = oreq-1; i>0; i-- ) {
  1226         if( !phase->is_member( this, _head->in(i) ) ) {
  1227           p->init_req(icnt--, old_phi->in(i));
  1228           // Go ahead and clean out old edges from old phi
  1229           old_phi->del_req(i);
  1232       // Search for CSE's here, because ZKM.jar does a lot of
  1233       // loop hackery and we need to be a little incremental
  1234       // with the CSE to avoid O(N^2) node blow-up.
  1235       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
  1236       if( p2 ) {                // Found CSE
  1237         p->destruct();          // Recover useless new node
  1238         p = p2;                 // Use old node
  1239       } else {
  1240         igvn.register_new_node_with_optimizer(p, old_phi);
  1242       // Make old Phi refer to new Phi.
  1243       old_phi->add_req(p);
  1244       // Check for the special case of making the old phi useless and
  1245       // disappear it.  In JavaGrande I have a case where this useless
  1246       // Phi is the loop limit and prevents recognizing a CountedLoop
  1247       // which in turn prevents removing an empty loop.
  1248       Node *id_old_phi = old_phi->Identity( &igvn );
  1249       if( id_old_phi != old_phi ) { // Found a simple identity?
  1250         // Note that I cannot call 'replace_node' here, because
  1251         // that will yank the edge from old_phi to the Region and
  1252         // I'm mid-iteration over the Region's uses.
  1253         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
  1254           Node* use = old_phi->last_out(i);
  1255           igvn.rehash_node_delayed(use);
  1256           uint uses_found = 0;
  1257           for (uint j = 0; j < use->len(); j++) {
  1258             if (use->in(j) == old_phi) {
  1259               if (j < use->req()) use->set_req (j, id_old_phi);
  1260               else                use->set_prec(j, id_old_phi);
  1261               uses_found++;
  1264           i -= uses_found;    // we deleted 1 or more copies of this edge
  1267       igvn._worklist.push(old_phi);
  1270   // Finally clean out the fall-in edges from the RegionNode
  1271   for( i = oreq-1; i>0; i-- ) {
  1272     if( !phase->is_member( this, _head->in(i) ) ) {
  1273       _head->del_req(i);
  1276   // Transform landing pad
  1277   igvn.register_new_node_with_optimizer(landing_pad, _head);
  1278   // Insert landing pad into the header
  1279   _head->add_req(landing_pad);
  1282 //------------------------------split_outer_loop-------------------------------
  1283 // Split out the outermost loop from this shared header.
  1284 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
  1285   PhaseIterGVN &igvn = phase->_igvn;
  1287   // Find index of outermost loop; it should also be my tail.
  1288   uint outer_idx = 1;
  1289   while( _head->in(outer_idx) != _tail ) outer_idx++;
  1291   // Make a LoopNode for the outermost loop.
  1292   Node *ctl = _head->in(LoopNode::EntryControl);
  1293   Node *outer = new (phase->C) LoopNode( ctl, _head->in(outer_idx) );
  1294   outer = igvn.register_new_node_with_optimizer(outer, _head);
  1295   phase->set_created_loop_node();
  1297   // Outermost loop falls into '_head' loop
  1298   _head->set_req(LoopNode::EntryControl, outer);
  1299   _head->del_req(outer_idx);
  1300   // Split all the Phis up between '_head' loop and 'outer' loop.
  1301   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1302     Node *out = _head->fast_out(j);
  1303     if( out->is_Phi() ) {
  1304       PhiNode *old_phi = out->as_Phi();
  1305       assert( old_phi->region() == _head, "" );
  1306       Node *phi = PhiNode::make_blank(outer, old_phi);
  1307       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
  1308       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
  1309       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
  1310       // Make old Phi point to new Phi on the fall-in path
  1311       igvn.replace_input_of(old_phi, LoopNode::EntryControl, phi);
  1312       old_phi->del_req(outer_idx);
  1316   // Use the new loop head instead of the old shared one
  1317   _head = outer;
  1318   phase->set_loop(_head, this);
  1321 //------------------------------fix_parent-------------------------------------
  1322 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
  1323   loop->_parent = parent;
  1324   if( loop->_child ) fix_parent( loop->_child, loop   );
  1325   if( loop->_next  ) fix_parent( loop->_next , parent );
  1328 //------------------------------estimate_path_freq-----------------------------
  1329 static float estimate_path_freq( Node *n ) {
  1330   // Try to extract some path frequency info
  1331   IfNode *iff;
  1332   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
  1333     uint nop = n->Opcode();
  1334     if( nop == Op_SafePoint ) {   // Skip any safepoint
  1335       n = n->in(0);
  1336       continue;
  1338     if( nop == Op_CatchProj ) {   // Get count from a prior call
  1339       // Assume call does not always throw exceptions: means the call-site
  1340       // count is also the frequency of the fall-through path.
  1341       assert( n->is_CatchProj(), "" );
  1342       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
  1343         return 0.0f;            // Assume call exception path is rare
  1344       Node *call = n->in(0)->in(0)->in(0);
  1345       assert( call->is_Call(), "expect a call here" );
  1346       const JVMState *jvms = ((CallNode*)call)->jvms();
  1347       ciMethodData* methodData = jvms->method()->method_data();
  1348       if (!methodData->is_mature())  return 0.0f; // No call-site data
  1349       ciProfileData* data = methodData->bci_to_data(jvms->bci());
  1350       if ((data == NULL) || !data->is_CounterData()) {
  1351         // no call profile available, try call's control input
  1352         n = n->in(0);
  1353         continue;
  1355       return data->as_CounterData()->count()/FreqCountInvocations;
  1357     // See if there's a gating IF test
  1358     Node *n_c = n->in(0);
  1359     if( !n_c->is_If() ) break;       // No estimate available
  1360     iff = n_c->as_If();
  1361     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
  1362       // Compute how much count comes on this path
  1363       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
  1364     // Have no count info.  Skip dull uncommon-trap like branches.
  1365     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
  1366         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
  1367       break;
  1368     // Skip through never-taken branch; look for a real loop exit.
  1369     n = iff->in(0);
  1371   return 0.0f;                  // No estimate available
  1374 //------------------------------merge_many_backedges---------------------------
  1375 // Merge all the backedges from the shared header into a private Region.
  1376 // Feed that region as the one backedge to this loop.
  1377 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
  1378   uint i;
  1380   // Scan for the top 2 hottest backedges
  1381   float hotcnt = 0.0f;
  1382   float warmcnt = 0.0f;
  1383   uint hot_idx = 0;
  1384   // Loop starts at 2 because slot 1 is the fall-in path
  1385   for( i = 2; i < _head->req(); i++ ) {
  1386     float cnt = estimate_path_freq(_head->in(i));
  1387     if( cnt > hotcnt ) {       // Grab hottest path
  1388       warmcnt = hotcnt;
  1389       hotcnt = cnt;
  1390       hot_idx = i;
  1391     } else if( cnt > warmcnt ) { // And 2nd hottest path
  1392       warmcnt = cnt;
  1396   // See if the hottest backedge is worthy of being an inner loop
  1397   // by being much hotter than the next hottest backedge.
  1398   if( hotcnt <= 0.0001 ||
  1399       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
  1401   // Peel out the backedges into a private merge point; peel
  1402   // them all except optionally hot_idx.
  1403   PhaseIterGVN &igvn = phase->_igvn;
  1405   Node *hot_tail = NULL;
  1406   // Make a Region for the merge point
  1407   Node *r = new (phase->C) RegionNode(1);
  1408   for( i = 2; i < _head->req(); i++ ) {
  1409     if( i != hot_idx )
  1410       r->add_req( _head->in(i) );
  1411     else hot_tail = _head->in(i);
  1413   igvn.register_new_node_with_optimizer(r, _head);
  1414   // Plug region into end of loop _head, followed by hot_tail
  1415   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
  1416   _head->set_req(2, r);
  1417   if( hot_idx ) _head->add_req(hot_tail);
  1419   // Split all the Phis up between '_head' loop and the Region 'r'
  1420   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
  1421     Node *out = _head->fast_out(j);
  1422     if( out->is_Phi() ) {
  1423       PhiNode* n = out->as_Phi();
  1424       igvn.hash_delete(n);      // Delete from hash before hacking edges
  1425       Node *hot_phi = NULL;
  1426       Node *phi = new (phase->C) PhiNode(r, n->type(), n->adr_type());
  1427       // Check all inputs for the ones to peel out
  1428       uint j = 1;
  1429       for( uint i = 2; i < n->req(); i++ ) {
  1430         if( i != hot_idx )
  1431           phi->set_req( j++, n->in(i) );
  1432         else hot_phi = n->in(i);
  1434       // Register the phi but do not transform until whole place transforms
  1435       igvn.register_new_node_with_optimizer(phi, n);
  1436       // Add the merge phi to the old Phi
  1437       while( n->req() > 3 ) n->del_req( n->req()-1 );
  1438       n->set_req(2, phi);
  1439       if( hot_idx ) n->add_req(hot_phi);
  1444   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
  1445   // of self loop tree.  Turn self into a loop headed by _head and with
  1446   // tail being the new merge point.
  1447   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
  1448   phase->set_loop(_tail,ilt);   // Adjust tail
  1449   _tail = r;                    // Self's tail is new merge point
  1450   phase->set_loop(r,this);
  1451   ilt->_child = _child;         // New guy has my children
  1452   _child = ilt;                 // Self has new guy as only child
  1453   ilt->_parent = this;          // new guy has self for parent
  1454   ilt->_nest = _nest;           // Same nesting depth (for now)
  1456   // Starting with 'ilt', look for child loop trees using the same shared
  1457   // header.  Flatten these out; they will no longer be loops in the end.
  1458   IdealLoopTree **pilt = &_child;
  1459   while( ilt ) {
  1460     if( ilt->_head == _head ) {
  1461       uint i;
  1462       for( i = 2; i < _head->req(); i++ )
  1463         if( _head->in(i) == ilt->_tail )
  1464           break;                // Still a loop
  1465       if( i == _head->req() ) { // No longer a loop
  1466         // Flatten ilt.  Hang ilt's "_next" list from the end of
  1467         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
  1468         IdealLoopTree **cp = &ilt->_child;
  1469         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
  1470         *cp = ilt->_next;       // Hang next list at end of child list
  1471         *pilt = ilt->_child;    // Move child up to replace ilt
  1472         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
  1473         ilt = ilt->_child;      // Repeat using new ilt
  1474         continue;               // do not advance over ilt->_child
  1476       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
  1477       phase->set_loop(_head,ilt);
  1479     pilt = &ilt->_child;        // Advance to next
  1480     ilt = *pilt;
  1483   if( _child ) fix_parent( _child, this );
  1486 //------------------------------beautify_loops---------------------------------
  1487 // Split shared headers and insert loop landing pads.
  1488 // Insert a LoopNode to replace the RegionNode.
  1489 // Return TRUE if loop tree is structurally changed.
  1490 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
  1491   bool result = false;
  1492   // Cache parts in locals for easy
  1493   PhaseIterGVN &igvn = phase->_igvn;
  1495   igvn.hash_delete(_head);      // Yank from hash before hacking edges
  1497   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
  1498   int fall_in_cnt = 0;
  1499   for( uint i = 1; i < _head->req(); i++ )
  1500     if( !phase->is_member( this, _head->in(i) ) )
  1501       fall_in_cnt++;
  1502   assert( fall_in_cnt, "at least 1 fall-in path" );
  1503   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
  1504     split_fall_in( phase, fall_in_cnt );
  1506   // Swap inputs to the _head and all Phis to move the fall-in edge to
  1507   // the left.
  1508   fall_in_cnt = 1;
  1509   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
  1510     fall_in_cnt++;
  1511   if( fall_in_cnt > 1 ) {
  1512     // Since I am just swapping inputs I do not need to update def-use info
  1513     Node *tmp = _head->in(1);
  1514     _head->set_req( 1, _head->in(fall_in_cnt) );
  1515     _head->set_req( fall_in_cnt, tmp );
  1516     // Swap also all Phis
  1517     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
  1518       Node* phi = _head->fast_out(i);
  1519       if( phi->is_Phi() ) {
  1520         igvn.hash_delete(phi); // Yank from hash before hacking edges
  1521         tmp = phi->in(1);
  1522         phi->set_req( 1, phi->in(fall_in_cnt) );
  1523         phi->set_req( fall_in_cnt, tmp );
  1527   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
  1528   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
  1530   // If I am a shared header (multiple backedges), peel off the many
  1531   // backedges into a private merge point and use the merge point as
  1532   // the one true backedge.
