src/share/vm/opto/lcm.cpp

Wed, 10 Aug 2016 14:59:21 +0200

author
simonis
date
Wed, 10 Aug 2016 14:59:21 +0200
changeset 8608
0d78aecb0948
parent 8316
626f594dffa6
child 8604
04d83ba48607
child 8614
73ba6fb1df04
permissions
-rw-r--r--

8152172: PPC64: Support AES intrinsics
Summary: Add support for AES intrinsics on PPC64.
Reviewed-by: kvn, mdoerr, simonis, zmajo
Contributed-by: Hiroshi H Horii <horii@jp.ibm.com>

     1 /*
     2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/block.hpp"
    28 #include "opto/c2compiler.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/cfgnode.hpp"
    31 #include "opto/machnode.hpp"
    32 #include "opto/runtime.hpp"
    33 #if defined AD_MD_HPP
    34 # include AD_MD_HPP
    35 #elif defined TARGET_ARCH_MODEL_x86_32
    36 # include "adfiles/ad_x86_32.hpp"
    37 #elif defined TARGET_ARCH_MODEL_x86_64
    38 # include "adfiles/ad_x86_64.hpp"
    39 #elif defined TARGET_ARCH_MODEL_sparc
    40 # include "adfiles/ad_sparc.hpp"
    41 #elif defined TARGET_ARCH_MODEL_zero
    42 # include "adfiles/ad_zero.hpp"
    43 #elif defined TARGET_ARCH_MODEL_ppc_64
    44 # include "adfiles/ad_ppc_64.hpp"
    45 #endif
    47 // Optimization - Graph Style
    49 // Check whether val is not-null-decoded compressed oop,
    50 // i.e. will grab into the base of the heap if it represents NULL.
    51 static bool accesses_heap_base_zone(Node *val) {
    52   if (Universe::narrow_oop_base() > 0) { // Implies UseCompressedOops.
    53     if (val && val->is_Mach()) {
    54       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
    55         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
    56         // decode NULL to point to the heap base (Decode_NN).
    57         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
    58           return true;
    59         }
    60       }
    61       // Must recognize load operation with Decode matched in memory operand.
    62       // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
    63       // returns true everywhere else. On PPC, no such memory operands
    64       // exist, therefore we did not yet implement a check for such operands.
    65       NOT_AIX(Unimplemented());
    66     }
    67   }
    68   return false;
    69 }
    71 static bool needs_explicit_null_check_for_read(Node *val) {
    72   // On some OSes (AIX) the page at address 0 is only write protected.
    73   // If so, only Store operations will trap.
    74   if (os::zero_page_read_protected()) {
    75     return false;  // Implicit null check will work.
    76   }
    77   // Also a read accessing the base of a heap-based compressed heap will trap.
    78   if (accesses_heap_base_zone(val) &&                    // Hits the base zone page.
    79       Universe::narrow_oop_use_implicit_null_checks()) { // Base zone page is protected.
    80     return false;
    81   }
    83   return true;
    84 }
    86 //------------------------------implicit_null_check----------------------------
    87 // Detect implicit-null-check opportunities.  Basically, find NULL checks
    88 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
    89 // I can generate a memory op if there is not one nearby.
    90 // The proj is the control projection for the not-null case.
    91 // The val is the pointer being checked for nullness or
    92 // decodeHeapOop_not_null node if it did not fold into address.
    93 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
    94   // Assume if null check need for 0 offset then always needed
    95   // Intel solaris doesn't support any null checks yet and no
    96   // mechanism exists (yet) to set the switches at an os_cpu level
    97   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
    99   // Make sure the ptr-is-null path appears to be uncommon!
   100   float f = block->end()->as_MachIf()->_prob;
   101   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
   102   if( f > PROB_UNLIKELY_MAG(4) ) return;
   104   uint bidx = 0;                // Capture index of value into memop
   105   bool was_store;               // Memory op is a store op
   107   // Get the successor block for if the test ptr is non-null
   108   Block* not_null_block;  // this one goes with the proj
   109   Block* null_block;
   110   if (block->get_node(block->number_of_nodes()-1) == proj) {
   111     null_block     = block->_succs[0];
   112     not_null_block = block->_succs[1];
   113   } else {
   114     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
   115     not_null_block = block->_succs[0];
   116     null_block     = block->_succs[1];
   117   }
   118   while (null_block->is_Empty() == Block::empty_with_goto) {
   119     null_block     = null_block->_succs[0];
   120   }
   122   // Search the exception block for an uncommon trap.
   123   // (See Parse::do_if and Parse::do_ifnull for the reason
   124   // we need an uncommon trap.  Briefly, we need a way to
   125   // detect failure of this optimization, as in 6366351.)
   126   {
   127     bool found_trap = false;
   128     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
   129       Node* nn = null_block->get_node(i1);
   130       if (nn->is_MachCall() &&
   131           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
   132         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
   133         if (trtype->isa_int() && trtype->is_int()->is_con()) {
   134           jint tr_con = trtype->is_int()->get_con();
   135           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
   136           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
   137           assert((int)reason < (int)BitsPerInt, "recode bit map");
   138           if (is_set_nth_bit(allowed_reasons, (int) reason)
   139               && action != Deoptimization::Action_none) {
   140             // This uncommon trap is sure to recompile, eventually.
