src/share/vm/gc_implementation/g1/g1CollectorPolicy.cpp

Wed, 04 Aug 2010 13:03:23 -0400

author
tonyp
date
Wed, 04 Aug 2010 13:03:23 -0400
changeset 2062
0ce1569c90e5
parent 2060
2d160770d2e5
child 2134
6eddcbe17c83
permissions
-rw-r--r--

6963209: G1: remove the concept of abandoned pauses
Summary: As part of 6944166 we disabled the concept of abandoned pauses (i.e., if the collection set is empty, we would still try to do a pause even if it is to update the RSets and scan the roots). This changeset removes the code and structures associated with abandoned pauses.
Reviewed-by: iveresov, johnc

     1 /*
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_g1CollectorPolicy.cpp.incl"
    28 #define PREDICTIONS_VERBOSE 0
    30 // <NEW PREDICTION>
    32 // Different defaults for different number of GC threads
    33 // They were chosen by running GCOld and SPECjbb on debris with different
    34 //   numbers of GC threads and choosing them based on the results
    36 // all the same
    37 static double rs_length_diff_defaults[] = {
    38   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    39 };
    41 static double cost_per_card_ms_defaults[] = {
    42   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
    43 };
    45 // all the same
    46 static double fully_young_cards_per_entry_ratio_defaults[] = {
    47   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
    48 };
    50 static double cost_per_entry_ms_defaults[] = {
    51   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
    52 };
    54 static double cost_per_byte_ms_defaults[] = {
    55   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
    56 };
    58 // these should be pretty consistent
    59 static double constant_other_time_ms_defaults[] = {
    60   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
    61 };
    64 static double young_other_cost_per_region_ms_defaults[] = {
    65   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
    66 };
    68 static double non_young_other_cost_per_region_ms_defaults[] = {
    69   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
    70 };
    72 // </NEW PREDICTION>
    74 G1CollectorPolicy::G1CollectorPolicy() :
    75   _parallel_gc_threads((ParallelGCThreads > 0) ? ParallelGCThreads : 1),
    76   _n_pauses(0),
    77   _recent_CH_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    78   _recent_G1_strong_roots_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    79   _recent_evac_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    80   _recent_pause_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    81   _recent_rs_sizes(new TruncatedSeq(NumPrevPausesForHeuristics)),
    82   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
    83   _all_pause_times_ms(new NumberSeq()),
    84   _stop_world_start(0.0),
    85   _all_stop_world_times_ms(new NumberSeq()),
    86   _all_yield_times_ms(new NumberSeq()),
    88   _all_mod_union_times_ms(new NumberSeq()),
    90   _summary(new Summary()),
    92 #ifndef PRODUCT
    93   _cur_clear_ct_time_ms(0.0),
    94   _min_clear_cc_time_ms(-1.0),
    95   _max_clear_cc_time_ms(-1.0),
    96   _cur_clear_cc_time_ms(0.0),
    97   _cum_clear_cc_time_ms(0.0),
    98   _num_cc_clears(0L),
    99 #endif
   101   _region_num_young(0),
   102   _region_num_tenured(0),
   103   _prev_region_num_young(0),
   104   _prev_region_num_tenured(0),
   106   _aux_num(10),
   107   _all_aux_times_ms(new NumberSeq[_aux_num]),
   108   _cur_aux_start_times_ms(new double[_aux_num]),
   109   _cur_aux_times_ms(new double[_aux_num]),
   110   _cur_aux_times_set(new bool[_aux_num]),
   112   _concurrent_mark_init_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   113   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   114   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
   116   // <NEW PREDICTION>
   118   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   119   _prev_collection_pause_end_ms(0.0),
   120   _pending_card_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   121   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
   122   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   123   _fully_young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
   124   _partially_young_cards_per_entry_ratio_seq(
   125                                          new TruncatedSeq(TruncatedSeqLength)),
   126   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   127   _partially_young_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   128   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   129   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
   130   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   131   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
   132   _non_young_other_cost_per_region_ms_seq(
   133                                          new TruncatedSeq(TruncatedSeqLength)),
   135   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   136   _scanned_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
   137   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
   139   _pause_time_target_ms((double) MaxGCPauseMillis),
   141   // </NEW PREDICTION>
   143   _in_young_gc_mode(false),
   144   _full_young_gcs(true),
   145   _full_young_pause_num(0),
   146   _partial_young_pause_num(0),
   148   _during_marking(false),
   149   _in_marking_window(false),
   150   _in_marking_window_im(false),
   152   _known_garbage_ratio(0.0),
   153   _known_garbage_bytes(0),
   155   _young_gc_eff_seq(new TruncatedSeq(TruncatedSeqLength)),
   157    _recent_prev_end_times_for_all_gcs_sec(new TruncatedSeq(NumPrevPausesForHeuristics)),
   159   _recent_CS_bytes_used_before(new TruncatedSeq(NumPrevPausesForHeuristics)),
   160   _recent_CS_bytes_surviving(new TruncatedSeq(NumPrevPausesForHeuristics)),
   162   _recent_avg_pause_time_ratio(0.0),
   163   _num_markings(0),
   164   _n_marks(0),
   165   _n_pauses_at_mark_end(0),
   167   _all_full_gc_times_ms(new NumberSeq()),
   169   // G1PausesBtwnConcMark defaults to -1
   170   // so the hack is to do the cast  QQQ FIXME
   171   _pauses_btwn_concurrent_mark((size_t)G1PausesBtwnConcMark),
   172   _n_marks_since_last_pause(0),
   173   _initiate_conc_mark_if_possible(false),
   174   _during_initial_mark_pause(false),
   175   _should_revert_to_full_young_gcs(false),
   176   _last_full_young_gc(false),
   178   _prev_collection_pause_used_at_end_bytes(0),
   180   _collection_set(NULL),
   181   _collection_set_size(0),
   182   _collection_set_bytes_used_before(0),
   184   // Incremental CSet attributes
   185   _inc_cset_build_state(Inactive),
   186   _inc_cset_head(NULL),
   187   _inc_cset_tail(NULL),
   188   _inc_cset_size(0),
   189   _inc_cset_young_index(0),
   190   _inc_cset_bytes_used_before(0),
   191   _inc_cset_max_finger(NULL),
   192   _inc_cset_recorded_young_bytes(0),
   193   _inc_cset_recorded_rs_lengths(0),
   194   _inc_cset_predicted_elapsed_time_ms(0.0),
   195   _inc_cset_predicted_bytes_to_copy(0),
   197 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   198 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   199 #endif // _MSC_VER
   201   _short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
   202                                                  G1YoungSurvRateNumRegionsSummary)),
   203   _survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
   204                                               G1YoungSurvRateNumRegionsSummary)),
   205   // add here any more surv rate groups
   206   _recorded_survivor_regions(0),
   207   _recorded_survivor_head(NULL),
   208   _recorded_survivor_tail(NULL),
   209   _survivors_age_table(true),
   211   _gc_overhead_perc(0.0)
   213 {
   214   // Set up the region size and associated fields. Given that the
   215   // policy is created before the heap, we have to set this up here,
   216   // so it's done as soon as possible.
   217   HeapRegion::setup_heap_region_size(Arguments::min_heap_size());
   218   HeapRegionRemSet::setup_remset_size();
   220   // Verify PLAB sizes
   221   const uint region_size = HeapRegion::GrainWords;
   222   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
   223     char buffer[128];
   224     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most %u",
   225                  OldPLABSize > region_size ? "Old" : "Young", region_size);
   226     vm_exit_during_initialization(buffer);
   227   }
   229   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
   230   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
   232   _par_last_gc_worker_start_times_ms = new double[_parallel_gc_threads];
   233   _par_last_ext_root_scan_times_ms = new double[_parallel_gc_threads];
   234   _par_last_mark_stack_scan_times_ms = new double[_parallel_gc_threads];
   236   _par_last_update_rs_times_ms = new double[_parallel_gc_threads];
   237   _par_last_update_rs_processed_buffers = new double[_parallel_gc_threads];
   239   _par_last_scan_rs_times_ms = new double[_parallel_gc_threads];
   241   _par_last_obj_copy_times_ms = new double[_parallel_gc_threads];
   243   _par_last_termination_times_ms = new double[_parallel_gc_threads];
   244   _par_last_termination_attempts = new double[_parallel_gc_threads];
   245   _par_last_gc_worker_end_times_ms = new double[_parallel_gc_threads];
   247   // start conservatively
   248   _expensive_region_limit_ms = 0.5 * (double) MaxGCPauseMillis;
   250   // <NEW PREDICTION>
   252   int index;
   253   if (ParallelGCThreads == 0)
   254     index = 0;
   255   else if (ParallelGCThreads > 8)
   256     index = 7;
   257   else
   258     index = ParallelGCThreads - 1;
   260   _pending_card_diff_seq->add(0.0);
   261   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
   262   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
   263   _fully_young_cards_per_entry_ratio_seq->add(
   264                             fully_young_cards_per_entry_ratio_defaults[index]);
   265   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
   266   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
   267   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
   268   _young_other_cost_per_region_ms_seq->add(
   269                                young_other_cost_per_region_ms_defaults[index]);
   270   _non_young_other_cost_per_region_ms_seq->add(
   271                            non_young_other_cost_per_region_ms_defaults[index]);
   273   // </NEW PREDICTION>
   275   // Below, we might need to calculate the pause time target based on
   276   // the pause interval. When we do so we are going to give G1 maximum
   277   // flexibility and allow it to do pauses when it needs to. So, we'll
   278   // arrange that the pause interval to be pause time target + 1 to
   279   // ensure that a) the pause time target is maximized with respect to
   280   // the pause interval and b) we maintain the invariant that pause
   281   // time target < pause interval. If the user does not want this
   282   // maximum flexibility, they will have to set the pause interval
   283   // explicitly.
   285   // First make sure that, if either parameter is set, its value is
   286   // reasonable.
   287   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   288     if (MaxGCPauseMillis < 1) {
   289       vm_exit_during_initialization("MaxGCPauseMillis should be "
   290                                     "greater than 0");
   291     }
   292   }
   293   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   294     if (GCPauseIntervalMillis < 1) {
   295       vm_exit_during_initialization("GCPauseIntervalMillis should be "
   296                                     "greater than 0");
   297     }
   298   }
   300   // Then, if the pause time target parameter was not set, set it to
   301   // the default value.
   302   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
   303     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   304       // The default pause time target in G1 is 200ms
   305       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
   306     } else {
   307       // We do not allow the pause interval to be set without the
   308       // pause time target
   309       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
   310                                     "without setting MaxGCPauseMillis");
   311     }
   312   }
   314   // Then, if the interval parameter was not set, set it according to
   315   // the pause time target (this will also deal with the case when the
   316   // pause time target is the default value).
   317   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
   318     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
   319   }
   321   // Finally, make sure that the two parameters are consistent.
   322   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
   323     char buffer[256];
   324     jio_snprintf(buffer, 256,
   325                  "MaxGCPauseMillis (%u) should be less than "
   326                  "GCPauseIntervalMillis (%u)",
   327                  MaxGCPauseMillis, GCPauseIntervalMillis);
   328     vm_exit_during_initialization(buffer);
   329   }
   331   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
   332   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
   333   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
   334   _sigma = (double) G1ConfidencePercent / 100.0;
   336   // start conservatively (around 50ms is about right)
   337   _concurrent_mark_init_times_ms->add(0.05);
   338   _concurrent_mark_remark_times_ms->add(0.05);
   339   _concurrent_mark_cleanup_times_ms->add(0.20);
   340   _tenuring_threshold = MaxTenuringThreshold;
   342   // if G1FixedSurvivorSpaceSize is 0 which means the size is not
   343   // fixed, then _max_survivor_regions will be calculated at
   344   // calculate_young_list_target_length during initialization
   345   _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
   347   assert(GCTimeRatio > 0,
   348          "we should have set it to a default value set_g1_gc_flags() "
   349          "if a user set it to 0");
   350   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
   352   initialize_all();
   353 }
   355 // Increment "i", mod "len"
   356 static void inc_mod(int& i, int len) {
   357   i++; if (i == len) i = 0;
   358 }
   360 void G1CollectorPolicy::initialize_flags() {
   361   set_min_alignment(HeapRegion::GrainBytes);
   362   set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
   363   if (SurvivorRatio < 1) {
   364     vm_exit_during_initialization("Invalid survivor ratio specified");
   365   }
   366   CollectorPolicy::initialize_flags();
   367 }
   369 // The easiest way to deal with the parsing of the NewSize /
   370 // MaxNewSize / etc. parameteres is to re-use the code in the
   371 // TwoGenerationCollectorPolicy class. This is similar to what
   372 // ParallelScavenge does with its GenerationSizer class (see
   373 // ParallelScavengeHeap::initialize()). We might change this in the
   374 // future, but it's a good start.
   375 class G1YoungGenSizer : public TwoGenerationCollectorPolicy {
   376   size_t size_to_region_num(size_t byte_size) {
   377     return MAX2((size_t) 1, byte_size / HeapRegion::GrainBytes);
   378   }
   380 public:
   381   G1YoungGenSizer() {
   382     initialize_flags();
   383     initialize_size_info();
   384   }
   386   size_t min_young_region_num() {
   387     return size_to_region_num(_min_gen0_size);
   388   }
   389   size_t initial_young_region_num() {
   390     return size_to_region_num(_initial_gen0_size);
   391   }
   392   size_t max_young_region_num() {
   393     return size_to_region_num(_max_gen0_size);
   394   }
   395 };
   397 void G1CollectorPolicy::init() {
   398   // Set aside an initial future to_space.
   399   _g1 = G1CollectedHeap::heap();
   401   assert(Heap_lock->owned_by_self(), "Locking discipline.");
   403   initialize_gc_policy_counters();
   405   if (G1Gen) {
   406     _in_young_gc_mode = true;
   408     G1YoungGenSizer sizer;
   409     size_t initial_region_num = sizer.initial_young_region_num();
   411     if (UseAdaptiveSizePolicy) {
   412       set_adaptive_young_list_length(true);
   413       _young_list_fixed_length = 0;
   414     } else {
   415       set_adaptive_young_list_length(false);
   416       _young_list_fixed_length = initial_region_num;
   417     }
   418     _free_regions_at_end_of_collection = _g1->free_regions();
   419     calculate_young_list_min_length();
   420     guarantee( _young_list_min_length == 0, "invariant, not enough info" );
   421     calculate_young_list_target_length();
   422   } else {
   423      _young_list_fixed_length = 0;
   424     _in_young_gc_mode = false;
   425   }
   427   // We may immediately start allocating regions and placing them on the
   428   // collection set list. Initialize the per-collection set info
   429   start_incremental_cset_building();
   430 }
   432 // Create the jstat counters for the policy.