  1533   if( _head->req() > 3 ) {
  1534     // Merge the many backedges into a single backedge but leave
  1535     // the hottest backedge as separate edge for the following peel.
  1536     merge_many_backedges( phase );
  1537     result = true;
  1540   // If I have one hot backedge, peel off myself loop.
  1541   // I better be the outermost loop.
  1542   if (_head->req() > 3 && !_irreducible) {
  1543     split_outer_loop( phase );
  1544     result = true;
  1546   } else if (!_head->is_Loop() && !_irreducible) {
  1547     // Make a new LoopNode to replace the old loop head
  1548     Node *l = new (phase->C) LoopNode( _head->in(1), _head->in(2) );
  1549     l = igvn.register_new_node_with_optimizer(l, _head);
  1550     phase->set_created_loop_node();
  1551     // Go ahead and replace _head
  1552     phase->_igvn.replace_node( _head, l );
  1553     _head = l;
  1554     phase->set_loop(_head, this);
  1557   // Now recursively beautify nested loops
  1558   if( _child ) result |= _child->beautify_loops( phase );
  1559   if( _next  ) result |= _next ->beautify_loops( phase );
  1560   return result;
  1563 //------------------------------allpaths_check_safepts----------------------------
  1564 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
  1565 // encountered.  Helper for check_safepts.
  1566 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
  1567   assert(stack.size() == 0, "empty stack");
  1568   stack.push(_tail);
  1569   visited.Clear();
  1570   visited.set(_tail->_idx);
  1571   while (stack.size() > 0) {
  1572     Node* n = stack.pop();
  1573     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1574       // Terminate this path
  1575     } else if (n->Opcode() == Op_SafePoint) {
  1576       if (_phase->get_loop(n) != this) {
  1577         if (_required_safept == NULL) _required_safept = new Node_List();
  1578         _required_safept->push(n);  // save the one closest to the tail
  1580       // Terminate this path
  1581     } else {
  1582       uint start = n->is_Region() ? 1 : 0;
  1583       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
  1584       for (uint i = start; i < end; i++) {
  1585         Node* in = n->in(i);
  1586         assert(in->is_CFG(), "must be");
  1587         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
  1588           stack.push(in);
  1595 //------------------------------check_safepts----------------------------
  1596 // Given dominators, try to find loops with calls that must always be
  1597 // executed (call dominates loop tail).  These loops do not need non-call
  1598 // safepoints (ncsfpt).
  1599 //
  1600 // A complication is that a safepoint in a inner loop may be needed
  1601 // by an outer loop. In the following, the inner loop sees it has a
  1602 // call (block 3) on every path from the head (block 2) to the
  1603 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
  1604 // in block 2, _but_ this leaves the outer loop without a safepoint.
  1605 //
  1606 //          entry  0
  1607 //                 |
  1608 //                 v
  1609 // outer 1,2    +->1
  1610 //              |  |
  1611 //              |  v
  1612 //              |  2<---+  ncsfpt in 2
  1613 //              |_/|\   |
  1614 //                 | v  |
  1615 // inner 2,3      /  3  |  call in 3
  1616 //               /   |  |
  1617 //              v    +--+
  1618 //        exit  4
  1619 //
  1620 //
  1621 // This method creates a list (_required_safept) of ncsfpt nodes that must
  1622 // be protected is created for each loop. When a ncsfpt maybe deleted, it
  1623 // is first looked for in the lists for the outer loops of the current loop.
  1624 //
  1625 // The insights into the problem:
  1626 //  A) counted loops are okay
  1627 //  B) innermost loops are okay (only an inner loop can delete
  1628 //     a ncsfpt needed by an outer loop)
  1629 //  C) a loop is immune from an inner loop deleting a safepoint
  1630 //     if the loop has a call on the idom-path
  1631 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
  1632 //     idom-path that is not in a nested loop
  1633 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
  1634 //     loop needs to be prevented from deletion by an inner loop
  1635 //
  1636 // There are two analyses:
  1637 //  1) The first, and cheaper one, scans the loop body from
  1638 //     tail to head following the idom (immediate dominator)
  1639 //     chain, looking for the cases (C,D,E) above.
  1640 //     Since inner loops are scanned before outer loops, there is summary
  1641 //     information about inner loops.  Inner loops can be skipped over
  1642 //     when the tail of an inner loop is encountered.
  1643 //
  1644 //  2) The second, invoked if the first fails to find a call or ncsfpt on
  1645 //     the idom path (which is rare), scans all predecessor control paths
  1646 //     from the tail to the head, terminating a path when a call or sfpt
  1647 //     is encountered, to find the ncsfpt's that are closest to the tail.
  1648 //
  1649 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
  1650   // Bottom up traversal
  1651   IdealLoopTree* ch = _child;
  1652   if (_child) _child->check_safepts(visited, stack);
  1653   if (_next)  _next ->check_safepts(visited, stack);
  1655   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
  1656     bool  has_call         = false; // call on dom-path
  1657     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
  1658     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
  1659     // Scan the dom-path nodes from tail to head
  1660     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
  1661       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
  1662         has_call = true;
  1663         _has_sfpt = 1;          // Then no need for a safept!
  1664         break;
  1665       } else if (n->Opcode() == Op_SafePoint) {
  1666         if (_phase->get_loop(n) == this) {
  1667           has_local_ncsfpt = true;
  1668           break;
  1670         if (nonlocal_ncsfpt == NULL) {
  1671           nonlocal_ncsfpt = n; // save the one closest to the tail
  1673       } else {
  1674         IdealLoopTree* nlpt = _phase->get_loop(n);
  1675         if (this != nlpt) {
  1676           // If at an inner loop tail, see if the inner loop has already
  1677           // recorded seeing a call on the dom-path (and stop.)  If not,
  1678           // jump to the head of the inner loop.
  1679           assert(is_member(nlpt), "nested loop");
  1680           Node* tail = nlpt->_tail;
  1681           if (tail->in(0)->is_If()) tail = tail->in(0);
  1682           if (n == tail) {
  1683             // If inner loop has call on dom-path, so does outer loop
  1684             if (nlpt->_has_sfpt) {
  1685               has_call = true;
  1686               _has_sfpt = 1;
  1687               break;
  1689             // Skip to head of inner loop
  1690             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
  1691             n = nlpt->_head;
  1696     // Record safept's that this loop needs preserved when an
  1697     // inner loop attempts to delete it's safepoints.
  1698     if (_child != NULL && !has_call && !has_local_ncsfpt) {
  1699       if (nonlocal_ncsfpt != NULL) {
  1700         if (_required_safept == NULL) _required_safept = new Node_List();
  1701         _required_safept->push(nonlocal_ncsfpt);
  1702       } else {
  1703         // Failed to find a suitable safept on the dom-path.  Now use
  1704         // an all paths walk from tail to head, looking for safepoints to preserve.
  1705         allpaths_check_safepts(visited, stack);
  1711 //---------------------------is_deleteable_safept----------------------------
  1712 // Is safept not required by an outer loop?
  1713 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
  1714   assert(sfpt->Opcode() == Op_SafePoint, "");
  1715   IdealLoopTree* lp = get_loop(sfpt)->_parent;
  1716   while (lp != NULL) {
  1717     Node_List* sfpts = lp->_required_safept;
  1718     if (sfpts != NULL) {
  1719       for (uint i = 0; i < sfpts->size(); i++) {
  1720         if (sfpt == sfpts->at(i))
  1721           return false;
  1724     lp = lp->_parent;
  1726   return true;
  1729 //---------------------------replace_parallel_iv-------------------------------
  1730 // Replace parallel induction variable (parallel to trip counter)
  1731 void PhaseIdealLoop::replace_parallel_iv(IdealLoopTree *loop) {
  1732   assert(loop->_head->is_CountedLoop(), "");
  1733   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1734   if (!cl->is_valid_counted_loop())
  1735     return;         // skip malformed counted loop
  1736   Node *incr = cl->incr();
  1737   if (incr == NULL)
  1738     return;         // Dead loop?
  1739   Node *init = cl->init_trip();
  1740   Node *phi  = cl->phi();
  1741   int stride_con = cl->stride_con();
  1743   // Visit all children, looking for Phis
  1744   for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
  1745     Node *out = cl->out(i);
  1746     // Look for other phis (secondary IVs). Skip dead ones
  1747     if (!out->is_Phi() || out == phi || !has_node(out))
  1748       continue;
  1749     PhiNode* phi2 = out->as_Phi();
  1750     Node *incr2 = phi2->in( LoopNode::LoopBackControl );
  1751     // Look for induction variables of the form:  X += constant
  1752     if (phi2->region() != loop->_head ||
  1753         incr2->req() != 3 ||
  1754         incr2->in(1) != phi2 ||
  1755         incr2 == incr ||
  1756         incr2->Opcode() != Op_AddI ||
  1757         !incr2->in(2)->is_Con())
  1758       continue;
  1760     // Check for parallel induction variable (parallel to trip counter)
  1761     // via an affine function.  In particular, count-down loops with
  1762     // count-up array indices are common. We only RCE references off
  1763     // the trip-counter, so we need to convert all these to trip-counter
  1764     // expressions.
  1765     Node *init2 = phi2->in( LoopNode::EntryControl );
  1766     int stride_con2 = incr2->in(2)->get_int();
  1768     // The general case here gets a little tricky.  We want to find the
  1769     // GCD of all possible parallel IV's and make a new IV using this
  1770     // GCD for the loop.  Then all possible IVs are simple multiples of
  1771     // the GCD.  In practice, this will cover very few extra loops.
  1772     // Instead we require 'stride_con2' to be a multiple of 'stride_con',
  1773     // where +/-1 is the common case, but other integer multiples are
  1774     // also easy to handle.
  1775     int ratio_con = stride_con2/stride_con;
  1777     if ((ratio_con * stride_con) == stride_con2) { // Check for exact
  1778 #ifndef PRODUCT
  1779       if (TraceLoopOpts) {
  1780         tty->print("Parallel IV: %d ", phi2->_idx);
  1781         loop->dump_head();
  1783 #endif
  1784       // Convert to using the trip counter.  The parallel induction
  1785       // variable differs from the trip counter by a loop-invariant
  1786       // amount, the difference between their respective initial values.
  1787       // It is scaled by the 'ratio_con'.
  1788       Node* ratio = _igvn.intcon(ratio_con);
  1789       set_ctrl(ratio, C->root());
  1790       Node* ratio_init = new (C) MulINode(init, ratio);
  1791       _igvn.register_new_node_with_optimizer(ratio_init, init);
  1792       set_early_ctrl(ratio_init);
  1793       Node* diff = new (C) SubINode(init2, ratio_init);
  1794       _igvn.register_new_node_with_optimizer(diff, init2);
  1795       set_early_ctrl(diff);
  1796       Node* ratio_idx = new (C) MulINode(phi, ratio);
  1797       _igvn.register_new_node_with_optimizer(ratio_idx, phi);
  1798       set_ctrl(ratio_idx, cl);
  1799       Node* add = new (C) AddINode(ratio_idx, diff);
  1800       _igvn.register_new_node_with_optimizer(add);
  1801       set_ctrl(add, cl);
  1802       _igvn.replace_node( phi2, add );
  1803       // Sometimes an induction variable is unused
  1804       if (add->outcnt() == 0) {
  1805         _igvn.remove_dead_node(add);
  1807       --i; // deleted this phi; rescan starting with next position
  1808       continue;
  1813 void IdealLoopTree::remove_safepoints(PhaseIdealLoop* phase, bool keep_one) {
  1814   Node* keep = NULL;
  1815   if (keep_one) {
  1816     // Look for a safepoint on the idom-path.
  1817     for (Node* i = tail(); i != _head; i = phase->idom(i)) {
  1818       if (i->Opcode() == Op_SafePoint && phase->get_loop(i) == this) {
  1819         keep = i;
  1820         break; // Found one
  1825   // Don't remove any safepoints if it is requested to keep a single safepoint and
  1826   // no safepoint was found on idom-path. It is not safe to remove any safepoint
  1827   // in this case since there's no safepoint dominating all paths in the loop body.
  1828   bool prune = !keep_one || keep != NULL;
  1830   // Delete other safepoints in this loop.
