src/share/vm/memory/generation.hpp

Tue, 13 Apr 2010 13:52:10 -0700

author
jmasa
date
Tue, 13 Apr 2010 13:52:10 -0700
changeset 1822
0bfd3fb24150
parent 1580
e018e6884bd8
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6858496: Clear all SoftReferences before an out-of-memory due to GC overhead limit.
Summary: Ensure a full GC that clears SoftReferences before throwing an out-of-memory
Reviewed-by: ysr, jcoomes

     1 /*
     2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 // A Generation models a heap area for similarly-aged objects.
    26 // It will contain one ore more spaces holding the actual objects.
    27 //
    28 // The Generation class hierarchy:
    29 //
    30 // Generation                      - abstract base class
    31 // - DefNewGeneration              - allocation area (copy collected)
    32 //   - ParNewGeneration            - a DefNewGeneration that is collected by
    33 //                                   several threads
    34 // - CardGeneration                 - abstract class adding offset array behavior
    35 //   - OneContigSpaceCardGeneration - abstract class holding a single
    36 //                                    contiguous space with card marking
    37 //     - TenuredGeneration         - tenured (old object) space (markSweepCompact)
    38 //     - CompactingPermGenGen      - reflective object area (klasses, methods, symbols, ...)
    39 //   - ConcurrentMarkSweepGeneration - Mostly Concurrent Mark Sweep Generation
    40 //                                       (Detlefs-Printezis refinement of
    41 //                                       Boehm-Demers-Schenker)
    42 //
    43 // The system configurations currently allowed are:
    44 //
    45 //   DefNewGeneration + TenuredGeneration + PermGeneration
    46 //   DefNewGeneration + ConcurrentMarkSweepGeneration + ConcurrentMarkSweepPermGen
    47 //
    48 //   ParNewGeneration + TenuredGeneration + PermGeneration
    49 //   ParNewGeneration + ConcurrentMarkSweepGeneration + ConcurrentMarkSweepPermGen
    50 //
    52 class DefNewGeneration;
    53 class GenerationSpec;
    54 class CompactibleSpace;
    55 class ContiguousSpace;
    56 class CompactPoint;
    57 class OopsInGenClosure;
    58 class OopClosure;
    59 class ScanClosure;
    60 class FastScanClosure;
    61 class GenCollectedHeap;
    62 class GenRemSet;
    63 class GCStats;
    65 // A "ScratchBlock" represents a block of memory in one generation usable by
    66 // another.  It represents "num_words" free words, starting at and including
    67 // the address of "this".
    68 struct ScratchBlock {
    69   ScratchBlock* next;
    70   size_t num_words;
    71   HeapWord scratch_space[1];  // Actually, of size "num_words-2" (assuming
    72                               // first two fields are word-sized.)
    73 };
    76 class Generation: public CHeapObj {
    77   friend class VMStructs;
    78  private:
    79   jlong _time_of_last_gc; // time when last gc on this generation happened (ms)
    80   MemRegion _prev_used_region; // for collectors that want to "remember" a value for
    81                                // used region at some specific point during collection.
    83  protected:
    84   // Minimum and maximum addresses for memory reserved (not necessarily
    85   // committed) for generation.
    86   // Used by card marking code. Must not overlap with address ranges of
    87   // other generations.
    88   MemRegion _reserved;
    90   // Memory area reserved for generation
    91   VirtualSpace _virtual_space;
    93   // Level in the generation hierarchy.
    94   int _level;
    96   // ("Weak") Reference processing support
    97   ReferenceProcessor* _ref_processor;
    99   // Performance Counters
   100   CollectorCounters* _gc_counters;
   102   // Statistics for garbage collection
   103   GCStats* _gc_stats;
   105   // Returns the next generation in the configuration, or else NULL if this
   106   // is the highest generation.
   107   Generation* next_gen() const;
   109   // Initialize the generation.
   110   Generation(ReservedSpace rs, size_t initial_byte_size, int level);
   112   // Apply "cl->do_oop" to (the address of) (exactly) all the ref fields in
   113   // "sp" that point into younger generations.
   114   // The iteration is only over objects allocated at the start of the
   115   // iterations; objects allocated as a result of applying the closure are
   116   // not included.