   141             // When that happens, C->too_many_traps will prevent
   142             // this transformation from happening again.
   143             found_trap = true;
   144           }
   145         }
   146         break;
   147       }
   148     }
   149     if (!found_trap) {
   150       // We did not find an uncommon trap.
   151       return;
   152     }
   153   }
   155   // Check for decodeHeapOop_not_null node which did not fold into address
   156   bool is_decoden = ((intptr_t)val) & 1;
   157   val = (Node*)(((intptr_t)val) & ~1);
   159   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
   160          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
   162   // Search the successor block for a load or store who's base value is also
   163   // the tested value.  There may be several.
   164   Node_List *out = new Node_List(Thread::current()->resource_area());
   165   MachNode *best = NULL;        // Best found so far
   166   for (DUIterator i = val->outs(); val->has_out(i); i++) {
   167     Node *m = val->out(i);
   168     if( !m->is_Mach() ) continue;
   169     MachNode *mach = m->as_Mach();
   170     was_store = false;
   171     int iop = mach->ideal_Opcode();
   172     switch( iop ) {
   173     case Op_LoadB:
   174     case Op_LoadUB:
   175     case Op_LoadUS:
   176     case Op_LoadD:
   177     case Op_LoadF:
   178     case Op_LoadI:
   179     case Op_LoadL:
   180     case Op_LoadP:
   181     case Op_LoadN:
   182     case Op_LoadS:
   183     case Op_LoadKlass:
   184     case Op_LoadNKlass:
   185     case Op_LoadRange:
   186     case Op_LoadD_unaligned:
   187     case Op_LoadL_unaligned:
   188       assert(mach->in(2) == val, "should be address");
   189       break;
   190     case Op_StoreB:
   191     case Op_StoreC:
   192     case Op_StoreCM:
   193     case Op_StoreD:
   194     case Op_StoreF:
   195     case Op_StoreI:
   196     case Op_StoreL:
   197     case Op_StoreP:
   198     case Op_StoreN:
   199     case Op_StoreNKlass:
   200       was_store = true;         // Memory op is a store op
   201       // Stores will have their address in slot 2 (memory in slot 1).
   202       // If the value being nul-checked is in another slot, it means we
   203       // are storing the checked value, which does NOT check the value!
   204       if( mach->in(2) != val ) continue;
   205       break;                    // Found a memory op?
   206     case Op_StrComp:
   207     case Op_StrEquals:
   208     case Op_StrIndexOf:
   209     case Op_AryEq:
   210     case Op_EncodeISOArray:
   211       // Not a legit memory op for implicit null check regardless of
   212       // embedded loads
   213       continue;
   214     default:                    // Also check for embedded loads
   215       if( !mach->needs_anti_dependence_check() )
   216         continue;               // Not an memory op; skip it
   217       if( must_clone[iop] ) {
   218         // Do not move nodes which produce flags because
   219         // RA will try to clone it to place near branch and
   220         // it will cause recompilation, see clone_node().
   221         continue;
   222       }
   223       {
   224         // Check that value is used in memory address in
   225         // instructions with embedded load (CmpP val1,(val2+off)).
   226         Node* base;
   227         Node* index;
   228         const MachOper* oper = mach->memory_inputs(base, index);
   229         if (oper == NULL || oper == (MachOper*)-1) {
   230           continue;             // Not an memory op; skip it
   231         }
   232         if (val == base ||
   233             val == index && val->bottom_type()->isa_narrowoop()) {
   234           break;                // Found it
   235         } else {
   236           continue;             // Skip it
   237         }
   238       }
   239       break;
   240     }
   242     // On some OSes (AIX) the page at address 0 is only write protected.
   243     // If so, only Store operations will trap.
   244     // But a read accessing the base of a heap-based compressed heap will trap.
   245     if (!was_store && needs_explicit_null_check_for_read(val)) {
   246       continue;
   247     }
   249     // check if the offset is not too high for implicit exception
   250     {
   251       intptr_t offset = 0;
   252       const TypePtr *adr_type = NULL;  // Do not need this return value here
   253       const Node* base = mach->get_base_and_disp(offset, adr_type);
   254       if (base == NULL || base == NodeSentinel) {
   255         // Narrow oop address doesn't have base, only index
   256         if( val->bottom_type()->isa_narrowoop() &&
   257             MacroAssembler::needs_explicit_null_check(offset) )
   258           continue;             // Give up if offset is beyond page size
   259         // cannot reason about it; is probably not implicit null exception
   260       } else {
   261         const TypePtr* tptr;
   262         if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
   263                                   Universe::narrow_klass_shift() == 0)) {
   264           // 32-bits narrow oop can be the base of address expressions
   265           tptr = base->get_ptr_type();
   266         } else {
   267           // only regular oops are expected here
   268           tptr = base->bottom_type()->is_ptr();
   269         }
   270         // Give up if offset is not a compile-time constant
   271         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
   272           continue;
   273         offset += tptr->_offset; // correct if base is offseted
   274         if( MacroAssembler::needs_explicit_null_check(offset) )
   275           continue;             // Give up is reference is beyond 4K page size
   276       }
   277     }
   279     // Check ctrl input to see if the null-check dominates the memory op
   280     Block *cb = get_block_for_node(mach);
   281     cb = cb->_idom;             // Always hoist at least 1 block
   282     if( !was_store ) {          // Stores can be hoisted only one block
   283       while( cb->_dom_depth > (block->_dom_depth + 1))
   284         cb = cb->_idom;         // Hoist loads as far as we want
   285       // The non-null-block should dominate the memory op, too. Live
   286       // range spilling will insert a spill in the non-null-block if it is
   287       // needs to spill the memory op for an implicit null check.