  1831   Node_List* sfpts = _safepts;
  1832   if (prune && sfpts != NULL) {
  1833     assert(keep == NULL || keep->Opcode() == Op_SafePoint, "not safepoint");
  1834     for (uint i = 0; i < sfpts->size(); i++) {
  1835       Node* n = sfpts->at(i);
  1836       assert(phase->get_loop(n) == this, "");
  1837       if (n != keep && phase->is_deleteable_safept(n)) {
  1838         phase->lazy_replace(n, n->in(TypeFunc::Control));
  1844 //------------------------------counted_loop-----------------------------------
  1845 // Convert to counted loops where possible
  1846 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
  1848   // For grins, set the inner-loop flag here
  1849   if (!_child) {
  1850     if (_head->is_Loop()) _head->as_Loop()->set_inner_loop();
  1853   if (_head->is_CountedLoop() ||
  1854       phase->is_counted_loop(_head, this)) {
  1856     if (!UseCountedLoopSafepoints) {
  1857       // Indicate we do not need a safepoint here
  1858       _has_sfpt = 1;
  1861     // Remove safepoints
  1862     bool keep_one_sfpt = !(_has_call || _has_sfpt);
  1863     remove_safepoints(phase, keep_one_sfpt);
  1865     // Look for induction variables
  1866     phase->replace_parallel_iv(this);
  1868   } else if (_parent != NULL && !_irreducible) {
  1869     // Not a counted loop. Keep one safepoint.
  1870     bool keep_one_sfpt = true;
  1871     remove_safepoints(phase, keep_one_sfpt);
  1874   // Recursively
  1875   if (_child) _child->counted_loop( phase );
  1876   if (_next)  _next ->counted_loop( phase );
  1879 #ifndef PRODUCT
  1880 //------------------------------dump_head--------------------------------------
  1881 // Dump 1 liner for loop header info
  1882 void IdealLoopTree::dump_head( ) const {
  1883   for (uint i=0; i<_nest; i++)
  1884     tty->print("  ");
  1885   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
  1886   if (_irreducible) tty->print(" IRREDUCIBLE");
  1887   Node* entry = _head->in(LoopNode::EntryControl);
  1888   if (LoopLimitCheck) {
  1889     Node* predicate = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_loop_limit_check);
  1890     if (predicate != NULL ) {
  1891       tty->print(" limit_check");
  1892       entry = entry->in(0)->in(0);
  1895   if (UseLoopPredicate) {
  1896     entry = PhaseIdealLoop::find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
  1897     if (entry != NULL) {
  1898       tty->print(" predicated");
  1901   if (_head->is_CountedLoop()) {
  1902     CountedLoopNode *cl = _head->as_CountedLoop();
  1903     tty->print(" counted");
  1905     Node* init_n = cl->init_trip();
  1906     if (init_n  != NULL &&  init_n->is_Con())
  1907       tty->print(" [%d,", cl->init_trip()->get_int());
  1908     else
  1909       tty->print(" [int,");
  1910     Node* limit_n = cl->limit();
  1911     if (limit_n  != NULL &&  limit_n->is_Con())
  1912       tty->print("%d),", cl->limit()->get_int());
  1913     else
  1914       tty->print("int),");
  1915     int stride_con  = cl->stride_con();
  1916     if (stride_con > 0) tty->print("+");
  1917     tty->print("%d", stride_con);
  1919     tty->print(" (%d iters) ", (int)cl->profile_trip_cnt());
  1921     if (cl->is_pre_loop ()) tty->print(" pre" );
  1922     if (cl->is_main_loop()) tty->print(" main");
  1923     if (cl->is_post_loop()) tty->print(" post");
  1925   if (_has_call) tty->print(" has_call");
  1926   if (_has_sfpt) tty->print(" has_sfpt");
  1927   if (_rce_candidate) tty->print(" rce");
  1928   if (_safepts != NULL && _safepts->size() > 0) {
  1929     tty->print(" sfpts={"); _safepts->dump_simple(); tty->print(" }");
  1931   if (_required_safept != NULL && _required_safept->size() > 0) {
  1932     tty->print(" req={"); _required_safept->dump_simple(); tty->print(" }");
  1934   tty->cr();
  1937 //------------------------------dump-------------------------------------------
  1938 // Dump loops by loop tree
  1939 void IdealLoopTree::dump( ) const {
  1940   dump_head();
  1941   if (_child) _child->dump();
  1942   if (_next)  _next ->dump();
  1945 #endif
  1947 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
  1948   if (loop == root) {
  1949     if (loop->_child != NULL) {
  1950       log->begin_head("loop_tree");
  1951       log->end_head();
  1952       if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1953       log->tail("loop_tree");
  1954       assert(loop->_next == NULL, "what?");
  1956   } else {
  1957     Node* head = loop->_head;
  1958     log->begin_head("loop");
  1959     log->print(" idx='%d' ", head->_idx);
  1960     if (loop->_irreducible) log->print("irreducible='1' ");
  1961     if (head->is_Loop()) {
  1962       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
  1963       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
  1965     if (head->is_CountedLoop()) {
  1966       CountedLoopNode* cl = head->as_CountedLoop();
  1967       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
  1968       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
  1969       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
  1971     log->end_head();
  1972     if( loop->_child ) log_loop_tree(root, loop->_child, log);
  1973     log->tail("loop");
  1974     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
  1978 //---------------------collect_potentially_useful_predicates-----------------------
  1979 // Helper function to collect potentially useful predicates to prevent them from
  1980 // being eliminated by PhaseIdealLoop::eliminate_useless_predicates
  1981 void PhaseIdealLoop::collect_potentially_useful_predicates(
  1982                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
  1983   if (loop->_child) { // child
  1984     collect_potentially_useful_predicates(loop->_child, useful_predicates);
  1987   // self (only loops that we can apply loop predication may use their predicates)
  1988   if (loop->_head->is_Loop() &&
  1989       !loop->_irreducible    &&
  1990       !loop->tail()->is_top()) {
  1991     LoopNode* lpn = loop->_head->as_Loop();
  1992     Node* entry = lpn->in(LoopNode::EntryControl);
  1993     Node* predicate_proj = find_predicate(entry); // loop_limit_check first
  1994     if (predicate_proj != NULL ) { // right pattern that can be used by loop predication
  1995       assert(entry->in(0)->in(1)->in(1)->Opcode() == Op_Opaque1, "must be");
  1996       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  1997       entry = entry->in(0)->in(0);
  1999     predicate_proj = find_predicate(entry); // Predicate
  2000     if (predicate_proj != NULL ) {
  2001       useful_predicates.push(entry->in(0)->in(1)->in(1)); // good one
  2005   if (loop->_next) { // sibling
  2006     collect_potentially_useful_predicates(loop->_next, useful_predicates);
  2010 //------------------------eliminate_useless_predicates-----------------------------
  2011 // Eliminate all inserted predicates if they could not be used by loop predication.
  2012 // Note: it will also eliminates loop limits check predicate since it also uses
  2013 // Opaque1 node (see Parse::add_predicate()).
  2014 void PhaseIdealLoop::eliminate_useless_predicates() {
  2015   if (C->predicate_count() == 0)
  2016     return; // no predicate left
  2018   Unique_Node_List useful_predicates; // to store useful predicates
  2019   if (C->has_loops()) {
  2020     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
  2023   for (int i = C->predicate_count(); i > 0; i--) {
  2024      Node * n = C->predicate_opaque1_node(i-1);
  2025      assert(n->Opcode() == Op_Opaque1, "must be");
  2026      if (!useful_predicates.member(n)) { // not in the useful list
  2027        _igvn.replace_node(n, n->in(1));
  2032 //------------------------process_expensive_nodes-----------------------------
  2033 // Expensive nodes have their control input set to prevent the GVN
  2034 // from commoning them and as a result forcing the resulting node to
  2035 // be in a more frequent path. Use CFG information here, to change the
  2036 // control inputs so that some expensive nodes can be commoned while
  2037 // not executed more frequently.
  2038 bool PhaseIdealLoop::process_expensive_nodes() {
  2039   assert(OptimizeExpensiveOps, "optimization off?");
  2041   // Sort nodes to bring similar nodes together
  2042   C->sort_expensive_nodes();
  2044   bool progress = false;
  2046   for (int i = 0; i < C->expensive_count(); ) {
  2047     Node* n = C->expensive_node(i);
  2048     int start = i;
  2049     // Find nodes similar to n
  2050     i++;
  2051     for (; i < C->expensive_count() && Compile::cmp_expensive_nodes(n, C->expensive_node(i)) == 0; i++);
  2052     int end = i;
  2053     // And compare them two by two
  2054     for (int j = start; j < end; j++) {
  2055       Node* n1 = C->expensive_node(j);
  2056       if (is_node_unreachable(n1)) {
  2057         continue;
  2059       for (int k = j+1; k < end; k++) {
  2060         Node* n2 = C->expensive_node(k);
  2061         if (is_node_unreachable(n2)) {
  2062           continue;
  2065         assert(n1 != n2, "should be pair of nodes");
  2067         Node* c1 = n1->in(0);
  2068         Node* c2 = n2->in(0);
  2070         Node* parent_c1 = c1;
  2071         Node* parent_c2 = c2;
  2073         // The call to get_early_ctrl_for_expensive() moves the
  2074         // expensive nodes up but stops at loops that are in a if
  2075         // branch. See whether we can exit the loop and move above the
  2076         // If.
  2077         if (c1->is_Loop()) {
  2078           parent_c1 = c1->in(1);
  2080         if (c2->is_Loop()) {
  2081           parent_c2 = c2->in(1);
  2084         if (parent_c1 == parent_c2) {
  2085           _igvn._worklist.push(n1);
  2086           _igvn._worklist.push(n2);
  2087           continue;
  2090         // Look for identical expensive node up the dominator chain.
  2091         if (is_dominator(c1, c2)) {
  2092           c2 = c1;
  2093         } else if (is_dominator(c2, c1)) {
  2094           c1 = c2;
  2095         } else if (parent_c1->is_Proj() && parent_c1->in(0)->is_If() &&
  2096                    parent_c2->is_Proj() && parent_c1->in(0) == parent_c2->in(0)) {
  2097           // Both branches have the same expensive node so move it up
  2098           // before the if.
  2099           c1 = c2 = idom(parent_c1->in(0));
  2101         // Do the actual moves
  2102         if (n1->in(0) != c1) {
  2103           _igvn.hash_delete(n1);
  2104           n1->set_req(0, c1);
  2105           _igvn.hash_insert(n1);
  2106           _igvn._worklist.push(n1);
  2107           progress = true;
  2109         if (n2->in(0) != c2) {
  2110           _igvn.hash_delete(n2);
  2111           n2->set_req(0, c2);
  2112           _igvn.hash_insert(n2);
  2113           _igvn._worklist.push(n2);
  2114           progress = true;
  2120   return progress;
  2124 //=============================================================================
  2125 //----------------------------build_and_optimize-------------------------------
  2126 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
  2127 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
  2128 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts) {
  2129   ResourceMark rm;
  2131   int old_progress = C->major_progress();
  2132   uint orig_worklist_size = _igvn._worklist.size();
  2134   // Reset major-progress flag for the driver's heuristics
  2135   C->clear_major_progress();
  2137 #ifndef PRODUCT
  2138   // Capture for later assert
  2139   uint unique = C->unique();
  2140   _loop_invokes++;
  2141   _loop_work += unique;
  2142 #endif
  2144   // True if the method has at least 1 irreducible loop
  2145   _has_irreducible_loops = false;
  2147   _created_loop_node = false;
  2149   Arena *a = Thread::current()->resource_area();
  2150   VectorSet visited(a);
  2151   // Pre-grow the mapping from Nodes to IdealLoopTrees.
  2152   _nodes.map(C->unique(), NULL);
  2153   memset(_nodes.adr(), 0, wordSize * C->unique());
  2155   // Pre-build the top-level outermost loop tree entry
  2156   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
  2157   // Do not need a safepoint at the top level
  2158   _ltree_root->_has_sfpt = 1;
  2160   // Initialize Dominators.
  2161   // Checked in clone_loop_predicate() during beautify_loops().
  2162   _idom_size = 0;
  2163   _idom      = NULL;
  2164   _dom_depth = NULL;
  2165   _dom_stk   = NULL;
  2167   // Empty pre-order array
  2168   allocate_preorders();
  2170   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
  2171   // IdealLoopTree entries.  Data nodes are NOT walked.