   117   void younger_refs_in_space_iterate(Space* sp, OopsInGenClosure* cl);
   119  public:
   120   // The set of possible generation kinds.
   121   enum Name {
   122     ASParNew,
   123     ASConcurrentMarkSweep,
   124     DefNew,
   125     ParNew,
   126     MarkSweepCompact,
   127     ConcurrentMarkSweep,
   128     Other
   129   };
   131   enum SomePublicConstants {
   132     // Generations are GenGrain-aligned and have size that are multiples of
   133     // GenGrain.
   134     LogOfGenGrain = 16,
   135     GenGrain = 1 << LogOfGenGrain
   136   };
   138   // allocate and initialize ("weak") refs processing support
   139   virtual void ref_processor_init();
   140   void set_ref_processor(ReferenceProcessor* rp) {
   141     assert(_ref_processor == NULL, "clobbering existing _ref_processor");
   142     _ref_processor = rp;
   143   }
   145   virtual Generation::Name kind() { return Generation::Other; }
   146   GenerationSpec* spec();
   148   // This properly belongs in the collector, but for now this
   149   // will do.
   150   virtual bool refs_discovery_is_atomic() const { return true;  }
   151   virtual bool refs_discovery_is_mt()     const { return false; }
   153   // Space enquiries (results in bytes)
   154   virtual size_t capacity() const = 0;  // The maximum number of object bytes the
   155                                         // generation can currently hold.
   156   virtual size_t used() const = 0;      // The number of used bytes in the gen.
   157   virtual size_t free() const = 0;      // The number of free bytes in the gen.
   159   // Support for java.lang.Runtime.maxMemory(); see CollectedHeap.
   160   // Returns the total number of bytes  available in a generation
   161   // for the allocation of objects.
   162   virtual size_t max_capacity() const;
   164   // If this is a young generation, the maximum number of bytes that can be
   165   // allocated in this generation before a GC is triggered.
   166   virtual size_t capacity_before_gc() const { return 0; }
   168   // The largest number of contiguous free bytes in the generation,
   169   // including expansion  (Assumes called at a safepoint.)
   170   virtual size_t contiguous_available() const = 0;
   171   // The largest number of contiguous free bytes in this or any higher generation.
   172   virtual size_t max_contiguous_available() const;
   174   // Returns true if promotions of the specified amount can
   175   // be attempted safely (without a vm failure).
   176   // Promotion of the full amount is not guaranteed but
   177   // can be attempted.
   178   //   younger_handles_promotion_failure
   179   // is true if the younger generation handles a promotion
   180   // failure.
   181   virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes,
   182     bool younger_handles_promotion_failure) const;
   184   // For a non-young generation, this interface can be used to inform a
   185   // generation that a promotion attempt into that generation failed.
   186   // Typically used to enable diagnostic output for post-mortem analysis,
   187   // but other uses of the interface are not ruled out.
   188   virtual void promotion_failure_occurred() { /* does nothing */ }
   190   // Return an estimate of the maximum allocation that could be performed
   191   // in the generation without triggering any collection or expansion
   192   // activity.  It is "unsafe" because no locks are taken; the result
   193   // should be treated as an approximation, not a guarantee, for use in
   194   // heuristic resizing decisions.
   195   virtual size_t unsafe_max_alloc_nogc() const = 0;
   197   // Returns true if this generation cannot be expanded further
   198   // without a GC. Override as appropriate.
   199   virtual bool is_maximal_no_gc() const {
   200     return _virtual_space.uncommitted_size() == 0;
   201   }
   203   MemRegion reserved() const { return _reserved; }
   205   // Returns a region guaranteed to contain all the objects in the
   206   // generation.
   207   virtual MemRegion used_region() const { return _reserved; }
   209   MemRegion prev_used_region() const { return _prev_used_region; }
   210   virtual void  save_used_region()   { _prev_used_region = used_region(); }
   212   // Returns "TRUE" iff "p" points into an allocated object in the generation.
   213   // For some kinds of generations, this may be an expensive operation.
   214   // To avoid performance problems stemming from its inadvertent use in
   215   // product jvm's, we restrict its use to assertion checking or
   216   // verification only.
