src/share/vm/opto/coalesce.cpp

Wed, 10 Aug 2016 14:59:21 +0200

author
simonis
date
Wed, 10 Aug 2016 14:59:21 +0200
changeset 8608
0d78aecb0948
parent 7295
b8e2e616c1e9
child 7535
7ae4e26cb1e0
child 9513
e044997c2eda
permissions
-rw-r--r--

8152172: PPC64: Support AES intrinsics
Summary: Add support for AES intrinsics on PPC64.
Reviewed-by: kvn, mdoerr, simonis, zmajo
Contributed-by: Hiroshi H Horii <horii@jp.ibm.com>

     1 /*
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "memory/allocation.inline.hpp"
    27 #include "opto/block.hpp"
    28 #include "opto/cfgnode.hpp"
    29 #include "opto/chaitin.hpp"
    30 #include "opto/coalesce.hpp"
    31 #include "opto/connode.hpp"
    32 #include "opto/indexSet.hpp"
    33 #include "opto/machnode.hpp"
    34 #include "opto/matcher.hpp"
    35 #include "opto/regmask.hpp"
    37 #ifndef PRODUCT
    38 void PhaseCoalesce::dump(Node *n) const {
    39   // Being a const function means I cannot use 'Find'
    40   uint r = _phc._lrg_map.find(n);
    41   tty->print("L%d/N%d ",r,n->_idx);
    42 }
    44 void PhaseCoalesce::dump() const {
    45   // I know I have a block layout now, so I can print blocks in a loop
    46   for( uint i=0; i<_phc._cfg.number_of_blocks(); i++ ) {
    47     uint j;
    48     Block* b = _phc._cfg.get_block(i);
    49     // Print a nice block header
    50     tty->print("B%d: ",b->_pre_order);
    51     for( j=1; j<b->num_preds(); j++ )
    52       tty->print("B%d ", _phc._cfg.get_block_for_node(b->pred(j))->_pre_order);
    53     tty->print("-> ");
    54     for( j=0; j<b->_num_succs; j++ )
    55       tty->print("B%d ",b->_succs[j]->_pre_order);
    56     tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth);
    57     uint cnt = b->number_of_nodes();
    58     for( j=0; j<cnt; j++ ) {
    59       Node *n = b->get_node(j);
    60       dump( n );
    61       tty->print("\t%s\t",n->Name());
    63       // Dump the inputs
    64       uint k;                   // Exit value of loop
    65       for( k=0; k<n->req(); k++ ) // For all required inputs
    66         if( n->in(k) ) dump( n->in(k) );
    67         else tty->print("_ ");
    68       int any_prec = 0;
    69       for( ; k<n->len(); k++ )          // For all precedence inputs
    70         if( n->in(k) ) {
    71           if( !any_prec++ ) tty->print(" |");
    72           dump( n->in(k) );
    73         }
    75       // Dump node-specific info
    76       n->dump_spec(tty);
    77       tty->print("\n");
    79     }
    80     tty->print("\n");
    81   }
    82 }
    83 #endif
    85 // Combine the live ranges def'd by these 2 Nodes.  N2 is an input to N1.
    86 void PhaseCoalesce::combine_these_two(Node *n1, Node *n2) {
    87   uint lr1 = _phc._lrg_map.find(n1);
    88   uint lr2 = _phc._lrg_map.find(n2);
    89   if( lr1 != lr2 &&             // Different live ranges already AND
    90       !_phc._ifg->test_edge_sq( lr1, lr2 ) ) {  // Do not interfere
    91     LRG *lrg1 = &_phc.lrgs(lr1);
    92     LRG *lrg2 = &_phc.lrgs(lr2);
    93     // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
    95     // Now, why is int->oop OK?  We end up declaring a raw-pointer as an oop
    96     // and in general that's a bad thing.  However, int->oop conversions only
    97     // happen at GC points, so the lifetime of the misclassified raw-pointer
    98     // is from the CheckCastPP (that converts it to an oop) backwards up
    99     // through a merge point and into the slow-path call, and around the
   100     // diamond up to the heap-top check and back down into the slow-path call.
   101     // The misclassified raw pointer is NOT live across the slow-path call,
   102     // and so does not appear in any GC info, so the fact that it is
   103     // misclassified is OK.