   433 void G1CollectorPolicy::initialize_gc_policy_counters()
   434 {
   435   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 2 + G1Gen);
   436 }
   438 void G1CollectorPolicy::calculate_young_list_min_length() {
   439   _young_list_min_length = 0;
   441   if (!adaptive_young_list_length())
   442     return;
   444   if (_alloc_rate_ms_seq->num() > 3) {
   445     double now_sec = os::elapsedTime();
   446     double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
   447     double alloc_rate_ms = predict_alloc_rate_ms();
   448     int min_regions = (int) ceil(alloc_rate_ms * when_ms);
   449     int current_region_num = (int) _g1->young_list()->length();
   450     _young_list_min_length = min_regions + current_region_num;
   451   }
   452 }
   454 void G1CollectorPolicy::calculate_young_list_target_length() {
   455   if (adaptive_young_list_length()) {
   456     size_t rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
   457     calculate_young_list_target_length(rs_lengths);
   458   } else {
   459     if (full_young_gcs())
   460       _young_list_target_length = _young_list_fixed_length;
   461     else
   462       _young_list_target_length = _young_list_fixed_length / 2;
   464     _young_list_target_length = MAX2(_young_list_target_length, (size_t)1);
   465   }
   466   calculate_survivors_policy();
   467 }
   469 void G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths) {
   470   guarantee( adaptive_young_list_length(), "pre-condition" );
   471   guarantee( !_in_marking_window || !_last_full_young_gc, "invariant" );
   473   double start_time_sec = os::elapsedTime();
   474   size_t min_reserve_perc = MAX2((size_t)2, (size_t)G1ReservePercent);
   475   min_reserve_perc = MIN2((size_t) 50, min_reserve_perc);
   476   size_t reserve_regions =
   477     (size_t) ((double) min_reserve_perc * (double) _g1->n_regions() / 100.0);
   479   if (full_young_gcs() && _free_regions_at_end_of_collection > 0) {
   480     // we are in fully-young mode and there are free regions in the heap
   482     double survivor_regions_evac_time =
   483         predict_survivor_regions_evac_time();
   485     double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
   486     size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
   487     size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
   488     size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
   489     double base_time_ms = predict_base_elapsed_time_ms(pending_cards, scanned_cards)
   490                           + survivor_regions_evac_time;
   492     // the result
   493     size_t final_young_length = 0;
   495     size_t init_free_regions =
   496       MAX2((size_t)0, _free_regions_at_end_of_collection - reserve_regions);
   498     // if we're still under the pause target...
   499     if (base_time_ms <= target_pause_time_ms) {
   500       // We make sure that the shortest young length that makes sense
   501       // fits within the target pause time.
   502       size_t min_young_length = 1;
   504       if (predict_will_fit(min_young_length, base_time_ms,
   505                                      init_free_regions, target_pause_time_ms)) {
   506         // The shortest young length will fit within the target pause time;
   507         // we'll now check whether the absolute maximum number of young
   508         // regions will fit in the target pause time. If not, we'll do
   509         // a binary search between min_young_length and max_young_length
   510         size_t abs_max_young_length = _free_regions_at_end_of_collection - 1;
   511         size_t max_young_length = abs_max_young_length;
   513         if (max_young_length > min_young_length) {
   514           // Let's check if the initial max young length will fit within the
   515           // target pause. If so then there is no need to search for a maximal
   516           // young length - we'll return the initial maximum
   518           if (predict_will_fit(max_young_length, base_time_ms,
   519                                 init_free_regions, target_pause_time_ms)) {
   520             // The maximum young length will satisfy the target pause time.
   521             // We are done so set min young length to this maximum length.
   522             // The code after the loop will then set final_young_length using
   523             // the value cached in the minimum length.
   524             min_young_length = max_young_length;
   525           } else {
   526             // The maximum possible number of young regions will not fit within
   527             // the target pause time so let's search....
   529             size_t diff = (max_young_length - min_young_length) / 2;
   530             max_young_length = min_young_length + diff;
   532             while (max_young_length > min_young_length) {
   533               if (predict_will_fit(max_young_length, base_time_ms,
   534                                         init_free_regions, target_pause_time_ms)) {
   536                 // The current max young length will fit within the target
   537                 // pause time. Note we do not exit the loop here. By setting
   538                 // min = max, and then increasing the max below means that
   539                 // we will continue searching for an upper bound in the
   540                 // range [max..max+diff]
   541                 min_young_length = max_young_length;
   542               }
   543               diff = (max_young_length - min_young_length) / 2;
   544               max_young_length = min_young_length + diff;
   545             }
   546             // the above loop found a maximal young length that will fit
   547             // within the target pause time.
   548           }
   549           assert(min_young_length <= abs_max_young_length, "just checking");
   550         }
   551         final_young_length = min_young_length;
   552       }
   553     }
   554     // and we're done!
   556     // we should have at least one region in the target young length
   557     _young_list_target_length =
   558         MAX2((size_t) 1, final_young_length + _recorded_survivor_regions);
   560     // let's keep an eye of how long we spend on this calculation
   561     // right now, I assume that we'll print it when we need it; we
   562     // should really adde it to the breakdown of a pause
   563     double end_time_sec = os::elapsedTime();
   564     double elapsed_time_ms = (end_time_sec - start_time_sec) * 1000.0;
   566 #ifdef TRACE_CALC_YOUNG_LENGTH
   567     // leave this in for debugging, just in case
   568     gclog_or_tty->print_cr("target = %1.1lf ms, young = " SIZE_FORMAT ", "
   569                            "elapsed %1.2lf ms, (%s%s) " SIZE_FORMAT SIZE_FORMAT,
   570                            target_pause_time_ms,
   571                            _young_list_target_length
   572                            elapsed_time_ms,
   573                            full_young_gcs() ? "full" : "partial",
   574                            during_initial_mark_pause() ? " i-m" : "",
   575                            _in_marking_window,
   576                            _in_marking_window_im);
   577 #endif // TRACE_CALC_YOUNG_LENGTH
   579     if (_young_list_target_length < _young_list_min_length) {
   580       // bummer; this means that, if we do a pause when the maximal
   581       // length dictates, we'll violate the pause spacing target (the
   582       // min length was calculate based on the application's current
   583       // alloc rate);
   585       // so, we have to bite the bullet, and allocate the minimum
   586       // number. We'll violate our target, but we just can't meet it.
   588 #ifdef TRACE_CALC_YOUNG_LENGTH
   589       // leave this in for debugging, just in case
   590       gclog_or_tty->print_cr("adjusted target length from "
   591                              SIZE_FORMAT " to " SIZE_FORMAT,
   592                              _young_list_target_length, _young_list_min_length);
   593 #endif // TRACE_CALC_YOUNG_LENGTH
   595       _young_list_target_length = _young_list_min_length;
   596     }
   597   } else {
   598     // we are in a partially-young mode or we've run out of regions (due
   599     // to evacuation failure)
   601 #ifdef TRACE_CALC_YOUNG_LENGTH
   602     // leave this in for debugging, just in case
   603     gclog_or_tty->print_cr("(partial) setting target to " SIZE_FORMAT
   604                            _young_list_min_length);
   605 #endif // TRACE_CALC_YOUNG_LENGTH
   606     // we'll do the pause as soon as possible by choosing the minimum
   607     _young_list_target_length =
   608       MAX2(_young_list_min_length, (size_t) 1);
   609   }
   611   _rs_lengths_prediction = rs_lengths;
   612 }
   614 // This is used by: calculate_young_list_target_length(rs_length). It
   615 // returns true iff:
   616 //   the predicted pause time for the given young list will not overflow
   617 //   the target pause time
   618 // and:
   619 //   the predicted amount of surviving data will not overflow the
   620 //   the amount of free space available for survivor regions.
   621 //
   622 bool
   623 G1CollectorPolicy::predict_will_fit(size_t young_length,
   624                                     double base_time_ms,
   625                                     size_t init_free_regions,
   626                                     double target_pause_time_ms) {
   628   if (young_length >= init_free_regions)
   629     // end condition 1: not enough space for the young regions
   630     return false;
   632   double accum_surv_rate_adj = 0.0;
   633   double accum_surv_rate =
   634     accum_yg_surv_rate_pred((int)(young_length - 1)) - accum_surv_rate_adj;
   636   size_t bytes_to_copy =
   637     (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
   639   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
   641   double young_other_time_ms =
   642                        predict_young_other_time_ms(young_length);
   644   double pause_time_ms =
   645                    base_time_ms + copy_time_ms + young_other_time_ms;
   647   if (pause_time_ms > target_pause_time_ms)
   648     // end condition 2: over the target pause time
   649     return false;
   651   size_t free_bytes =
   652                  (init_free_regions - young_length) * HeapRegion::GrainBytes;
   654   if ((2.0 + sigma()) * (double) bytes_to_copy > (double) free_bytes)
   655     // end condition 3: out of to-space (conservatively)
   656     return false;
   658   // success!
   659   return true;
   660 }
   662 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
   663   double survivor_regions_evac_time = 0.0;
   664   for (HeapRegion * r = _recorded_survivor_head;
   665        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
   666        r = r->get_next_young_region()) {
   667     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
   668   }
   669   return survivor_regions_evac_time;
   670 }
   672 void G1CollectorPolicy::check_prediction_validity() {
   673   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
   675   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
   676   if (rs_lengths > _rs_lengths_prediction) {
   677     // add 10% to avoid having to recalculate often
   678     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
   679     calculate_young_list_target_length(rs_lengths_prediction);
   680   }
   681 }
   683 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
   684                                                bool is_tlab,
   685                                                bool* gc_overhead_limit_was_exceeded) {
   686   guarantee(false, "Not using this policy feature yet.");
   687   return NULL;
   688 }
   690 // This method controls how a collector handles one or more
   691 // of its generations being fully allocated.
   692 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
   693                                                        bool is_tlab) {
   694   guarantee(false, "Not using this policy feature yet.");
   695   return NULL;
   696 }
   699 #ifndef PRODUCT
   700 bool G1CollectorPolicy::verify_young_ages() {
   701   HeapRegion* head = _g1->young_list()->first_region();
   702   return
   703     verify_young_ages(head, _short_lived_surv_rate_group);
   704   // also call verify_young_ages on any additional surv rate groups
   705 }
   707 bool
   708 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
   709                                      SurvRateGroup *surv_rate_group) {
   710   guarantee( surv_rate_group != NULL, "pre-condition" );
   712   const char* name = surv_rate_group->name();
   713   bool ret = true;
   714   int prev_age = -1;
   716   for (HeapRegion* curr = head;
   717        curr != NULL;
   718        curr = curr->get_next_young_region()) {
   719     SurvRateGroup* group = curr->surv_rate_group();
   720     if (group == NULL && !curr->is_survivor()) {
   721       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
   722       ret = false;
   723     }
   725     if (surv_rate_group == group) {
   726       int age = curr->age_in_surv_rate_group();
   728       if (age < 0) {
   729         gclog_or_tty->print_cr("## %s: encountered negative age", name);
   730         ret = false;
   731       }
   733       if (age <= prev_age) {
   734         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
   735                                "(%d, %d)", name, age, prev_age);
   736         ret = false;
   737       }
   738       prev_age = age;
   739     }
   740   }
   742   return ret;
   743 }
   744 #endif // PRODUCT
   746 void G1CollectorPolicy::record_full_collection_start() {
   747   _cur_collection_start_sec = os::elapsedTime();
   748   // Release the future to-space so that it is available for compaction into.
   749   _g1->set_full_collection();
   750 }
   752 void G1CollectorPolicy::record_full_collection_end() {
   753   // Consider this like a collection pause for the purposes of allocation
   754   // since last pause.
   755   double end_sec = os::elapsedTime();
   756   double full_gc_time_sec = end_sec - _cur_collection_start_sec;
   757   double full_gc_time_ms = full_gc_time_sec * 1000.0;
   759   _all_full_gc_times_ms->add(full_gc_time_ms);
   761   update_recent_gc_times(end_sec, full_gc_time_ms);
   763   _g1->clear_full_collection();
   765   // "Nuke" the heuristics that control the fully/partially young GC
   766   // transitions and make sure we start with fully young GCs after the
   767   // Full GC.
   768   set_full_young_gcs(true);
   769   _last_full_young_gc = false;
   770   _should_revert_to_full_young_gcs = false;
   771   clear_initiate_conc_mark_if_possible();
   772   clear_during_initial_mark_pause();
   773   _known_garbage_bytes = 0;
   774   _known_garbage_ratio = 0.0;
   775   _in_marking_window = false;
   776   _in_marking_window_im = false;
   778   _short_lived_surv_rate_group->start_adding_regions();
   779   // also call this on any additional surv rate groups
   781   record_survivor_regions(0, NULL, NULL);
   783   _prev_region_num_young   = _region_num_young;
   784   _prev_region_num_tenured = _region_num_tenured;
   786   _free_regions_at_end_of_collection = _g1->free_regions();
   787   // Reset survivors SurvRateGroup.