   217   virtual bool is_in(const void* p) const;
   219   /* Returns "TRUE" iff "p" points into the reserved area of the generation. */
   220   bool is_in_reserved(const void* p) const {
   221     return _reserved.contains(p);
   222   }
   224   // Check that the generation kind is DefNewGeneration or a sub
   225   // class of DefNewGeneration and return a DefNewGeneration*
   226   DefNewGeneration*  as_DefNewGeneration();
   228   // If some space in the generation contains the given "addr", return a
   229   // pointer to that space, else return "NULL".
   230   virtual Space* space_containing(const void* addr) const;
   232   // Iteration - do not use for time critical operations
   233   virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0;
   235   // Returns the first space, if any, in the generation that can participate
   236   // in compaction, or else "NULL".
   237   virtual CompactibleSpace* first_compaction_space() const = 0;
   239   // Returns "true" iff this generation should be used to allocate an
   240   // object of the given size.  Young generations might
   241   // wish to exclude very large objects, for example, since, if allocated
   242   // often, they would greatly increase the frequency of young-gen
   243   // collection.
   244   virtual bool should_allocate(size_t word_size, bool is_tlab) {
   245     bool result = false;
   246     size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize);
   247     if (!is_tlab || supports_tlab_allocation()) {
   248       result = (word_size > 0) && (word_size < overflow_limit);
   249     }
   250     return result;
   251   }
   253   // Allocate and returns a block of the requested size, or returns "NULL".
   254   // Assumes the caller has done any necessary locking.
   255   virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0;
   257   // Like "allocate", but performs any necessary locking internally.
   258   virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;
   260   // A 'younger' gen has reached an allocation limit, and uses this to notify
   261   // the next older gen.  The return value is a new limit, or NULL if none.  The
   262   // caller must do the necessary locking.
   263   virtual HeapWord* allocation_limit_reached(Space* space, HeapWord* top,
   264                                              size_t word_size) {
   265     return NULL;
   266   }
   268   // Some generation may offer a region for shared, contiguous allocation,
   269   // via inlined code (by exporting the address of the top and end fields
   270   // defining the extent of the contiguous allocation region.)
   272   // This function returns "true" iff the heap supports this kind of
   273   // allocation.  (More precisely, this means the style of allocation that
   274   // increments *top_addr()" with a CAS.) (Default is "no".)
   275   // A generation that supports this allocation style must use lock-free
   276   // allocation for *all* allocation, since there are times when lock free
   277   // allocation will be concurrent with plain "allocate" calls.
   278   virtual bool supports_inline_contig_alloc() const { return false; }
   280   // These functions return the addresses of the fields that define the
   281   // boundaries of the contiguous allocation area.  (These fields should be
   282   // physicall near to one another.)
   283   virtual HeapWord** top_addr() const { return NULL; }
   284   virtual HeapWord** end_addr() const { return NULL; }
   286   // Thread-local allocation buffers
   287   virtual bool supports_tlab_allocation() const { return false; }
   288   virtual size_t tlab_capacity() const {
   289     guarantee(false, "Generation doesn't support thread local allocation buffers");
   290     return 0;
   291   }
   292   virtual size_t unsafe_max_tlab_alloc() const {
   293     guarantee(false, "Generation doesn't support thread local allocation buffers");
   294     return 0;
   295   }
   297   // "obj" is the address of an object in a younger generation.  Allocate space
   298   // for "obj" in the current (or some higher) generation, and copy "obj" into
   299   // the newly allocated space, if possible, returning the result (or NULL if
   300   // the allocation failed).
   301   //
   302   // The "obj_size" argument is just obj->size(), passed along so the caller can
   303   // avoid repeating the virtual call to retrieve it.
   304   virtual oop promote(oop obj, size_t obj_size);
   306   // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote
   307   // object "obj", whose original mark word was "m", and whose size is
   308   // "word_sz".  If possible, allocate space for "obj", copy obj into it
   309   // (taking care to copy "m" into the mark word when done, since the mark
   310   // word of "obj" may have been overwritten with a forwarding pointer, and
   311   // also taking care to copy the klass pointer *last*.  Returns the new
   312   // object if successful, or else NULL.
