src/share/vm/memory/defNewGeneration.cpp

Tue, 13 Apr 2010 13:52:10 -0700

author
jmasa
date
Tue, 13 Apr 2010 13:52:10 -0700
changeset 1822
0bfd3fb24150
parent 1580
e018e6884bd8
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6858496: Clear all SoftReferences before an out-of-memory due to GC overhead limit.
Summary: Ensure a full GC that clears SoftReferences before throwing an out-of-memory
Reviewed-by: ysr, jcoomes

     1 /*
     2  * Copyright 2001-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_defNewGeneration.cpp.incl"
    28 //
    29 // DefNewGeneration functions.
    31 // Methods of protected closure types.
    33 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
    34   assert(g->level() == 0, "Optimized for youngest gen.");
    35 }
    36 void DefNewGeneration::IsAliveClosure::do_object(oop p) {
    37   assert(false, "Do not call.");
    38 }
    39 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
    40   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
    41 }
    43 DefNewGeneration::KeepAliveClosure::
    44 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
    45   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
    46   assert(rs->rs_kind() == GenRemSet::CardTable, "Wrong rem set kind.");
    47   _rs = (CardTableRS*)rs;
    48 }
    50 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    51 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
    54 DefNewGeneration::FastKeepAliveClosure::
    55 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
    56   DefNewGeneration::KeepAliveClosure(cl) {
    57   _boundary = g->reserved().end();
    58 }
    60 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    61 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
    63 DefNewGeneration::EvacuateFollowersClosure::
    64 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
    65                          ScanClosure* cur, ScanClosure* older) :
    66   _gch(gch), _level(level),
    67   _scan_cur_or_nonheap(cur), _scan_older(older)
    68 {}
    70 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
    71   do {
    72     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
    73                                        _scan_older);
    74   } while (!_gch->no_allocs_since_save_marks(_level));
    75 }
    77 DefNewGeneration::FastEvacuateFollowersClosure::
    78 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
    79                              DefNewGeneration* gen,
    80                              FastScanClosure* cur, FastScanClosure* older) :
    81   _gch(gch), _level(level), _gen(gen),
    82   _scan_cur_or_nonheap(cur), _scan_older(older)
    83 {}
    85 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
    86   do {
    87     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
    88                                        _scan_older);
    89   } while (!_gch->no_allocs_since_save_marks(_level));
    90   guarantee(_gen->promo_failure_scan_stack() == NULL
    91             || _gen->promo_failure_scan_stack()->length() == 0,
    92             "Failed to finish scan");
    93 }
    95 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
    96   OopsInGenClosure(g), _g(g), _gc_barrier(gc_barrier)
    97 {
    98   assert(_g->level() == 0, "Optimized for youngest generation");
    99   _boundary = _g->reserved().end();
   100 }
   102 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
   103 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
   105 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
   106   OopsInGenClosure(g), _g(g), _gc_barrier(gc_barrier)
   107 {
   108   assert(_g->level() == 0, "Optimized for youngest generation");
   109   _boundary = _g->reserved().end();
   110 }
   112 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
   113 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
   115 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
   116   OopClosure(g->ref_processor()), _g(g)
   117 {
   118   assert(_g->level() == 0, "Optimized for youngest generation");
   119   _boundary = _g->reserved().end();
   120 }
   122 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
   123 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
   125 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
   126 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
   128 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
   129                                    size_t initial_size,
   130                                    int level,
   131                                    const char* policy)
   132   : Generation(rs, initial_size, level),
   133     _objs_with_preserved_marks(NULL),
   134     _preserved_marks_of_objs(NULL),
   135     _promo_failure_scan_stack(NULL),
   136     _promo_failure_drain_in_progress(false),
   137     _should_allocate_from_space(false)
   138 {
   139   MemRegion cmr((HeapWord*)_virtual_space.low(),
   140                 (HeapWord*)_virtual_space.high());
   141   Universe::heap()->barrier_set()->resize_covered_region(cmr);
   143   if (GenCollectedHeap::heap()->collector_policy()->has_soft_ended_eden()) {
   144     _eden_space = new ConcEdenSpace(this);
   145   } else {
   146     _eden_space = new EdenSpace(this);
   147   }
   148   _from_space = new ContiguousSpace();
   149   _to_space   = new ContiguousSpace();
   151   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
   152     vm_exit_during_initialization("Could not allocate a new gen space");
   154   // Compute the maximum eden and survivor space sizes. These sizes
   155   // are computed assuming the entire reserved space is committed.