   788   _survivor_surv_rate_group->reset();
   789   calculate_young_list_min_length();
   790   calculate_young_list_target_length();
   791  }
   793 void G1CollectorPolicy::record_before_bytes(size_t bytes) {
   794   _bytes_in_to_space_before_gc += bytes;
   795 }
   797 void G1CollectorPolicy::record_after_bytes(size_t bytes) {
   798   _bytes_in_to_space_after_gc += bytes;
   799 }
   801 void G1CollectorPolicy::record_stop_world_start() {
   802   _stop_world_start = os::elapsedTime();
   803 }
   805 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
   806                                                       size_t start_used) {
   807   if (PrintGCDetails) {
   808     gclog_or_tty->stamp(PrintGCTimeStamps);
   809     gclog_or_tty->print("[GC pause");
   810     if (in_young_gc_mode())
   811       gclog_or_tty->print(" (%s)", full_young_gcs() ? "young" : "partial");
   812   }
   814   assert(_g1->used_regions() == _g1->recalculate_used_regions(),
   815          "sanity");
   816   assert(_g1->used() == _g1->recalculate_used(), "sanity");
   818   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
   819   _all_stop_world_times_ms->add(s_w_t_ms);
   820   _stop_world_start = 0.0;
   822   _cur_collection_start_sec = start_time_sec;
   823   _cur_collection_pause_used_at_start_bytes = start_used;
   824   _cur_collection_pause_used_regions_at_start = _g1->used_regions();
   825   _pending_cards = _g1->pending_card_num();
   826   _max_pending_cards = _g1->max_pending_card_num();
   828   _bytes_in_to_space_before_gc = 0;
   829   _bytes_in_to_space_after_gc = 0;
   830   _bytes_in_collection_set_before_gc = 0;
   832 #ifdef DEBUG
   833   // initialise these to something well known so that we can spot
   834   // if they are not set properly
   836   for (int i = 0; i < _parallel_gc_threads; ++i) {
   837     _par_last_gc_worker_start_times_ms[i] = -1234.0;
   838     _par_last_ext_root_scan_times_ms[i] = -1234.0;
   839     _par_last_mark_stack_scan_times_ms[i] = -1234.0;
   840     _par_last_update_rs_times_ms[i] = -1234.0;
   841     _par_last_update_rs_processed_buffers[i] = -1234.0;
   842     _par_last_scan_rs_times_ms[i] = -1234.0;
   843     _par_last_obj_copy_times_ms[i] = -1234.0;
   844     _par_last_termination_times_ms[i] = -1234.0;
   845     _par_last_termination_attempts[i] = -1234.0;
   846     _par_last_gc_worker_end_times_ms[i] = -1234.0;
   847   }
   848 #endif
   850   for (int i = 0; i < _aux_num; ++i) {
   851     _cur_aux_times_ms[i] = 0.0;
   852     _cur_aux_times_set[i] = false;
   853   }
   855   _satb_drain_time_set = false;
   856   _last_satb_drain_processed_buffers = -1;
   858   if (in_young_gc_mode())
   859     _last_young_gc_full = false;
   861   // do that for any other surv rate groups
   862   _short_lived_surv_rate_group->stop_adding_regions();
   863   _survivors_age_table.clear();
   865   assert( verify_young_ages(), "region age verification" );
   866 }
   868 void G1CollectorPolicy::record_mark_closure_time(double mark_closure_time_ms) {
   869   _mark_closure_time_ms = mark_closure_time_ms;
   870 }
   872 void G1CollectorPolicy::record_concurrent_mark_init_start() {
   873   _mark_init_start_sec = os::elapsedTime();
   874   guarantee(!in_young_gc_mode(), "should not do be here in young GC mode");
   875 }
   877 void G1CollectorPolicy::record_concurrent_mark_init_end_pre(double
   878                                                    mark_init_elapsed_time_ms) {
   879   _during_marking = true;
   880   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
   881   clear_during_initial_mark_pause();
   882   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
   883 }
   885 void G1CollectorPolicy::record_concurrent_mark_init_end() {
   886   double end_time_sec = os::elapsedTime();
   887   double elapsed_time_ms = (end_time_sec - _mark_init_start_sec) * 1000.0;
   888   _concurrent_mark_init_times_ms->add(elapsed_time_ms);
   889   record_concurrent_mark_init_end_pre(elapsed_time_ms);
   891   _mmu_tracker->add_pause(_mark_init_start_sec, end_time_sec, true);
   892 }
   894 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
   895   _mark_remark_start_sec = os::elapsedTime();
   896   _during_marking = false;
   897 }
   899 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
   900   double end_time_sec = os::elapsedTime();
   901   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
   902   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
   903   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   904   _prev_collection_pause_end_ms += elapsed_time_ms;
   906   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
   907 }
   909 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
   910   _mark_cleanup_start_sec = os::elapsedTime();
   911 }
   913 void
   914 G1CollectorPolicy::record_concurrent_mark_cleanup_end(size_t freed_bytes,
   915                                                       size_t max_live_bytes) {
   916   record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
   917   record_concurrent_mark_cleanup_end_work2();
   918 }
   920 void
   921 G1CollectorPolicy::
   922 record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
   923                                          size_t max_live_bytes) {
   924   if (_n_marks < 2) _n_marks++;
   925   if (G1PolicyVerbose > 0)
   926     gclog_or_tty->print_cr("At end of marking, max_live is " SIZE_FORMAT " MB "
   927                            " (of " SIZE_FORMAT " MB heap).",
   928                            max_live_bytes/M, _g1->capacity()/M);
   929 }
   931 // The important thing about this is that it includes "os::elapsedTime".
   932 void G1CollectorPolicy::record_concurrent_mark_cleanup_end_work2() {
   933   double end_time_sec = os::elapsedTime();
   934   double elapsed_time_ms = (end_time_sec - _mark_cleanup_start_sec)*1000.0;
   935   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
   936   _cur_mark_stop_world_time_ms += elapsed_time_ms;
   937   _prev_collection_pause_end_ms += elapsed_time_ms;
   939   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_time_sec, true);
   941   _num_markings++;
   943   // We did a marking, so reset the "since_last_mark" variables.
   944   double considerConcMarkCost = 1.0;
   945   // If there are available processors, concurrent activity is free...
   946   if (Threads::number_of_non_daemon_threads() * 2 <
   947       os::active_processor_count()) {
   948     considerConcMarkCost = 0.0;
   949   }
   950   _n_pauses_at_mark_end = _n_pauses;
   951   _n_marks_since_last_pause++;
   952 }
   954 void
   955 G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
   956   if (in_young_gc_mode()) {
   957     _should_revert_to_full_young_gcs = false;
   958     _last_full_young_gc = true;
   959     _in_marking_window = false;
   960     if (adaptive_young_list_length())
   961       calculate_young_list_target_length();
   962   }
   963 }
   965 void G1CollectorPolicy::record_concurrent_pause() {
   966   if (_stop_world_start > 0.0) {
   967     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
   968     _all_yield_times_ms->add(yield_ms);
   969   }
   970 }
   972 void G1CollectorPolicy::record_concurrent_pause_end() {
   973 }
   975 void G1CollectorPolicy::record_collection_pause_end_CH_strong_roots() {
   976   _cur_CH_strong_roots_end_sec = os::elapsedTime();
   977   _cur_CH_strong_roots_dur_ms =
   978     (_cur_CH_strong_roots_end_sec - _cur_collection_start_sec) * 1000.0;
   979 }
   981 void G1CollectorPolicy::record_collection_pause_end_G1_strong_roots() {
   982   _cur_G1_strong_roots_end_sec = os::elapsedTime();
   983   _cur_G1_strong_roots_dur_ms =
   984     (_cur_G1_strong_roots_end_sec - _cur_CH_strong_roots_end_sec) * 1000.0;
   985 }
   987 template<class T>
   988 T sum_of(T* sum_arr, int start, int n, int N) {
   989   T sum = (T)0;
   990   for (int i = 0; i < n; i++) {
   991     int j = (start + i) % N;
   992     sum += sum_arr[j];
   993   }
   994   return sum;
   995 }
   997 void G1CollectorPolicy::print_par_stats(int level,
   998                                         const char* str,
   999                                         double* data,
  1000                                          bool summary) {
  1001   double min = data[0], max = data[0];
  1002   double total = 0.0;
  1003   int j;
  1004   for (j = 0; j < level; ++j)
  1005     gclog_or_tty->print("   ");
  1006   gclog_or_tty->print("[%s (ms):", str);
  1007   for (uint i = 0; i < ParallelGCThreads; ++i) {
  1008     double val = data[i];
  1009     if (val < min)
  1010       min = val;
  1011     if (val > max)
  1012       max = val;
  1013     total += val;
  1014     gclog_or_tty->print("  %3.1lf", val);
  1016   if (summary) {
  1017     gclog_or_tty->print_cr("");
  1018     double avg = total / (double) ParallelGCThreads;
  1019     gclog_or_tty->print(" ");
  1020     for (j = 0; j < level; ++j)
  1021       gclog_or_tty->print("   ");
  1022     gclog_or_tty->print("Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf",
  1023                         avg, min, max);
  1025   gclog_or_tty->print_cr("]");
  1028 void G1CollectorPolicy::print_par_sizes(int level,
  1029                                         const char* str,
  1030                                         double* data,
  1031                                         bool summary) {
  1032   double min = data[0], max = data[0];
  1033   double total = 0.0;
  1034   int j;
  1035   for (j = 0; j < level; ++j)
  1036     gclog_or_tty->print("   ");
  1037   gclog_or_tty->print("[%s :", str);
  1038   for (uint i = 0; i < ParallelGCThreads; ++i) {
  1039     double val = data[i];
  1040     if (val < min)
  1041       min = val;
  1042     if (val > max)
  1043       max = val;
  1044     total += val;
  1045     gclog_or_tty->print(" %d", (int) val);
  1047   if (summary) {
  1048     gclog_or_tty->print_cr("");
  1049     double avg = total / (double) ParallelGCThreads;
  1050     gclog_or_tty->print(" ");
  1051     for (j = 0; j < level; ++j)
  1052       gclog_or_tty->print("   ");
  1053     gclog_or_tty->print("Sum: %d, Avg: %d, Min: %d, Max: %d",
  1054                (int)total, (int)avg, (int)min, (int)max);
  1056   gclog_or_tty->print_cr("]");
  1059 void G1CollectorPolicy::print_stats (int level,
  1060                                      const char* str,
  1061                                      double value) {
  1062   for (int j = 0; j < level; ++j)
  1063     gclog_or_tty->print("   ");
  1064   gclog_or_tty->print_cr("[%s: %5.1lf ms]", str, value);
  1067 void G1CollectorPolicy::print_stats (int level,
  1068                                      const char* str,
  1069                                      int value) {
  1070   for (int j = 0; j < level; ++j)
  1071     gclog_or_tty->print("   ");
  1072   gclog_or_tty->print_cr("[%s: %d]", str, value);
  1075 double G1CollectorPolicy::avg_value (double* data) {
  1076   if (ParallelGCThreads > 0) {
  1077     double ret = 0.0;
  1078     for (uint i = 0; i < ParallelGCThreads; ++i)
  1079       ret += data[i];
  1080     return ret / (double) ParallelGCThreads;
  1081   } else {
  1082     return data[0];
  1086 double G1CollectorPolicy::max_value (double* data) {
  1087   if (ParallelGCThreads > 0) {
  1088     double ret = data[0];
  1089     for (uint i = 1; i < ParallelGCThreads; ++i)
  1090       if (data[i] > ret)
  1091         ret = data[i];
  1092     return ret;
  1093   } else {
  1094     return data[0];
  1098 double G1CollectorPolicy::sum_of_values (double* data) {
  1099   if (ParallelGCThreads > 0) {
  1100     double sum = 0.0;
  1101     for (uint i = 0; i < ParallelGCThreads; i++)
  1102       sum += data[i];
  1103     return sum;
  1104   } else {
  1105     return data[0];
  1109 double G1CollectorPolicy::max_sum (double* data1,
  1110                                    double* data2) {
  1111   double ret = data1[0] + data2[0];
  1113   if (ParallelGCThreads > 0) {
  1114     for (uint i = 1; i < ParallelGCThreads; ++i) {
  1115       double data = data1[i] + data2[i];
  1116       if (data > ret)
  1117         ret = data;
  1120   return ret;
  1123 // Anything below that is considered to be zero
  1124 #define MIN_TIMER_GRANULARITY 0.0000001
  1126 void G1CollectorPolicy::record_collection_pause_end() {
  1127   double end_time_sec = os::elapsedTime();
  1128   double elapsed_ms = _last_pause_time_ms;
  1129   bool parallel = ParallelGCThreads > 0;
  1130   double evac_ms = (end_time_sec - _cur_G1_strong_roots_end_sec) * 1000.0;
  1131   size_t rs_size =
  1132     _cur_collection_pause_used_regions_at_start - collection_set_size();
  1133   size_t cur_used_bytes = _g1->used();
  1134   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
  1135   bool last_pause_included_initial_mark = false;
  1136   bool update_stats = !_g1->evacuation_failed();
  1138 #ifndef PRODUCT
  1139   if (G1YoungSurvRateVerbose) {
  1140     gclog_or_tty->print_cr("");
  1141     _short_lived_surv_rate_group->print();
  1142     // do that for any other surv rate groups too
  1144 #endif // PRODUCT
  1146   if (in_young_gc_mode()) {
  1147     last_pause_included_initial_mark = during_initial_mark_pause();
  1148     if (last_pause_included_initial_mark)
  1149       record_concurrent_mark_init_end_pre(0.0);
  1151     size_t min_used_targ =
  1152       (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
  1155     if (!_g1->mark_in_progress() && !_last_full_young_gc) {
  1156       assert(!last_pause_included_initial_mark, "invariant");
  1157       if (cur_used_bytes > min_used_targ &&
  1158           cur_used_bytes > _prev_collection_pause_used_at_end_bytes) {
  1159         assert(!during_initial_mark_pause(), "we should not see this here");
  1161         // Note: this might have already been set, if during the last
  1162         // pause we decided to start a cycle but at the beginning of
  1163         // this pause we decided to postpone it. That's OK.
  1164         set_initiate_conc_mark_if_possible();
  1168     _prev_collection_pause_used_at_end_bytes = cur_used_bytes;
  1171   _mmu_tracker->add_pause(end_time_sec - elapsed_ms/1000.0,
  1172                           end_time_sec, false);
  1174   guarantee(_cur_collection_pause_used_regions_at_start >=
  1175             collection_set_size(),
  1176             "Negative RS size?");
  1178   // This assert is exempted when we're doing parallel collection pauses,
  1179   // because the fragmentation caused by the parallel GC allocation buffers
  1180   // can lead to more memory being used during collection than was used
  1181   // before. Best leave this out until the fragmentation problem is fixed.
  1182   // Pauses in which evacuation failed can also lead to negative
  1183   // collections, since no space is reclaimed from a region containing an
  1184   // object whose evacuation failed.
  1185   // Further, we're now always doing parallel collection.  But I'm still
  1186   // leaving this here as a placeholder for a more precise assertion later.
  1187   // (DLD, 10/05.)
  1188   assert((true || parallel) // Always using GC LABs now.
  1189          || _g1->evacuation_failed()
  1190          || _cur_collection_pause_used_at_start_bytes >= cur_used_bytes,
  1191          "Negative collection");
  1193   size_t freed_bytes =
  1194     _cur_collection_pause_used_at_start_bytes - cur_used_bytes;
  1195   size_t surviving_bytes = _collection_set_bytes_used_before - freed_bytes;
  1197   double survival_fraction =
  1198     (double)surviving_bytes/
  1199     (double)_collection_set_bytes_used_before;
  1201   _n_pauses++;
  1203   if (update_stats) {
  1204     _recent_CH_strong_roots_times_ms->add(_cur_CH_strong_roots_dur_ms);
  1205     _recent_G1_strong_roots_times_ms->add(_cur_G1_strong_roots_dur_ms);
  1206     _recent_evac_times_ms->add(evac_ms);
  1207     _recent_pause_times_ms->add(elapsed_ms);
  1209     _recent_rs_sizes->add(rs_size);
  1211     // We exempt parallel collection from this check because Alloc Buffer
  1212     // fragmentation can produce negative collections.  Same with evac
  1213     // failure.
  1214     // Further, we're now always doing parallel collection.  But I'm still
  1215     // leaving this here as a placeholder for a more precise assertion later.
  1216     // (DLD, 10/05.
  1217     assert((true || parallel)
  1218            || _g1->evacuation_failed()
  1219            || surviving_bytes <= _collection_set_bytes_used_before,
  1220            "Or else negative collection!");
  1221     _recent_CS_bytes_used_before->add(_collection_set_bytes_used_before);
  1222     _recent_CS_bytes_surviving->add(surviving_bytes);
  1224     // this is where we update the allocation rate of the application
  1225     double app_time_ms =
  1226       (_cur_collection_start_sec * 1000.0 - _prev_collection_pause_end_ms);
  1227     if (app_time_ms < MIN_TIMER_GRANULARITY) {
  1228       // This usually happens due to the timer not having the required
  1229       // granularity. Some Linuxes are the usual culprits.