   288       if (cb->_dom_depth == (block->_dom_depth + 1)) {
   289         if (cb != not_null_block) continue;
   290         cb = cb->_idom;
   291       }
   292     }
   293     if( cb != block ) continue;
   295     // Found a memory user; see if it can be hoisted to check-block
   296     uint vidx = 0;              // Capture index of value into memop
   297     uint j;
   298     for( j = mach->req()-1; j > 0; j-- ) {
   299       if( mach->in(j) == val ) {
   300         vidx = j;
   301         // Ignore DecodeN val which could be hoisted to where needed.
   302         if( is_decoden ) continue;
   303       }
   304       // Block of memory-op input
   305       Block *inb = get_block_for_node(mach->in(j));
   306       Block *b = block;          // Start from nul check
   307       while( b != inb && b->_dom_depth > inb->_dom_depth )
   308         b = b->_idom;           // search upwards for input
   309       // See if input dominates null check
   310       if( b != inb )
   311         break;
   312     }
   313     if( j > 0 )
   314       continue;
   315     Block *mb = get_block_for_node(mach);
   316     // Hoisting stores requires more checks for the anti-dependence case.
   317     // Give up hoisting if we have to move the store past any load.
   318     if( was_store ) {
   319       Block *b = mb;            // Start searching here for a local load
   320       // mach use (faulting) trying to hoist
   321       // n might be blocker to hoisting
   322       while( b != block ) {
   323         uint k;
   324         for( k = 1; k < b->number_of_nodes(); k++ ) {
   325           Node *n = b->get_node(k);
   326           if( n->needs_anti_dependence_check() &&
   327               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
   328             break;              // Found anti-dependent load
   329         }
   330         if( k < b->number_of_nodes() )
   331           break;                // Found anti-dependent load
   332         // Make sure control does not do a merge (would have to check allpaths)
   333         if( b->num_preds() != 2 ) break;
   334         b = get_block_for_node(b->pred(1)); // Move up to predecessor block
   335       }
   336       if( b != block ) continue;
   337     }
   339     // Make sure this memory op is not already being used for a NullCheck
   340     Node *e = mb->end();
   341     if( e->is_MachNullCheck() && e->in(1) == mach )
   342       continue;                 // Already being used as a NULL check
   344     // Found a candidate!  Pick one with least dom depth - the highest
   345     // in the dom tree should be closest to the null check.
   346     if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
   347       best = mach;
   348       bidx = vidx;
   349     }
   350   }
   351   // No candidate!
   352   if (best == NULL) {
   353     return;
   354   }
   356   // ---- Found an implicit null check
   357   extern int implicit_null_checks;
   358   implicit_null_checks++;
   360   if( is_decoden ) {
   361     // Check if we need to hoist decodeHeapOop_not_null first.
   362     Block *valb = get_block_for_node(val);
   363     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
   364       // Hoist it up to the end of the test block.
   365       valb->find_remove(val);
   366       block->add_inst(val);
   367       map_node_to_block(val, block);
   368       // DecodeN on x86 may kill flags. Check for flag-killing projections
   369       // that also need to be hoisted.
   370       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
   371         Node* n = val->fast_out(j);
   372         if( n->is_MachProj() ) {
   373           get_block_for_node(n)->find_remove(n);
   374           block->add_inst(n);
   375           map_node_to_block(n, block);
   376         }
   377       }
   378     }
   379   }
   380   // Hoist the memory candidate up to the end of the test block.
   381   Block *old_block = get_block_for_node(best);
   382   old_block->find_remove(best);
   383   block->add_inst(best);
   384   map_node_to_block(best, block);
   386   // Move the control dependence
   387   if (best->in(0) && best->in(0) == old_block->head())
   388     best->set_req(0, block->head());
   390   // Check for flag-killing projections that also need to be hoisted
   391   // Should be DU safe because no edge updates.
   392   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
   393     Node* n = best->fast_out(j);
   394     if( n->is_MachProj() ) {
   395       get_block_for_node(n)->find_remove(n);
   396       block->add_inst(n);
   397       map_node_to_block(n, block);
   398     }
   399   }
   401   // proj==Op_True --> ne test; proj==Op_False --> eq test.
   402   // One of two graph shapes got matched:
   403   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
   404   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
   405   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
   406   // then we are replacing a 'ne' test with a 'eq' NULL check test.
   407   // We need to flip the projections to keep the same semantics.