   156   // These values are exported as performance counters.
   157   uintx alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
   158   uintx size = _virtual_space.reserved_size();
   159   _max_survivor_size = compute_survivor_size(size, alignment);
   160   _max_eden_size = size - (2*_max_survivor_size);
   162   // allocate the performance counters
   164   // Generation counters -- generation 0, 3 subspaces
   165   _gen_counters = new GenerationCounters("new", 0, 3, &_virtual_space);
   166   _gc_counters = new CollectorCounters(policy, 0);
   168   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
   169                                       _gen_counters);
   170   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
   171                                       _gen_counters);
   172   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
   173                                     _gen_counters);
   175   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
   176   update_counters();
   177   _next_gen = NULL;
   178   _tenuring_threshold = MaxTenuringThreshold;
   179   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
   180 }
   182 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
   183                                                 bool clear_space,
   184                                                 bool mangle_space) {
   185   uintx alignment =
   186     GenCollectedHeap::heap()->collector_policy()->min_alignment();
   188   // If the spaces are being cleared (only done at heap initialization
   189   // currently), the survivor spaces need not be empty.
   190   // Otherwise, no care is taken for used areas in the survivor spaces
   191   // so check.
   192   assert(clear_space || (to()->is_empty() && from()->is_empty()),
   193     "Initialization of the survivor spaces assumes these are empty");
   195   // Compute sizes
   196   uintx size = _virtual_space.committed_size();
   197   uintx survivor_size = compute_survivor_size(size, alignment);
   198   uintx eden_size = size - (2*survivor_size);
   199   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   201   if (eden_size < minimum_eden_size) {
   202     // May happen due to 64Kb rounding, if so adjust eden size back up
   203     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
   204     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
   205     uintx unaligned_survivor_size =
   206       align_size_down(maximum_survivor_size, alignment);
   207     survivor_size = MAX2(unaligned_survivor_size, alignment);
   208     eden_size = size - (2*survivor_size);
   209     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
   210     assert(eden_size >= minimum_eden_size, "just checking");
   211   }
   213   char *eden_start = _virtual_space.low();
   214   char *from_start = eden_start + eden_size;
   215   char *to_start   = from_start + survivor_size;
   216   char *to_end     = to_start   + survivor_size;
   218   assert(to_end == _virtual_space.high(), "just checking");
   219   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
   220   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
   221   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
   223   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
   224   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
   225   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
   227   // A minimum eden size implies that there is a part of eden that
   228   // is being used and that affects the initialization of any
   229   // newly formed eden.
   230   bool live_in_eden = minimum_eden_size > 0;
   232   // If not clearing the spaces, do some checking to verify that
   233   // the space are already mangled.
   234   if (!clear_space) {
   235     // Must check mangling before the spaces are reshaped.  Otherwise,
   236     // the bottom or end of one space may have moved into another
   237     // a failure of the check may not correctly indicate which space
   238     // is not properly mangled.
   239     if (ZapUnusedHeapArea) {
   240       HeapWord* limit = (HeapWord*) _virtual_space.high();
   241       eden()->check_mangled_unused_area(limit);
   242       from()->check_mangled_unused_area(limit);
   243         to()->check_mangled_unused_area(limit);
   244     }
   245   }
   247   // Reset the spaces for their new regions.
   248   eden()->initialize(edenMR,
   249                      clear_space && !live_in_eden,
   250                      SpaceDecorator::Mangle);
   251   // If clear_space and live_in_eden, we will not have cleared any
   252   // portion of eden above its top. This can cause newly
   253   // expanded space not to be mangled if using ZapUnusedHeapArea.
   254   // We explicitly do such mangling here.
   255   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
   256     eden()->mangle_unused_area();
   257   }
   258   from()->initialize(fromMR, clear_space, mangle_space);
   259   to()->initialize(toMR, clear_space, mangle_space);
   261   // Set next compaction spaces.
   262   eden()->set_next_compaction_space(from());
   263   // The to-space is normally empty before a compaction so need
   264   // not be considered.  The exception is during promotion
   265   // failure handling when to-space can contain live objects.
   266   from()->set_next_compaction_space(NULL);
   267 }
   269 void DefNewGeneration::swap_spaces() {
   270   ContiguousSpace* s = from();
   271   _from_space        = to();
   272   _to_space          = s;
   273   eden()->set_next_compaction_space(from());
   274   // The to-space is normally empty before a compaction so need
   275   // not be considered.  The exception is during promotion
   276   // failure handling when to-space can contain live objects.