  1230       // We'll just set it to something (arbitrarily) small.
  1231       app_time_ms = 1.0;
  1233     size_t regions_allocated =
  1234       (_region_num_young - _prev_region_num_young) +
  1235       (_region_num_tenured - _prev_region_num_tenured);
  1236     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
  1237     _alloc_rate_ms_seq->add(alloc_rate_ms);
  1238     _prev_region_num_young   = _region_num_young;
  1239     _prev_region_num_tenured = _region_num_tenured;
  1241     double interval_ms =
  1242       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
  1243     update_recent_gc_times(end_time_sec, elapsed_ms);
  1244     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
  1245     if (recent_avg_pause_time_ratio() < 0.0 ||
  1246         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
  1247 #ifndef PRODUCT
  1248       // Dump info to allow post-facto debugging
  1249       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
  1250       gclog_or_tty->print_cr("-------------------------------------------");
  1251       gclog_or_tty->print_cr("Recent GC Times (ms):");
  1252       _recent_gc_times_ms->dump();
  1253       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
  1254       _recent_prev_end_times_for_all_gcs_sec->dump();
  1255       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
  1256                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
  1257       // In debug mode, terminate the JVM if the user wants to debug at this point.
  1258       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
  1259 #endif  // !PRODUCT
  1260       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
  1261       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
  1262       if (_recent_avg_pause_time_ratio < 0.0) {
  1263         _recent_avg_pause_time_ratio = 0.0;
  1264       } else {
  1265         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
  1266         _recent_avg_pause_time_ratio = 1.0;
  1271   if (G1PolicyVerbose > 1) {
  1272     gclog_or_tty->print_cr("   Recording collection pause(%d)", _n_pauses);
  1275   PauseSummary* summary = _summary;
  1277   double ext_root_scan_time = avg_value(_par_last_ext_root_scan_times_ms);
  1278   double mark_stack_scan_time = avg_value(_par_last_mark_stack_scan_times_ms);
  1279   double update_rs_time = avg_value(_par_last_update_rs_times_ms);
  1280   double update_rs_processed_buffers =
  1281     sum_of_values(_par_last_update_rs_processed_buffers);
  1282   double scan_rs_time = avg_value(_par_last_scan_rs_times_ms);
  1283   double obj_copy_time = avg_value(_par_last_obj_copy_times_ms);
  1284   double termination_time = avg_value(_par_last_termination_times_ms);
  1286   double parallel_other_time = _cur_collection_par_time_ms -
  1287     (update_rs_time + ext_root_scan_time + mark_stack_scan_time +
  1288      scan_rs_time + obj_copy_time + termination_time);
  1289   if (update_stats) {
  1290     MainBodySummary* body_summary = summary->main_body_summary();
  1291     guarantee(body_summary != NULL, "should not be null!");
  1293     if (_satb_drain_time_set)
  1294       body_summary->record_satb_drain_time_ms(_cur_satb_drain_time_ms);
  1295     else
  1296       body_summary->record_satb_drain_time_ms(0.0);
  1297     body_summary->record_ext_root_scan_time_ms(ext_root_scan_time);
  1298     body_summary->record_mark_stack_scan_time_ms(mark_stack_scan_time);
  1299     body_summary->record_update_rs_time_ms(update_rs_time);
  1300     body_summary->record_scan_rs_time_ms(scan_rs_time);
  1301     body_summary->record_obj_copy_time_ms(obj_copy_time);
  1302     if (parallel) {
  1303       body_summary->record_parallel_time_ms(_cur_collection_par_time_ms);
  1304       body_summary->record_clear_ct_time_ms(_cur_clear_ct_time_ms);
  1305       body_summary->record_termination_time_ms(termination_time);
  1306       body_summary->record_parallel_other_time_ms(parallel_other_time);
  1308     body_summary->record_mark_closure_time_ms(_mark_closure_time_ms);
  1311   if (G1PolicyVerbose > 1) {
  1312     gclog_or_tty->print_cr("      ET: %10.6f ms           (avg: %10.6f ms)\n"
  1313                            "        CH Strong: %10.6f ms    (avg: %10.6f ms)\n"
  1314                            "        G1 Strong: %10.6f ms    (avg: %10.6f ms)\n"
  1315                            "        Evac:      %10.6f ms    (avg: %10.6f ms)\n"
  1316                            "       ET-RS:  %10.6f ms      (avg: %10.6f ms)\n"
  1317                            "      |RS|: " SIZE_FORMAT,
  1318                            elapsed_ms, recent_avg_time_for_pauses_ms(),
  1319                            _cur_CH_strong_roots_dur_ms, recent_avg_time_for_CH_strong_ms(),
  1320                            _cur_G1_strong_roots_dur_ms, recent_avg_time_for_G1_strong_ms(),
  1321                            evac_ms, recent_avg_time_for_evac_ms(),
  1322                            scan_rs_time,
  1323                            recent_avg_time_for_pauses_ms() -
  1324                            recent_avg_time_for_G1_strong_ms(),
  1325                            rs_size);
  1327     gclog_or_tty->print_cr("       Used at start: " SIZE_FORMAT"K"
  1328                            "       At end " SIZE_FORMAT "K\n"
  1329                            "       garbage      : " SIZE_FORMAT "K"
  1330                            "       of     " SIZE_FORMAT "K\n"
  1331                            "       survival     : %6.2f%%  (%6.2f%% avg)",
  1332                            _cur_collection_pause_used_at_start_bytes/K,
  1333                            _g1->used()/K, freed_bytes/K,
  1334                            _collection_set_bytes_used_before/K,
  1335                            survival_fraction*100.0,
  1336                            recent_avg_survival_fraction()*100.0);
  1337     gclog_or_tty->print_cr("       Recent %% gc pause time: %6.2f",
  1338                            recent_avg_pause_time_ratio() * 100.0);
  1341   double other_time_ms = elapsed_ms;
  1343   if (_satb_drain_time_set) {
  1344     other_time_ms -= _cur_satb_drain_time_ms;
  1347   if (parallel) {
  1348     other_time_ms -= _cur_collection_par_time_ms + _cur_clear_ct_time_ms;
  1349   } else {
  1350     other_time_ms -=
  1351       update_rs_time +
  1352       ext_root_scan_time + mark_stack_scan_time +
  1353       scan_rs_time + obj_copy_time;
  1356   if (PrintGCDetails) {
  1357     gclog_or_tty->print_cr("%s, %1.8lf secs]",
  1358                            (last_pause_included_initial_mark) ? " (initial-mark)" : "",
  1359                            elapsed_ms / 1000.0);
  1361     if (_satb_drain_time_set) {
  1362       print_stats(1, "SATB Drain Time", _cur_satb_drain_time_ms);
  1364     if (_last_satb_drain_processed_buffers >= 0) {
  1365       print_stats(2, "Processed Buffers", _last_satb_drain_processed_buffers);
  1367     if (parallel) {
  1368       print_stats(1, "Parallel Time", _cur_collection_par_time_ms);
  1369       print_par_stats(2, "GC Worker Start Time",
  1370                       _par_last_gc_worker_start_times_ms, false);
  1371       print_par_stats(2, "Update RS", _par_last_update_rs_times_ms);
  1372       print_par_sizes(3, "Processed Buffers",
  1373                       _par_last_update_rs_processed_buffers, true);
  1374       print_par_stats(2, "Ext Root Scanning",
  1375                       _par_last_ext_root_scan_times_ms);
  1376       print_par_stats(2, "Mark Stack Scanning",
  1377                       _par_last_mark_stack_scan_times_ms);
  1378       print_par_stats(2, "Scan RS", _par_last_scan_rs_times_ms);
  1379       print_par_stats(2, "Object Copy", _par_last_obj_copy_times_ms);
  1380       print_par_stats(2, "Termination", _par_last_termination_times_ms);
  1381       print_par_sizes(3, "Termination Attempts",
  1382                       _par_last_termination_attempts, true);
  1383       print_par_stats(2, "GC Worker End Time",
  1384                       _par_last_gc_worker_end_times_ms, false);
  1385       print_stats(2, "Other", parallel_other_time);
  1386       print_stats(1, "Clear CT", _cur_clear_ct_time_ms);
  1387     } else {
  1388       print_stats(1, "Update RS", update_rs_time);
  1389       print_stats(2, "Processed Buffers",
  1390                   (int)update_rs_processed_buffers);
  1391       print_stats(1, "Ext Root Scanning", ext_root_scan_time);
  1392       print_stats(1, "Mark Stack Scanning", mark_stack_scan_time);
  1393       print_stats(1, "Scan RS", scan_rs_time);
  1394       print_stats(1, "Object Copying", obj_copy_time);
  1396 #ifndef PRODUCT
  1397     print_stats(1, "Cur Clear CC", _cur_clear_cc_time_ms);
  1398     print_stats(1, "Cum Clear CC", _cum_clear_cc_time_ms);
  1399     print_stats(1, "Min Clear CC", _min_clear_cc_time_ms);
  1400     print_stats(1, "Max Clear CC", _max_clear_cc_time_ms);
  1401     if (_num_cc_clears > 0) {
  1402       print_stats(1, "Avg Clear CC", _cum_clear_cc_time_ms / ((double)_num_cc_clears));
  1404 #endif
  1405     print_stats(1, "Other", other_time_ms);
  1406     print_stats(2, "Choose CSet", _recorded_young_cset_choice_time_ms);
  1408     for (int i = 0; i < _aux_num; ++i) {
  1409       if (_cur_aux_times_set[i]) {
  1410         char buffer[96];
  1411         sprintf(buffer, "Aux%d", i);
  1412         print_stats(1, buffer, _cur_aux_times_ms[i]);
  1416   if (PrintGCDetails)
  1417     gclog_or_tty->print("   [");
  1418   if (PrintGC || PrintGCDetails)
  1419     _g1->print_size_transition(gclog_or_tty,
  1420                                _cur_collection_pause_used_at_start_bytes,
  1421                                _g1->used(), _g1->capacity());
  1422   if (PrintGCDetails)
  1423     gclog_or_tty->print_cr("]");
  1425   _all_pause_times_ms->add(elapsed_ms);
  1426   if (update_stats) {
  1427     summary->record_total_time_ms(elapsed_ms);
  1428     summary->record_other_time_ms(other_time_ms);
  1430   for (int i = 0; i < _aux_num; ++i)
  1431     if (_cur_aux_times_set[i])
  1432       _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
  1434   // Reset marks-between-pauses counter.
  1435   _n_marks_since_last_pause = 0;
  1437   // Update the efficiency-since-mark vars.
  1438   double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
  1439   if (elapsed_ms < MIN_TIMER_GRANULARITY) {
  1440     // This usually happens due to the timer not having the required
  1441     // granularity. Some Linuxes are the usual culprits.
  1442     // We'll just set it to something (arbitrarily) small.