  2172   build_loop_tree();
  2173   // Check for bailout, and return
  2174   if (C->failing()) {
  2175     return;
  2178   // No loops after all
  2179   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
  2181   // There should always be an outer loop containing the Root and Return nodes.
  2182   // If not, we have a degenerate empty program.  Bail out in this case.
  2183   if (!has_node(C->root())) {
  2184     if (!_verify_only) {
  2185       C->clear_major_progress();
  2186       C->record_method_not_compilable("empty program detected during loop optimization");
  2188     return;
  2191   // Nothing to do, so get out
  2192   bool stop_early = !C->has_loops() && !skip_loop_opts && !do_split_ifs && !_verify_me && !_verify_only;
  2193   bool do_expensive_nodes = C->should_optimize_expensive_nodes(_igvn);
  2194   if (stop_early && !do_expensive_nodes) {
  2195     _igvn.optimize();           // Cleanup NeverBranches
  2196     return;
  2199   // Set loop nesting depth
  2200   _ltree_root->set_nest( 0 );
  2202   // Split shared headers and insert loop landing pads.
  2203   // Do not bother doing this on the Root loop of course.
  2204   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
  2205     C->print_method(PHASE_BEFORE_BEAUTIFY_LOOPS, 3);
  2206     if( _ltree_root->_child->beautify_loops( this ) ) {
  2207       // Re-build loop tree!
  2208       _ltree_root->_child = NULL;
  2209       _nodes.clear();
  2210       reallocate_preorders();
  2211       build_loop_tree();
  2212       // Check for bailout, and return
  2213       if (C->failing()) {
  2214         return;
  2216       // Reset loop nesting depth
  2217       _ltree_root->set_nest( 0 );
  2219       C->print_method(PHASE_AFTER_BEAUTIFY_LOOPS, 3);
  2223   // Build Dominators for elision of NULL checks & loop finding.
  2224   // Since nodes do not have a slot for immediate dominator, make
  2225   // a persistent side array for that info indexed on node->_idx.
  2226   _idom_size = C->unique();
  2227   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
  2228   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
  2229   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
  2230   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
  2232   Dominators();
  2234   if (!_verify_only) {
  2235     // As a side effect, Dominators removed any unreachable CFG paths
  2236     // into RegionNodes.  It doesn't do this test against Root, so
  2237     // we do it here.
  2238     for( uint i = 1; i < C->root()->req(); i++ ) {
  2239       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
  2240         _igvn.delete_input_of(C->root(), i);
  2241         i--;                      // Rerun same iteration on compressed edges
  2245     // Given dominators, try to find inner loops with calls that must
  2246     // always be executed (call dominates loop tail).  These loops do
  2247     // not need a separate safepoint.
  2248     Node_List cisstack(a);
  2249     _ltree_root->check_safepts(visited, cisstack);
  2252   // Walk the DATA nodes and place into loops.  Find earliest control
  2253   // node.  For CFG nodes, the _nodes array starts out and remains
  2254   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
  2255   // _nodes array holds the earliest legal controlling CFG node.
  2257   // Allocate stack with enough space to avoid frequent realloc
  2258   int stack_size = (C->live_nodes() >> 1) + 16; // (live_nodes>>1)+16 from Java2D stats
  2259   Node_Stack nstack( a, stack_size );
  2261   visited.Clear();
  2262   Node_List worklist(a);
  2263   // Don't need C->root() on worklist since
  2264   // it will be processed among C->top() inputs
  2265   worklist.push( C->top() );
  2266   visited.set( C->top()->_idx ); // Set C->top() as visited now
  2267   build_loop_early( visited, worklist, nstack );
  2269   // Given early legal placement, try finding counted loops.  This placement
  2270   // is good enough to discover most loop invariants.
  2271   if( !_verify_me && !_verify_only )
  2272     _ltree_root->counted_loop( this );
  2274   // Find latest loop placement.  Find ideal loop placement.
  2275   visited.Clear();
  2276   init_dom_lca_tags();
  2277   // Need C->root() on worklist when processing outs
  2278   worklist.push( C->root() );
  2279   NOT_PRODUCT( C->verify_graph_edges(); )
  2280   worklist.push( C->top() );
  2281   build_loop_late( visited, worklist, nstack );
  2283   if (_verify_only) {
  2284     // restore major progress flag
  2285     for (int i = 0; i < old_progress; i++)
  2286       C->set_major_progress();
  2287     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
  2288     assert(_igvn._worklist.size() == orig_worklist_size, "shouldn't push anything");
  2289     return;
  2292   // clear out the dead code after build_loop_late
  2293   while (_deadlist.size()) {
  2294     _igvn.remove_globally_dead_node(_deadlist.pop());
  2297   if (stop_early) {
  2298     assert(do_expensive_nodes, "why are we here?");
  2299     if (process_expensive_nodes()) {
  2300       // If we made some progress when processing expensive nodes then
  2301       // the IGVN may modify the graph in a way that will allow us to
  2302       // make some more progress: we need to try processing expensive
  2303       // nodes again.
  2304       C->set_major_progress();
  2306     _igvn.optimize();
  2307     return;
  2310   // Some parser-inserted loop predicates could never be used by loop
  2311   // predication or they were moved away from loop during some optimizations.
  2312   // For example, peeling. Eliminate them before next loop optimizations.
  2313   if (UseLoopPredicate || LoopLimitCheck) {
  2314     eliminate_useless_predicates();
  2317 #ifndef PRODUCT
  2318   C->verify_graph_edges();
  2319   if (_verify_me) {             // Nested verify pass?
  2320     // Check to see if the verify mode is broken
  2321     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
  2322     return;
  2324   if(VerifyLoopOptimizations) verify();
  2325   if(TraceLoopOpts && C->has_loops()) {
  2326     _ltree_root->dump();
  2328 #endif
  2330   if (skip_loop_opts) {
  2331     // restore major progress flag
  2332     for (int i = 0; i < old_progress; i++) {
  2333       C->set_major_progress();
  2336     // Cleanup any modified bits
  2337     _igvn.optimize();
  2339     if (C->log() != NULL) {
  2340       log_loop_tree(_ltree_root, _ltree_root, C->log());
  2342     return;
  2345   if (ReassociateInvariants) {
  2346     // Reassociate invariants and prep for split_thru_phi
  2347     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2348       IdealLoopTree* lpt = iter.current();
  2349       if (!lpt->is_counted() || !lpt->is_inner()) continue;
  2351       lpt->reassociate_invariants(this);
  2353       // Because RCE opportunities can be masked by split_thru_phi,
  2354       // look for RCE candidates and inhibit split_thru_phi
  2355       // on just their loop-phi's for this pass of loop opts
  2356       if (SplitIfBlocks && do_split_ifs) {
  2357         if (lpt->policy_range_check(this)) {
  2358           lpt->_rce_candidate = 1; // = true
  2364   // Check for aggressive application of split-if and other transforms
  2365   // that require basic-block info (like cloning through Phi's)
  2366   if( SplitIfBlocks && do_split_ifs ) {
  2367     visited.Clear();
  2368     split_if_with_blocks( visited, nstack );
  2369     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
  2372   if (!C->major_progress() && do_expensive_nodes && process_expensive_nodes()) {
  2373     C->set_major_progress();
  2376   // Perform loop predication before iteration splitting
  2377   if (C->has_loops() && !C->major_progress() && (C->predicate_count() > 0)) {
  2378     _ltree_root->_child->loop_predication(this);
  2381   if (OptimizeFill && UseLoopPredicate && C->has_loops() && !C->major_progress()) {
  2382     if (do_intrinsify_fill()) {
  2383       C->set_major_progress();
  2387   // Perform iteration-splitting on inner loops.  Split iterations to avoid
  2388   // range checks or one-shot null checks.
  2390   // If split-if's didn't hack the graph too bad (no CFG changes)
  2391   // then do loop opts.
  2392   if (C->has_loops() && !C->major_progress()) {
  2393     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
  2394     _ltree_root->_child->iteration_split( this, worklist );
  2395     // No verify after peeling!  GCM has hoisted code out of the loop.
  2396     // After peeling, the hoisted code could sink inside the peeled area.
  2397     // The peeling code does not try to recompute the best location for
  2398     // all the code before the peeled area, so the verify pass will always
  2399     // complain about it.
  2401   // Do verify graph edges in any case
  2402   NOT_PRODUCT( C->verify_graph_edges(); );
  2404   if (!do_split_ifs) {
  2405     // We saw major progress in Split-If to get here.  We forced a
  2406     // pass with unrolling and not split-if, however more split-if's
  2407     // might make progress.  If the unrolling didn't make progress
  2408     // then the major-progress flag got cleared and we won't try
  2409     // another round of Split-If.  In particular the ever-common
  2410     // instance-of/check-cast pattern requires at least 2 rounds of
  2411     // Split-If to clear out.
  2412     C->set_major_progress();
  2415   // Repeat loop optimizations if new loops were seen
  2416   if (created_loop_node()) {
  2417     C->set_major_progress();
  2420   // Keep loop predicates and perform optimizations with them
  2421   // until no more loop optimizations could be done.
  2422   // After that switch predicates off and do more loop optimizations.
  2423   if (!C->major_progress() && (C->predicate_count() > 0)) {
  2424      C->cleanup_loop_predicates(_igvn);
  2425 #ifndef PRODUCT
  2426      if (TraceLoopOpts) {
  2427        tty->print_cr("PredicatesOff");
  2429 #endif
  2430      C->set_major_progress();
  2433   // Convert scalar to superword operations at the end of all loop opts.
  2434   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
  2435     // SuperWord transform
  2436     SuperWord sw(this);
  2437     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2438       IdealLoopTree* lpt = iter.current();
  2439       if (lpt->is_counted()) {
  2440         sw.transform_loop(lpt);
  2445   // Cleanup any modified bits
  2446   _igvn.optimize();
  2448   // disable assert until issue with split_flow_path is resolved (6742111)
  2449   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
  2450   //        "shouldn't introduce irreducible loops");
  2452   if (C->log() != NULL) {
  2453     log_loop_tree(_ltree_root, _ltree_root, C->log());
  2457 #ifndef PRODUCT
  2458 //------------------------------print_statistics-------------------------------
  2459 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
  2460 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
  2461 void PhaseIdealLoop::print_statistics() {
  2462   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
  2465 //------------------------------verify-----------------------------------------
  2466 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
  2467 static int fail;                // debug only, so its multi-thread dont care
  2468 void PhaseIdealLoop::verify() const {
  2469   int old_progress = C->major_progress();
  2470   ResourceMark rm;
  2471   PhaseIdealLoop loop_verify( _igvn, this );
  2472   VectorSet visited(Thread::current()->resource_area());
  2474   fail = 0;
  2475   verify_compare( C->root(), &loop_verify, visited );
  2476   assert( fail == 0, "verify loops failed" );
  2477   // Verify loop structure is the same
  2478   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
  2479   // Reset major-progress.  It was cleared by creating a verify version of
  2480   // PhaseIdealLoop.
  2481   for( int i=0; i<old_progress; i++ )
  2482     C->set_major_progress();
  2485 //------------------------------verify_compare---------------------------------
  2486 // Make sure me and the given PhaseIdealLoop agree on key data structures
  2487 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
  2488   if( !n ) return;
  2489   if( visited.test_set( n->_idx ) ) return;
  2490   if( !_nodes[n->_idx] ) {      // Unreachable
  2491     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
  2492     return;
  2495   uint i;
  2496   for( i = 0; i < n->req(); i++ )
  2497     verify_compare( n->in(i), loop_verify, visited );
  2499   // Check the '_nodes' block/loop structure
  2500   i = n->_idx;
  2501   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
  2502     if( _nodes[i] != loop_verify->_nodes[i] &&
  2503         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
  2504       tty->print("Mismatched control setting for: ");
  2505       n->dump();
  2506       if( fail++ > 10 ) return;
  2507       Node *c = get_ctrl_no_update(n);
  2508       tty->print("We have it as: ");
  2509       if( c->in(0) ) c->dump();
  2510         else tty->print_cr("N%d",c->_idx);
  2511       tty->print("Verify thinks: ");
  2512       if( loop_verify->has_ctrl(n) )
  2513         loop_verify->get_ctrl_no_update(n)->dump();
  2514       else
  2515         loop_verify->get_loop_idx(n)->dump();
  2516       tty->cr();
  2518   } else {                    // We have a loop
  2519     IdealLoopTree *us = get_loop_idx(n);
  2520     if( loop_verify->has_ctrl(n) ) {
  2521       tty->print("Mismatched loop setting for: ");
  2522       n->dump();
  2523       if( fail++ > 10 ) return;
  2524       tty->print("We have it as: ");
  2525       us->dump();
  2526       tty->print("Verify thinks: ");
  2527       loop_verify->get_ctrl_no_update(n)->dump();
  2528       tty->cr();
  2529     } else if (!C->major_progress()) {
  2530       // Loop selection can be messed up if we did a major progress
  2531       // operation, like split-if.  Do not verify in that case.