   105     if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND
   106         // Compatible final mask
   107         lrg1->mask().overlap( lrg2->mask() ) ) {
   108       // Merge larger into smaller.
   109       if( lr1 > lr2 ) {
   110         uint  tmp =  lr1;  lr1 =  lr2;  lr2 =  tmp;
   111         Node   *n =   n1;   n1 =   n2;   n2 =    n;
   112         LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp;
   113       }
   114       // Union lr2 into lr1
   115       _phc.Union( n1, n2 );
   116       if (lrg1->_maxfreq < lrg2->_maxfreq)
   117         lrg1->_maxfreq = lrg2->_maxfreq;
   118       // Merge in the IFG
   119       _phc._ifg->Union( lr1, lr2 );
   120       // Combine register restrictions
   121       lrg1->AND(lrg2->mask());
   122     }
   123   }
   124 }
   126 // Copy coalescing
   127 void PhaseCoalesce::coalesce_driver() {
   128   verify();
   129   // Coalesce from high frequency to low
   130   for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) {
   131     coalesce(_phc._blks[i]);
   132   }
   133 }
   135 // I am inserting copies to come out of SSA form.  In the general case, I am
   136 // doing a parallel renaming.  I'm in the Named world now, so I can't do a
   137 // general parallel renaming.  All the copies now use  "names" (live-ranges)
   138 // to carry values instead of the explicit use-def chains.  Suppose I need to
   139 // insert 2 copies into the same block.  They copy L161->L128 and L128->L132.
   140 // If I insert them in the wrong order then L128 will get clobbered before it
   141 // can get used by the second copy.  This cannot happen in the SSA model;
   142 // direct use-def chains get me the right value.  It DOES happen in the named
   143 // model so I have to handle the reordering of copies.
   144 //
   145 // In general, I need to topo-sort the placed copies to avoid conflicts.
   146 // Its possible to have a closed cycle of copies (e.g., recirculating the same
   147 // values around a loop).  In this case I need a temp to break the cycle.
   148 void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) {
   150   // Scan backwards for the locations of the last use of the dst_name.
   151   // I am about to clobber the dst_name, so the copy must be inserted
   152   // after the last use.  Last use is really first-use on a backwards scan.
   153   uint i = b->end_idx()-1;
   154   while(1) {
   155     Node *n = b->get_node(i);
   156     // Check for end of virtual copies; this is also the end of the
   157     // parallel renaming effort.
   158     if (n->_idx < _unique) {
   159       break;
   160     }
   161     uint idx = n->is_Copy();
   162     assert( idx || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
   163     if (idx && _phc._lrg_map.find(n->in(idx)) == dst_name) {
   164       break;
   165     }
   166     i--;
   167   }
   168   uint last_use_idx = i;
   170   // Also search for any kill of src_name that exits the block.
   171   // Since the copy uses src_name, I have to come before any kill.
   172   uint kill_src_idx = b->end_idx();
   173   // There can be only 1 kill that exits any block and that is
   174   // the last kill.  Thus it is the first kill on a backwards scan.
   175   i = b->end_idx()-1;
   176   while (1) {
   177     Node *n = b->get_node(i);
   178     // Check for end of virtual copies; this is also the end of the
   179     // parallel renaming effort.
   180     if (n->_idx < _unique) {
   181       break;
   182     }
   183     assert( n->is_Copy() || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
   184     if (_phc._lrg_map.find(n) == src_name) {
   185       kill_src_idx = i;
   186       break;
   187     }
   188     i--;
   189   }
   190   // Need a temp?  Last use of dst comes after the kill of src?
   191   if (last_use_idx >= kill_src_idx) {
   192     // Need to break a cycle with a temp
   193     uint idx = copy->is_Copy();
   194     Node *tmp = copy->clone();
   195     uint max_lrg_id = _phc._lrg_map.max_lrg_id();
   196     _phc.new_lrg(tmp, max_lrg_id);
   197     _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
   199     // Insert new temp between copy and source
   200     tmp ->set_req(idx,copy->in(idx));
   201     copy->set_req(idx,tmp);
   202     // Save source in temp early, before source is killed
   203     b->insert_node(tmp, kill_src_idx);
   204     _phc._cfg.map_node_to_block(tmp, b);
   205     last_use_idx++;
   206   }
   208   // Insert just after last use
   209   b->insert_node(copy, last_use_idx + 1);
   210 }
   212 void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
   213   // We do LRGs compressing and fix a liveout data only here since the other
   214   // place in Split() is guarded by the assert which we never hit.