   313   virtual oop par_promote(int thread_num,
   314                           oop obj, markOop m, size_t word_sz);
   316   // Undo, if possible, the most recent par_promote_alloc allocation by
   317   // "thread_num" ("obj", of "word_sz").
   318   virtual void par_promote_alloc_undo(int thread_num,
   319                                       HeapWord* obj, size_t word_sz);
   321   // Informs the current generation that all par_promote_alloc's in the
   322   // collection have been completed; any supporting data structures can be
   323   // reset.  Default is to do nothing.
   324   virtual void par_promote_alloc_done(int thread_num) {}
   326   // Informs the current generation that all oop_since_save_marks_iterates
   327   // performed by "thread_num" in the current collection, if any, have been
   328   // completed; any supporting data structures can be reset.  Default is to
   329   // do nothing.
   330   virtual void par_oop_since_save_marks_iterate_done(int thread_num) {}
   332   // This generation will collect all younger generations
   333   // during a full collection.
   334   virtual bool full_collects_younger_generations() const { return false; }
   336   // This generation does in-place marking, meaning that mark words
   337   // are mutated during the marking phase and presumably reinitialized
   338   // to a canonical value after the GC. This is currently used by the
   339   // biased locking implementation to determine whether additional
   340   // work is required during the GC prologue and epilogue.
   341   virtual bool performs_in_place_marking() const { return true; }
   343   // Returns "true" iff collect() should subsequently be called on this
   344   // this generation. See comment below.
   345   // This is a generic implementation which can be overridden.
   346   //
   347   // Note: in the current (1.4) implementation, when genCollectedHeap's
   348   // incremental_collection_will_fail flag is set, all allocations are
   349   // slow path (the only fast-path place to allocate is DefNew, which
   350   // will be full if the flag is set).
   351   // Thus, older generations which collect younger generations should
   352   // test this flag and collect if it is set.
   353   virtual bool should_collect(bool   full,
   354                               size_t word_size,
   355                               bool   is_tlab) {
   356     return (full || should_allocate(word_size, is_tlab));
   357   }
   359   // Perform a garbage collection.
   360   // If full is true attempt a full garbage collection of this generation.
   361   // Otherwise, attempting to (at least) free enough space to support an
   362   // allocation of the given "word_size".
   363   virtual void collect(bool   full,
   364                        bool   clear_all_soft_refs,
   365                        size_t word_size,
   366                        bool   is_tlab) = 0;
   368   // Perform a heap collection, attempting to create (at least) enough
   369   // space to support an allocation of the given "word_size".  If
   370   // successful, perform the allocation and return the resulting
   371   // "oop" (initializing the allocated block). If the allocation is
   372   // still unsuccessful, return "NULL".
   373   virtual HeapWord* expand_and_allocate(size_t word_size,
   374                                         bool is_tlab,
   375                                         bool parallel = false) = 0;
   377   // Some generations may require some cleanup or preparation actions before
   378   // allowing a collection.  The default is to do nothing.
   379   virtual void gc_prologue(bool full) {};
   381   // Some generations may require some cleanup actions after a collection.
   382   // The default is to do nothing.
   383   virtual void gc_epilogue(bool full) {};
   385   // Save the high water marks for the used space in a generation.
   386   virtual void record_spaces_top() {};
   388   // Some generations may need to be "fixed-up" after some allocation
   389   // activity to make them parsable again. The default is to do nothing.
   390   virtual void ensure_parsability() {};
   392   // Time (in ms) when we were last collected or now if a collection is
   393   // in progress.
   394   virtual jlong time_of_last_gc(jlong now) {
   395     // XXX See note in genCollectedHeap::millis_since_last_gc()
   396     NOT_PRODUCT(
   397       if (now < _time_of_last_gc) {
   398         warning("time warp: %d to %d", _time_of_last_gc, now);
   399       }
   400     )
   401     return _time_of_last_gc;
   402   }
   404   virtual void update_time_of_last_gc(jlong now)  {
   405     _time_of_last_gc = now;
   406   }
   408   // Generations may keep statistics about collection.  This
   409   // method updates those statistics.  current_level is
   410   // the level of the collection that has most recently
   411   // occurred.  This allows the generation to decide what
   412   // statistics are valid to collect.  For example, the
   413   // generation can decide to gather the amount of promoted data
   414   // if the collection of the younger generations has completed.