  1443     proc_ms = 1.0;
  1445   double cur_efficiency = (double) freed_bytes / proc_ms;
  1447   bool new_in_marking_window = _in_marking_window;
  1448   bool new_in_marking_window_im = false;
  1449   if (during_initial_mark_pause()) {
  1450     new_in_marking_window = true;
  1451     new_in_marking_window_im = true;
  1454   if (in_young_gc_mode()) {
  1455     if (_last_full_young_gc) {
  1456       set_full_young_gcs(false);
  1457       _last_full_young_gc = false;
  1460     if ( !_last_young_gc_full ) {
  1461       if ( _should_revert_to_full_young_gcs ||
  1462            _known_garbage_ratio < 0.05 ||
  1463            (adaptive_young_list_length() &&
  1464            (get_gc_eff_factor() * cur_efficiency < predict_young_gc_eff())) ) {
  1465         set_full_young_gcs(true);
  1468     _should_revert_to_full_young_gcs = false;
  1470     if (_last_young_gc_full && !_during_marking)
  1471       _young_gc_eff_seq->add(cur_efficiency);
  1474   _short_lived_surv_rate_group->start_adding_regions();
  1475   // do that for any other surv rate groupsx
  1477   // <NEW PREDICTION>
  1479   if (update_stats) {
  1480     double pause_time_ms = elapsed_ms;
  1482     size_t diff = 0;
  1483     if (_max_pending_cards >= _pending_cards)
  1484       diff = _max_pending_cards - _pending_cards;
  1485     _pending_card_diff_seq->add((double) diff);
  1487     double cost_per_card_ms = 0.0;
  1488     if (_pending_cards > 0) {
  1489       cost_per_card_ms = update_rs_time / (double) _pending_cards;
  1490       _cost_per_card_ms_seq->add(cost_per_card_ms);
  1493     size_t cards_scanned = _g1->cards_scanned();
  1495     double cost_per_entry_ms = 0.0;
  1496     if (cards_scanned > 10) {
  1497       cost_per_entry_ms = scan_rs_time / (double) cards_scanned;
  1498       if (_last_young_gc_full)
  1499         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1500       else
  1501         _partially_young_cost_per_entry_ms_seq->add(cost_per_entry_ms);
  1504     if (_max_rs_lengths > 0) {
  1505       double cards_per_entry_ratio =
  1506         (double) cards_scanned / (double) _max_rs_lengths;
  1507       if (_last_young_gc_full)
  1508         _fully_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1509       else
  1510         _partially_young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
  1513     size_t rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
  1514     if (rs_length_diff >= 0)
  1515       _rs_length_diff_seq->add((double) rs_length_diff);
  1517     size_t copied_bytes = surviving_bytes;
  1518     double cost_per_byte_ms = 0.0;
  1519     if (copied_bytes > 0) {
  1520       cost_per_byte_ms = obj_copy_time / (double) copied_bytes;
  1521       if (_in_marking_window)
  1522         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
  1523       else
  1524         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
  1527     double all_other_time_ms = pause_time_ms -
  1528       (update_rs_time + scan_rs_time + obj_copy_time +
  1529        _mark_closure_time_ms + termination_time);
  1531     double young_other_time_ms = 0.0;
  1532     if (_recorded_young_regions > 0) {
  1533       young_other_time_ms =
  1534         _recorded_young_cset_choice_time_ms +
  1535         _recorded_young_free_cset_time_ms;
  1536       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
  1537                                              (double) _recorded_young_regions);
  1539     double non_young_other_time_ms = 0.0;
  1540     if (_recorded_non_young_regions > 0) {
  1541       non_young_other_time_ms =
  1542         _recorded_non_young_cset_choice_time_ms +
  1543         _recorded_non_young_free_cset_time_ms;
  1545       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
  1546                                          (double) _recorded_non_young_regions);
  1549     double constant_other_time_ms = all_other_time_ms -
  1550       (young_other_time_ms + non_young_other_time_ms);
  1551     _constant_other_time_ms_seq->add(constant_other_time_ms);
  1553     double survival_ratio = 0.0;
  1554     if (_bytes_in_collection_set_before_gc > 0) {
  1555       survival_ratio = (double) bytes_in_to_space_during_gc() /
  1556         (double) _bytes_in_collection_set_before_gc;
  1559     _pending_cards_seq->add((double) _pending_cards);
  1560     _scanned_cards_seq->add((double) cards_scanned);
  1561     _rs_lengths_seq->add((double) _max_rs_lengths);
  1563     double expensive_region_limit_ms =
  1564       (double) MaxGCPauseMillis - predict_constant_other_time_ms();
  1565     if (expensive_region_limit_ms < 0.0) {
  1566       // this means that the other time was predicted to be longer than
  1567       // than the max pause time
  1568       expensive_region_limit_ms = (double) MaxGCPauseMillis;
  1570     _expensive_region_limit_ms = expensive_region_limit_ms;
  1572     if (PREDICTIONS_VERBOSE) {
  1573       gclog_or_tty->print_cr("");
  1574       gclog_or_tty->print_cr("PREDICTIONS %1.4lf %d "
  1575                     "REGIONS %d %d %d "
  1576                     "PENDING_CARDS %d %d "
  1577                     "CARDS_SCANNED %d %d "
  1578                     "RS_LENGTHS %d %d "
  1579                     "RS_UPDATE %1.6lf %1.6lf RS_SCAN %1.6lf %1.6lf "
  1580                     "SURVIVAL_RATIO %1.6lf %1.6lf "
  1581                     "OBJECT_COPY %1.6lf %1.6lf OTHER_CONSTANT %1.6lf %1.6lf "
  1582                     "OTHER_YOUNG %1.6lf %1.6lf "
  1583                     "OTHER_NON_YOUNG %1.6lf %1.6lf "
  1584                     "VTIME_DIFF %1.6lf TERMINATION %1.6lf "
  1585                     "ELAPSED %1.6lf %1.6lf ",
  1586                     _cur_collection_start_sec,
  1587                     (!_last_young_gc_full) ? 2 :
  1588                     (last_pause_included_initial_mark) ? 1 : 0,
  1589                     _recorded_region_num,
  1590                     _recorded_young_regions,
  1591                     _recorded_non_young_regions,
  1592                     _predicted_pending_cards, _pending_cards,
  1593                     _predicted_cards_scanned, cards_scanned,
  1594                     _predicted_rs_lengths, _max_rs_lengths,
  1595                     _predicted_rs_update_time_ms, update_rs_time,
  1596                     _predicted_rs_scan_time_ms, scan_rs_time,
  1597                     _predicted_survival_ratio, survival_ratio,
  1598                     _predicted_object_copy_time_ms, obj_copy_time,
  1599                     _predicted_constant_other_time_ms, constant_other_time_ms,
  1600                     _predicted_young_other_time_ms, young_other_time_ms,
  1601                     _predicted_non_young_other_time_ms,
  1602                     non_young_other_time_ms,
  1603                     _vtime_diff_ms, termination_time,
  1604                     _predicted_pause_time_ms, elapsed_ms);
  1607     if (G1PolicyVerbose > 0) {
  1608       gclog_or_tty->print_cr("Pause Time, predicted: %1.4lfms (predicted %s), actual: %1.4lfms",
  1609                     _predicted_pause_time_ms,
  1610                     (_within_target) ? "within" : "outside",
  1611                     elapsed_ms);
  1616   _in_marking_window = new_in_marking_window;
  1617   _in_marking_window_im = new_in_marking_window_im;
  1618   _free_regions_at_end_of_collection = _g1->free_regions();
  1619   calculate_young_list_min_length();
  1620   calculate_young_list_target_length();
  1622   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
  1623   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
  1624   adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
  1625   // </NEW PREDICTION>
  1628 // <NEW PREDICTION>
  1630 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
  1631                                                      double update_rs_processed_buffers,
  1632                                                      double goal_ms) {
  1633   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  1634   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  1636   if (G1UseAdaptiveConcRefinement) {
  1637     const int k_gy = 3, k_gr = 6;
  1638     const double inc_k = 1.1, dec_k = 0.9;
  1640     int g = cg1r->green_zone();
  1641     if (update_rs_time > goal_ms) {
  1642       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
  1643     } else {
  1644       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
  1645         g = (int)MAX2(g * inc_k, g + 1.0);
  1648     // Change the refinement threads params
  1649     cg1r->set_green_zone(g);
  1650     cg1r->set_yellow_zone(g * k_gy);
  1651     cg1r->set_red_zone(g * k_gr);
  1652     cg1r->reinitialize_threads();
  1654     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
  1655     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
  1656                                     cg1r->yellow_zone());
  1657     // Change the barrier params
  1658     dcqs.set_process_completed_threshold(processing_threshold);
  1659     dcqs.set_max_completed_queue(cg1r->red_zone());
  1662   int curr_queue_size = dcqs.completed_buffers_num();
  1663   if (curr_queue_size >= cg1r->yellow_zone()) {
  1664     dcqs.set_completed_queue_padding(curr_queue_size);
  1665   } else {
  1666     dcqs.set_completed_queue_padding(0);
  1668   dcqs.notify_if_necessary();
  1671 double
  1672 G1CollectorPolicy::
  1673 predict_young_collection_elapsed_time_ms(size_t adjustment) {
  1674   guarantee( adjustment == 0 || adjustment == 1, "invariant" );
  1676   G1CollectedHeap* g1h = G1CollectedHeap::heap();
  1677   size_t young_num = g1h->young_list()->length();
  1678   if (young_num == 0)
  1679     return 0.0;
  1681   young_num += adjustment;
  1682   size_t pending_cards = predict_pending_cards();
  1683   size_t rs_lengths = g1h->young_list()->sampled_rs_lengths() +
  1684                       predict_rs_length_diff();
  1685   size_t card_num;
  1686   if (full_young_gcs())
  1687     card_num = predict_young_card_num(rs_lengths);
  1688   else
  1689     card_num = predict_non_young_card_num(rs_lengths);
  1690   size_t young_byte_size = young_num * HeapRegion::GrainBytes;
  1691   double accum_yg_surv_rate =
  1692     _short_lived_surv_rate_group->accum_surv_rate(adjustment);
  1694   size_t bytes_to_copy =
  1695     (size_t) (accum_yg_surv_rate * (double) HeapRegion::GrainBytes);
  1697   return
  1698     predict_rs_update_time_ms(pending_cards) +
  1699     predict_rs_scan_time_ms(card_num) +
  1700     predict_object_copy_time_ms(bytes_to_copy) +
  1701     predict_young_other_time_ms(young_num) +
  1702     predict_constant_other_time_ms();
  1705 double
  1706 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
  1707   size_t rs_length = predict_rs_length_diff();
  1708   size_t card_num;
  1709   if (full_young_gcs())
  1710     card_num = predict_young_card_num(rs_length);
  1711   else
  1712     card_num = predict_non_young_card_num(rs_length);
  1713   return predict_base_elapsed_time_ms(pending_cards, card_num);
  1716 double
  1717 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
  1718                                                 size_t scanned_cards) {
  1719   return
  1720     predict_rs_update_time_ms(pending_cards) +
  1721     predict_rs_scan_time_ms(scanned_cards) +
  1722     predict_constant_other_time_ms();
  1725 double
  1726 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
  1727                                                   bool young) {
  1728   size_t rs_length = hr->rem_set()->occupied();
  1729   size_t card_num;
  1730   if (full_young_gcs())
  1731     card_num = predict_young_card_num(rs_length);
  1732   else
  1733     card_num = predict_non_young_card_num(rs_length);
  1734   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  1736   double region_elapsed_time_ms =
  1737     predict_rs_scan_time_ms(card_num) +
  1738     predict_object_copy_time_ms(bytes_to_copy);
  1740   if (young)
  1741     region_elapsed_time_ms += predict_young_other_time_ms(1);
  1742   else
  1743     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
  1745   return region_elapsed_time_ms;
  1748 size_t
  1749 G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
  1750   size_t bytes_to_copy;
  1751   if (hr->is_marked())
  1752     bytes_to_copy = hr->max_live_bytes();
  1753   else {
  1754     guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
  1755                "invariant" );
  1756     int age = hr->age_in_surv_rate_group();
  1757     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
  1758     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
  1761   return bytes_to_copy;
  1764 void
  1765 G1CollectorPolicy::start_recording_regions() {
  1766   _recorded_rs_lengths            = 0;
  1767   _recorded_young_regions         = 0;
  1768   _recorded_non_young_regions     = 0;
  1770 #if PREDICTIONS_VERBOSE
  1771   _recorded_marked_bytes          = 0;
  1772   _recorded_young_bytes           = 0;
  1773   _predicted_bytes_to_copy        = 0;
  1774   _predicted_rs_lengths           = 0;
  1775   _predicted_cards_scanned        = 0;
  1776 #endif // PREDICTIONS_VERBOSE
  1779 void
  1780 G1CollectorPolicy::record_cset_region_info(HeapRegion* hr, bool young) {
  1781 #if PREDICTIONS_VERBOSE
  1782   if (!young) {
  1783     _recorded_marked_bytes += hr->max_live_bytes();
  1785   _predicted_bytes_to_copy += predict_bytes_to_copy(hr);
  1786 #endif // PREDICTIONS_VERBOSE
  1788   size_t rs_length = hr->rem_set()->occupied();
  1789   _recorded_rs_lengths += rs_length;
  1792 void
  1793 G1CollectorPolicy::record_non_young_cset_region(HeapRegion* hr) {
  1794   assert(!hr->is_young(), "should not call this");
  1795   ++_recorded_non_young_regions;
  1796   record_cset_region_info(hr, false);
  1799 void
  1800 G1CollectorPolicy::set_recorded_young_regions(size_t n_regions) {
  1801   _recorded_young_regions = n_regions;
  1804 void G1CollectorPolicy::set_recorded_young_bytes(size_t bytes) {
  1805 #if PREDICTIONS_VERBOSE
  1806   _recorded_young_bytes = bytes;
  1807 #endif // PREDICTIONS_VERBOSE
  1810 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
  1811   _recorded_rs_lengths = rs_lengths;
  1814 void G1CollectorPolicy::set_predicted_bytes_to_copy(size_t bytes) {
  1815   _predicted_bytes_to_copy = bytes;
  1818 void
  1819 G1CollectorPolicy::end_recording_regions() {
  1820   // The _predicted_pause_time_ms field is referenced in code
  1821   // not under PREDICTIONS_VERBOSE. Let's initialize it.
  1822   _predicted_pause_time_ms = -1.0;
  1824 #if PREDICTIONS_VERBOSE
  1825   _predicted_pending_cards = predict_pending_cards();
  1826   _predicted_rs_lengths = _recorded_rs_lengths + predict_rs_length_diff();
  1827   if (full_young_gcs())
  1828     _predicted_cards_scanned += predict_young_card_num(_predicted_rs_lengths);
  1829   else
  1830     _predicted_cards_scanned +=
  1831       predict_non_young_card_num(_predicted_rs_lengths);
  1832   _recorded_region_num = _recorded_young_regions + _recorded_non_young_regions;
  1834   _predicted_rs_update_time_ms =
  1835     predict_rs_update_time_ms(_g1->pending_card_num());
  1836   _predicted_rs_scan_time_ms =
  1837     predict_rs_scan_time_ms(_predicted_cards_scanned);
  1838   _predicted_object_copy_time_ms =
  1839     predict_object_copy_time_ms(_predicted_bytes_to_copy);
  1840   _predicted_constant_other_time_ms =
  1841     predict_constant_other_time_ms();
  1842   _predicted_young_other_time_ms =
  1843     predict_young_other_time_ms(_recorded_young_regions);
  1844   _predicted_non_young_other_time_ms =
  1845     predict_non_young_other_time_ms(_recorded_non_young_regions);
  1847   _predicted_pause_time_ms =
  1848     _predicted_rs_update_time_ms +
  1849     _predicted_rs_scan_time_ms +
  1850     _predicted_object_copy_time_ms +
  1851     _predicted_constant_other_time_ms +
  1852     _predicted_young_other_time_ms +
  1853     _predicted_non_young_other_time_ms;
  1854 #endif // PREDICTIONS_VERBOSE
  1857 void G1CollectorPolicy::check_if_region_is_too_expensive(double
  1858                                                            predicted_time_ms) {
  1859   // I don't think we need to do this when in young GC mode since
  1860   // marking will be initiated next time we hit the soft limit anyway...
  1861   if (predicted_time_ms > _expensive_region_limit_ms) {
  1862     if (!in_young_gc_mode()) {
  1863         set_full_young_gcs(true);
  1864         // We might want to do something different here. However,
  1865         // right now we don't support the non-generational G1 mode
  1866         // (and in fact we are planning to remove the associated code,
  1867         // see CR 6814390). So, let's leave it as is and this will be
  1868         // removed some time in the future
  1869         ShouldNotReachHere();
  1870         set_during_initial_mark_pause();
  1871     } else
  1872       // no point in doing another partial one
  1873       _should_revert_to_full_young_gcs = true;
  1877 // </NEW PREDICTION>
  1880 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
  1881                                                double elapsed_ms) {
  1882   _recent_gc_times_ms->add(elapsed_ms);
  1883   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
  1884   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
  1887 double G1CollectorPolicy::recent_avg_time_for_pauses_ms() {
  1888   if (_recent_pause_times_ms->num() == 0) return (double) MaxGCPauseMillis;
  1889   else return _recent_pause_times_ms->avg();
  1892 double G1CollectorPolicy::recent_avg_time_for_CH_strong_ms() {
  1893   if (_recent_CH_strong_roots_times_ms->num() == 0)
  1894     return (double)MaxGCPauseMillis/3.0;
  1895   else return _recent_CH_strong_roots_times_ms->avg();
  1898 double G1CollectorPolicy::recent_avg_time_for_G1_strong_ms() {
  1899   if (_recent_G1_strong_roots_times_ms->num() == 0)
  1900     return (double)MaxGCPauseMillis/3.0;
  1901   else return _recent_G1_strong_roots_times_ms->avg();
  1904 double G1CollectorPolicy::recent_avg_time_for_evac_ms() {
  1905   if (_recent_evac_times_ms->num() == 0) return (double)MaxGCPauseMillis/3.0;
  1906   else return _recent_evac_times_ms->avg();
  1909 int G1CollectorPolicy::number_of_recent_gcs() {
  1910   assert(_recent_CH_strong_roots_times_ms->num() ==
  1911          _recent_G1_strong_roots_times_ms->num(), "Sequence out of sync");
  1912   assert(_recent_G1_strong_roots_times_ms->num() ==
  1913          _recent_evac_times_ms->num(), "Sequence out of sync");
  1914   assert(_recent_evac_times_ms->num() ==
  1915          _recent_pause_times_ms->num(), "Sequence out of sync");
  1916   assert(_recent_pause_times_ms->num() ==
  1917          _recent_CS_bytes_used_before->num(), "Sequence out of sync");
  1918   assert(_recent_CS_bytes_used_before->num() ==
  1919          _recent_CS_bytes_surviving->num(), "Sequence out of sync");
  1920   return _recent_pause_times_ms->num();
  1923 double G1CollectorPolicy::recent_avg_survival_fraction() {
  1924   return recent_avg_survival_fraction_work(_recent_CS_bytes_surviving,
  1925                                            _recent_CS_bytes_used_before);
  1928 double G1CollectorPolicy::last_survival_fraction() {
  1929   return last_survival_fraction_work(_recent_CS_bytes_surviving,
  1930                                      _recent_CS_bytes_used_before);
  1933 double
  1934 G1CollectorPolicy::recent_avg_survival_fraction_work(TruncatedSeq* surviving,
  1935                                                      TruncatedSeq* before) {
  1936   assert(surviving->num() == before->num(), "Sequence out of sync");
  1937   if (before->sum() > 0.0) {
  1938       double recent_survival_rate = surviving->sum() / before->sum();
  1939       // We exempt parallel collection from this check because Alloc Buffer
  1940       // fragmentation can produce negative collections.