   215   _phc._lrg_map.compress_uf_map_for_nodes();
   216   // Fix block's liveout data for compressed live ranges.
   217   for (uint lrg = 1; lrg < _phc._lrg_map.max_lrg_id(); lrg++) {
   218     uint compressed_lrg = _phc._lrg_map.find(lrg);
   219     if (lrg != compressed_lrg) {
   220       for (uint bidx = 0; bidx < _phc._cfg.number_of_blocks(); bidx++) {
   221         IndexSet *liveout = _phc._live->live(_phc._cfg.get_block(bidx));
   222         if (liveout->member(lrg)) {
   223           liveout->remove(lrg);
   224           liveout->insert(compressed_lrg);
   225         }
   226       }
   227     }
   228   }
   230   // All new nodes added are actual copies to replace virtual copies.
   231   // Nodes with index less than '_unique' are original, non-virtual Nodes.
   232   _unique = C->unique();
   234   for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) {
   235     C->check_node_count(NodeLimitFudgeFactor, "out of nodes in coalesce");
   236     if (C->failing()) return;
   237     Block *b = _phc._cfg.get_block(i);
   238     uint cnt = b->num_preds();  // Number of inputs to the Phi
   240     for( uint l = 1; l<b->number_of_nodes(); l++ ) {
   241       Node *n = b->get_node(l);
   243       // Do not use removed-copies, use copied value instead
   244       uint ncnt = n->req();
   245       for( uint k = 1; k<ncnt; k++ ) {
   246         Node *copy = n->in(k);
   247         uint cidx = copy->is_Copy();
   248         if( cidx ) {
   249           Node *def = copy->in(cidx);
   250           if (_phc._lrg_map.find(copy) == _phc._lrg_map.find(def)) {
   251             n->set_req(k, def);
   252           }
   253         }
   254       }
   256       // Remove any explicit copies that get coalesced.
   257       uint cidx = n->is_Copy();
   258       if( cidx ) {
   259         Node *def = n->in(cidx);
   260         if (_phc._lrg_map.find(n) == _phc._lrg_map.find(def)) {
   261           n->replace_by(def);
   262           n->set_req(cidx,NULL);
   263           b->remove_node(l);
   264           l--;
   265           continue;
   266         }
   267       }
   269       if (n->is_Phi()) {
   270         // Get the chosen name for the Phi
   271         uint phi_name = _phc._lrg_map.find(n);
   272         // Ignore the pre-allocated specials
   273         if (!phi_name) {
   274           continue;
   275         }
   276         // Check for mismatch inputs to Phi
   277         for (uint j = 1; j < cnt; j++) {
   278           Node *m = n->in(j);
   279           uint src_name = _phc._lrg_map.find(m);
   280           if (src_name != phi_name) {
   281             Block *pred = _phc._cfg.get_block_for_node(b->pred(j));
   282             Node *copy;
   283             assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
   284             // Rematerialize constants instead of copying them.
   285             // We do this only for immediate constants, we avoid constant table loads
   286             // because that will unsafely extend the live range of the constant table base.
   287             if (m->is_Mach() && m->as_Mach()->is_Con() && !m->as_Mach()->is_MachConstant() &&
   288                 m->as_Mach()->rematerialize()) {
   289               copy = m->clone();
   290               // Insert the copy in the predecessor basic block
   291               pred->add_inst(copy);
   292               // Copy any flags as well
   293               _phc.clone_projs(pred, pred->end_idx(), m, copy, _phc._lrg_map);
   294             } else {
   295               const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
   296               copy = new (C) MachSpillCopyNode(m, *rm, *rm);
   297               // Find a good place to insert.  Kinda tricky, use a subroutine
   298               insert_copy_with_overlap(pred,copy,phi_name,src_name);
   299             }
   300             // Insert the copy in the use-def chain
   301             n->set_req(j, copy);
   302             _phc._cfg.map_node_to_block(copy, pred);
   303             // Extend ("register allocate") the names array for the copy.