  2532       IdealLoopTree *them = loop_verify->get_loop_idx(n);
  2533       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
  2534         tty->print("Unequals loops for: ");
  2535         n->dump();
  2536         if( fail++ > 10 ) return;
  2537         tty->print("We have it as: ");
  2538         us->dump();
  2539         tty->print("Verify thinks: ");
  2540         them->dump();
  2541         tty->cr();
  2546   // Check for immediate dominators being equal
  2547   if( i >= _idom_size ) {
  2548     if( !n->is_CFG() ) return;
  2549     tty->print("CFG Node with no idom: ");
  2550     n->dump();
  2551     return;
  2553   if( !n->is_CFG() ) return;
  2554   if( n == C->root() ) return; // No IDOM here
  2556   assert(n->_idx == i, "sanity");
  2557   Node *id = idom_no_update(n);
  2558   if( id != loop_verify->idom_no_update(n) ) {
  2559     tty->print("Unequals idoms for: ");
  2560     n->dump();
  2561     if( fail++ > 10 ) return;
  2562     tty->print("We have it as: ");
  2563     id->dump();
  2564     tty->print("Verify thinks: ");
  2565     loop_verify->idom_no_update(n)->dump();
  2566     tty->cr();
  2571 //------------------------------verify_tree------------------------------------
  2572 // Verify that tree structures match.  Because the CFG can change, siblings
  2573 // within the loop tree can be reordered.  We attempt to deal with that by
  2574 // reordering the verify's loop tree if possible.
  2575 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
  2576   assert( _parent == parent, "Badly formed loop tree" );
  2578   // Siblings not in same order?  Attempt to re-order.
  2579   if( _head != loop->_head ) {
  2580     // Find _next pointer to update
  2581     IdealLoopTree **pp = &loop->_parent->_child;
  2582     while( *pp != loop )
  2583       pp = &((*pp)->_next);
  2584     // Find proper sibling to be next
  2585     IdealLoopTree **nn = &loop->_next;
  2586     while( (*nn) && (*nn)->_head != _head )
  2587       nn = &((*nn)->_next);
  2589     // Check for no match.
  2590     if( !(*nn) ) {
  2591       // Annoyingly, irreducible loops can pick different headers
  2592       // after a major_progress operation, so the rest of the loop
  2593       // tree cannot be matched.
  2594       if (_irreducible && Compile::current()->major_progress())  return;
  2595       assert( 0, "failed to match loop tree" );
  2598     // Move (*nn) to (*pp)
  2599     IdealLoopTree *hit = *nn;
  2600     *nn = hit->_next;
  2601     hit->_next = loop;
  2602     *pp = loop;
  2603     loop = hit;
  2604     // Now try again to verify
  2607   assert( _head  == loop->_head , "mismatched loop head" );
  2608   Node *tail = _tail;           // Inline a non-updating version of
  2609   while( !tail->in(0) )         // the 'tail()' call.
  2610     tail = tail->in(1);
  2611   assert( tail == loop->_tail, "mismatched loop tail" );
  2613   // Counted loops that are guarded should be able to find their guards
  2614   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
  2615     CountedLoopNode *cl = _head->as_CountedLoop();
  2616     Node *init = cl->init_trip();
  2617     Node *ctrl = cl->in(LoopNode::EntryControl);
  2618     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  2619     Node *iff  = ctrl->in(0);
  2620     assert( iff->Opcode() == Op_If, "" );
  2621     Node *bol  = iff->in(1);
  2622     assert( bol->Opcode() == Op_Bool, "" );
  2623     Node *cmp  = bol->in(1);
  2624     assert( cmp->Opcode() == Op_CmpI, "" );
  2625     Node *add  = cmp->in(1);
  2626     Node *opaq;
  2627     if( add->Opcode() == Op_Opaque1 ) {
  2628       opaq = add;
  2629     } else {
  2630       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
  2631       assert( add == init, "" );
  2632       opaq = cmp->in(2);
  2634     assert( opaq->Opcode() == Op_Opaque1, "" );
  2638   if (_child != NULL)  _child->verify_tree(loop->_child, this);
  2639   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
  2640   // Innermost loops need to verify loop bodies,
  2641   // but only if no 'major_progress'
  2642   int fail = 0;
  2643   if (!Compile::current()->major_progress() && _child == NULL) {
  2644     for( uint i = 0; i < _body.size(); i++ ) {
  2645       Node *n = _body.at(i);
  2646       if (n->outcnt() == 0)  continue; // Ignore dead
  2647       uint j;
  2648       for( j = 0; j < loop->_body.size(); j++ )
  2649         if( loop->_body.at(j) == n )
  2650           break;
  2651       if( j == loop->_body.size() ) { // Not found in loop body
  2652         // Last ditch effort to avoid assertion: Its possible that we
  2653         // have some users (so outcnt not zero) but are still dead.
  2654         // Try to find from root.
  2655         if (Compile::current()->root()->find(n->_idx)) {
  2656           fail++;
  2657           tty->print("We have that verify does not: ");
  2658           n->dump();
  2662     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
  2663       Node *n = loop->_body.at(i2);
  2664       if (n->outcnt() == 0)  continue; // Ignore dead
  2665       uint j;
  2666       for( j = 0; j < _body.size(); j++ )
  2667         if( _body.at(j) == n )
  2668           break;
  2669       if( j == _body.size() ) { // Not found in loop body
  2670         // Last ditch effort to avoid assertion: Its possible that we
  2671         // have some users (so outcnt not zero) but are still dead.
  2672         // Try to find from root.
  2673         if (Compile::current()->root()->find(n->_idx)) {
  2674           fail++;
  2675           tty->print("Verify has that we do not: ");
  2676           n->dump();
  2680     assert( !fail, "loop body mismatch" );
  2684 #endif
  2686 //------------------------------set_idom---------------------------------------
  2687 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
  2688   uint idx = d->_idx;
  2689   if (idx >= _idom_size) {
  2690     uint newsize = _idom_size<<1;
  2691     while( idx >= newsize ) {
  2692       newsize <<= 1;
  2694     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
  2695     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
  2696     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
  2697     _idom_size = newsize;
  2699   _idom[idx] = n;
  2700   _dom_depth[idx] = dom_depth;
  2703 //------------------------------recompute_dom_depth---------------------------------------
  2704 // The dominator tree is constructed with only parent pointers.
  2705 // This recomputes the depth in the tree by first tagging all
  2706 // nodes as "no depth yet" marker.  The next pass then runs up
  2707 // the dom tree from each node marked "no depth yet", and computes
  2708 // the depth on the way back down.
  2709 void PhaseIdealLoop::recompute_dom_depth() {
  2710   uint no_depth_marker = C->unique();
  2711   uint i;
  2712   // Initialize depth to "no depth yet"
  2713   for (i = 0; i < _idom_size; i++) {
  2714     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
  2715      _dom_depth[i] = no_depth_marker;
  2718   if (_dom_stk == NULL) {
  2719     uint init_size = C->live_nodes() / 100; // Guess that 1/100 is a reasonable initial size.
  2720     if (init_size < 10) init_size = 10;
  2721     _dom_stk = new GrowableArray<uint>(init_size);
  2723   // Compute new depth for each node.
  2724   for (i = 0; i < _idom_size; i++) {
  2725     uint j = i;
  2726     // Run up the dom tree to find a node with a depth
  2727     while (_dom_depth[j] == no_depth_marker) {
  2728       _dom_stk->push(j);
  2729       j = _idom[j]->_idx;
  2731     // Compute the depth on the way back down this tree branch
  2732     uint dd = _dom_depth[j] + 1;
  2733     while (_dom_stk->length() > 0) {
  2734       uint j = _dom_stk->pop();
  2735       _dom_depth[j] = dd;
  2736       dd++;
  2741 //------------------------------sort-------------------------------------------
  2742 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
  2743 // loop tree, not the root.
  2744 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
  2745   if( !innermost ) return loop; // New innermost loop
  2747   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
  2748   assert( loop_preorder, "not yet post-walked loop" );
  2749   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
  2750   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
  2752   // Insert at start of list
  2753   while( l ) {                  // Insertion sort based on pre-order
  2754     if( l == loop ) return innermost; // Already on list!
  2755     int l_preorder = get_preorder(l->_head); // Cache pre-order number
  2756     assert( l_preorder, "not yet post-walked l" );
  2757     // Check header pre-order number to figure proper nesting
  2758     if( loop_preorder > l_preorder )
  2759       break;                    // End of insertion
  2760     // If headers tie (e.g., shared headers) check tail pre-order numbers.
  2761     // Since I split shared headers, you'd think this could not happen.
  2762     // BUT: I must first do the preorder numbering before I can discover I
  2763     // have shared headers, so the split headers all get the same preorder
  2764     // number as the RegionNode they split from.
  2765     if( loop_preorder == l_preorder &&
  2766         get_preorder(loop->_tail) < get_preorder(l->_tail) )
  2767       break;                    // Also check for shared headers (same pre#)
  2768     pp = &l->_parent;           // Chain up list
  2769     l = *pp;
  2771   // Link into list
  2772   // Point predecessor to me
  2773   *pp = loop;
  2774   // Point me to successor
  2775   IdealLoopTree *p = loop->_parent;
  2776   loop->_parent = l;            // Point me to successor
  2777   if( p ) sort( p, innermost ); // Insert my parents into list as well
  2778   return innermost;
  2781 //------------------------------build_loop_tree--------------------------------
  2782 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
  2783 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
  2784 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
  2785 // tightest enclosing IdealLoopTree for post-walked.
  2786 //
  2787 // During my forward walk I do a short 1-layer lookahead to see if I can find
  2788 // a loop backedge with that doesn't have any work on the backedge.  This
  2789 // helps me construct nested loops with shared headers better.
  2790 //
  2791 // Once I've done the forward recursion, I do the post-work.  For each child
  2792 // I check to see if there is a backedge.  Backedges define a loop!  I
  2793 // insert an IdealLoopTree at the target of the backedge.
  2794 //
  2795 // During the post-work I also check to see if I have several children
  2796 // belonging to different loops.  If so, then this Node is a decision point
  2797 // where control flow can choose to change loop nests.  It is at this
  2798 // decision point where I can figure out how loops are nested.  At this
  2799 // time I can properly order the different loop nests from my children.
  2800 // Note that there may not be any backedges at the decision point!
  2801 //
  2802 // Since the decision point can be far removed from the backedges, I can't
  2803 // order my loops at the time I discover them.  Thus at the decision point
  2804 // I need to inspect loop header pre-order numbers to properly nest my
  2805 // loops.  This means I need to sort my childrens' loops by pre-order.
  2806 // The sort is of size number-of-control-children, which generally limits
  2807 // it to size 2 (i.e., I just choose between my 2 target loops).
  2808 void PhaseIdealLoop::build_loop_tree() {
  2809   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
  2810   GrowableArray <Node *> bltstack(C->live_nodes() >> 1);
  2811   Node *n = C->root();
  2812   bltstack.push(n);
  2813   int pre_order = 1;
  2814   int stack_size;
  2816   while ( ( stack_size = bltstack.length() ) != 0 ) {
  2817     n = bltstack.top(); // Leave node on stack
  2818     if ( !is_visited(n) ) {
  2819       // ---- Pre-pass Work ----
  2820       // Pre-walked but not post-walked nodes need a pre_order number.
  2822       set_preorder_visited( n, pre_order ); // set as visited
  2824       // ---- Scan over children ----
  2825       // Scan first over control projections that lead to loop headers.
  2826       // This helps us find inner-to-outer loops with shared headers better.
  2828       // Scan children's children for loop headers.