   277   from()->set_next_compaction_space(NULL);
   279   if (UsePerfData) {
   280     CSpaceCounters* c = _from_counters;
   281     _from_counters = _to_counters;
   282     _to_counters = c;
   283   }
   284 }
   286 bool DefNewGeneration::expand(size_t bytes) {
   287   MutexLocker x(ExpandHeap_lock);
   288   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
   289   bool success = _virtual_space.expand_by(bytes);
   290   if (success && ZapUnusedHeapArea) {
   291     // Mangle newly committed space immediately because it
   292     // can be done here more simply that after the new
   293     // spaces have been computed.
   294     HeapWord* new_high = (HeapWord*) _virtual_space.high();
   295     MemRegion mangle_region(prev_high, new_high);
   296     SpaceMangler::mangle_region(mangle_region);
   297   }
   299   // Do not attempt an expand-to-the reserve size.  The
   300   // request should properly observe the maximum size of
   301   // the generation so an expand-to-reserve should be
   302   // unnecessary.  Also a second call to expand-to-reserve
   303   // value potentially can cause an undue expansion.
   304   // For example if the first expand fail for unknown reasons,
   305   // but the second succeeds and expands the heap to its maximum
   306   // value.
   307   if (GC_locker::is_active()) {
   308     if (PrintGC && Verbose) {
   309       gclog_or_tty->print_cr("Garbage collection disabled, "
   310         "expanded heap instead");
   311     }
   312   }
   314   return success;
   315 }
   318 void DefNewGeneration::compute_new_size() {
   319   // This is called after a gc that includes the following generation
   320   // (which is required to exist.)  So from-space will normally be empty.
   321   // Note that we check both spaces, since if scavenge failed they revert roles.
   322   // If not we bail out (otherwise we would have to relocate the objects)
   323   if (!from()->is_empty() || !to()->is_empty()) {
   324     return;
   325   }
   327   int next_level = level() + 1;
   328   GenCollectedHeap* gch = GenCollectedHeap::heap();
   329   assert(next_level < gch->_n_gens,
   330          "DefNewGeneration cannot be an oldest gen");
   332   Generation* next_gen = gch->_gens[next_level];
   333   size_t old_size = next_gen->capacity();
   334   size_t new_size_before = _virtual_space.committed_size();
   335   size_t min_new_size = spec()->init_size();
   336   size_t max_new_size = reserved().byte_size();
   337   assert(min_new_size <= new_size_before &&
   338          new_size_before <= max_new_size,
   339          "just checking");
   340   // All space sizes must be multiples of Generation::GenGrain.
   341   size_t alignment = Generation::GenGrain;
   343   // Compute desired new generation size based on NewRatio and
   344   // NewSizeThreadIncrease
   345   size_t desired_new_size = old_size/NewRatio;
   346   int threads_count = Threads::number_of_non_daemon_threads();
   347   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
   348   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
   350   // Adjust new generation size
   351   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
   352   assert(desired_new_size <= max_new_size, "just checking");
   354   bool changed = false;
   355   if (desired_new_size > new_size_before) {
   356     size_t change = desired_new_size - new_size_before;
   357     assert(change % alignment == 0, "just checking");
   358     if (expand(change)) {
   359        changed = true;
   360     }
   361     // If the heap failed to expand to the desired size,
   362     // "changed" will be false.  If the expansion failed
   363     // (and at this point it was expected to succeed),
   364     // ignore the failure (leaving "changed" as false).
   365   }
   366   if (desired_new_size < new_size_before && eden()->is_empty()) {
   367     // bail out of shrinking if objects in eden
   368     size_t change = new_size_before - desired_new_size;
   369     assert(change % alignment == 0, "just checking");
   370     _virtual_space.shrink_by(change);
   371     changed = true;
   372   }
   373   if (changed) {
   374     // The spaces have already been mangled at this point but
   375     // may not have been cleared (set top = bottom) and should be.
   376     // Mangling was done when the heap was being expanded.