   415   GCStats* gc_stats() const { return _gc_stats; }
   416   virtual void update_gc_stats(int current_level, bool full) {}
   418   // Mark sweep support phase2
   419   virtual void prepare_for_compaction(CompactPoint* cp);
   420   // Mark sweep support phase3
   421   virtual void pre_adjust_pointers() {ShouldNotReachHere();}
   422   virtual void adjust_pointers();
   423   // Mark sweep support phase4
   424   virtual void compact();
   425   virtual void post_compact() {ShouldNotReachHere();}
   427   // Support for CMS's rescan. In this general form we return a pointer
   428   // to an abstract object that can be used, based on specific previously
   429   // decided protocols, to exchange information between generations,
   430   // information that may be useful for speeding up certain types of
   431   // garbage collectors. A NULL value indicates to the client that
   432   // no data recording is expected by the provider. The data-recorder is
   433   // expected to be GC worker thread-local, with the worker index
   434   // indicated by "thr_num".
   435   virtual void* get_data_recorder(int thr_num) { return NULL; }
   437   // Some generations may require some cleanup actions before allowing
   438   // a verification.
   439   virtual void prepare_for_verify() {};
   441   // Accessing "marks".
   443   // This function gives a generation a chance to note a point between
   444   // collections.  For example, a contiguous generation might note the
   445   // beginning allocation point post-collection, which might allow some later
   446   // operations to be optimized.
   447   virtual void save_marks() {}
   449   // This function allows generations to initialize any "saved marks".  That
   450   // is, should only be called when the generation is empty.
   451   virtual void reset_saved_marks() {}
   453   // This function is "true" iff any no allocations have occurred in the
   454   // generation since the last call to "save_marks".
   455   virtual bool no_allocs_since_save_marks() = 0;
   457   // Apply "cl->apply" to (the addresses of) all reference fields in objects
   458   // allocated in the current generation since the last call to "save_marks".
   459   // If more objects are allocated in this generation as a result of applying
   460   // the closure, iterates over reference fields in those objects as well.
   461   // Calls "save_marks" at the end of the iteration.
   462   // General signature...
   463   virtual void oop_since_save_marks_iterate_v(OopsInGenClosure* cl) = 0;
   464   // ...and specializations for de-virtualization.  (The general
   465   // implemention of the _nv versions call the virtual version.
   466   // Note that the _nv suffix is not really semantically necessary,
   467   // but it avoids some not-so-useful warnings on Solaris.)
   468 #define Generation_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)             \
   469   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {    \
   470     oop_since_save_marks_iterate_v((OopsInGenClosure*)cl);                      \
   471   }
   472   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(Generation_SINCE_SAVE_MARKS_DECL)
   474 #undef Generation_SINCE_SAVE_MARKS_DECL
   476   // The "requestor" generation is performing some garbage collection
   477   // action for which it would be useful to have scratch space.  If
   478   // the target is not the requestor, no gc actions will be required
   479   // of the target.  The requestor promises to allocate no more than
   480   // "max_alloc_words" in the target generation (via promotion say,
   481   // if the requestor is a young generation and the target is older).
   482   // If the target generation can provide any scratch space, it adds
   483   // it to "list", leaving "list" pointing to the head of the
   484   // augmented list.  The default is to offer no space.
   485   virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor,
   486                                   size_t max_alloc_words) {}
   488   // Give each generation an opportunity to do clean up for any
   489   // contributed scratch.
   490   virtual void reset_scratch() {};
   492   // When an older generation has been collected, and perhaps resized,
   493   // this method will be invoked on all younger generations (from older to
   494   // younger), allowing them to resize themselves as appropriate.
   495   virtual void compute_new_size() = 0;
   497   // Printing
   498   virtual const char* name() const = 0;
   499   virtual const char* short_name() const = 0;
   501   int level() const { return _level; }
   503   // Attributes
   505   // True iff the given generation may only be the youngest generation.
   506   virtual bool must_be_youngest() const = 0;
   507   // True iff the given generation may only be the oldest generation.