  2829       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
  2830         Node* m = n->raw_out(i);       // Child
  2831         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
  2832           // Scan over children's children to find loop
  2833           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2834             Node* l = m->fast_out(j);
  2835             if( is_visited(l) &&       // Been visited?
  2836                 !is_postvisited(l) &&  // But not post-visited
  2837                 get_preorder(l) < pre_order ) { // And smaller pre-order
  2838               // Found!  Scan the DFS down this path before doing other paths
  2839               bltstack.push(m);
  2840               break;
  2845       pre_order++;
  2847     else if ( !is_postvisited(n) ) {
  2848       // Note: build_loop_tree_impl() adds out edges on rare occasions,
  2849       // such as com.sun.rsasign.am::a.
  2850       // For non-recursive version, first, process current children.
  2851       // On next iteration, check if additional children were added.
  2852       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
  2853         Node* u = n->raw_out(k);
  2854         if ( u->is_CFG() && !is_visited(u) ) {
  2855           bltstack.push(u);
  2858       if ( bltstack.length() == stack_size ) {
  2859         // There were no additional children, post visit node now
  2860         (void)bltstack.pop(); // Remove node from stack
  2861         pre_order = build_loop_tree_impl( n, pre_order );
  2862         // Check for bailout
  2863         if (C->failing()) {
  2864           return;
  2866         // Check to grow _preorders[] array for the case when
  2867         // build_loop_tree_impl() adds new nodes.
  2868         check_grow_preorders();
  2871     else {
  2872       (void)bltstack.pop(); // Remove post-visited node from stack
  2877 //------------------------------build_loop_tree_impl---------------------------
  2878 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
  2879   // ---- Post-pass Work ----
  2880   // Pre-walked but not post-walked nodes need a pre_order number.
  2882   // Tightest enclosing loop for this Node
  2883   IdealLoopTree *innermost = NULL;
  2885   // For all children, see if any edge is a backedge.  If so, make a loop
  2886   // for it.  Then find the tightest enclosing loop for the self Node.
  2887   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2888     Node* m = n->fast_out(i);   // Child
  2889     if( n == m ) continue;      // Ignore control self-cycles
  2890     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
  2892     IdealLoopTree *l;           // Child's loop
  2893     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
  2894       // Found a backedge
  2895       assert( get_preorder(m) < pre_order, "should be backedge" );
  2896       // Check for the RootNode, which is already a LoopNode and is allowed
  2897       // to have multiple "backedges".
  2898       if( m == C->root()) {     // Found the root?
  2899         l = _ltree_root;        // Root is the outermost LoopNode
  2900       } else {                  // Else found a nested loop
  2901         // Insert a LoopNode to mark this loop.
  2902         l = new IdealLoopTree(this, m, n);
  2903       } // End of Else found a nested loop
  2904       if( !has_loop(m) )        // If 'm' does not already have a loop set
  2905         set_loop(m, l);         // Set loop header to loop now
  2907     } else {                    // Else not a nested loop
  2908       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
  2909       l = get_loop(m);          // Get previously determined loop
  2910       // If successor is header of a loop (nest), move up-loop till it
  2911       // is a member of some outer enclosing loop.  Since there are no
  2912       // shared headers (I've split them already) I only need to go up
  2913       // at most 1 level.
  2914       while( l && l->_head == m ) // Successor heads loop?
  2915         l = l->_parent;         // Move up 1 for me
  2916       // If this loop is not properly parented, then this loop
  2917       // has no exit path out, i.e. its an infinite loop.
  2918       if( !l ) {
  2919         // Make loop "reachable" from root so the CFG is reachable.  Basically
  2920         // insert a bogus loop exit that is never taken.  'm', the loop head,
  2921         // points to 'n', one (of possibly many) fall-in paths.  There may be
  2922         // many backedges as well.
  2924         // Here I set the loop to be the root loop.  I could have, after
  2925         // inserting a bogus loop exit, restarted the recursion and found my
  2926         // new loop exit.  This would make the infinite loop a first-class
  2927         // loop and it would then get properly optimized.  What's the use of
  2928         // optimizing an infinite loop?
  2929         l = _ltree_root;        // Oops, found infinite loop
  2931         if (!_verify_only) {
  2932           // Insert the NeverBranch between 'm' and it's control user.
  2933           NeverBranchNode *iff = new (C) NeverBranchNode( m );
  2934           _igvn.register_new_node_with_optimizer(iff);
  2935           set_loop(iff, l);
  2936           Node *if_t = new (C) CProjNode( iff, 0 );
  2937           _igvn.register_new_node_with_optimizer(if_t);
  2938           set_loop(if_t, l);
  2940           Node* cfg = NULL;       // Find the One True Control User of m
  2941           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
  2942             Node* x = m->fast_out(j);
  2943             if (x->is_CFG() && x != m && x != iff)
  2944               { cfg = x; break; }
  2946           assert(cfg != NULL, "must find the control user of m");
  2947           uint k = 0;             // Probably cfg->in(0)
  2948           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
  2949           cfg->set_req( k, if_t ); // Now point to NeverBranch
  2951           // Now create the never-taken loop exit
  2952           Node *if_f = new (C) CProjNode( iff, 1 );
  2953           _igvn.register_new_node_with_optimizer(if_f);
  2954           set_loop(if_f, l);
  2955           // Find frame ptr for Halt.  Relies on the optimizer
  2956           // V-N'ing.  Easier and quicker than searching through
  2957           // the program structure.
  2958           Node *frame = new (C) ParmNode( C->start(), TypeFunc::FramePtr );
  2959           _igvn.register_new_node_with_optimizer(frame);
  2960           // Halt & Catch Fire
  2961           Node *halt = new (C) HaltNode( if_f, frame );
  2962           _igvn.register_new_node_with_optimizer(halt);
  2963           set_loop(halt, l);
  2964           C->root()->add_req(halt);
  2966         set_loop(C->root(), _ltree_root);
  2969     // Weeny check for irreducible.  This child was already visited (this
  2970     // IS the post-work phase).  Is this child's loop header post-visited
  2971     // as well?  If so, then I found another entry into the loop.
  2972     if (!_verify_only) {
  2973       while( is_postvisited(l->_head) ) {
  2974         // found irreducible
  2975         l->_irreducible = 1; // = true
  2976         l = l->_parent;
  2977         _has_irreducible_loops = true;
  2978         // Check for bad CFG here to prevent crash, and bailout of compile
  2979         if (l == NULL) {
  2980           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
  2981           return pre_order;
  2984       C->set_has_irreducible_loop(_has_irreducible_loops);
  2987     // This Node might be a decision point for loops.  It is only if
  2988     // it's children belong to several different loops.  The sort call
  2989     // does a trivial amount of work if there is only 1 child or all
  2990     // children belong to the same loop.  If however, the children
  2991     // belong to different loops, the sort call will properly set the
  2992     // _parent pointers to show how the loops nest.
  2993     //
  2994     // In any case, it returns the tightest enclosing loop.
  2995     innermost = sort( l, innermost );
  2998   // Def-use info will have some dead stuff; dead stuff will have no
  2999   // loop decided on.
  3001   // Am I a loop header?  If so fix up my parent's child and next ptrs.
  3002   if( innermost && innermost->_head == n ) {
  3003     assert( get_loop(n) == innermost, "" );
  3004     IdealLoopTree *p = innermost->_parent;
  3005     IdealLoopTree *l = innermost;
  3006     while( p && l->_head == n ) {
  3007       l->_next = p->_child;     // Put self on parents 'next child'
  3008       p->_child = l;            // Make self as first child of parent
  3009       l = p;                    // Now walk up the parent chain
  3010       p = l->_parent;
  3012   } else {
  3013     // Note that it is possible for a LoopNode to reach here, if the
  3014     // backedge has been made unreachable (hence the LoopNode no longer
  3015     // denotes a Loop, and will eventually be removed).
  3017     // Record tightest enclosing loop for self.  Mark as post-visited.
  3018     set_loop(n, innermost);
  3019     // Also record has_call flag early on
  3020     if( innermost ) {
  3021       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
  3022         // Do not count uncommon calls
  3023         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
  3024           Node *iff = n->in(0)->in(0);
  3025           // No any calls for vectorized loops.
  3026           if( UseSuperWord || !iff->is_If() ||
  3027               (n->in(0)->Opcode() == Op_IfFalse &&
  3028                (1.0 - iff->as_If()->_prob) >= 0.01) ||
  3029               (iff->as_If()->_prob >= 0.01) )
  3030             innermost->_has_call = 1;
  3032       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
  3033         // Disable loop optimizations if the loop has a scalar replaceable
  3034         // allocation. This disabling may cause a potential performance lost
  3035         // if the allocation is not eliminated for some reason.
  3036         innermost->_allow_optimizations = false;
  3037         innermost->_has_call = 1; // = true
  3038       } else if (n->Opcode() == Op_SafePoint) {
  3039         // Record all safepoints in this loop.
  3040         if (innermost->_safepts == NULL) innermost->_safepts = new Node_List();
  3041         innermost->_safepts->push(n);
  3046   // Flag as post-visited now
  3047   set_postvisited(n);
  3048   return pre_order;
  3052 //------------------------------build_loop_early-------------------------------
  3053 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3054 // First pass computes the earliest controlling node possible.  This is the
  3055 // controlling input with the deepest dominating depth.
  3056 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  3057   while (worklist.size() != 0) {
  3058     // Use local variables nstack_top_n & nstack_top_i to cache values
  3059     // on nstack's top.
  3060     Node *nstack_top_n = worklist.pop();
  3061     uint  nstack_top_i = 0;
  3062 //while_nstack_nonempty:
  3063     while (true) {
  3064       // Get parent node and next input's index from stack's top.
  3065       Node  *n = nstack_top_n;
  3066       uint   i = nstack_top_i;
  3067       uint cnt = n->req(); // Count of inputs
  3068       if (i == 0) {        // Pre-process the node.
  3069         if( has_node(n) &&            // Have either loop or control already?
  3070             !has_ctrl(n) ) {          // Have loop picked out already?
  3071           // During "merge_many_backedges" we fold up several nested loops
  3072           // into a single loop.  This makes the members of the original
  3073           // loop bodies pointing to dead loops; they need to move up
  3074           // to the new UNION'd larger loop.  I set the _head field of these
  3075           // dead loops to NULL and the _parent field points to the owning
  3076           // loop.  Shades of UNION-FIND algorithm.
  3077           IdealLoopTree *ilt;
  3078           while( !(ilt = get_loop(n))->_head ) {
  3079             // Normally I would use a set_loop here.  But in this one special
  3080             // case, it is legal (and expected) to change what loop a Node
  3081             // belongs to.
  3082             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
  3084           // Remove safepoints ONLY if I've already seen I don't need one.
  3085           // (the old code here would yank a 2nd safepoint after seeing a
  3086           // first one, even though the 1st did not dominate in the loop body
  3087           // and thus could be avoided indefinitely)
  3088           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
  3089               is_deleteable_safept(n)) {
  3090             Node *in = n->in(TypeFunc::Control);
  3091             lazy_replace(n,in);       // Pull safepoint now
  3092             if (ilt->_safepts != NULL) {
  3093               ilt->_safepts->yank(n);
  3095             // Carry on with the recursion "as if" we are walking
  3096             // only the control input
  3097             if( !visited.test_set( in->_idx ) ) {
  3098               worklist.push(in);      // Visit this guy later, using worklist
  3100             // Get next node from nstack:
  3101             // - skip n's inputs processing by setting i > cnt;
  3102             // - we also will not call set_early_ctrl(n) since
  3103             //   has_node(n) == true (see the condition above).
  3104             i = cnt + 1;
  3107       } // if (i == 0)
  3109       // Visit all inputs
  3110       bool done = true;       // Assume all n's inputs will be processed
  3111       while (i < cnt) {
  3112         Node *in = n->in(i);
  3113         ++i;
  3114         if (in == NULL) continue;
  3115         if (in->pinned() && !in->is_CFG())
  3116           set_ctrl(in, in->in(0));
  3117         int is_visited = visited.test_set( in->_idx );
  3118         if (!has_node(in)) {  // No controlling input yet?
  3119           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
  3120           assert( !is_visited, "visit only once" );
  3121           nstack.push(n, i);  // Save parent node and next input's index.
  3122           nstack_top_n = in;  // Process current input now.
  3123           nstack_top_i = 0;
  3124           done = false;       // Not all n's inputs processed.