   377     compute_space_boundaries(eden()->used(),
   378                              SpaceDecorator::Clear,
   379                              SpaceDecorator::DontMangle);
   380     MemRegion cmr((HeapWord*)_virtual_space.low(),
   381                   (HeapWord*)_virtual_space.high());
   382     Universe::heap()->barrier_set()->resize_covered_region(cmr);
   383     if (Verbose && PrintGC) {
   384       size_t new_size_after  = _virtual_space.committed_size();
   385       size_t eden_size_after = eden()->capacity();
   386       size_t survivor_size_after = from()->capacity();
   387       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
   388         SIZE_FORMAT "K [eden="
   389         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
   390         new_size_before/K, new_size_after/K,
   391         eden_size_after/K, survivor_size_after/K);
   392       if (WizardMode) {
   393         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
   394           thread_increase_size/K, threads_count);
   395       }
   396       gclog_or_tty->cr();
   397     }
   398   }
   399 }
   401 void DefNewGeneration::object_iterate_since_last_GC(ObjectClosure* cl) {
   402   // $$$ This may be wrong in case of "scavenge failure"?
   403   eden()->object_iterate(cl);
   404 }
   406 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
   407   assert(false, "NYI -- are you sure you want to call this?");
   408 }
   411 size_t DefNewGeneration::capacity() const {
   412   return eden()->capacity()
   413        + from()->capacity();  // to() is only used during scavenge
   414 }
   417 size_t DefNewGeneration::used() const {
   418   return eden()->used()
   419        + from()->used();      // to() is only used during scavenge
   420 }
   423 size_t DefNewGeneration::free() const {
   424   return eden()->free()
   425        + from()->free();      // to() is only used during scavenge
   426 }
   428 size_t DefNewGeneration::max_capacity() const {
   429   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->min_alignment();
   430   const size_t reserved_bytes = reserved().byte_size();
   431   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
   432 }
   434 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
   435   return eden()->free();
   436 }
   438 size_t DefNewGeneration::capacity_before_gc() const {
   439   return eden()->capacity();
   440 }
   442 size_t DefNewGeneration::contiguous_available() const {
   443   return eden()->free();
   444 }
   447 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
   448 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
   450 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
   451   eden()->object_iterate(blk);
   452   from()->object_iterate(blk);
   453 }
   456 void DefNewGeneration::space_iterate(SpaceClosure* blk,
   457                                      bool usedOnly) {
   458   blk->do_space(eden());
   459   blk->do_space(from());
   460   blk->do_space(to());
   461 }
   463 // The last collection bailed out, we are running out of heap space,
   464 // so we try to allocate the from-space, too.
   465 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
   466   HeapWord* result = NULL;
   467   if (PrintGC && Verbose) {
   468     gclog_or_tty->print("DefNewGeneration::allocate_from_space(%u):"
   469                   "  will_fail: %s"
   470                   "  heap_lock: %s"
   471                   "  free: " SIZE_FORMAT,
   472                   size,
   473                GenCollectedHeap::heap()->incremental_collection_will_fail() ? "true" : "false",
   474                Heap_lock->is_locked() ? "locked" : "unlocked",
   475                from()->free());
   476     }
   477   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
   478     if (Heap_lock->owned_by_self() ||
   479         (SafepointSynchronize::is_at_safepoint() &&
   480          Thread::current()->is_VM_thread())) {
   481       // If the Heap_lock is not locked by this thread, this will be called
   482       // again later with the Heap_lock held.
   483       result = from()->allocate(size);
   484     } else if (PrintGC && Verbose) {
   485       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
   486     }
   487   } else if (PrintGC && Verbose) {
   488     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
   489   }
   490   if (PrintGC && Verbose) {
   491     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
   492   }
   493   return result;
   494 }
   496 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
   497                                                 bool   is_tlab,
   498                                                 bool   parallel) {
   499   // We don't attempt to expand the young generation (but perhaps we should.)
   500   return allocate(size, is_tlab);
   501 }
   504 void DefNewGeneration::collect(bool   full,
   505                                bool   clear_all_soft_refs,
   506                                size_t size,
   507                                bool   is_tlab) {
   508   assert(full || size > 0, "otherwise we don't want to collect");
   509   GenCollectedHeap* gch = GenCollectedHeap::heap();
   510   _next_gen = gch->next_gen(this);
   511   assert(_next_gen != NULL,
   512     "This must be the youngest gen, and not the only gen");
   514   // If the next generation is too full to accomodate promotion
   515   // from this generation, pass on collection; let the next generation
   516   // do it.