   304             _phc._lrg_map.extend(copy->_idx, phi_name);
   305           } // End of if Phi names do not match
   306         } // End of for all inputs to Phi
   307       } else { // End of if Phi
   309         // Now check for 2-address instructions
   310         uint idx;
   311         if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) {
   312           // Get the chosen name for the Node
   313           uint name = _phc._lrg_map.find(n);
   314           assert (name, "no 2-address specials");
   315           // Check for name mis-match on the 2-address input
   316           Node *m = n->in(idx);
   317           if (_phc._lrg_map.find(m) != name) {
   318             Node *copy;
   319             assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
   320             // At this point it is unsafe to extend live ranges (6550579).
   321             // Rematerialize only constants as we do for Phi above.
   322             if (m->is_Mach() && m->as_Mach()->is_Con() && !m->as_Mach()->is_MachConstant() &&
   323                 m->as_Mach()->rematerialize()) {
   324               copy = m->clone();
   325               // Insert the copy in the basic block, just before us
   326               b->insert_node(copy, l++);
   327               l += _phc.clone_projs(b, l, m, copy, _phc._lrg_map);
   328             } else {
   329               const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
   330               copy = new (C) MachSpillCopyNode(m, *rm, *rm);
   331               // Insert the copy in the basic block, just before us
   332               b->insert_node(copy, l++);
   333             }
   334             // Insert the copy in the use-def chain
   335             n->set_req(idx, copy);
   336             // Extend ("register allocate") the names array for the copy.
   337             _phc._lrg_map.extend(copy->_idx, name);
   338             _phc._cfg.map_node_to_block(copy, b);
   339           }
   341         } // End of is two-adr
   343         // Insert a copy at a debug use for a lrg which has high frequency
   344         if (b->_freq < OPTO_DEBUG_SPLIT_FREQ || _phc._cfg.is_uncommon(b)) {
   345           // Walk the debug inputs to the node and check for lrg freq
   346           JVMState* jvms = n->jvms();
   347           uint debug_start = jvms ? jvms->debug_start() : 999999;
   348           uint debug_end   = jvms ? jvms->debug_end()   : 999999;
   349           for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) {
   350             // Do not split monitors; they are only needed for debug table
   351             // entries and need no code.
   352             if (jvms->is_monitor_use(inpidx)) {
   353               continue;
   354             }
   355             Node *inp = n->in(inpidx);
   356             uint nidx = _phc._lrg_map.live_range_id(inp);
   357             LRG &lrg = lrgs(nidx);
   359             // If this lrg has a high frequency use/def
   360             if( lrg._maxfreq >= _phc.high_frequency_lrg() ) {
   361               // If the live range is also live out of this block (like it
   362               // would be for a fast/slow idiom), the normal spill mechanism
   363               // does an excellent job.  If it is not live out of this block
   364               // (like it would be for debug info to uncommon trap) splitting
   365               // the live range now allows a better allocation in the high
   366               // frequency blocks.
   367               //   Build_IFG_virtual has converted the live sets to
   368               // live-IN info, not live-OUT info.
   369               uint k;
   370               for( k=0; k < b->_num_succs; k++ )
   371                 if( _phc._live->live(b->_succs[k])->member( nidx ) )
   372                   break;      // Live in to some successor block?
   373               if( k < b->_num_succs )
   374                 continue;     // Live out; do not pre-split
   375               // Split the lrg at this use
   376               const RegMask *rm = C->matcher()->idealreg2spillmask[inp->ideal_reg()];
   377               Node *copy = new (C) MachSpillCopyNode( inp, *rm, *rm );
   378               // Insert the copy in the use-def chain
   379               n->set_req(inpidx, copy );
   380               // Insert the copy in the basic block, just before us
   381               b->insert_node(copy,  l++);
   382               // Extend ("register allocate") the names array for the copy.