  3125           break; // continue while_nstack_nonempty;
  3126         } else if (!is_visited) {
  3127           // This guy has a location picked out for him, but has not yet
  3128           // been visited.  Happens to all CFG nodes, for instance.
  3129           // Visit him using the worklist instead of recursion, to break
  3130           // cycles.  Since he has a location already we do not need to
  3131           // find his location before proceeding with the current Node.
  3132           worklist.push(in);  // Visit this guy later, using worklist
  3135       if (done) {
  3136         // All of n's inputs have been processed, complete post-processing.
  3138         // Compute earliest point this Node can go.
  3139         // CFG, Phi, pinned nodes already know their controlling input.
  3140         if (!has_node(n)) {
  3141           // Record earliest legal location
  3142           set_early_ctrl( n );
  3144         if (nstack.is_empty()) {
  3145           // Finished all nodes on stack.
  3146           // Process next node on the worklist.
  3147           break;
  3149         // Get saved parent node and next input's index.
  3150         nstack_top_n = nstack.node();
  3151         nstack_top_i = nstack.index();
  3152         nstack.pop();
  3154     } // while (true)
  3158 //------------------------------dom_lca_internal--------------------------------
  3159 // Pair-wise LCA
  3160 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
  3161   if( !n1 ) return n2;          // Handle NULL original LCA
  3162   assert( n1->is_CFG(), "" );
  3163   assert( n2->is_CFG(), "" );
  3164   // find LCA of all uses
  3165   uint d1 = dom_depth(n1);
  3166   uint d2 = dom_depth(n2);
  3167   while (n1 != n2) {
  3168     if (d1 > d2) {
  3169       n1 =      idom(n1);
  3170       d1 = dom_depth(n1);
  3171     } else if (d1 < d2) {
  3172       n2 =      idom(n2);
  3173       d2 = dom_depth(n2);
  3174     } else {
  3175       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  3176       // of the tree might have the same depth.  These sections have
  3177       // to be searched more carefully.
  3179       // Scan up all the n1's with equal depth, looking for n2.
  3180       Node *t1 = idom(n1);
  3181       while (dom_depth(t1) == d1) {
  3182         if (t1 == n2)  return n2;
  3183         t1 = idom(t1);
  3185       // Scan up all the n2's with equal depth, looking for n1.
  3186       Node *t2 = idom(n2);
  3187       while (dom_depth(t2) == d2) {
  3188         if (t2 == n1)  return n1;
  3189         t2 = idom(t2);
  3191       // Move up to a new dominator-depth value as well as up the dom-tree.
  3192       n1 = t1;
  3193       n2 = t2;
  3194       d1 = dom_depth(n1);
  3195       d2 = dom_depth(n2);
  3198   return n1;
  3201 //------------------------------compute_idom-----------------------------------
  3202 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
  3203 // IDOMs are correct.
  3204 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
  3205   assert( region->is_Region(), "" );
  3206   Node *LCA = NULL;
  3207   for( uint i = 1; i < region->req(); i++ ) {
  3208     if( region->in(i) != C->top() )
  3209       LCA = dom_lca( LCA, region->in(i) );
  3211   return LCA;
  3214 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
  3215   bool had_error = false;
  3216 #ifdef ASSERT
  3217   if (early != C->root()) {
  3218     // Make sure that there's a dominance path from LCA to early
  3219     Node* d = LCA;
  3220     while (d != early) {
  3221       if (d == C->root()) {
  3222         dump_bad_graph("Bad graph detected in compute_lca_of_uses", n, early, LCA);
  3223         tty->print_cr("*** Use %d isn't dominated by def %d ***", use->_idx, n->_idx);
  3224         had_error = true;
  3225         break;
  3227       d = idom(d);
  3230 #endif
  3231   return had_error;
  3235 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
  3236   // Compute LCA over list of uses
  3237   bool had_error = false;
  3238   Node *LCA = NULL;
  3239   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
  3240     Node* c = n->fast_out(i);
  3241     if (_nodes[c->_idx] == NULL)
  3242       continue;                 // Skip the occasional dead node
  3243     if( c->is_Phi() ) {         // For Phis, we must land above on the path
  3244       for( uint j=1; j<c->req(); j++ ) {// For all inputs
  3245         if( c->in(j) == n ) {   // Found matching input?
  3246           Node *use = c->in(0)->in(j);
  3247           if (_verify_only && use->is_top()) continue;
  3248           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  3249           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  3252     } else {
  3253       // For CFG data-users, use is in the block just prior
  3254       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
  3255       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
  3256       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
  3259   assert(!had_error, "bad dominance");
  3260   return LCA;
  3263 //------------------------------get_late_ctrl----------------------------------
  3264 // Compute latest legal control.
  3265 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
  3266   assert(early != NULL, "early control should not be NULL");
  3268   Node* LCA = compute_lca_of_uses(n, early);
  3269 #ifdef ASSERT
  3270   if (LCA == C->root() && LCA != early) {
  3271     // def doesn't dominate uses so print some useful debugging output
  3272     compute_lca_of_uses(n, early, true);
  3274 #endif
  3276   // if this is a load, check for anti-dependent stores
  3277   // We use a conservative algorithm to identify potential interfering
  3278   // instructions and for rescheduling the load.  The users of the memory
  3279   // input of this load are examined.  Any use which is not a load and is
  3280   // dominated by early is considered a potentially interfering store.
  3281   // This can produce false positives.
  3282   if (n->is_Load() && LCA != early) {
  3283     Node_List worklist;
  3285     Node *mem = n->in(MemNode::Memory);
  3286     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
  3287       Node* s = mem->fast_out(i);
  3288       worklist.push(s);
  3290     while(worklist.size() != 0 && LCA != early) {
  3291       Node* s = worklist.pop();
  3292       if (s->is_Load()) {
  3293         continue;
  3294       } else if (s->is_MergeMem()) {
  3295         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
  3296           Node* s1 = s->fast_out(i);
  3297           worklist.push(s1);
  3299       } else {
  3300         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
  3301         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
  3302         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
  3303           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
  3309   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
  3310   return LCA;
  3313 // true if CFG node d dominates CFG node n
  3314 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
  3315   if (d == n)
  3316     return true;
  3317   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
  3318   uint dd = dom_depth(d);
  3319   while (dom_depth(n) >= dd) {
  3320     if (n == d)
  3321       return true;
  3322     n = idom(n);
  3324   return false;
  3327 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
  3328 // Pair-wise LCA with tags.
  3329 // Tag each index with the node 'tag' currently being processed
  3330 // before advancing up the dominator chain using idom().
  3331 // Later calls that find a match to 'tag' know that this path has already
  3332 // been considered in the current LCA (which is input 'n1' by convention).
  3333 // Since get_late_ctrl() is only called once for each node, the tag array
  3334 // does not need to be cleared between calls to get_late_ctrl().
  3335 // Algorithm trades a larger constant factor for better asymptotic behavior
  3336 //
  3337 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
  3338   uint d1 = dom_depth(n1);
  3339   uint d2 = dom_depth(n2);
  3341   do {
  3342     if (d1 > d2) {
  3343       // current lca is deeper than n2
  3344       _dom_lca_tags.map(n1->_idx, tag);
  3345       n1 =      idom(n1);
  3346       d1 = dom_depth(n1);
  3347     } else if (d1 < d2) {
  3348       // n2 is deeper than current lca
  3349       Node *memo = _dom_lca_tags[n2->_idx];
  3350       if( memo == tag ) {
  3351         return n1;    // Return the current LCA
  3353       _dom_lca_tags.map(n2->_idx, tag);
  3354       n2 =      idom(n2);
  3355       d2 = dom_depth(n2);
  3356     } else {
  3357       // Here d1 == d2.  Due to edits of the dominator-tree, sections
  3358       // of the tree might have the same depth.  These sections have
  3359       // to be searched more carefully.
  3361       // Scan up all the n1's with equal depth, looking for n2.
  3362       _dom_lca_tags.map(n1->_idx, tag);
  3363       Node *t1 = idom(n1);
  3364       while (dom_depth(t1) == d1) {
  3365         if (t1 == n2)  return n2;
  3366         _dom_lca_tags.map(t1->_idx, tag);
  3367         t1 = idom(t1);
  3369       // Scan up all the n2's with equal depth, looking for n1.
  3370       _dom_lca_tags.map(n2->_idx, tag);
  3371       Node *t2 = idom(n2);
  3372       while (dom_depth(t2) == d2) {
  3373         if (t2 == n1)  return n1;
  3374         _dom_lca_tags.map(t2->_idx, tag);
  3375         t2 = idom(t2);
  3377       // Move up to a new dominator-depth value as well as up the dom-tree.
  3378       n1 = t1;
  3379       n2 = t2;
  3380       d1 = dom_depth(n1);
  3381       d2 = dom_depth(n2);
  3383   } while (n1 != n2);
  3384   return n1;
  3387 //------------------------------init_dom_lca_tags------------------------------
  3388 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  3389 // Intended use does not involve any growth for the array, so it could
  3390 // be of fixed size.
  3391 void PhaseIdealLoop::init_dom_lca_tags() {
  3392   uint limit = C->unique() + 1;
  3393   _dom_lca_tags.map( limit, NULL );
  3394 #ifdef ASSERT
  3395   for( uint i = 0; i < limit; ++i ) {
  3396     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  3398 #endif // ASSERT
  3401 //------------------------------clear_dom_lca_tags------------------------------
  3402 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
  3403 // Intended use does not involve any growth for the array, so it could
  3404 // be of fixed size.
  3405 void PhaseIdealLoop::clear_dom_lca_tags() {
  3406   uint limit = C->unique() + 1;
  3407   _dom_lca_tags.map( limit, NULL );
  3408   _dom_lca_tags.clear();
  3409 #ifdef ASSERT
  3410   for( uint i = 0; i < limit; ++i ) {
  3411     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
  3413 #endif // ASSERT
  3416 //------------------------------build_loop_late--------------------------------
  3417 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3418 // Second pass finds latest legal placement, and ideal loop placement.
  3419 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
  3420   while (worklist.size() != 0) {
  3421     Node *n = worklist.pop();
  3422     // Only visit once
  3423     if (visited.test_set(n->_idx)) continue;
  3424     uint cnt = n->outcnt();
  3425     uint   i = 0;
  3426     while (true) {
  3427       assert( _nodes[n->_idx], "no dead nodes" );
  3428       // Visit all children
  3429       if (i < cnt) {
  3430         Node* use = n->raw_out(i);
  3431         ++i;
  3432         // Check for dead uses.  Aggressively prune such junk.  It might be
  3433         // dead in the global sense, but still have local uses so I cannot
  3434         // easily call 'remove_dead_node'.
  3435         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
  3436           // Due to cycles, we might not hit the same fixed point in the verify
  3437           // pass as we do in the regular pass.  Instead, visit such phis as
  3438           // simple uses of the loop head.
  3439           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
  3440             if( !visited.test(use->_idx) )
  3441               worklist.push(use);
  3442           } else if( !visited.test_set(use->_idx) ) {
  3443             nstack.push(n, i); // Save parent and next use's index.
  3444             n   = use;         // Process all children of current use.
  3445             cnt = use->outcnt();
  3446             i   = 0;
  3448         } else {
  3449           // Do not visit around the backedge of loops via data edges.
  3450           // push dead code onto a worklist
  3451           _deadlist.push(use);
  3453       } else {
  3454         // All of n's children have been processed, complete post-processing.
  3455         build_loop_late_post(n);
  3456         if (nstack.is_empty()) {
  3457           // Finished all nodes on stack.
  3458           // Process next node on the worklist.
  3459           break;
  3461         // Get saved parent node and next use's index. Visit the rest of uses.
  3462         n   = nstack.node();
  3463         cnt = n->outcnt();
  3464         i   = nstack.index();
  3465         nstack.pop();
  3471 //------------------------------build_loop_late_post---------------------------
  3472 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
  3473 // Second pass finds latest legal placement, and ideal loop placement.
  3474 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
  3476   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
  3477     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
  3480 #ifdef ASSERT
  3481   if (_verify_only && !n->is_CFG()) {
  3482     // Check def-use domination.
  3483     compute_lca_of_uses(n, get_ctrl(n), true /* verify */);
  3485 #endif
  3487   // CFG and pinned nodes already handled
  3488   if( n->in(0) ) {
  3489     if( n->in(0)->is_top() ) return; // Dead?
  3491     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
  3492     // _must_ be pinned (they have to observe their control edge of course).