   517   if (!collection_attempt_is_safe()) {
   518     gch->set_incremental_collection_will_fail();
   519     return;
   520   }
   521   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
   523   init_assuming_no_promotion_failure();
   525   TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
   526   // Capture heap used before collection (for printing).
   527   size_t gch_prev_used = gch->used();
   529   SpecializationStats::clear();
   531   // These can be shared for all code paths
   532   IsAliveClosure is_alive(this);
   533   ScanWeakRefClosure scan_weak_ref(this);
   535   age_table()->clear();
   536   to()->clear(SpaceDecorator::Mangle);
   538   gch->rem_set()->prepare_for_younger_refs_iterate(false);
   540   assert(gch->no_allocs_since_save_marks(0),
   541          "save marks have not been newly set.");
   543   // Not very pretty.
   544   CollectorPolicy* cp = gch->collector_policy();
   546   FastScanClosure fsc_with_no_gc_barrier(this, false);
   547   FastScanClosure fsc_with_gc_barrier(this, true);
   549   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
   550   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
   551                                                   &fsc_with_no_gc_barrier,
   552                                                   &fsc_with_gc_barrier);
   554   assert(gch->no_allocs_since_save_marks(0),
   555          "save marks have not been newly set.");
   557   gch->gen_process_strong_roots(_level,
   558                                 true,  // Process younger gens, if any,
   559                                        // as strong roots.
   560                                 true,  // activate StrongRootsScope
   561                                 false, // not collecting perm generation.
   562                                 SharedHeap::SO_AllClasses,
   563                                 &fsc_with_no_gc_barrier,
   564                                 true,   // walk *all* scavengable nmethods
   565                                 &fsc_with_gc_barrier);
   567   // "evacuate followers".
   568   evacuate_followers.do_void();
   570   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
   571   ReferenceProcessor* rp = ref_processor();
   572   rp->setup_policy(clear_all_soft_refs);
   573   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
   574                                     NULL);
   575   if (!promotion_failed()) {
   576     // Swap the survivor spaces.
   577     eden()->clear(SpaceDecorator::Mangle);
   578     from()->clear(SpaceDecorator::Mangle);
   579     if (ZapUnusedHeapArea) {
   580       // This is now done here because of the piece-meal mangling which
   581       // can check for valid mangling at intermediate points in the
   582       // collection(s).  When a minor collection fails to collect
   583       // sufficient space resizing of the young generation can occur
   584       // an redistribute the spaces in the young generation.  Mangle
   585       // here so that unzapped regions don't get distributed to
   586       // other spaces.
   587       to()->mangle_unused_area();
   588     }
   589     swap_spaces();
   591     assert(to()->is_empty(), "to space should be empty now");
   593     // Set the desired survivor size to half the real survivor space
   594     _tenuring_threshold =
   595       age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
   597     // A successful scavenge should restart the GC time limit count which is
   598     // for full GC's.
   599     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
   600     size_policy->reset_gc_overhead_limit_count();
   601     if (PrintGC && !PrintGCDetails) {
   602       gch->print_heap_change(gch_prev_used);
   603     }
   604   } else {
   605     assert(HandlePromotionFailure,
   606       "Should not be here unless promotion failure handling is on");
   607     assert(_promo_failure_scan_stack != NULL &&
   608       _promo_failure_scan_stack->length() == 0, "post condition");
   610     // deallocate stack and it's elements
   611     delete _promo_failure_scan_stack;
   612     _promo_failure_scan_stack = NULL;
   614     remove_forwarding_pointers();
   615     if (PrintGCDetails) {
   616       gclog_or_tty->print(" (promotion failed) ");
   617     }
   618     // Add to-space to the list of space to compact
   619     // when a promotion failure has occurred.  In that
   620     // case there can be live objects in to-space
   621     // as a result of a partial evacuation of eden
   622     // and from-space.
   623     swap_spaces();   // For the sake of uniformity wrt ParNewGeneration::collect().
   624     from()->set_next_compaction_space(to());
   625     gch->set_incremental_collection_will_fail();
   627     // Inform the next generation that a promotion failure occurred.
   628     _next_gen->promotion_failure_occurred();
   630     // Reset the PromotionFailureALot counters.