   408   if( proj->Opcode() == Op_IfTrue ) {
   409     // Swap order of projections in basic block to swap branch targets
   410     Node *tmp1 = block->get_node(block->end_idx()+1);
   411     Node *tmp2 = block->get_node(block->end_idx()+2);
   412     block->map_node(tmp2, block->end_idx()+1);
   413     block->map_node(tmp1, block->end_idx()+2);
   414     Node *tmp = new (C) Node(C->top()); // Use not NULL input
   415     tmp1->replace_by(tmp);
   416     tmp2->replace_by(tmp1);
   417     tmp->replace_by(tmp2);
   418     tmp->destruct();
   419   }
   421   // Remove the existing null check; use a new implicit null check instead.
   422   // Since schedule-local needs precise def-use info, we need to correct
   423   // it as well.
   424   Node *old_tst = proj->in(0);
   425   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
   426   block->map_node(nul_chk, block->end_idx());
   427   map_node_to_block(nul_chk, block);
   428   // Redirect users of old_test to nul_chk
   429   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
   430     old_tst->last_out(i2)->set_req(0, nul_chk);
   431   // Clean-up any dead code
   432   for (uint i3 = 0; i3 < old_tst->req(); i3++) {
   433     Node* in = old_tst->in(i3);
   434     old_tst->set_req(i3, NULL);
   435     if (in->outcnt() == 0) {
   436       // Remove dead input node
   437       in->disconnect_inputs(NULL, C);
   438       block->find_remove(in);
   439     }
   440   }
   442   latency_from_uses(nul_chk);
   443   latency_from_uses(best);
   444 }
   447 //------------------------------select-----------------------------------------
   448 // Select a nice fellow from the worklist to schedule next. If there is only
   449 // one choice, then use it. Projections take top priority for correctness
   450 // reasons - if I see a projection, then it is next.  There are a number of
   451 // other special cases, for instructions that consume condition codes, et al.
   452 // These are chosen immediately. Some instructions are required to immediately
   453 // precede the last instruction in the block, and these are taken last. Of the
   454 // remaining cases (most), choose the instruction with the greatest latency
   455 // (that is, the most number of pseudo-cycles required to the end of the
   456 // routine). If there is a tie, choose the instruction with the most inputs.
   457 Node* PhaseCFG::select(Block* block, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
   459   // If only a single entry on the stack, use it
   460   uint cnt = worklist.size();
   461   if (cnt == 1) {
   462     Node *n = worklist[0];
   463     worklist.map(0,worklist.pop());
   464     return n;
   465   }
   467   uint choice  = 0; // Bigger is most important
   468   uint latency = 0; // Bigger is scheduled first
   469   uint score   = 0; // Bigger is better
   470   int idx = -1;     // Index in worklist
   471   int cand_cnt = 0; // Candidate count
   473   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
   474     // Order in worklist is used to break ties.
   475     // See caller for how this is used to delay scheduling
   476     // of induction variable increments to after the other
   477     // uses of the phi are scheduled.
   478     Node *n = worklist[i];      // Get Node on worklist
   480     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
   481     if( n->is_Proj() ||         // Projections always win
   482         n->Opcode()== Op_Con || // So does constant 'Top'
   483         iop == Op_CreateEx ||   // Create-exception must start block
   484         iop == Op_CheckCastPP
   485         ) {
   486       worklist.map(i,worklist.pop());
   487       return n;
   488     }
   490     // Final call in a block must be adjacent to 'catch'
   491     Node *e = block->end();
   492     if( e->is_Catch() && e->in(0)->in(0) == n )
   493       continue;
   495     // Memory op for an implicit null check has to be at the end of the block
   496     if( e->is_MachNullCheck() && e->in(1) == n )
   497       continue;
   499     // Schedule IV increment last.
   500     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
   501         e->in(1)->in(1) == n && n->is_iteratively_computed())
   502       continue;
   504     uint n_choice  = 2;
   506     // See if this instruction is consumed by a branch. If so, then (as the
   507     // branch is the last instruction in the basic block) force it to the
   508     // end of the basic block
   509     if ( must_clone[iop] ) {
   510       // See if any use is a branch
   511       bool found_machif = false;
   513       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   514         Node* use = n->fast_out(j);
   516         // The use is a conditional branch, make them adjacent
   517         if (use->is_MachIf() && get_block_for_node(use) == block) {
   518           found_machif = true;
   519           break;
   520         }
   522         // More than this instruction pending for successor to be ready,
   523         // don't choose this if other opportunities are ready
   524         if (ready_cnt.at(use->_idx) > 1)
   525           n_choice = 1;
   526       }
   528       // loop terminated, prefer not to use this instruction
   529       if (found_machif)
   530         continue;
   531     }
   533     // See if this has a predecessor that is "must_clone", i.e. sets the
   534     // condition code. If so, choose this first
   535     for (uint j = 0; j < n->req() ; j++) {
   536       Node *inn = n->in(j);
   537       if (inn) {
   538         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
   539           n_choice = 3;
   540           break;
   541         }
   542       }
   543     }
   545     // MachTemps should be scheduled last so they are near their uses
   546     if (n->is_MachTemp()) {
   547       n_choice = 1;
   548     }
   550     uint n_latency = get_latency_for_node(n);
   551     uint n_score   = n->req();   // Many inputs get high score to break ties
   553     // Keep best latency found
   554     cand_cnt++;
   555     if (choice < n_choice ||
   556         (choice == n_choice &&
   557          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
   558           (!StressLCM &&
   559            (latency < n_latency ||
   560             (latency == n_latency &&
   561              (score < n_score))))))) {
   562       choice  = n_choice;
   563       latency = n_latency;
   564       score   = n_score;
   565       idx     = i;               // Also keep index in worklist
   566     }
   567   } // End of for all ready nodes in worklist
   569   assert(idx >= 0, "index should be set");
   570   Node *n = worklist[(uint)idx];      // Get the winner
   572   worklist.map((uint)idx, worklist.pop());     // Compress worklist
   573   return n;
   574 }
   577 //------------------------------set_next_call----------------------------------
   578 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
   579   if( next_call.test_set(n->_idx) ) return;
   580   for( uint i=0; i<n->len(); i++ ) {
   581     Node *m = n->in(i);
   582     if( !m ) continue;  // must see all nodes in block that precede call
   583     if (get_block_for_node(m) == block) {
   584       set_next_call(block, m, next_call);
   585     }
   586   }
   587 }
   589 //------------------------------needed_for_next_call---------------------------
   590 // Set the flag 'next_call' for each Node that is needed for the next call to
   591 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
   592 // next subroutine call get priority - basically it moves things NOT needed
   593 // for the next call till after the call.  This prevents me from trying to
   594 // carry lots of stuff live across a call.