   383               uint max_lrg_id = _phc._lrg_map.max_lrg_id();
   384               _phc.new_lrg(copy, max_lrg_id);
   385               _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
   386               _phc._cfg.map_node_to_block(copy, b);
   387               //tty->print_cr("Split a debug use in Aggressive Coalesce");
   388             }  // End of if high frequency use/def
   389           }  // End of for all debug inputs
   390         }  // End of if low frequency safepoint
   392       } // End of if Phi
   394     } // End of for all instructions
   395   } // End of for all blocks
   396 }
   399 // Aggressive (but pessimistic) copy coalescing of a single block
   401 // The following coalesce pass represents a single round of aggressive
   402 // pessimistic coalesce.  "Aggressive" means no attempt to preserve
   403 // colorability when coalescing.  This occasionally means more spills, but
   404 // it also means fewer rounds of coalescing for better code - and that means
   405 // faster compiles.
   407 // "Pessimistic" means we do not hit the fixed point in one pass (and we are
   408 // reaching for the least fixed point to boot).  This is typically solved
   409 // with a few more rounds of coalescing, but the compiler must run fast.  We
   410 // could optimistically coalescing everything touching PhiNodes together
   411 // into one big live range, then check for self-interference.  Everywhere
   412 // the live range interferes with self it would have to be split.  Finding
   413 // the right split points can be done with some heuristics (based on
   414 // expected frequency of edges in the live range).  In short, it's a real
   415 // research problem and the timeline is too short to allow such research.
   416 // Further thoughts: (1) build the LR in a pass, (2) find self-interference
   417 // in another pass, (3) per each self-conflict, split, (4) split by finding
   418 // the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted
   419 // according to the GCM algorithm (or just exec freq on CFG edges).
   421 void PhaseAggressiveCoalesce::coalesce( Block *b ) {
   422   // Copies are still "virtual" - meaning we have not made them explicitly
   423   // copies.  Instead, Phi functions of successor blocks have mis-matched
   424   // live-ranges.  If I fail to coalesce, I'll have to insert a copy to line
   425   // up the live-ranges.  Check for Phis in successor blocks.
   426   uint i;
   427   for( i=0; i<b->_num_succs; i++ ) {
   428     Block *bs = b->_succs[i];
   429     // Find index of 'b' in 'bs' predecessors
   430     uint j=1;
   431     while (_phc._cfg.get_block_for_node(bs->pred(j)) != b) {
   432       j++;
   433     }
   435     // Visit all the Phis in successor block
   436     for( uint k = 1; k<bs->number_of_nodes(); k++ ) {
   437       Node *n = bs->get_node(k);
   438       if( !n->is_Phi() ) break;
   439       combine_these_two( n, n->in(j) );
   440     }
   441   } // End of for all successor blocks
   444   // Check _this_ block for 2-address instructions and copies.
   445   uint cnt = b->end_idx();
   446   for( i = 1; i<cnt; i++ ) {
   447     Node *n = b->get_node(i);
   448     uint idx;
   449     // 2-address instructions have a virtual Copy matching their input
   450     // to their output
   451     if (n->is_Mach() && (idx = n->as_Mach()->two_adr())) {
   452       MachNode *mach = n->as_Mach();
   453       combine_these_two(mach, mach->in(idx));
   454     }
   455   } // End of for all instructions in block
   456 }
   458 PhaseConservativeCoalesce::PhaseConservativeCoalesce(PhaseChaitin &chaitin) : PhaseCoalesce(chaitin) {
   459   _ulr.initialize(_phc._lrg_map.max_lrg_id());
   460 }
   462 void PhaseConservativeCoalesce::verify() {
   463 #ifdef ASSERT
   464   _phc.set_was_low();
   465 #endif
   466 }
   468 void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
   469   // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
   470   // union-find tree
   471   _phc.Union( lr1_node, lr2_node );
   473   // Single-def live range ONLY if both live ranges are single-def.
   474   // If both are single def, then src_def powers one live range
   475   // and def_copy powers the other.  After merging, src_def powers
   476   // the combined live range.
   477   lrgs(lr1)._def = (lrgs(lr1).is_multidef() ||
   478                         lrgs(lr2).is_multidef() )
   479     ? NodeSentinel : src_def;
   480   lrgs(lr2)._def = NULL;    // No def for lrg 2
   481   lrgs(lr2).Clear();        // Force empty mask for LRG 2
   482   //lrgs(lr2)._size = 0;      // Live-range 2 goes dead
   483   lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop;
   484   lrgs(lr2)._is_oop = 0;    // In particular, not an oop for GC info
   486   if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq)
   487     lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq;
   489   // Copy original value instead.  Intermediate copies go dead, and
   490   // the dst_copy becomes useless.