  3493     // Unlike Stores (which modify an unallocable resource, the memory
  3494     // state), Mods/Loads can float around.  So free them up.
  3495     bool pinned = true;
  3496     switch( n->Opcode() ) {
  3497     case Op_DivI:
  3498     case Op_DivF:
  3499     case Op_DivD:
  3500     case Op_ModI:
  3501     case Op_ModF:
  3502     case Op_ModD:
  3503     case Op_LoadB:              // Same with Loads; they can sink
  3504     case Op_LoadUB:             // during loop optimizations.
  3505     case Op_LoadUS:
  3506     case Op_LoadD:
  3507     case Op_LoadF:
  3508     case Op_LoadI:
  3509     case Op_LoadKlass:
  3510     case Op_LoadNKlass:
  3511     case Op_LoadL:
  3512     case Op_LoadS:
  3513     case Op_LoadP:
  3514     case Op_LoadN:
  3515     case Op_LoadRange:
  3516     case Op_LoadD_unaligned:
  3517     case Op_LoadL_unaligned:
  3518     case Op_StrComp:            // Does a bunch of load-like effects
  3519     case Op_StrEquals:
  3520     case Op_StrIndexOf:
  3521     case Op_AryEq:
  3522       pinned = false;
  3524     if( pinned ) {
  3525       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
  3526       if( !chosen_loop->_child )       // Inner loop?
  3527         chosen_loop->_body.push(n); // Collect inner loops
  3528       return;
  3530   } else {                      // No slot zero
  3531     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
  3532       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
  3533       return;
  3535     assert(!n->is_CFG() || n->outcnt() == 0, "");
  3538   // Do I have a "safe range" I can select over?
  3539   Node *early = get_ctrl(n);// Early location already computed
  3541   // Compute latest point this Node can go
  3542   Node *LCA = get_late_ctrl( n, early );
  3543   // LCA is NULL due to uses being dead
  3544   if( LCA == NULL ) {
  3545 #ifdef ASSERT
  3546     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
  3547       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
  3549 #endif
  3550     _nodes.map(n->_idx, 0);     // This node is useless
  3551     _deadlist.push(n);
  3552     return;
  3554   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
  3556   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
  3557   Node *least = legal;          // Best legal position so far
  3558   while( early != legal ) {     // While not at earliest legal
  3559 #ifdef ASSERT
  3560     if (legal->is_Start() && !early->is_Root()) {
  3561       // Bad graph. Print idom path and fail.
  3562       dump_bad_graph("Bad graph detected in build_loop_late", n, early, LCA);
  3563       assert(false, "Bad graph detected in build_loop_late");
  3565 #endif
  3566     // Find least loop nesting depth
  3567     legal = idom(legal);        // Bump up the IDOM tree
  3568     // Check for lower nesting depth
  3569     if( get_loop(legal)->_nest < get_loop(least)->_nest )
  3570       least = legal;
  3572   assert(early == legal || legal != C->root(), "bad dominance of inputs");
  3574   // Try not to place code on a loop entry projection
  3575   // which can inhibit range check elimination.
  3576   if (least != early) {
  3577     Node* ctrl_out = least->unique_ctrl_out();
  3578     if (ctrl_out && ctrl_out->is_CountedLoop() &&
  3579         least == ctrl_out->in(LoopNode::EntryControl)) {
  3580       Node* least_dom = idom(least);
  3581       if (get_loop(least_dom)->is_member(get_loop(least))) {
  3582         least = least_dom;
  3587 #ifdef ASSERT
  3588   // If verifying, verify that 'verify_me' has a legal location
  3589   // and choose it as our location.
  3590   if( _verify_me ) {
  3591     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
  3592     Node *legal = LCA;
  3593     while( early != legal ) {   // While not at earliest legal
  3594       if( legal == v_ctrl ) break;  // Check for prior good location
  3595       legal = idom(legal)      ;// Bump up the IDOM tree
  3597     // Check for prior good location
  3598     if( legal == v_ctrl ) least = legal; // Keep prior if found
  3600 #endif
  3602   // Assign discovered "here or above" point
  3603   least = find_non_split_ctrl(least);
  3604   set_ctrl(n, least);
  3606   // Collect inner loop bodies
  3607   IdealLoopTree *chosen_loop = get_loop(least);
  3608   if( !chosen_loop->_child )   // Inner loop?
  3609     chosen_loop->_body.push(n);// Collect inner loops
  3612 #ifdef ASSERT
  3613 void PhaseIdealLoop::dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA) {
  3614   tty->print_cr("%s", msg);
  3615   tty->print("n: "); n->dump();
  3616   tty->print("early(n): "); early->dump();
  3617   if (n->in(0) != NULL  && !n->in(0)->is_top() &&
  3618       n->in(0) != early && !n->in(0)->is_Root()) {
  3619     tty->print("n->in(0): "); n->in(0)->dump();
  3621   for (uint i = 1; i < n->req(); i++) {
  3622     Node* in1 = n->in(i);
  3623     if (in1 != NULL && in1 != n && !in1->is_top()) {
  3624       tty->print("n->in(%d): ", i); in1->dump();
  3625       Node* in1_early = get_ctrl(in1);
  3626       tty->print("early(n->in(%d)): ", i); in1_early->dump();
  3627       if (in1->in(0) != NULL     && !in1->in(0)->is_top() &&
  3628           in1->in(0) != in1_early && !in1->in(0)->is_Root()) {
  3629         tty->print("n->in(%d)->in(0): ", i); in1->in(0)->dump();
  3631       for (uint j = 1; j < in1->req(); j++) {
  3632         Node* in2 = in1->in(j);
  3633         if (in2 != NULL && in2 != n && in2 != in1 && !in2->is_top()) {
  3634           tty->print("n->in(%d)->in(%d): ", i, j); in2->dump();
  3635           Node* in2_early = get_ctrl(in2);
  3636           tty->print("early(n->in(%d)->in(%d)): ", i, j); in2_early->dump();
  3637           if (in2->in(0) != NULL     && !in2->in(0)->is_top() &&
  3638               in2->in(0) != in2_early && !in2->in(0)->is_Root()) {
  3639             tty->print("n->in(%d)->in(%d)->in(0): ", i, j); in2->in(0)->dump();
  3645   tty->cr();
  3646   tty->print("LCA(n): "); LCA->dump();
  3647   for (uint i = 0; i < n->outcnt(); i++) {
  3648     Node* u1 = n->raw_out(i);
  3649     if (u1 == n)
  3650       continue;
  3651     tty->print("n->out(%d): ", i); u1->dump();
  3652     if (u1->is_CFG()) {
  3653       for (uint j = 0; j < u1->outcnt(); j++) {
  3654         Node* u2 = u1->raw_out(j);
  3655         if (u2 != u1 && u2 != n && u2->is_CFG()) {
  3656           tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
  3659     } else {
  3660       Node* u1_later = get_ctrl(u1);
  3661       tty->print("later(n->out(%d)): ", i); u1_later->dump();
  3662       if (u1->in(0) != NULL     && !u1->in(0)->is_top() &&
  3663           u1->in(0) != u1_later && !u1->in(0)->is_Root()) {
  3664         tty->print("n->out(%d)->in(0): ", i); u1->in(0)->dump();
  3666       for (uint j = 0; j < u1->outcnt(); j++) {
  3667         Node* u2 = u1->raw_out(j);
  3668         if (u2 == n || u2 == u1)
  3669           continue;
  3670         tty->print("n->out(%d)->out(%d): ", i, j); u2->dump();
  3671         if (!u2->is_CFG()) {
  3672           Node* u2_later = get_ctrl(u2);
  3673           tty->print("later(n->out(%d)->out(%d)): ", i, j); u2_later->dump();
  3674           if (u2->in(0) != NULL     && !u2->in(0)->is_top() &&
  3675               u2->in(0) != u2_later && !u2->in(0)->is_Root()) {
  3676             tty->print("n->out(%d)->in(0): ", i); u2->in(0)->dump();
  3682   tty->cr();
  3683   int ct = 0;
  3684   Node *dbg_legal = LCA;
  3685   while(!dbg_legal->is_Start() && ct < 100) {
  3686     tty->print("idom[%d] ",ct); dbg_legal->dump();
  3687     ct++;
  3688     dbg_legal = idom(dbg_legal);
  3690   tty->cr();
  3692 #endif
  3694 #ifndef PRODUCT
  3695 //------------------------------dump-------------------------------------------
  3696 void PhaseIdealLoop::dump( ) const {
  3697   ResourceMark rm;
  3698   Arena* arena = Thread::current()->resource_area();
  3699   Node_Stack stack(arena, C->live_nodes() >> 2);
  3700   Node_List rpo_list;
  3701   VectorSet visited(arena);
  3702   visited.set(C->top()->_idx);
  3703   rpo( C->root(), stack, visited, rpo_list );
  3704   // Dump root loop indexed by last element in PO order
  3705   dump( _ltree_root, rpo_list.size(), rpo_list );
  3708 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
  3709   loop->dump_head();
  3711   // Now scan for CFG nodes in the same loop
  3712   for( uint j=idx; j > 0;  j-- ) {
  3713     Node *n = rpo_list[j-1];
  3714     if( !_nodes[n->_idx] )      // Skip dead nodes
  3715       continue;
  3716     if( get_loop(n) != loop ) { // Wrong loop nest
  3717       if( get_loop(n)->_head == n &&    // Found nested loop?
  3718           get_loop(n)->_parent == loop )
  3719         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
  3720       continue;
  3723     // Dump controlling node
  3724     for( uint x = 0; x < loop->_nest; x++ )
  3725       tty->print("  ");
  3726     tty->print("C");
  3727     if( n == C->root() ) {
  3728       n->dump();
  3729     } else {
  3730       Node* cached_idom   = idom_no_update(n);
  3731       Node *computed_idom = n->in(0);
  3732       if( n->is_Region() ) {
  3733         computed_idom = compute_idom(n);
  3734         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
  3735         // any MultiBranch ctrl node), so apply a similar transform to
  3736         // the cached idom returned from idom_no_update.
  3737         cached_idom = find_non_split_ctrl(cached_idom);
  3739       tty->print(" ID:%d",computed_idom->_idx);
  3740       n->dump();
  3741       if( cached_idom != computed_idom ) {
  3742         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
  3743                       computed_idom->_idx, cached_idom->_idx);
  3746     // Dump nodes it controls
  3747     for( uint k = 0; k < _nodes.Size(); k++ ) {
  3748       // (k < C->unique() && get_ctrl(find(k)) == n)
  3749       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
  3750         Node *m = C->root()->find(k);
  3751         if( m && m->outcnt() > 0 ) {
  3752           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
  3753             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
  3754                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
  3756           for( uint j = 0; j < loop->_nest; j++ )
  3757             tty->print("  ");
  3758           tty->print(" ");
  3759           m->dump();
  3766 // Collect a R-P-O for the whole CFG.
  3767 // Result list is in post-order (scan backwards for RPO)
  3768 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
  3769   stk.push(start, 0);
  3770   visited.set(start->_idx);
  3772   while (stk.is_nonempty()) {
  3773     Node* m   = stk.node();
  3774     uint  idx = stk.index();
  3775     if (idx < m->outcnt()) {
  3776       stk.set_index(idx + 1);
  3777       Node* n = m->raw_out(idx);
  3778       if (n->is_CFG() && !visited.test_set(n->_idx)) {
  3779         stk.push(n, 0);
  3781     } else {
  3782       rpo_list.push(m);
  3783       stk.pop();
  3787 #endif
  3790 //=============================================================================
  3791 //------------------------------LoopTreeIterator-----------------------------------
  3793 // Advance to next loop tree using a preorder, left-to-right traversal.
  3794 void LoopTreeIterator::next() {
  3795   assert(!done(), "must not be done.");
  3796   if (_curnt->_child != NULL) {
  3797     _curnt = _curnt->_child;
  3798   } else if (_curnt->_next != NULL) {
  3799     _curnt = _curnt->_next;
  3800   } else {
  3801     while (_curnt != _root && _curnt->_next == NULL) {
  3802       _curnt = _curnt->_parent;
  3804     if (_curnt == _root) {
  3805       _curnt = NULL;
  3806       assert(done(), "must be done.");
  3807     } else {
  3808       assert(_curnt->_next != NULL, "must be more to do");
  3809       _curnt = _curnt->_next;

mercurial