  1941       // Further, we're now always doing parallel collection.  But I'm still
  1942       // leaving this here as a placeholder for a more precise assertion later.
  1943       // (DLD, 10/05.)
  1944       assert((true || ParallelGCThreads > 0) ||
  1945              _g1->evacuation_failed() ||
  1946              recent_survival_rate <= 1.0, "Or bad frac");
  1947       return recent_survival_rate;
  1948   } else {
  1949     return 1.0; // Be conservative.
  1953 double
  1954 G1CollectorPolicy::last_survival_fraction_work(TruncatedSeq* surviving,
  1955                                                TruncatedSeq* before) {
  1956   assert(surviving->num() == before->num(), "Sequence out of sync");
  1957   if (surviving->num() > 0 && before->last() > 0.0) {
  1958     double last_survival_rate = surviving->last() / before->last();
  1959     // We exempt parallel collection from this check because Alloc Buffer
  1960     // fragmentation can produce negative collections.
  1961     // Further, we're now always doing parallel collection.  But I'm still
  1962     // leaving this here as a placeholder for a more precise assertion later.
  1963     // (DLD, 10/05.)
  1964     assert((true || ParallelGCThreads > 0) ||
  1965            last_survival_rate <= 1.0, "Or bad frac");
  1966     return last_survival_rate;
  1967   } else {
  1968     return 1.0;
  1972 static const int survival_min_obs = 5;
  1973 static double survival_min_obs_limits[] = { 0.9, 0.7, 0.5, 0.3, 0.1 };
  1974 static const double min_survival_rate = 0.1;
  1976 double
  1977 G1CollectorPolicy::conservative_avg_survival_fraction_work(double avg,
  1978                                                            double latest) {
  1979   double res = avg;
  1980   if (number_of_recent_gcs() < survival_min_obs) {
  1981     res = MAX2(res, survival_min_obs_limits[number_of_recent_gcs()]);
  1983   res = MAX2(res, latest);
  1984   res = MAX2(res, min_survival_rate);
  1985   // In the parallel case, LAB fragmentation can produce "negative
  1986   // collections"; so can evac failure.  Cap at 1.0
  1987   res = MIN2(res, 1.0);
  1988   return res;
  1991 size_t G1CollectorPolicy::expansion_amount() {
  1992   if ((recent_avg_pause_time_ratio() * 100.0) > _gc_overhead_perc) {
  1993     // We will double the existing space, or take
  1994     // G1ExpandByPercentOfAvailable % of the available expansion
  1995     // space, whichever is smaller, bounded below by a minimum
  1996     // expansion (unless that's all that's left.)
  1997     const size_t min_expand_bytes = 1*M;
  1998     size_t reserved_bytes = _g1->g1_reserved_obj_bytes();
  1999     size_t committed_bytes = _g1->capacity();
  2000     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
  2001     size_t expand_bytes;
  2002     size_t expand_bytes_via_pct =
  2003       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
  2004     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
  2005     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
  2006     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
  2007     if (G1PolicyVerbose > 1) {
  2008       gclog_or_tty->print("Decided to expand: ratio = %5.2f, "
  2009                  "committed = %d%s, uncommited = %d%s, via pct = %d%s.\n"
  2010                  "                   Answer = %d.\n",
  2011                  recent_avg_pause_time_ratio(),
  2012                  byte_size_in_proper_unit(committed_bytes),
  2013                  proper_unit_for_byte_size(committed_bytes),
  2014                  byte_size_in_proper_unit(uncommitted_bytes),
  2015                  proper_unit_for_byte_size(uncommitted_bytes),
  2016                  byte_size_in_proper_unit(expand_bytes_via_pct),
  2017                  proper_unit_for_byte_size(expand_bytes_via_pct),
  2018                  byte_size_in_proper_unit(expand_bytes),
  2019                  proper_unit_for_byte_size(expand_bytes));
  2021     return expand_bytes;
  2022   } else {
  2023     return 0;
  2027 void G1CollectorPolicy::note_start_of_mark_thread() {
  2028   _mark_thread_startup_sec = os::elapsedTime();
  2031 class CountCSClosure: public HeapRegionClosure {
  2032   G1CollectorPolicy* _g1_policy;
  2033 public:
  2034   CountCSClosure(G1CollectorPolicy* g1_policy) :
  2035     _g1_policy(g1_policy) {}
  2036   bool doHeapRegion(HeapRegion* r) {
  2037     _g1_policy->_bytes_in_collection_set_before_gc += r->used();
  2038     return false;
  2040 };
  2042 void G1CollectorPolicy::count_CS_bytes_used() {
  2043   CountCSClosure cs_closure(this);
  2044   _g1->collection_set_iterate(&cs_closure);
  2047 static void print_indent(int level) {
  2048   for (int j = 0; j < level+1; ++j)
  2049     gclog_or_tty->print("   ");
  2052 void G1CollectorPolicy::print_summary (int level,
  2053                                        const char* str,
  2054                                        NumberSeq* seq) const {
  2055   double sum = seq->sum();
  2056   print_indent(level);
  2057   gclog_or_tty->print_cr("%-24s = %8.2lf s (avg = %8.2lf ms)",
  2058                 str, sum / 1000.0, seq->avg());
  2061 void G1CollectorPolicy::print_summary_sd (int level,
  2062                                           const char* str,
  2063                                           NumberSeq* seq) const {
  2064   print_summary(level, str, seq);
  2065   print_indent(level + 5);
  2066   gclog_or_tty->print_cr("(num = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
  2067                 seq->num(), seq->sd(), seq->maximum());
  2070 void G1CollectorPolicy::check_other_times(int level,
  2071                                         NumberSeq* other_times_ms,
  2072                                         NumberSeq* calc_other_times_ms) const {
  2073   bool should_print = false;
  2075   double max_sum = MAX2(fabs(other_times_ms->sum()),
  2076                         fabs(calc_other_times_ms->sum()));
  2077   double min_sum = MIN2(fabs(other_times_ms->sum()),
  2078                         fabs(calc_other_times_ms->sum()));
  2079   double sum_ratio = max_sum / min_sum;
  2080   if (sum_ratio > 1.1) {
  2081     should_print = true;
  2082     print_indent(level + 1);
  2083     gclog_or_tty->print_cr("## CALCULATED OTHER SUM DOESN'T MATCH RECORDED ###");
  2086   double max_avg = MAX2(fabs(other_times_ms->avg()),
  2087                         fabs(calc_other_times_ms->avg()));
  2088   double min_avg = MIN2(fabs(other_times_ms->avg()),
  2089                         fabs(calc_other_times_ms->avg()));
  2090   double avg_ratio = max_avg / min_avg;
  2091   if (avg_ratio > 1.1) {
  2092     should_print = true;
  2093     print_indent(level + 1);
  2094     gclog_or_tty->print_cr("## CALCULATED OTHER AVG DOESN'T MATCH RECORDED ###");
  2097   if (other_times_ms->sum() < -0.01) {
  2098     print_indent(level + 1);
  2099     gclog_or_tty->print_cr("## RECORDED OTHER SUM IS NEGATIVE ###");
  2102   if (other_times_ms->avg() < -0.01) {
  2103     print_indent(level + 1);
  2104     gclog_or_tty->print_cr("## RECORDED OTHER AVG IS NEGATIVE ###");
  2107   if (calc_other_times_ms->sum() < -0.01) {
  2108     should_print = true;
  2109     print_indent(level + 1);
  2110     gclog_or_tty->print_cr("## CALCULATED OTHER SUM IS NEGATIVE ###");
  2113   if (calc_other_times_ms->avg() < -0.01) {
  2114     should_print = true;
  2115     print_indent(level + 1);
  2116     gclog_or_tty->print_cr("## CALCULATED OTHER AVG IS NEGATIVE ###");
  2119   if (should_print)
  2120     print_summary(level, "Other(Calc)", calc_other_times_ms);
  2123 void G1CollectorPolicy::print_summary(PauseSummary* summary) const {
  2124   bool parallel = ParallelGCThreads > 0;
  2125   MainBodySummary*    body_summary = summary->main_body_summary();
  2126   if (summary->get_total_seq()->num() > 0) {
  2127     print_summary_sd(0, "Evacuation Pauses", summary->get_total_seq());
  2128     if (body_summary != NULL) {
  2129       print_summary(1, "SATB Drain", body_summary->get_satb_drain_seq());
  2130       if (parallel) {
  2131         print_summary(1, "Parallel Time", body_summary->get_parallel_seq());
  2132         print_summary(2, "Update RS", body_summary->get_update_rs_seq());
  2133         print_summary(2, "Ext Root Scanning",
  2134                       body_summary->get_ext_root_scan_seq());
  2135         print_summary(2, "Mark Stack Scanning",
  2136                       body_summary->get_mark_stack_scan_seq());
  2137         print_summary(2, "Scan RS", body_summary->get_scan_rs_seq());
  2138         print_summary(2, "Object Copy", body_summary->get_obj_copy_seq());
  2139         print_summary(2, "Termination", body_summary->get_termination_seq());
  2140         print_summary(2, "Other", body_summary->get_parallel_other_seq());
  2142           NumberSeq* other_parts[] = {
  2143             body_summary->get_update_rs_seq(),
  2144             body_summary->get_ext_root_scan_seq(),
  2145             body_summary->get_mark_stack_scan_seq(),
  2146             body_summary->get_scan_rs_seq(),
  2147             body_summary->get_obj_copy_seq(),
  2148             body_summary->get_termination_seq()
  2149           };
  2150           NumberSeq calc_other_times_ms(body_summary->get_parallel_seq(),
  2151                                         7, other_parts);
  2152           check_other_times(2, body_summary->get_parallel_other_seq(),
  2153                             &calc_other_times_ms);
  2155         print_summary(1, "Mark Closure", body_summary->get_mark_closure_seq());
  2156         print_summary(1, "Clear CT", body_summary->get_clear_ct_seq());
  2157       } else {
  2158         print_summary(1, "Update RS", body_summary->get_update_rs_seq());
  2159         print_summary(1, "Ext Root Scanning",
  2160                       body_summary->get_ext_root_scan_seq());
  2161         print_summary(1, "Mark Stack Scanning",
  2162                       body_summary->get_mark_stack_scan_seq());
  2163         print_summary(1, "Scan RS", body_summary->get_scan_rs_seq());
  2164         print_summary(1, "Object Copy", body_summary->get_obj_copy_seq());
  2167     print_summary(1, "Other", summary->get_other_seq());
  2169       NumberSeq calc_other_times_ms;
  2170       if (parallel) {
  2171         // parallel
  2172         NumberSeq* other_parts[] = {
  2173           body_summary->get_satb_drain_seq(),
  2174           body_summary->get_parallel_seq(),
  2175           body_summary->get_clear_ct_seq()
  2176         };
  2177         calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  2178                                         3, other_parts);
  2179       } else {
  2180         // serial
  2181         NumberSeq* other_parts[] = {
  2182           body_summary->get_satb_drain_seq(),
  2183           body_summary->get_update_rs_seq(),
  2184           body_summary->get_ext_root_scan_seq(),
  2185           body_summary->get_mark_stack_scan_seq(),
  2186           body_summary->get_scan_rs_seq(),
  2187           body_summary->get_obj_copy_seq()
  2188         };
  2189         calc_other_times_ms = NumberSeq(summary->get_total_seq(),
  2190                                         7, other_parts);
  2192       check_other_times(1,  summary->get_other_seq(), &calc_other_times_ms);
  2194   } else {
  2195     print_indent(0);
  2196     gclog_or_tty->print_cr("none");
  2198   gclog_or_tty->print_cr("");
  2201 void G1CollectorPolicy::print_tracing_info() const {
  2202   if (TraceGen0Time) {
  2203     gclog_or_tty->print_cr("ALL PAUSES");
  2204     print_summary_sd(0, "Total", _all_pause_times_ms);
  2205     gclog_or_tty->print_cr("");
  2206     gclog_or_tty->print_cr("");
  2207     gclog_or_tty->print_cr("   Full Young GC Pauses:    %8d", _full_young_pause_num);
  2208     gclog_or_tty->print_cr("   Partial Young GC Pauses: %8d", _partial_young_pause_num);
  2209     gclog_or_tty->print_cr("");
  2211     gclog_or_tty->print_cr("EVACUATION PAUSES");
  2212     print_summary(_summary);
  2214     gclog_or_tty->print_cr("MISC");
  2215     print_summary_sd(0, "Stop World", _all_stop_world_times_ms);
  2216     print_summary_sd(0, "Yields", _all_yield_times_ms);
  2217     for (int i = 0; i < _aux_num; ++i) {
  2218       if (_all_aux_times_ms[i].num() > 0) {
  2219         char buffer[96];
  2220         sprintf(buffer, "Aux%d", i);
  2221         print_summary_sd(0, buffer, &_all_aux_times_ms[i]);
  2225     size_t all_region_num = _region_num_young + _region_num_tenured;
  2226     gclog_or_tty->print_cr("   New Regions %8d, Young %8d (%6.2lf%%), "
  2227                "Tenured %8d (%6.2lf%%)",
  2228                all_region_num,
  2229                _region_num_young,
  2230                (double) _region_num_young / (double) all_region_num * 100.0,
  2231                _region_num_tenured,
  2232                (double) _region_num_tenured / (double) all_region_num * 100.0);
  2234   if (TraceGen1Time) {
  2235     if (_all_full_gc_times_ms->num() > 0) {
  2236       gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
  2237                  _all_full_gc_times_ms->num(),
  2238                  _all_full_gc_times_ms->sum() / 1000.0);
  2239       gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times_ms->avg());
  2240       gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
  2241                     _all_full_gc_times_ms->sd(),
  2242                     _all_full_gc_times_ms->maximum());
  2247 void G1CollectorPolicy::print_yg_surv_rate_info() const {
  2248 #ifndef PRODUCT
  2249   _short_lived_surv_rate_group->print_surv_rate_summary();
  2250   // add this call for any other surv rate groups
  2251 #endif // PRODUCT
  2254 bool
  2255 G1CollectorPolicy::should_add_next_region_to_young_list() {
  2256   assert(in_young_gc_mode(), "should be in young GC mode");
  2257   bool ret;
  2258   size_t young_list_length = _g1->young_list()->length();
  2259   size_t young_list_max_length = _young_list_target_length;
  2260   if (G1FixedEdenSize) {
  2261     young_list_max_length -= _max_survivor_regions;
  2263   if (young_list_length < young_list_max_length) {
  2264     ret = true;
  2265     ++_region_num_young;
  2266   } else {
  2267     ret = false;
  2268     ++_region_num_tenured;
  2271   return ret;
  2274 #ifndef PRODUCT
  2275 // for debugging, bit of a hack...