   491   int didx = dst_copy->is_Copy();
   492   dst_copy->set_req( didx, src_def );
   493   // Add copy to free list
   494   // _phc.free_spillcopy(b->_nodes[bindex]);
   495   assert( b->get_node(bindex) == dst_copy, "" );
   496   dst_copy->replace_by( dst_copy->in(didx) );
   497   dst_copy->set_req( didx, NULL);
   498   b->remove_node(bindex);
   499   if( bindex < b->_ihrp_index ) b->_ihrp_index--;
   500   if( bindex < b->_fhrp_index ) b->_fhrp_index--;
   502   // Stretched lr1; add it to liveness of intermediate blocks
   503   Block *b2 = _phc._cfg.get_block_for_node(src_copy);
   504   while( b != b2 ) {
   505     b = _phc._cfg.get_block_for_node(b->pred(1));
   506     _phc._live->live(b)->insert(lr1);
   507   }
   508 }
   510 // Factored code from copy_copy that computes extra interferences from
   511 // lengthening a live range by double-coalescing.
   512 uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) {
   514   assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj");
   515   assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj");
   516   Node *prev_copy = dst_copy->in(dst_copy->is_Copy());
   517   Block *b2 = b;
   518   uint bindex2 = bindex;
   519   while( 1 ) {
   520     // Find previous instruction
   521     bindex2--;                  // Chain backwards 1 instruction
   522     while( bindex2 == 0 ) {     // At block start, find prior block
   523       assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" );
   524       b2 = _phc._cfg.get_block_for_node(b2->pred(1));
   525       bindex2 = b2->end_idx()-1;
   526     }
   527     // Get prior instruction
   528     assert(bindex2 < b2->number_of_nodes(), "index out of bounds");
   529     Node *x = b2->get_node(bindex2);
   530     if( x == prev_copy ) {      // Previous copy in copy chain?
   531       if( prev_copy == src_copy)// Found end of chain and all interferences
   532         break;                  // So break out of loop
   533       // Else work back one in copy chain
   534       prev_copy = prev_copy->in(prev_copy->is_Copy());
   535     } else {                    // Else collect interferences
   536       uint lidx = _phc._lrg_map.find(x);
   537       // Found another def of live-range being stretched?
   538       if(lidx == lr1) {
   539         return max_juint;
   540       }
   541       if(lidx == lr2) {
   542         return max_juint;
   543       }
   545       // If we attempt to coalesce across a bound def
   546       if( lrgs(lidx).is_bound() ) {
   547         // Do not let the coalesced LRG expect to get the bound color
   548         rm.SUBTRACT( lrgs(lidx).mask() );
   549         // Recompute rm_size
   550         rm_size = rm.Size();
   551         //if( rm._flags ) rm_size += 1000000;
   552         if( reg_degree >= rm_size ) return max_juint;
   553       }
   554       if( rm.overlap(lrgs(lidx).mask()) ) {
   555         // Insert lidx into union LRG; returns TRUE if actually inserted
   556         if( _ulr.insert(lidx) ) {
   557           // Infinite-stack neighbors do not alter colorability, as they
   558           // can always color to some other color.
   559           if( !lrgs(lidx).mask().is_AllStack() ) {
   560             // If this coalesce will make any new neighbor uncolorable,
   561             // do not coalesce.
   562             if( lrgs(lidx).just_lo_degree() )
   563               return max_juint;
   564             // Bump our degree
   565             if( ++reg_degree >= rm_size )
   566               return max_juint;
   567           } // End of if not infinite-stack neighbor
   568         } // End of if actually inserted
   569       } // End of if live range overlaps
   570     } // End of else collect interferences for 1 node
   571   } // End of while forever, scan back for interferences
   572   return reg_degree;
   573 }
   575 void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) {
   576   // Some original neighbors of lr1 might have gone away
   577   // because the constrained register mask prevented them.
   578   // Remove lr1 from such neighbors.