   631     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
   632   }
   633   // set new iteration safe limit for the survivor spaces
   634   from()->set_concurrent_iteration_safe_limit(from()->top());
   635   to()->set_concurrent_iteration_safe_limit(to()->top());
   636   SpecializationStats::print();
   637   update_time_of_last_gc(os::javaTimeMillis());
   638 }
   640 class RemoveForwardPointerClosure: public ObjectClosure {
   641 public:
   642   void do_object(oop obj) {
   643     obj->init_mark();
   644   }
   645 };
   647 void DefNewGeneration::init_assuming_no_promotion_failure() {
   648   _promotion_failed = false;
   649   from()->set_next_compaction_space(NULL);
   650 }
   652 void DefNewGeneration::remove_forwarding_pointers() {
   653   RemoveForwardPointerClosure rspc;
   654   eden()->object_iterate(&rspc);
   655   from()->object_iterate(&rspc);
   656   // Now restore saved marks, if any.
   657   if (_objs_with_preserved_marks != NULL) {
   658     assert(_preserved_marks_of_objs != NULL, "Both or none.");
   659     assert(_objs_with_preserved_marks->length() ==
   660            _preserved_marks_of_objs->length(), "Both or none.");
   661     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
   662       oop obj   = _objs_with_preserved_marks->at(i);
   663       markOop m = _preserved_marks_of_objs->at(i);
   664       obj->set_mark(m);
   665     }
   666     delete _objs_with_preserved_marks;
   667     delete _preserved_marks_of_objs;
   668     _objs_with_preserved_marks = NULL;
   669     _preserved_marks_of_objs = NULL;
   670   }
   671 }
   673 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
   674   if (m->must_be_preserved_for_promotion_failure(obj)) {
   675     if (_objs_with_preserved_marks == NULL) {
   676       assert(_preserved_marks_of_objs == NULL, "Both or none.");
   677       _objs_with_preserved_marks = new (ResourceObj::C_HEAP)
   678         GrowableArray<oop>(PreserveMarkStackSize, true);
   679       _preserved_marks_of_objs = new (ResourceObj::C_HEAP)
   680         GrowableArray<markOop>(PreserveMarkStackSize, true);
   681     }
   682     _objs_with_preserved_marks->push(obj);
   683     _preserved_marks_of_objs->push(m);
   684   }
   685 }
   687 void DefNewGeneration::handle_promotion_failure(oop old) {
   688   preserve_mark_if_necessary(old, old->mark());
   689   if (!_promotion_failed && PrintPromotionFailure) {
   690     gclog_or_tty->print(" (promotion failure size = " SIZE_FORMAT ") ",
   691                         old->size());
   692   }
   694   // forward to self
   695   old->forward_to(old);
   696   _promotion_failed = true;
   698   push_on_promo_failure_scan_stack(old);
   700   if (!_promo_failure_drain_in_progress) {
   701     // prevent recursion in copy_to_survivor_space()
   702     _promo_failure_drain_in_progress = true;
   703     drain_promo_failure_scan_stack();
   704     _promo_failure_drain_in_progress = false;
   705   }
   706 }
   708 oop DefNewGeneration::copy_to_survivor_space(oop old) {
   709   assert(is_in_reserved(old) && !old->is_forwarded(),
   710          "shouldn't be scavenging this oop");
   711   size_t s = old->size();
   712   oop obj = NULL;
   714   // Try allocating obj in to-space (unless too old)
   715   if (old->age() < tenuring_threshold()) {
   716     obj = (oop) to()->allocate(s);
   717   }
   719   // Otherwise try allocating obj tenured
   720   if (obj == NULL) {
   721     obj = _next_gen->promote(old, s);
   722     if (obj == NULL) {
   723       if (!HandlePromotionFailure) {
   724         // A failed promotion likely means the MaxLiveObjectEvacuationRatio flag
   725         // is incorrectly set. In any case, its seriously wrong to be here!