  2276 static char*
  2277 region_num_to_mbs(int length) {
  2278   static char buffer[64];
  2279   double bytes = (double) (length * HeapRegion::GrainBytes);
  2280   double mbs = bytes / (double) (1024 * 1024);
  2281   sprintf(buffer, "%7.2lfMB", mbs);
  2282   return buffer;
  2284 #endif // PRODUCT
  2286 size_t G1CollectorPolicy::max_regions(int purpose) {
  2287   switch (purpose) {
  2288     case GCAllocForSurvived:
  2289       return _max_survivor_regions;
  2290     case GCAllocForTenured:
  2291       return REGIONS_UNLIMITED;
  2292     default:
  2293       ShouldNotReachHere();
  2294       return REGIONS_UNLIMITED;
  2295   };
  2298 // Calculates survivor space parameters.
  2299 void G1CollectorPolicy::calculate_survivors_policy()
  2301   if (G1FixedSurvivorSpaceSize == 0) {
  2302     _max_survivor_regions = _young_list_target_length / SurvivorRatio;
  2303   } else {
  2304     _max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
  2307   if (G1FixedTenuringThreshold) {
  2308     _tenuring_threshold = MaxTenuringThreshold;
  2309   } else {
  2310     _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
  2311         HeapRegion::GrainWords * _max_survivor_regions);
  2315 bool
  2316 G1CollectorPolicy_BestRegionsFirst::should_do_collection_pause(size_t
  2317                                                                word_size) {
  2318   assert(_g1->regions_accounted_for(), "Region leakage!");
  2319   double max_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
  2321   size_t young_list_length = _g1->young_list()->length();
  2322   size_t young_list_max_length = _young_list_target_length;
  2323   if (G1FixedEdenSize) {
  2324     young_list_max_length -= _max_survivor_regions;
  2326   bool reached_target_length = young_list_length >= young_list_max_length;
  2328   if (in_young_gc_mode()) {
  2329     if (reached_target_length) {
  2330       assert( young_list_length > 0 && _g1->young_list()->length() > 0,
  2331               "invariant" );
  2332       return true;
  2334   } else {
  2335     guarantee( false, "should not reach here" );
  2338   return false;
  2341 #ifndef PRODUCT
  2342 class HRSortIndexIsOKClosure: public HeapRegionClosure {
  2343   CollectionSetChooser* _chooser;
  2344 public:
  2345   HRSortIndexIsOKClosure(CollectionSetChooser* chooser) :
  2346     _chooser(chooser) {}
  2348   bool doHeapRegion(HeapRegion* r) {
  2349     if (!r->continuesHumongous()) {
  2350       assert(_chooser->regionProperlyOrdered(r), "Ought to be.");
  2352     return false;
  2354 };
  2356 bool G1CollectorPolicy_BestRegionsFirst::assertMarkedBytesDataOK() {
  2357   HRSortIndexIsOKClosure cl(_collectionSetChooser);
  2358   _g1->heap_region_iterate(&cl);
  2359   return true;
  2361 #endif
  2363 bool
  2364 G1CollectorPolicy::force_initial_mark_if_outside_cycle() {
  2365   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2366   if (!during_cycle) {
  2367     set_initiate_conc_mark_if_possible();
  2368     return true;
  2369   } else {
  2370     return false;
  2374 void
  2375 G1CollectorPolicy::decide_on_conc_mark_initiation() {
  2376   // We are about to decide on whether this pause will be an
  2377   // initial-mark pause.
  2379   // First, during_initial_mark_pause() should not be already set. We
  2380   // will set it here if we have to. However, it should be cleared by
  2381   // the end of the pause (it's only set for the duration of an
  2382   // initial-mark pause).
  2383   assert(!during_initial_mark_pause(), "pre-condition");
  2385   if (initiate_conc_mark_if_possible()) {
  2386     // We had noticed on a previous pause that the heap occupancy has
  2387     // gone over the initiating threshold and we should start a
  2388     // concurrent marking cycle. So we might initiate one.
  2390     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
  2391     if (!during_cycle) {
  2392       // The concurrent marking thread is not "during a cycle", i.e.,
  2393       // it has completed the last one. So we can go ahead and
  2394       // initiate a new cycle.
  2396       set_during_initial_mark_pause();
  2398       // And we can now clear initiate_conc_mark_if_possible() as
  2399       // we've already acted on it.
  2400       clear_initiate_conc_mark_if_possible();
  2401     } else {
  2402       // The concurrent marking thread is still finishing up the
  2403       // previous cycle. If we start one right now the two cycles
  2404       // overlap. In particular, the concurrent marking thread might
  2405       // be in the process of clearing the next marking bitmap (which
  2406       // we will use for the next cycle if we start one). Starting a
  2407       // cycle now will be bad given that parts of the marking
  2408       // information might get cleared by the marking thread. And we
  2409       // cannot wait for the marking thread to finish the cycle as it
  2410       // periodically yields while clearing the next marking bitmap
  2411       // and, if it's in a yield point, it's waiting for us to
  2412       // finish. So, at this point we will not start a cycle and we'll
  2413       // let the concurrent marking thread complete the last one.
  2418 void
  2419 G1CollectorPolicy_BestRegionsFirst::
  2420 record_collection_pause_start(double start_time_sec, size_t start_used) {
  2421   G1CollectorPolicy::record_collection_pause_start(start_time_sec, start_used);
  2424 class NextNonCSElemFinder: public HeapRegionClosure {
  2425   HeapRegion* _res;
  2426 public:
  2427   NextNonCSElemFinder(): _res(NULL) {}
  2428   bool doHeapRegion(HeapRegion* r) {
  2429     if (!r->in_collection_set()) {
  2430       _res = r;
  2431       return true;
  2432     } else {
  2433       return false;
  2436   HeapRegion* res() { return _res; }
  2437 };
  2439 class KnownGarbageClosure: public HeapRegionClosure {
  2440   CollectionSetChooser* _hrSorted;
  2442 public:
  2443   KnownGarbageClosure(CollectionSetChooser* hrSorted) :
  2444     _hrSorted(hrSorted)
  2445   {}
  2447   bool doHeapRegion(HeapRegion* r) {
  2448     // We only include humongous regions in collection
  2449     // sets when concurrent mark shows that their contained object is
  2450     // unreachable.
  2452     // Do we have any marking information for this region?
  2453     if (r->is_marked()) {
  2454       // We don't include humongous regions in collection
  2455       // sets because we collect them immediately at the end of a marking
  2456       // cycle.  We also don't include young regions because we *must*
  2457       // include them in the next collection pause.
  2458       if (!r->isHumongous() && !r->is_young()) {
  2459         _hrSorted->addMarkedHeapRegion(r);
  2462     return false;
  2464 };
  2466 class ParKnownGarbageHRClosure: public HeapRegionClosure {
  2467   CollectionSetChooser* _hrSorted;
  2468   jint _marked_regions_added;
  2469   jint _chunk_size;
  2470   jint _cur_chunk_idx;
  2471   jint _cur_chunk_end; // Cur chunk [_cur_chunk_idx, _cur_chunk_end)
  2472   int _worker;
  2473   int _invokes;
  2475   void get_new_chunk() {
  2476     _cur_chunk_idx = _hrSorted->getParMarkedHeapRegionChunk(_chunk_size);
  2477     _cur_chunk_end = _cur_chunk_idx + _chunk_size;
  2479   void add_region(HeapRegion* r) {
  2480     if (_cur_chunk_idx == _cur_chunk_end) {
  2481       get_new_chunk();
  2483     assert(_cur_chunk_idx < _cur_chunk_end, "postcondition");
  2484     _hrSorted->setMarkedHeapRegion(_cur_chunk_idx, r);
  2485     _marked_regions_added++;
  2486     _cur_chunk_idx++;
  2489 public:
  2490   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
  2491                            jint chunk_size,
  2492                            int worker) :
  2493     _hrSorted(hrSorted), _chunk_size(chunk_size), _worker(worker),
  2494     _marked_regions_added(0), _cur_chunk_idx(0), _cur_chunk_end(0),
  2495     _invokes(0)
  2496   {}
  2498   bool doHeapRegion(HeapRegion* r) {
  2499     // We only include humongous regions in collection
  2500     // sets when concurrent mark shows that their contained object is
  2501     // unreachable.
  2502     _invokes++;
  2504     // Do we have any marking information for this region?
  2505     if (r->is_marked()) {
  2506       // We don't include humongous regions in collection
  2507       // sets because we collect them immediately at the end of a marking
  2508       // cycle.
  2509       // We also do not include young regions in collection sets
  2510       if (!r->isHumongous() && !r->is_young()) {
  2511         add_region(r);
  2514     return false;
  2516   jint marked_regions_added() { return _marked_regions_added; }
  2517   int invokes() { return _invokes; }
  2518 };
  2520 class ParKnownGarbageTask: public AbstractGangTask {
  2521   CollectionSetChooser* _hrSorted;
  2522   jint _chunk_size;
  2523   G1CollectedHeap* _g1;
  2524 public:
  2525   ParKnownGarbageTask(CollectionSetChooser* hrSorted, jint chunk_size) :
  2526     AbstractGangTask("ParKnownGarbageTask"),
  2527     _hrSorted(hrSorted), _chunk_size(chunk_size),
  2528     _g1(G1CollectedHeap::heap())
  2529   {}
  2531   void work(int i) {
  2532     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
  2533     // Back to zero for the claim value.
  2534     _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
  2535                                          HeapRegion::InitialClaimValue);
  2536     jint regions_added = parKnownGarbageCl.marked_regions_added();
  2537     _hrSorted->incNumMarkedHeapRegions(regions_added);
  2538     if (G1PrintParCleanupStats) {
  2539       gclog_or_tty->print("     Thread %d called %d times, added %d regions to list.\n",
  2540                  i, parKnownGarbageCl.invokes(), regions_added);
  2543 };
  2545 void
  2546 G1CollectorPolicy_BestRegionsFirst::
  2547 record_concurrent_mark_cleanup_end(size_t freed_bytes,
  2548                                    size_t max_live_bytes) {
  2549   double start;
  2550   if (G1PrintParCleanupStats) start = os::elapsedTime();
  2551   record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
  2553   _collectionSetChooser->clearMarkedHeapRegions();
  2554   double clear_marked_end;
  2555   if (G1PrintParCleanupStats) {
  2556     clear_marked_end = os::elapsedTime();
  2557     gclog_or_tty->print_cr("  clear marked regions + work1: %8.3f ms.",
  2558                   (clear_marked_end - start)*1000.0);
  2560   if (ParallelGCThreads > 0) {
  2561     const size_t OverpartitionFactor = 4;
  2562     const size_t MinWorkUnit = 8;
  2563     const size_t WorkUnit =
  2564       MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
  2565            MinWorkUnit);
  2566     _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
  2567                                                              WorkUnit);
  2568     ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
  2569                                             (int) WorkUnit);
  2570     _g1->workers()->run_task(&parKnownGarbageTask);
  2572     assert(_g1->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  2573            "sanity check");
  2574   } else {
  2575     KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
  2576     _g1->heap_region_iterate(&knownGarbagecl);
  2578   double known_garbage_end;
  2579   if (G1PrintParCleanupStats) {
  2580     known_garbage_end = os::elapsedTime();
  2581     gclog_or_tty->print_cr("  compute known garbage: %8.3f ms.",
  2582                   (known_garbage_end - clear_marked_end)*1000.0);
  2584   _collectionSetChooser->sortMarkedHeapRegions();
  2585   double sort_end;
  2586   if (G1PrintParCleanupStats) {
  2587     sort_end = os::elapsedTime();
  2588     gclog_or_tty->print_cr("  sorting: %8.3f ms.",
  2589                   (sort_end - known_garbage_end)*1000.0);
  2592   record_concurrent_mark_cleanup_end_work2();
  2593   double work2_end;
  2594   if (G1PrintParCleanupStats) {
  2595     work2_end = os::elapsedTime();
  2596     gclog_or_tty->print_cr("  work2: %8.3f ms.",
  2597                   (work2_end - sort_end)*1000.0);
  2601 // Add the heap region at the head of the non-incremental collection set
  2602 void G1CollectorPolicy::
  2603 add_to_collection_set(HeapRegion* hr) {
  2604   assert(_inc_cset_build_state == Active, "Precondition");
  2605   assert(!hr->is_young(), "non-incremental add of young region");
  2607   if (G1PrintHeapRegions) {
  2608     gclog_or_tty->print_cr("added region to cset "
  2609                            "%d:["PTR_FORMAT", "PTR_FORMAT"], "
  2610                            "top "PTR_FORMAT", %s",
  2611                            hr->hrs_index(), hr->bottom(), hr->end(),
  2612                            hr->top(), hr->is_young() ? "YOUNG" : "NOT_YOUNG");
  2615   if (_g1->mark_in_progress())
  2616     _g1->concurrent_mark()->registerCSetRegion(hr);
  2618   assert(!hr->in_collection_set(), "should not already be in the CSet");
  2619   hr->set_in_collection_set(true);
  2620   hr->set_next_in_collection_set(_collection_set);
  2621   _collection_set = hr;
  2622   _collection_set_size++;
  2623   _collection_set_bytes_used_before += hr->used();
  2624   _g1->register_region_with_in_cset_fast_test(hr);
  2627 // Initialize the per-collection-set information
  2628 void G1CollectorPolicy::start_incremental_cset_building() {
  2629   assert(_inc_cset_build_state == Inactive, "Precondition");
  2631   _inc_cset_head = NULL;
  2632   _inc_cset_tail = NULL;
  2633   _inc_cset_size = 0;
  2634   _inc_cset_bytes_used_before = 0;
  2636   if (in_young_gc_mode()) {
  2637     _inc_cset_young_index = 0;
  2640   _inc_cset_max_finger = 0;
  2641   _inc_cset_recorded_young_bytes = 0;
  2642   _inc_cset_recorded_rs_lengths = 0;
  2643   _inc_cset_predicted_elapsed_time_ms = 0;
  2644   _inc_cset_predicted_bytes_to_copy = 0;
  2645   _inc_cset_build_state = Active;
  2648 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
  2649   // This routine is used when:
  2650   // * adding survivor regions to the incremental cset at the end of an
  2651   //   evacuation pause,
  2652   // * adding the current allocation region to the incremental cset
  2653   //   when it is retired, and
  2654   // * updating existing policy information for a region in the
  2655   //   incremental cset via young list RSet sampling.