   579   IndexSetIterator one(n_lr1);
   580   uint neighbor;
   581   LRG &lrg1 = lrgs(lr1);
   582   while ((neighbor = one.next()) != 0)
   583     if( !_ulr.member(neighbor) )
   584       if( _phc._ifg->neighbors(neighbor)->remove(lr1) )
   585         lrgs(neighbor).inc_degree( -lrg1.compute_degree(lrgs(neighbor)) );
   588   // lr2 is now called (coalesced into) lr1.
   589   // Remove lr2 from the IFG.
   590   IndexSetIterator two(n_lr2);
   591   LRG &lrg2 = lrgs(lr2);
   592   while ((neighbor = two.next()) != 0)
   593     if( _phc._ifg->neighbors(neighbor)->remove(lr2) )
   594       lrgs(neighbor).inc_degree( -lrg2.compute_degree(lrgs(neighbor)) );
   596   // Some neighbors of intermediate copies now interfere with the
   597   // combined live range.
   598   IndexSetIterator three(&_ulr);
   599   while ((neighbor = three.next()) != 0)
   600     if( _phc._ifg->neighbors(neighbor)->insert(lr1) )
   601       lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) );
   602 }
   604 static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) {
   605   // Tag copy bias here
   606   if( !ifg->lrgs(lr1)._copy_bias )
   607     ifg->lrgs(lr1)._copy_bias = lr2;
   608   if( !ifg->lrgs(lr2)._copy_bias )
   609     ifg->lrgs(lr2)._copy_bias = lr1;
   610 }
   612 // See if I can coalesce a series of multiple copies together.  I need the
   613 // final dest copy and the original src copy.  They can be the same Node.
   614 // Compute the compatible register masks.
   615 bool PhaseConservativeCoalesce::copy_copy(Node *dst_copy, Node *src_copy, Block *b, uint bindex) {
   617   if (!dst_copy->is_SpillCopy()) {
   618     return false;
   619   }
   620   if (!src_copy->is_SpillCopy()) {
   621     return false;
   622   }
   623   Node *src_def = src_copy->in(src_copy->is_Copy());
   624   uint lr1 = _phc._lrg_map.find(dst_copy);
   625   uint lr2 = _phc._lrg_map.find(src_def);
   627   // Same live ranges already?
   628   if (lr1 == lr2) {
   629     return false;
   630   }
   632   // Interfere?
   633   if (_phc._ifg->test_edge_sq(lr1, lr2)) {
   634     return false;
   635   }
   637   // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
   638   if (!lrgs(lr1)._is_oop && lrgs(lr2)._is_oop) { // not an oop->int cast
   639     return false;
   640   }
   642   // Coalescing between an aligned live range and a mis-aligned live range?
   643   // No, no!  Alignment changes how we count degree.
   644   if (lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj) {
   645     return false;
   646   }
   648   // Sort; use smaller live-range number
   649   Node *lr1_node = dst_copy;
   650   Node *lr2_node = src_def;
   651   if (lr1 > lr2) {
   652     uint tmp = lr1; lr1 = lr2; lr2 = tmp;
   653     lr1_node = src_def;  lr2_node = dst_copy;
   654   }
   656   // Check for compatibility of the 2 live ranges by
   657   // intersecting their allowed register sets.
   658   RegMask rm = lrgs(lr1).mask();
   659   rm.AND(lrgs(lr2).mask());
   660   // Number of bits free
   661   uint rm_size = rm.Size();
   663   if (UseFPUForSpilling && rm.is_AllStack() ) {
   664     // Don't coalesce when frequency difference is large
   665     Block *dst_b = _phc._cfg.get_block_for_node(dst_copy);
   666     Block *src_def_b = _phc._cfg.get_block_for_node(src_def);
   667     if (src_def_b->_freq > 10*dst_b->_freq )
   668       return false;
   669   }
   671   // If we can use any stack slot, then effective size is infinite
   672   if( rm.is_AllStack() ) rm_size += 1000000;
   673   // Incompatible masks, no way to coalesce
   674   if( rm_size == 0 ) return false;
   676   // Another early bail-out test is when we are double-coalescing and the
   677   // 2 copies are separated by some control flow.
   678   if( dst_copy != src_copy ) {
   679     Block *src_b = _phc._cfg.get_block_for_node(src_copy);
   680     Block *b2 = b;
   681     while( b2 != src_b ) {
   682       if( b2->num_preds() > 2 ){// Found merge-point
   683         _phc._lost_opp_cflow_coalesce++;
   684         // extra record_bias commented out because Chris believes it is not
   685         // productive.  Since we can record only 1 bias, we want to choose one
   686         // that stands a chance of working and this one probably does not.