   726         vm_exit_out_of_memory(s*wordSize, "promotion");
   727       }
   729       handle_promotion_failure(old);
   730       return old;
   731     }
   732   } else {
   733     // Prefetch beyond obj
   734     const intx interval = PrefetchCopyIntervalInBytes;
   735     Prefetch::write(obj, interval);
   737     // Copy obj
   738     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
   740     // Increment age if obj still in new generation
   741     obj->incr_age();
   742     age_table()->add(obj, s);
   743   }
   745   // Done, insert forward pointer to obj in this header
   746   old->forward_to(obj);
   748   return obj;
   749 }
   751 void DefNewGeneration::push_on_promo_failure_scan_stack(oop obj) {
   752   if (_promo_failure_scan_stack == NULL) {
   753     _promo_failure_scan_stack = new (ResourceObj::C_HEAP)
   754                                     GrowableArray<oop>(40, true);
   755   }
   757   _promo_failure_scan_stack->push(obj);
   758 }
   760 void DefNewGeneration::drain_promo_failure_scan_stack() {
   761   assert(_promo_failure_scan_stack != NULL, "precondition");
   763   while (_promo_failure_scan_stack->length() > 0) {
   764      oop obj = _promo_failure_scan_stack->pop();
   765      obj->oop_iterate(_promo_failure_scan_stack_closure);
   766   }
   767 }
   769 void DefNewGeneration::save_marks() {
   770   eden()->set_saved_mark();
   771   to()->set_saved_mark();
   772   from()->set_saved_mark();
   773 }
   776 void DefNewGeneration::reset_saved_marks() {
   777   eden()->reset_saved_mark();
   778   to()->reset_saved_mark();
   779   from()->reset_saved_mark();
   780 }
   783 bool DefNewGeneration::no_allocs_since_save_marks() {
   784   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
   785   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
   786   return to()->saved_mark_at_top();
   787 }
   789 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   790                                                                 \
   791 void DefNewGeneration::                                         \
   792 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
   793   cl->set_generation(this);                                     \
   794   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   795   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
   796   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
   797   cl->reset_generation();                                       \
   798   save_marks();                                                 \
   799 }
   801 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
   803 #undef DefNew_SINCE_SAVE_MARKS_DEFN
   805 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
   806                                          size_t max_alloc_words) {
   807   if (requestor == this || _promotion_failed) return;
   808   assert(requestor->level() > level(), "DefNewGeneration must be youngest");
   810   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
   811   if (to_space->top() > to_space->bottom()) {
   812     trace("to_space not empty when contribute_scratch called");
   813   }
   814   */
   816   ContiguousSpace* to_space = to();
   817   assert(to_space->end() >= to_space->top(), "pointers out of order");
   818   size_t free_words = pointer_delta(to_space->end(), to_space->top());
   819   if (free_words >= MinFreeScratchWords) {
   820     ScratchBlock* sb = (ScratchBlock*)to_space->top();
   821     sb->num_words = free_words;
   822     sb->next = list;
   823     list = sb;
   824   }
   825 }
   827 void DefNewGeneration::reset_scratch() {
   828   // If contributing scratch in to_space, mangle all of
   829   // to_space if ZapUnusedHeapArea.  This is needed because
   830   // top is not maintained while using to-space as scratch.
   831   if (ZapUnusedHeapArea) {
   832     to()->mangle_unused_area_complete();
   833   }
   834 }
   836 bool DefNewGeneration::collection_attempt_is_safe() {
   837   if (!to()->is_empty()) {
   838     return false;
   839   }
   840   if (_next_gen == NULL) {
   841     GenCollectedHeap* gch = GenCollectedHeap::heap();
   842     _next_gen = gch->next_gen(this);
   843     assert(_next_gen != NULL,
   844            "This must be the youngest gen, and not the only gen");
   845   }
   847   // Decide if there's enough room for a full promotion
   848   // When using extremely large edens, we effectively lose a
   849   // large amount of old space.  Use the "MaxLiveObjectEvacuationRatio"
   850   // flag to reduce the minimum evacuation space requirements. If
   851   // there is not enough space to evacuate eden during a scavenge,
   852   // the VM will immediately exit with an out of memory error.
   853   // This flag has not been tested
   854   // with collectors other than simple mark & sweep.
   855   //
   856   // Note that with the addition of promotion failure handling, the
   857   // VM will not immediately exit but will undo the young generation
   858   // collection.  The parameter is left here for compatibility.
   859   const double evacuation_ratio = MaxLiveObjectEvacuationRatio / 100.0;
   861   // worst_case_evacuation is based on "used()".  For the case where this
   862   // method is called after a collection, this is still appropriate because
   863   // the case that needs to be detected is one in which a full collection
   864   // has been done and has overflowed into the young generation.  In that
   865   // case a minor collection will fail (the overflow of the full collection
   866   // means there is no space in the old generation for any promotion).
   867   size_t worst_case_evacuation = (size_t)(used() * evacuation_ratio);
   869   return _next_gen->promotion_attempt_is_safe(worst_case_evacuation,
   870                                               HandlePromotionFailure);
   871 }
   873 void DefNewGeneration::gc_epilogue(bool full) {
   874   // Check if the heap is approaching full after a collection has
   875   // been done.  Generally the young generation is empty at
   876   // a minimum at the end of a collection.  If it is not, then
   877   // the heap is approaching full.