   508   virtual bool must_be_oldest() const = 0;
   510   // Reference Processing accessor
   511   ReferenceProcessor* const ref_processor() { return _ref_processor; }
   513   // Iteration.
   515   // Iterate over all the ref-containing fields of all objects in the
   516   // generation, calling "cl.do_oop" on each.
   517   virtual void oop_iterate(OopClosure* cl);
   519   // Same as above, restricted to the intersection of a memory region and
   520   // the generation.
   521   virtual void oop_iterate(MemRegion mr, OopClosure* cl);
   523   // Iterate over all objects in the generation, calling "cl.do_object" on
   524   // each.
   525   virtual void object_iterate(ObjectClosure* cl);
   527   // Iterate over all safe objects in the generation, calling "cl.do_object" on
   528   // each.  An object is safe if its references point to other objects in
   529   // the heap.  This defaults to object_iterate() unless overridden.
   530   virtual void safe_object_iterate(ObjectClosure* cl);
   532   // Iterate over all objects allocated in the generation since the last
   533   // collection, calling "cl.do_object" on each.  The generation must have
   534   // been initialized properly to support this function, or else this call
   535   // will fail.
   536   virtual void object_iterate_since_last_GC(ObjectClosure* cl) = 0;
   538   // Apply "cl->do_oop" to (the address of) all and only all the ref fields
   539   // in the current generation that contain pointers to objects in younger
   540   // generations. Objects allocated since the last "save_marks" call are
   541   // excluded.
   542   virtual void younger_refs_iterate(OopsInGenClosure* cl) = 0;
   544   // Inform a generation that it longer contains references to objects
   545   // in any younger generation.    [e.g. Because younger gens are empty,
   546   // clear the card table.]
   547   virtual void clear_remembered_set() { }
   549   // Inform a generation that some of its objects have moved.  [e.g. The
   550   // generation's spaces were compacted, invalidating the card table.]
   551   virtual void invalidate_remembered_set() { }
   553   // Block abstraction.
   555   // Returns the address of the start of the "block" that contains the
   556   // address "addr".  We say "blocks" instead of "object" since some heaps
   557   // may not pack objects densely; a chunk may either be an object or a
   558   // non-object.
   559   virtual HeapWord* block_start(const void* addr) const;
   561   // Requires "addr" to be the start of a chunk, and returns its size.
   562   // "addr + size" is required to be the start of a new chunk, or the end
   563   // of the active area of the heap.
   564   virtual size_t block_size(const HeapWord* addr) const ;
   566   // Requires "addr" to be the start of a block, and returns "TRUE" iff
   567   // the block is an object.
   568   virtual bool block_is_obj(const HeapWord* addr) const;
   571   // PrintGC, PrintGCDetails support
   572   void print_heap_change(size_t prev_used) const;
   574   // PrintHeapAtGC support
   575   virtual void print() const;
   576   virtual void print_on(outputStream* st) const;
   578   virtual void verify(bool allow_dirty) = 0;
   580   struct StatRecord {
   581     int invocations;
   582     elapsedTimer accumulated_time;
   583     StatRecord() :
   584       invocations(0),
   585       accumulated_time(elapsedTimer()) {}
   586   };
   587 private:
   588   StatRecord _stat_record;
   589 public:
   590   StatRecord* stat_record() { return &_stat_record; }
   592   virtual void print_summary_info();
   593   virtual void print_summary_info_on(outputStream* st);
   595   // Performance Counter support
   596   virtual void update_counters() = 0;
   597   virtual CollectorCounters* counters() { return _gc_counters; }
   598 };
   600 // Class CardGeneration is a generation that is covered by a card table,
   601 // and uses a card-size block-offset array to implement block_start.
   603 // class BlockOffsetArray;
   604 // class BlockOffsetArrayContigSpace;
   605 class BlockOffsetSharedArray;
   607 class CardGeneration: public Generation {
   608   friend class VMStructs;
   609  protected:
   610   // This is shared with other generations.
   611   GenRemSet* _rs;
   612   // This is local to this generation.
   613   BlockOffsetSharedArray* _bts;
   615   CardGeneration(ReservedSpace rs, size_t initial_byte_size, int level,
   616                  GenRemSet* remset);
   618  public:
   620   // Attempt to expand the generation by "bytes".  Expand by at a
   621   // minimum "expand_bytes".  Return true if some amount (not
   622   // necessarily the full "bytes") was done.