   595 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
   596   // Find the next control-defining Node in this block
   597   Node* call = NULL;
   598   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
   599     Node* m = this_call->fast_out(i);
   600     if (get_block_for_node(m) == block && // Local-block user
   601         m != this_call &&       // Not self-start node
   602         m->is_MachCall()) {
   603       call = m;
   604       break;
   605     }
   606   }
   607   if (call == NULL)  return;    // No next call (e.g., block end is near)
   608   // Set next-call for all inputs to this call
   609   set_next_call(block, call, next_call);
   610 }
   612 //------------------------------add_call_kills-------------------------------------
   613 // helper function that adds caller save registers to MachProjNode
   614 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
   615   // Fill in the kill mask for the call
   616   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
   617     if( !regs.Member(r) ) {     // Not already defined by the call
   618       // Save-on-call register?
   619       if ((save_policy[r] == 'C') ||
   620           (save_policy[r] == 'A') ||
   621           ((save_policy[r] == 'E') && exclude_soe)) {
   622         proj->_rout.Insert(r);
   623       }
   624     }
   625   }
   626 }
   629 //------------------------------sched_call-------------------------------------
   630 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
   631   RegMask regs;
   633   // Schedule all the users of the call right now.  All the users are
   634   // projection Nodes, so they must be scheduled next to the call.
   635   // Collect all the defined registers.
   636   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
   637     Node* n = mcall->fast_out(i);
   638     assert( n->is_MachProj(), "" );
   639     int n_cnt = ready_cnt.at(n->_idx)-1;
   640     ready_cnt.at_put(n->_idx, n_cnt);
   641     assert( n_cnt == 0, "" );
   642     // Schedule next to call
   643     block->map_node(n, node_cnt++);
   644     // Collect defined registers
   645     regs.OR(n->out_RegMask());
   646     // Check for scheduling the next control-definer
   647     if( n->bottom_type() == Type::CONTROL )
   648       // Warm up next pile of heuristic bits
   649       needed_for_next_call(block, n, next_call);
   651     // Children of projections are now all ready
   652     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   653       Node* m = n->fast_out(j); // Get user
   654       if(get_block_for_node(m) != block) {
   655         continue;
   656       }
   657       if( m->is_Phi() ) continue;
   658       int m_cnt = ready_cnt.at(m->_idx)-1;
   659       ready_cnt.at_put(m->_idx, m_cnt);
   660       if( m_cnt == 0 )
   661         worklist.push(m);
   662     }
   664   }
   666   // Act as if the call defines the Frame Pointer.
   667   // Certainly the FP is alive and well after the call.
   668   regs.Insert(_matcher.c_frame_pointer());
   670   // Set all registers killed and not already defined by the call.
   671   uint r_cnt = mcall->tf()->range()->cnt();
   672   int op = mcall->ideal_Opcode();
   673   MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
   674   map_node_to_block(proj, block);
   675   block->insert_node(proj, node_cnt++);
   677   // Select the right register save policy.
   678   const char *save_policy = NULL;
   679   switch (op) {
   680     case Op_CallRuntime:
   681     case Op_CallLeaf:
   682     case Op_CallLeafNoFP:
   683       // Calling C code so use C calling convention
   684       save_policy = _matcher._c_reg_save_policy;
   685       break;
   687     case Op_CallStaticJava:
   688     case Op_CallDynamicJava:
   689       // Calling Java code so use Java calling convention
   690       save_policy = _matcher._register_save_policy;
   691       break;
   693     default:
   694       ShouldNotReachHere();
   695   }
   697   // When using CallRuntime mark SOE registers as killed by the call
   698   // so values that could show up in the RegisterMap aren't live in a
   699   // callee saved register since the register wouldn't know where to
   700   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
   701   // have debug info on them.  Strictly speaking this only needs to be
   702   // done for oops since idealreg2debugmask takes care of debug info
   703   // references but there no way to handle oops differently than other
   704   // pointers as far as the kill mask goes.