   878   GenCollectedHeap* gch = GenCollectedHeap::heap();
   879   clear_should_allocate_from_space();
   880   if (collection_attempt_is_safe()) {
   881     gch->clear_incremental_collection_will_fail();
   882   } else {
   883     gch->set_incremental_collection_will_fail();
   884     if (full) { // we seem to be running out of space
   885       set_should_allocate_from_space();
   886     }
   887   }
   889   if (ZapUnusedHeapArea) {
   890     eden()->check_mangled_unused_area_complete();
   891     from()->check_mangled_unused_area_complete();
   892     to()->check_mangled_unused_area_complete();
   893   }
   895   // update the generation and space performance counters
   896   update_counters();
   897   gch->collector_policy()->counters()->update_counters();
   898 }
   900 void DefNewGeneration::record_spaces_top() {
   901   assert(ZapUnusedHeapArea, "Not mangling unused space");
   902   eden()->set_top_for_allocations();
   903   to()->set_top_for_allocations();
   904   from()->set_top_for_allocations();
   905 }
   908 void DefNewGeneration::update_counters() {
   909   if (UsePerfData) {
   910     _eden_counters->update_all();
   911     _from_counters->update_all();
   912     _to_counters->update_all();
   913     _gen_counters->update_all();
   914   }
   915 }
   917 void DefNewGeneration::verify(bool allow_dirty) {
   918   eden()->verify(allow_dirty);
   919   from()->verify(allow_dirty);
   920     to()->verify(allow_dirty);
   921 }
   923 void DefNewGeneration::print_on(outputStream* st) const {
   924   Generation::print_on(st);
   925   st->print("  eden");
   926   eden()->print_on(st);
   927   st->print("  from");
   928   from()->print_on(st);
   929   st->print("  to  ");
   930   to()->print_on(st);
   931 }
   934 const char* DefNewGeneration::name() const {
   935   return "def new generation";
   936 }
   938 // Moved from inline file as they are not called inline
   939 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
   940   return eden();
   941 }
   943 HeapWord* DefNewGeneration::allocate(size_t word_size,
   944                                      bool is_tlab) {
   945   // This is the slow-path allocation for the DefNewGeneration.
   946   // Most allocations are fast-path in compiled code.
   947   // We try to allocate from the eden.  If that works, we are happy.
   948   // Note that since DefNewGeneration supports lock-free allocation, we
   949   // have to use it here, as well.
   950   HeapWord* result = eden()->par_allocate(word_size);
   951   if (result != NULL) {
   952     return result;
   953   }
   954   do {
   955     HeapWord* old_limit = eden()->soft_end();
   956     if (old_limit < eden()->end()) {
   957       // Tell the next generation we reached a limit.
   958       HeapWord* new_limit =
   959         next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
   960       if (new_limit != NULL) {
   961         Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
   962       } else {
   963         assert(eden()->soft_end() == eden()->end(),
   964                "invalid state after allocation_limit_reached returned null");
   965       }
   966     } else {
   967       // The allocation failed and the soft limit is equal to the hard limit,
   968       // there are no reasons to do an attempt to allocate
   969       assert(old_limit == eden()->end(), "sanity check");
   970       break;
   971     }
   972     // Try to allocate until succeeded or the soft limit can't be adjusted
   973     result = eden()->par_allocate(word_size);
   974   } while (result == NULL);
   976   // If the eden is full and the last collection bailed out, we are running
   977   // out of heap space, and we try to allocate the from-space, too.
   978   // allocate_from_space can't be inlined because that would introduce a
   979   // circular dependency at compile time.
   980   if (result == NULL) {
   981     result = allocate_from_space(word_size);
   982   }
   983   return result;
   984 }
   986 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
   987                                          bool is_tlab) {
   988   return eden()->par_allocate(word_size);
   989 }
   991 void DefNewGeneration::gc_prologue(bool full) {
   992   // Ensure that _end and _soft_end are the same in eden space.
   993   eden()->set_soft_end(eden()->end());
   994 }
   996 size_t DefNewGeneration::tlab_capacity() const {
   997   return eden()->capacity();
   998 }
  1000 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
  1001   return unsafe_max_alloc_nogc();

mercurial