   623   virtual bool expand(size_t bytes, size_t expand_bytes);
   625   virtual void clear_remembered_set();
   627   virtual void invalidate_remembered_set();
   629   virtual void prepare_for_verify();
   631   // Grow generation with specified size (returns false if unable to grow)
   632   virtual bool grow_by(size_t bytes) = 0;
   633   // Grow generation to reserved size.
   634   virtual bool grow_to_reserved() = 0;
   635 };
   637 // OneContigSpaceCardGeneration models a heap of old objects contained in a single
   638 // contiguous space.
   639 //
   640 // Garbage collection is performed using mark-compact.
   642 class OneContigSpaceCardGeneration: public CardGeneration {
   643   friend class VMStructs;
   644   // Abstractly, this is a subtype that gets access to protected fields.
   645   friend class CompactingPermGen;
   646   friend class VM_PopulateDumpSharedSpace;
   648  protected:
   649   size_t     _min_heap_delta_bytes;   // Minimum amount to expand.
   650   ContiguousSpace*  _the_space;       // actual space holding objects
   651   WaterMark  _last_gc;                // watermark between objects allocated before
   652                                       // and after last GC.
   654   // Grow generation with specified size (returns false if unable to grow)
   655   virtual bool grow_by(size_t bytes);
   656   // Grow generation to reserved size.
   657   virtual bool grow_to_reserved();
   658   // Shrink generation with specified size (returns false if unable to shrink)
   659   void shrink_by(size_t bytes);
   661   // Allocation failure
   662   virtual bool expand(size_t bytes, size_t expand_bytes);
   663   void shrink(size_t bytes);
   665   // Accessing spaces
   666   ContiguousSpace* the_space() const { return _the_space; }
   668  public:
   669   OneContigSpaceCardGeneration(ReservedSpace rs, size_t initial_byte_size,
   670                                size_t min_heap_delta_bytes,
   671                                int level, GenRemSet* remset,
   672                                ContiguousSpace* space) :
   673     CardGeneration(rs, initial_byte_size, level, remset),
   674     _the_space(space), _min_heap_delta_bytes(min_heap_delta_bytes)
   675   {}
   677   inline bool is_in(const void* p) const;
   679   // Space enquiries
   680   size_t capacity() const;
   681   size_t used() const;
   682   size_t free() const;
   684   MemRegion used_region() const;
   686   size_t unsafe_max_alloc_nogc() const;
   687   size_t contiguous_available() const;
   689   // Iteration
   690   void object_iterate(ObjectClosure* blk);
   691   void space_iterate(SpaceClosure* blk, bool usedOnly = false);
   692   void object_iterate_since_last_GC(ObjectClosure* cl);
   694   void younger_refs_iterate(OopsInGenClosure* blk);
   696   inline CompactibleSpace* first_compaction_space() const;
   698   virtual inline HeapWord* allocate(size_t word_size, bool is_tlab);
   699   virtual inline HeapWord* par_allocate(size_t word_size, bool is_tlab);
   701   // Accessing marks
   702   inline WaterMark top_mark();
   703   inline WaterMark bottom_mark();
   705 #define OneContig_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)      \
   706   void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   707   OneContig_SINCE_SAVE_MARKS_DECL(OopsInGenClosure,_v)
   708   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_DECL)
   710   void save_marks();
   711   void reset_saved_marks();
   712   bool no_allocs_since_save_marks();
   714   inline size_t block_size(const HeapWord* addr) const;
   716   inline bool block_is_obj(const HeapWord* addr) const;
   718   virtual void collect(bool full,
   719                        bool clear_all_soft_refs,
   720                        size_t size,
   721                        bool is_tlab);
   722   HeapWord* expand_and_allocate(size_t size,
   723                                 bool is_tlab,
   724                                 bool parallel = false);
   726   virtual void prepare_for_verify();
   728   virtual void gc_epilogue(bool full);
   730   virtual void record_spaces_top();
   732   virtual void verify(bool allow_dirty);
   733   virtual void print_on(outputStream* st) const;
   734 };

mercurial