src/share/vm/gc_implementation/parNew/parNewGeneration.cpp

Tue, 13 Apr 2010 13:52:10 -0700

author
jmasa
date
Tue, 13 Apr 2010 13:52:10 -0700
changeset 1822
0bfd3fb24150
parent 1580
e018e6884bd8
child 1907
c18cbe5936b8
permissions
-rw-r--r--

6858496: Clear all SoftReferences before an out-of-memory due to GC overhead limit.
Summary: Ensure a full GC that clears SoftReferences before throwing an out-of-memory
Reviewed-by: ysr, jcoomes

     1 /*
     2  * Copyright 2001-2010 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_parNewGeneration.cpp.incl"
    28 #ifdef _MSC_VER
    29 #pragma warning( push )
    30 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
    31 #endif
    32 ParScanThreadState::ParScanThreadState(Space* to_space_,
    33                                        ParNewGeneration* gen_,
    34                                        Generation* old_gen_,
    35                                        int thread_num_,
    36                                        ObjToScanQueueSet* work_queue_set_,
    37                                        GrowableArray<oop>**  overflow_stack_set_,
    38                                        size_t desired_plab_sz_,
    39                                        ParallelTaskTerminator& term_) :
    40   _to_space(to_space_), _old_gen(old_gen_), _young_gen(gen_), _thread_num(thread_num_),
    41   _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
    42   _overflow_stack(overflow_stack_set_[thread_num_]),
    43   _ageTable(false), // false ==> not the global age table, no perf data.
    44   _to_space_alloc_buffer(desired_plab_sz_),
    45   _to_space_closure(gen_, this), _old_gen_closure(gen_, this),
    46   _to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
    47   _older_gen_closure(gen_, this),
    48   _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
    49                       &_to_space_root_closure, gen_, &_old_gen_root_closure,
    50                       work_queue_set_, &term_),
    51   _is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
    52   _keep_alive_closure(&_scan_weak_ref_closure),
    53   _promotion_failure_size(0),
    54   _pushes(0), _pops(0), _steals(0), _steal_attempts(0), _term_attempts(0),
    55   _strong_roots_time(0.0), _term_time(0.0)
    56 {
    57   _survivor_chunk_array =
    58     (ChunkArray*) old_gen()->get_data_recorder(thread_num());
    59   _hash_seed = 17;  // Might want to take time-based random value.
    60   _start = os::elapsedTime();
    61   _old_gen_closure.set_generation(old_gen_);
    62   _old_gen_root_closure.set_generation(old_gen_);
    63 }
    64 #ifdef _MSC_VER
    65 #pragma warning( pop )
    66 #endif
    68 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
    69                                               size_t plab_word_size) {
    70   ChunkArray* sca = survivor_chunk_array();
    71   if (sca != NULL) {
    72     // A non-null SCA implies that we want the PLAB data recorded.
    73     sca->record_sample(plab_start, plab_word_size);
    74   }
    75 }
    77 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
    78   return new_obj->is_objArray() &&
    79          arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
    80          new_obj != old_obj;
    81 }
    83 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
    84   assert(old->is_objArray(), "must be obj array");
    85   assert(old->is_forwarded(), "must be forwarded");
    86   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
    87   assert(!old_gen()->is_in(old), "must be in young generation.");
    89   objArrayOop obj = objArrayOop(old->forwardee());
    90   // Process ParGCArrayScanChunk elements now
    91   // and push the remainder back onto queue
    92   int start     = arrayOop(old)->length();
    93   int end       = obj->length();
    94   int remainder = end - start;
    95   assert(start <= end, "just checking");
    96   if (remainder > 2 * ParGCArrayScanChunk) {
    97     // Test above combines last partial chunk with a full chunk
    98     end = start + ParGCArrayScanChunk;
    99     arrayOop(old)->set_length(end);
   100     // Push remainder.
   101     bool ok = work_queue()->push(old);
   102     assert(ok, "just popped, push must be okay");
   103     note_push();
   104   } else {
   105     // Restore length so that it can be used if there
   106     // is a promotion failure and forwarding pointers
   107     // must be removed.
   108     arrayOop(old)->set_length(end);
   109   }
   111   // process our set of indices (include header in first chunk)