   705   bool exclude_soe = op == Op_CallRuntime;
   707   // If the call is a MethodHandle invoke, we need to exclude the
   708   // register which is used to save the SP value over MH invokes from
   709   // the mask.  Otherwise this register could be used for
   710   // deoptimization information.
   711   if (op == Op_CallStaticJava) {
   712     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
   713     if (mcallstaticjava->_method_handle_invoke)
   714       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
   715   }
   717   add_call_kills(proj, regs, save_policy, exclude_soe);
   719   return node_cnt;
   720 }
   723 //------------------------------schedule_local---------------------------------
   724 // Topological sort within a block.  Someday become a real scheduler.
   725 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call) {
   726   // Already "sorted" are the block start Node (as the first entry), and
   727   // the block-ending Node and any trailing control projections.  We leave
   728   // these alone.  PhiNodes and ParmNodes are made to follow the block start
   729   // Node.  Everything else gets topo-sorted.
   731 #ifndef PRODUCT
   732     if (trace_opto_pipelining()) {
   733       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
   734       for (uint i = 0;i < block->number_of_nodes(); i++) {
   735         tty->print("# ");
   736         block->get_node(i)->fast_dump();
   737       }
   738       tty->print_cr("#");
   739     }
   740 #endif
   742   // RootNode is already sorted
   743   if (block->number_of_nodes() == 1) {
   744     return true;
   745   }
   747   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
   748   uint node_cnt = block->end_idx();
   749   uint phi_cnt = 1;
   750   uint i;
   751   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
   752     Node *n = block->get_node(i);
   753     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
   754         (n->is_Proj()  && n->in(0) == block->head()) ) {
   755       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
   756       block->map_node(block->get_node(phi_cnt), i);
   757       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
   758     } else {                    // All others
   759       // Count block-local inputs to 'n'
   760       uint cnt = n->len();      // Input count
   761       uint local = 0;
   762       for( uint j=0; j<cnt; j++ ) {
   763         Node *m = n->in(j);
   764         if( m && get_block_for_node(m) == block && !m->is_top() )
   765           local++;              // One more block-local input
   766       }
   767       ready_cnt.at_put(n->_idx, local); // Count em up
   769 #ifdef ASSERT
   770       if( UseConcMarkSweepGC || UseG1GC ) {
   771         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
   772           // Check the precedence edges
   773           for (uint prec = n->req(); prec < n->len(); prec++) {
   774             Node* oop_store = n->in(prec);
   775             if (oop_store != NULL) {
   776               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
   777             }
   778           }
   779         }
   780       }
   781 #endif
   783       // A few node types require changing a required edge to a precedence edge
   784       // before allocation.
   785       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
   786           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
   787            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
   788         // MemBarAcquire could be created without Precedent edge.
   789         // del_req() replaces the specified edge with the last input edge
   790         // and then removes the last edge. If the specified edge > number of
   791         // edges the last edge will be moved outside of the input edges array
   792         // and the edge will be lost. This is why this code should be
   793         // executed only when Precedent (== TypeFunc::Parms) edge is present.
   794         Node *x = n->in(TypeFunc::Parms);
   795         n->del_req(TypeFunc::Parms);
   796         n->add_prec(x);
   797       }
   798     }
   799   }
   800   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
   801     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
   803   // All the prescheduled guys do not hold back internal nodes
   804   uint i3;
   805   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
   806     Node *n = block->get_node(i3);       // Get pre-scheduled
   807     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
   808       Node* m = n->fast_out(j);
   809       if (get_block_for_node(m) == block) { // Local-block user
   810         int m_cnt = ready_cnt.at(m->_idx)-1;
   811         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
   812       }
   813     }
   814   }
   816   Node_List delay;
   817   // Make a worklist
   818   Node_List worklist;
   819   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
   820     Node *m = block->get_node(i4);
   821     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
   822       if (m->is_iteratively_computed()) {
   823         // Push induction variable increments last to allow other uses
   824         // of the phi to be scheduled first. The select() method breaks
   825         // ties in scheduling by worklist order.
   826         delay.push(m);
   827       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
   828         // Force the CreateEx to the top of the list so it's processed
   829         // first and ends up at the start of the block.
   830         worklist.insert(0, m);
   831       } else {
   832         worklist.push(m);         // Then on to worklist!