  2656   // Therefore this routine may be called at a safepoint by the
  2657   // VM thread, or in-between safepoints by mutator threads (when
  2658   // retiring the current allocation region) or a concurrent
  2659   // refine thread (RSet sampling).
  2661   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, true);
  2662   size_t used_bytes = hr->used();
  2664   _inc_cset_recorded_rs_lengths += rs_length;
  2665   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
  2667   _inc_cset_bytes_used_before += used_bytes;
  2669   // Cache the values we have added to the aggregated informtion
  2670   // in the heap region in case we have to remove this region from
  2671   // the incremental collection set, or it is updated by the
  2672   // rset sampling code
  2673   hr->set_recorded_rs_length(rs_length);
  2674   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
  2676 #if PREDICTIONS_VERBOSE
  2677   size_t bytes_to_copy = predict_bytes_to_copy(hr);
  2678   _inc_cset_predicted_bytes_to_copy += bytes_to_copy;
  2680   // Record the number of bytes used in this region
  2681   _inc_cset_recorded_young_bytes += used_bytes;
  2683   // Cache the values we have added to the aggregated informtion
  2684   // in the heap region in case we have to remove this region from
  2685   // the incremental collection set, or it is updated by the
  2686   // rset sampling code
  2687   hr->set_predicted_bytes_to_copy(bytes_to_copy);
  2688 #endif // PREDICTIONS_VERBOSE
  2691 void G1CollectorPolicy::remove_from_incremental_cset_info(HeapRegion* hr) {
  2692   // This routine is currently only called as part of the updating of
  2693   // existing policy information for regions in the incremental cset that
  2694   // is performed by the concurrent refine thread(s) as part of young list
  2695   // RSet sampling. Therefore we should not be at a safepoint.
  2697   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
  2698   assert(hr->is_young(), "it should be");
  2700   size_t used_bytes = hr->used();
  2701   size_t old_rs_length = hr->recorded_rs_length();
  2702   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
  2704   // Subtract the old recorded/predicted policy information for
  2705   // the given heap region from the collection set info.
  2706   _inc_cset_recorded_rs_lengths -= old_rs_length;
  2707   _inc_cset_predicted_elapsed_time_ms -= old_elapsed_time_ms;
  2709   _inc_cset_bytes_used_before -= used_bytes;
  2711   // Clear the values cached in the heap region
  2712   hr->set_recorded_rs_length(0);
  2713   hr->set_predicted_elapsed_time_ms(0);
  2715 #if PREDICTIONS_VERBOSE
  2716   size_t old_predicted_bytes_to_copy = hr->predicted_bytes_to_copy();
  2717   _inc_cset_predicted_bytes_to_copy -= old_predicted_bytes_to_copy;
  2719   // Subtract the number of bytes used in this region
  2720   _inc_cset_recorded_young_bytes -= used_bytes;
  2722   // Clear the values cached in the heap region
  2723   hr->set_predicted_bytes_to_copy(0);
  2724 #endif // PREDICTIONS_VERBOSE
  2727 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length) {
  2728   // Update the collection set information that is dependent on the new RS length
  2729   assert(hr->is_young(), "Precondition");
  2731   remove_from_incremental_cset_info(hr);
  2732   add_to_incremental_cset_info(hr, new_rs_length);
  2735 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
  2736   assert( hr->is_young(), "invariant");
  2737   assert( hr->young_index_in_cset() == -1, "invariant" );
  2738   assert(_inc_cset_build_state == Active, "Precondition");
  2740   // We need to clear and set the cached recorded/cached collection set
  2741   // information in the heap region here (before the region gets added
  2742   // to the collection set). An individual heap region's cached values
  2743   // are calculated, aggregated with the policy collection set info,
  2744   // and cached in the heap region here (initially) and (subsequently)
  2745   // by the Young List sampling code.
  2747   size_t rs_length = hr->rem_set()->occupied();
  2748   add_to_incremental_cset_info(hr, rs_length);
  2750   HeapWord* hr_end = hr->end();
  2751   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
  2753   assert(!hr->in_collection_set(), "invariant");
  2754   hr->set_in_collection_set(true);
  2755   assert( hr->next_in_collection_set() == NULL, "invariant");
  2757   _inc_cset_size++;
  2758   _g1->register_region_with_in_cset_fast_test(hr);
  2760   hr->set_young_index_in_cset((int) _inc_cset_young_index);
  2761   ++_inc_cset_young_index;
  2764 // Add the region at the RHS of the incremental cset
  2765 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
  2766   // We should only ever be appending survivors at the end of a pause
  2767   assert( hr->is_survivor(), "Logic");
  2769   // Do the 'common' stuff
  2770   add_region_to_incremental_cset_common(hr);
  2772   // Now add the region at the right hand side
  2773   if (_inc_cset_tail == NULL) {
  2774     assert(_inc_cset_head == NULL, "invariant");
  2775     _inc_cset_head = hr;
  2776   } else {
  2777     _inc_cset_tail->set_next_in_collection_set(hr);
  2779   _inc_cset_tail = hr;
  2781   if (G1PrintHeapRegions) {
  2782     gclog_or_tty->print_cr(" added region to incremental cset (RHS) "
  2783                   "%d:["PTR_FORMAT", "PTR_FORMAT"], "
  2784                   "top "PTR_FORMAT", young %s",
  2785                   hr->hrs_index(), hr->bottom(), hr->end(),
  2786                   hr->top(), (hr->is_young()) ? "YES" : "NO");
  2790 // Add the region to the LHS of the incremental cset
  2791 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
  2792   // Survivors should be added to the RHS at the end of a pause
  2793   assert(!hr->is_survivor(), "Logic");
  2795   // Do the 'common' stuff
  2796   add_region_to_incremental_cset_common(hr);
  2798   // Add the region at the left hand side
  2799   hr->set_next_in_collection_set(_inc_cset_head);
  2800   if (_inc_cset_head == NULL) {
  2801     assert(_inc_cset_tail == NULL, "Invariant");
  2802     _inc_cset_tail = hr;
  2804   _inc_cset_head = hr;
  2806   if (G1PrintHeapRegions) {
  2807     gclog_or_tty->print_cr(" added region to incremental cset (LHS) "
  2808                   "%d:["PTR_FORMAT", "PTR_FORMAT"], "
  2809                   "top "PTR_FORMAT", young %s",
  2810                   hr->hrs_index(), hr->bottom(), hr->end(),
  2811                   hr->top(), (hr->is_young()) ? "YES" : "NO");
  2815 #ifndef PRODUCT
  2816 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
  2817   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
  2819   st->print_cr("\nCollection_set:");
  2820   HeapRegion* csr = list_head;
  2821   while (csr != NULL) {
  2822     HeapRegion* next = csr->next_in_collection_set();
  2823     assert(csr->in_collection_set(), "bad CS");
  2824     st->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
  2825                  "age: %4d, y: %d, surv: %d",
  2826                         csr->bottom(), csr->end(),
  2827                         csr->top(),
  2828                         csr->prev_top_at_mark_start(),
  2829                         csr->next_top_at_mark_start(),
  2830                         csr->top_at_conc_mark_count(),
  2831                         csr->age_in_surv_rate_group_cond(),
  2832                         csr->is_young(),
  2833                         csr->is_survivor());
  2834     csr = next;
  2837 #endif // !PRODUCT
  2839 void
  2840 G1CollectorPolicy_BestRegionsFirst::choose_collection_set(
  2841                                                   double target_pause_time_ms) {
  2842   // Set this here - in case we're not doing young collections.
  2843   double non_young_start_time_sec = os::elapsedTime();
  2845   start_recording_regions();
  2847   guarantee(target_pause_time_ms > 0.0,
  2848             err_msg("target_pause_time_ms = %1.6lf should be positive",
  2849                     target_pause_time_ms));
  2850   guarantee(_collection_set == NULL, "Precondition");
  2852   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
  2853   double predicted_pause_time_ms = base_time_ms;
  2855   double time_remaining_ms = target_pause_time_ms - base_time_ms;
  2857   // the 10% and 50% values are arbitrary...
  2858   if (time_remaining_ms < 0.10 * target_pause_time_ms) {
  2859     time_remaining_ms = 0.50 * target_pause_time_ms;
  2860     _within_target = false;
  2861   } else {
  2862     _within_target = true;
  2865   // We figure out the number of bytes available for future to-space.
  2866   // For new regions without marking information, we must assume the
  2867   // worst-case of complete survival.  If we have marking information for a
  2868   // region, we can bound the amount of live data.  We can add a number of
  2869   // such regions, as long as the sum of the live data bounds does not
  2870   // exceed the available evacuation space.
  2871   size_t max_live_bytes = _g1->free_regions() * HeapRegion::GrainBytes;
  2873   size_t expansion_bytes =
  2874     _g1->expansion_regions() * HeapRegion::GrainBytes;
  2876   _collection_set_bytes_used_before = 0;
  2877   _collection_set_size = 0;
  2879   // Adjust for expansion and slop.
  2880   max_live_bytes = max_live_bytes + expansion_bytes;
  2882   assert(_g1->regions_accounted_for(), "Region leakage!");
  2884   HeapRegion* hr;
  2885   if (in_young_gc_mode()) {
  2886     double young_start_time_sec = os::elapsedTime();
  2888     if (G1PolicyVerbose > 0) {
  2889       gclog_or_tty->print_cr("Adding %d young regions to the CSet",
  2890                     _g1->young_list()->length());
  2893     _young_cset_length  = 0;
  2894     _last_young_gc_full = full_young_gcs() ? true : false;
  2896     if (_last_young_gc_full)
  2897       ++_full_young_pause_num;
  2898     else
  2899       ++_partial_young_pause_num;
  2901     // The young list is laid with the survivor regions from the previous
  2902     // pause are appended to the RHS of the young list, i.e.
  2903     //   [Newly Young Regions ++ Survivors from last pause].
  2905     hr = _g1->young_list()->first_survivor_region();
  2906     while (hr != NULL) {
  2907       assert(hr->is_survivor(), "badly formed young list");
  2908       hr->set_young();
  2909       hr = hr->get_next_young_region();
  2912     // Clear the fields that point to the survivor list - they are
  2913     // all young now.
  2914     _g1->young_list()->clear_survivors();
  2916     if (_g1->mark_in_progress())
  2917       _g1->concurrent_mark()->register_collection_set_finger(_inc_cset_max_finger);
  2919     _young_cset_length = _inc_cset_young_index;
  2920     _collection_set = _inc_cset_head;
  2921     _collection_set_size = _inc_cset_size;
  2922     _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
  2924     // For young regions in the collection set, we assume the worst
  2925     // case of complete survival
  2926     max_live_bytes -= _inc_cset_size * HeapRegion::GrainBytes;
  2928     time_remaining_ms -= _inc_cset_predicted_elapsed_time_ms;
  2929     predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
  2931     // The number of recorded young regions is the incremental
  2932     // collection set's current size
  2933     set_recorded_young_regions(_inc_cset_size);
  2934     set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
  2935     set_recorded_young_bytes(_inc_cset_recorded_young_bytes);
  2936 #if PREDICTIONS_VERBOSE
  2937     set_predicted_bytes_to_copy(_inc_cset_predicted_bytes_to_copy);
  2938 #endif // PREDICTIONS_VERBOSE
  2940     if (G1PolicyVerbose > 0) {
  2941       gclog_or_tty->print_cr("  Added " PTR_FORMAT " Young Regions to CS.",
  2942                              _inc_cset_size);
  2943       gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
  2944                             max_live_bytes/K);
  2947     assert(_inc_cset_size == _g1->young_list()->length(), "Invariant");
  2949     double young_end_time_sec = os::elapsedTime();
  2950     _recorded_young_cset_choice_time_ms =
  2951       (young_end_time_sec - young_start_time_sec) * 1000.0;
  2953     // We are doing young collections so reset this.
  2954     non_young_start_time_sec = young_end_time_sec;
  2956     // Note we can use either _collection_set_size or
  2957     // _young_cset_length here
  2958     if (_collection_set_size > 0 && _last_young_gc_full) {
  2959       // don't bother adding more regions...
  2960       goto choose_collection_set_end;
  2964   if (!in_young_gc_mode() || !full_young_gcs()) {
  2965     bool should_continue = true;
  2966     NumberSeq seq;
  2967     double avg_prediction = 100000000000000000.0; // something very large
  2969     do {
  2970       hr = _collectionSetChooser->getNextMarkedRegion(time_remaining_ms,
  2971                                                       avg_prediction);
  2972       if (hr != NULL) {
  2973         double predicted_time_ms = predict_region_elapsed_time_ms(hr, false);
  2974         time_remaining_ms -= predicted_time_ms;
  2975         predicted_pause_time_ms += predicted_time_ms;
  2976         add_to_collection_set(hr);
  2977         record_non_young_cset_region(hr);
  2978         max_live_bytes -= MIN2(hr->max_live_bytes(), max_live_bytes);
  2979         if (G1PolicyVerbose > 0) {
  2980           gclog_or_tty->print_cr("    (" SIZE_FORMAT " KB left in heap.)",
  2981                         max_live_bytes/K);
  2983         seq.add(predicted_time_ms);
  2984         avg_prediction = seq.avg() + seq.sd();
  2986       should_continue =
  2987         ( hr != NULL) &&
  2988         ( (adaptive_young_list_length()) ? time_remaining_ms > 0.0
  2989           : _collection_set_size < _young_list_fixed_length );
  2990     } while (should_continue);
  2992     if (!adaptive_young_list_length() &&
  2993         _collection_set_size < _young_list_fixed_length)
  2994       _should_revert_to_full_young_gcs  = true;
  2997 choose_collection_set_end:
  2998   stop_incremental_cset_building();
  3000   count_CS_bytes_used();
  3002   end_recording_regions();
  3004   double non_young_end_time_sec = os::elapsedTime();
  3005   _recorded_non_young_cset_choice_time_ms =
  3006     (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
  3009 void G1CollectorPolicy_BestRegionsFirst::record_full_collection_end() {
  3010   G1CollectorPolicy::record_full_collection_end();
  3011   _collectionSetChooser->updateAfterFullCollection();
  3014 void G1CollectorPolicy_BestRegionsFirst::
  3015 expand_if_possible(size_t numRegions) {
  3016   size_t expansion_bytes = numRegions * HeapRegion::GrainBytes;
  3017   _g1->expand(expansion_bytes);
  3020 void G1CollectorPolicy_BestRegionsFirst::
  3021 record_collection_pause_end() {
  3022   G1CollectorPolicy::record_collection_pause_end();
  3023   assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");

mercurial