   687         //record_bias( _phc._lrgs, lr1, lr2 );
   688         return false;           // To hard to find all interferences
   689       }
   690       b2 = _phc._cfg.get_block_for_node(b2->pred(1));
   691     }
   692   }
   694   // Union the two interference sets together into '_ulr'
   695   uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm );
   697   if( reg_degree >= rm_size ) {
   698     record_bias( _phc._ifg, lr1, lr2 );
   699     return false;
   700   }
   702   // Now I need to compute all the interferences between dst_copy and
   703   // src_copy.  I'm not willing visit the entire interference graph, so
   704   // I limit my search to things in dst_copy's block or in a straight
   705   // line of previous blocks.  I give up at merge points or when I get
   706   // more interferences than my degree.  I can stop when I find src_copy.
   707   if( dst_copy != src_copy ) {
   708     reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 );
   709     if( reg_degree == max_juint ) {
   710       record_bias( _phc._ifg, lr1, lr2 );
   711       return false;
   712     }
   713   } // End of if dst_copy & src_copy are different
   716   // ---- THE COMBINED LRG IS COLORABLE ----
   718   // YEAH - Now coalesce this copy away
   719   assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(),   "" );
   721   IndexSet *n_lr1 = _phc._ifg->neighbors(lr1);
   722   IndexSet *n_lr2 = _phc._ifg->neighbors(lr2);
   724   // Update the interference graph
   725   update_ifg(lr1, lr2, n_lr1, n_lr2);
   727   _ulr.remove(lr1);
   729   // Uncomment the following code to trace Coalescing in great detail.
   730   //
   731   //if (false) {
   732   //  tty->cr();
   733   //  tty->print_cr("#######################################");
   734   //  tty->print_cr("union %d and %d", lr1, lr2);
   735   //  n_lr1->dump();
   736   //  n_lr2->dump();
   737   //  tty->print_cr("resulting set is");
   738   //  _ulr.dump();
   739   //}
   741   // Replace n_lr1 with the new combined live range.  _ulr will use
   742   // n_lr1's old memory on the next iteration.  n_lr2 is cleared to
   743   // send its internal memory to the free list.
   744   _ulr.swap(n_lr1);
   745   _ulr.clear();
   746   n_lr2->clear();
   748   lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) );
   749   lrgs(lr2).set_degree( 0 );
   751   // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
   752   // union-find tree
   753   union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex );
   754   // Combine register restrictions
   755   lrgs(lr1).set_mask(rm);
   756   lrgs(lr1).compute_set_mask_size();
   757   lrgs(lr1)._cost += lrgs(lr2)._cost;
   758   lrgs(lr1)._area += lrgs(lr2)._area;
   760   // While its uncommon to successfully coalesce live ranges that started out
   761   // being not-lo-degree, it can happen.  In any case the combined coalesced
   762   // live range better Simplify nicely.
   763   lrgs(lr1)._was_lo = 1;
   765   // kinda expensive to do all the time
   766   //tty->print_cr("warning: slow verify happening");
   767   //_phc._ifg->verify( &_phc );
   768   return true;
   769 }
   771 // Conservative (but pessimistic) copy coalescing of a single block
   772 void PhaseConservativeCoalesce::coalesce( Block *b ) {
   773   // Bail out on infrequent blocks
   774   if (_phc._cfg.is_uncommon(b)) {
   775     return;
   776   }
   777   // Check this block for copies.
   778   for( uint i = 1; i<b->end_idx(); i++ ) {
   779     // Check for actual copies on inputs.  Coalesce a copy into its
   780     // input if use and copy's input are compatible.
   781     Node *copy1 = b->get_node(i);
   782     uint idx1 = copy1->is_Copy();
   783     if( !idx1 ) continue;       // Not a copy
   785     if( copy_copy(copy1,copy1,b,i) ) {
   786       i--;                      // Retry, same location in block
   787       PhaseChaitin::_conserv_coalesce++;  // Collect stats on success
   788       continue;
   789     }
   790   }
   791 }

mercurial