   833       }
   834     }
   835   }
   836   while (delay.size()) {
   837     Node* d = delay.pop();
   838     worklist.push(d);
   839   }
   841   // Warm up the 'next_call' heuristic bits
   842   needed_for_next_call(block, block->head(), next_call);
   844 #ifndef PRODUCT
   845     if (trace_opto_pipelining()) {
   846       for (uint j=0; j< block->number_of_nodes(); j++) {
   847         Node     *n = block->get_node(j);
   848         int     idx = n->_idx;
   849         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
   850         tty->print("latency:%3d  ", get_latency_for_node(n));
   851         tty->print("%4d: %s\n", idx, n->Name());
   852       }
   853     }
   854 #endif
   856   uint max_idx = (uint)ready_cnt.length();
   857   // Pull from worklist and schedule
   858   while( worklist.size() ) {    // Worklist is not ready
   860 #ifndef PRODUCT
   861     if (trace_opto_pipelining()) {
   862       tty->print("#   ready list:");
   863       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   864         Node *n = worklist[i];      // Get Node on worklist
   865         tty->print(" %d", n->_idx);
   866       }
   867       tty->cr();
   868     }
   869 #endif
   871     // Select and pop a ready guy from worklist
   872     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt);
   873     block->map_node(n, phi_cnt++);    // Schedule him next
   875 #ifndef PRODUCT
   876     if (trace_opto_pipelining()) {
   877       tty->print("#    select %d: %s", n->_idx, n->Name());
   878       tty->print(", latency:%d", get_latency_for_node(n));
   879       n->dump();
   880       if (Verbose) {
   881         tty->print("#   ready list:");
   882         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
   883           Node *n = worklist[i];      // Get Node on worklist
   884           tty->print(" %d", n->_idx);
   885         }
   886         tty->cr();
   887       }
   888     }
   890 #endif
   891     if( n->is_MachCall() ) {
   892       MachCallNode *mcall = n->as_MachCall();
   893       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
   894       continue;
   895     }
   897     if (n->is_Mach() && n->as_Mach()->has_call()) {
   898       RegMask regs;
   899       regs.Insert(_matcher.c_frame_pointer());
   900       regs.OR(n->out_RegMask());
   902       MachProjNode *proj = new (C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
   903       map_node_to_block(proj, block);
   904       block->insert_node(proj, phi_cnt++);
   906       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
   907     }
   909     // Children are now all ready
   910     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
   911       Node* m = n->fast_out(i5); // Get user
   912       if (get_block_for_node(m) != block) {
   913         continue;
   914       }
   915       if( m->is_Phi() ) continue;
   916       if (m->_idx >= max_idx) { // new node, skip it
   917         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
   918         continue;
   919       }
   920       int m_cnt = ready_cnt.at(m->_idx)-1;
   921       ready_cnt.at_put(m->_idx, m_cnt);
   922       if( m_cnt == 0 )
   923         worklist.push(m);
   924     }
   925   }
   927   if( phi_cnt != block->end_idx() ) {
   928     // did not schedule all.  Retry, Bailout, or Die
   929     if (C->subsume_loads() == true && !C->failing()) {
   930       // Retry with subsume_loads == false
   931       // If this is the first failure, the sentinel string will "stick"
   932       // to the Compile object, and the C2Compiler will see it and retry.
   933       C->record_failure(C2Compiler::retry_no_subsuming_loads());
   934     }
   935     // assert( phi_cnt == end_idx(), "did not schedule all" );
   936     return false;
   937   }
   939 #ifndef PRODUCT
   940   if (trace_opto_pipelining()) {
   941     tty->print_cr("#");
   942     tty->print_cr("# after schedule_local");
   943     for (uint i = 0;i < block->number_of_nodes();i++) {
   944       tty->print("# ");
   945       block->get_node(i)->fast_dump();
   946     }
   947     tty->cr();
   948   }
   949 #endif
   952   return true;
   953 }
   955 //--------------------------catch_cleanup_fix_all_inputs-----------------------
   956 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
   957   for (uint l = 0; l < use->len(); l++) {
   958     if (use->in(l) == old_def) {
   959       if (l < use->req()) {
   960         use->set_req(l, new_def);
   961       } else {
   962         use->rm_prec(l);
   963         use->add_prec(new_def);
   964         l--;
   965       }
   966     }
   967   }
   968 }
   970 //------------------------------catch_cleanup_find_cloned_def------------------
   971 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
   972   assert( use_blk != def_blk, "Inter-block cleanup only");
   974   // The use is some block below the Catch.  Find and return the clone of the def
   975   // that dominates the use. If there is no clone in a dominating block, then
   976   // create a phi for the def in a dominating block.
   978   // Find which successor block dominates this use.  The successor
   979   // blocks must all be single-entry (from the Catch only; I will have
   980   // split blocks to make this so), hence they all dominate.
   981   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
   982     use_blk = use_blk->_idom;
   984   // Find the successor
   985   Node *fixup = NULL;
   987   uint j;
   988   for( j = 0; j < def_blk->_num_succs; j++ )
   989     if( use_blk == def_blk->_succs[j] )
   990       break;
   992   if( j == def_blk->_num_succs ) {
   993     // Block at same level in dom-tree is not a successor.  It needs a
   994     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
   995     Node_Array inputs = new Node_List(Thread::current()->resource_area());
   996     for(uint k = 1; k < use_blk->num_preds(); k++) {
   997       Block* block = get_block_for_node(use_blk->pred(k));
   998       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
   999     }
  1001     // Check to see if the use_blk already has an identical phi inserted.
  1002     // If it exists, it will be at the first position since all uses of a
  1003     // def are processed together.
  1004     Node *phi = use_blk->get_node(1);
  1005     if( phi->is_Phi() ) {
  1006       fixup = phi;
  1007       for (uint k = 1; k < use_blk->num_preds(); k++) {
  1008         if (phi->in(k) != inputs[k]) {
  1009           // Not a match
  1010           fixup = NULL;
  1011           break;
  1016     // If an existing PhiNode was not found, make a new one.
  1017     if (fixup == NULL) {
  1018       Node *new_phi = PhiNode::make(use_blk->head(), def);
  1019       use_blk->insert_node(new_phi, 1);
  1020       map_node_to_block(new_phi, use_blk);
  1021       for (uint k = 1; k < use_blk->num_preds(); k++) {
  1022         new_phi->set_req(k, inputs[k]);
  1024       fixup = new_phi;
  1027   } else {
  1028     // Found the use just below the Catch.  Make it use the clone.
  1029     fixup = use_blk->get_node(n_clone_idx);
  1032   return fixup;
  1035 //--------------------------catch_cleanup_intra_block--------------------------
  1036 // Fix all input edges in use that reference "def".  The use is in the same
  1037 // block as the def and both have been cloned in each successor block.
  1038 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
  1040   // Both the use and def have been cloned. For each successor block,
  1041   // get the clone of the use, and make its input the clone of the def
  1042   // found in that block.
  1044   uint use_idx = blk->find_node(use);
  1045   uint offset_idx = use_idx - beg;
  1046   for( uint k = 0; k < blk->_num_succs; k++ ) {
  1047     // Get clone in each successor block
  1048     Block *sb = blk->_succs[k];
  1049     Node *clone = sb->get_node(offset_idx+1);
  1050     assert( clone->Opcode() == use->Opcode(), "" );
  1052     // Make use-clone reference the def-clone
  1053     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
  1057 //------------------------------catch_cleanup_inter_block---------------------
  1058 // Fix all input edges in use that reference "def".  The use is in a different
  1059 // block than the def.
  1060 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
  1061   if( !use_blk ) return;        // Can happen if the use is a precedence edge
  1063   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
  1064   catch_cleanup_fix_all_inputs(use, def, new_def);
  1067 //------------------------------call_catch_cleanup-----------------------------
  1068 // If we inserted any instructions between a Call and his CatchNode,
  1069 // clone the instructions on all paths below the Catch.
  1070 void PhaseCFG::call_catch_cleanup(Block* block) {
  1072   // End of region to clone
  1073   uint end = block->end_idx();
  1074   if( !block->get_node(end)->is_Catch() ) return;
  1075   // Start of region to clone
  1076   uint beg = end;
  1077   while(!block->get_node(beg-1)->is_MachProj() ||
  1078         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
  1079     beg--;
  1080     assert(beg > 0,"Catch cleanup walking beyond block boundary");
  1082   // Range of inserted instructions is [beg, end)
  1083   if( beg == end ) return;
  1085   // Clone along all Catch output paths.  Clone area between the 'beg' and
  1086   // 'end' indices.
  1087   for( uint i = 0; i < block->_num_succs; i++ ) {
  1088     Block *sb = block->_succs[i];
  1089     // Clone the entire area; ignoring the edge fixup for now.
  1090     for( uint j = end; j > beg; j-- ) {
  1091       // It is safe here to clone a node with anti_dependence
  1092       // since clones dominate on each path.
  1093       Node *clone = block->get_node(j-1)->clone();
  1094       sb->insert_node(clone, 1);
  1095       map_node_to_block(clone, sb);
  1100   // Fixup edges.  Check the def-use info per cloned Node
  1101   for(uint i2 = beg; i2 < end; i2++ ) {
  1102     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
  1103     Node *n = block->get_node(i2);        // Node that got cloned
  1104     // Need DU safe iterator because of edge manipulation in calls.
  1105     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
  1106     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
  1107       out->push(n->fast_out(j1));
  1109     uint max = out->size();
  1110     for (uint j = 0; j < max; j++) {// For all users
  1111       Node *use = out->pop();
  1112       Block *buse = get_block_for_node(use);
  1113       if( use->is_Phi() ) {
  1114         for( uint k = 1; k < use->req(); k++ )
  1115           if( use->in(k) == n ) {
  1116             Block* b = get_block_for_node(buse->pred(k));
  1117             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
  1118             use->set_req(k, fixup);
  1120       } else {
  1121         if (block == buse) {
  1122           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
  1123         } else {
  1124           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
  1127     } // End for all users
  1129   } // End of for all Nodes in cloned area
  1131   // Remove the now-dead cloned ops
  1132   for(uint i3 = beg; i3 < end; i3++ ) {
  1133     block->get_node(beg)->disconnect_inputs(NULL, C);
  1134     block->remove_node(beg);
  1137   // If the successor blocks have a CreateEx node, move it back to the top
  1138   for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
  1139     Block *sb = block->_succs[i4];
  1140     uint new_cnt = end - beg;
  1141     // Remove any newly created, but dead, nodes.
  1142     for( uint j = new_cnt; j > 0; j-- ) {
  1143       Node *n = sb->get_node(j);
  1144       if (n->outcnt() == 0 &&
  1145           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
  1146         n->disconnect_inputs(NULL, C);
  1147         sb->remove_node(j);
  1148         new_cnt--;
  1151     // If any newly created nodes remain, move the CreateEx node to the top
  1152     if (new_cnt > 0) {
  1153       Node *cex = sb->get_node(1+new_cnt);
  1154       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
  1155         sb->remove_node(1+new_cnt);
  1156         sb->insert_node(cex, 1);

mercurial