   112   // should make sure end is even (aligned to HeapWord in case of compressed oops)
   113   if ((HeapWord *)obj < young_old_boundary()) {
   114     // object is in to_space
   115     obj->oop_iterate_range(&_to_space_closure, start, end);
   116   } else {
   117     // object is in old generation
   118     obj->oop_iterate_range(&_old_gen_closure, start, end);
   119   }
   120 }
   123 void ParScanThreadState::trim_queues(int max_size) {
   124   ObjToScanQueue* queue = work_queue();
   125   do {
   126     while (queue->size() > (juint)max_size) {
   127       oop obj_to_scan;
   128       if (queue->pop_local(obj_to_scan)) {
   129         note_pop();
   130         if ((HeapWord *)obj_to_scan < young_old_boundary()) {
   131           if (obj_to_scan->is_objArray() &&
   132               obj_to_scan->is_forwarded() &&
   133               obj_to_scan->forwardee() != obj_to_scan) {
   134             scan_partial_array_and_push_remainder(obj_to_scan);
   135           } else {
   136             // object is in to_space
   137             obj_to_scan->oop_iterate(&_to_space_closure);
   138           }
   139         } else {
   140           // object is in old generation
   141           obj_to_scan->oop_iterate(&_old_gen_closure);
   142         }
   143       }
   144     }
   145     // For the  case of compressed oops, we have a private, non-shared
   146     // overflow stack, so we eagerly drain it so as to more evenly
   147     // distribute load early. Note: this may be good to do in
   148     // general rather than delay for the final stealing phase.
   149     // If applicable, we'll transfer a set of objects over to our
   150     // work queue, allowing them to be stolen and draining our
   151     // private overflow stack.
   152   } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
   153 }
   155 bool ParScanThreadState::take_from_overflow_stack() {
   156   assert(ParGCUseLocalOverflow, "Else should not call");
   157   assert(young_gen()->overflow_list() == NULL, "Error");
   158   ObjToScanQueue* queue = work_queue();
   159   GrowableArray<oop>* of_stack = overflow_stack();
   160   uint num_overflow_elems = of_stack->length();
   161   uint num_take_elems     = MIN2(MIN2((queue->max_elems() - queue->size())/4,
   162                                       (juint)ParGCDesiredObjsFromOverflowList),
   163                                  num_overflow_elems);
   164   // Transfer the most recent num_take_elems from the overflow
   165   // stack to our work queue.
   166   for (size_t i = 0; i != num_take_elems; i++) {
   167     oop cur = of_stack->pop();
   168     oop obj_to_push = cur->forwardee();
   169     assert(Universe::heap()->is_in_reserved(cur), "Should be in heap");
   170     assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
   171     assert(Universe::heap()->is_in_reserved(obj_to_push), "Should be in heap");
   172     if (should_be_partially_scanned(obj_to_push, cur)) {
   173       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
   174       obj_to_push = cur;
   175     }
   176     bool ok = queue->push(obj_to_push);
   177     assert(ok, "Should have succeeded");
   178   }
   179   assert(young_gen()->overflow_list() == NULL, "Error");
   180   return num_take_elems > 0;  // was something transferred?
   181 }
   183 void ParScanThreadState::push_on_overflow_stack(oop p) {
   184   assert(ParGCUseLocalOverflow, "Else should not call");
   185   overflow_stack()->push(p);
   186   assert(young_gen()->overflow_list() == NULL, "Error");
   187 }
   189 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
   191   // Otherwise, if the object is small enough, try to reallocate the
   192   // buffer.
   193   HeapWord* obj = NULL;
   194   if (!_to_space_full) {
   195     ParGCAllocBuffer* const plab = to_space_alloc_buffer();
   196     Space*            const sp   = to_space();
   197     if (word_sz * 100 <
   198         ParallelGCBufferWastePct * plab->word_sz()) {
   199       // Is small enough; abandon this buffer and start a new one.
   200       plab->retire(false, false);
   201       size_t buf_size = plab->word_sz();
   202       HeapWord* buf_space = sp->par_allocate(buf_size);
   203       if (buf_space == NULL) {
   204         const size_t min_bytes =
   205           ParGCAllocBuffer::min_size() << LogHeapWordSize;
   206         size_t free_bytes = sp->free();
   207         while(buf_space == NULL && free_bytes >= min_bytes) {
   208           buf_size = free_bytes >> LogHeapWordSize;
   209           assert(buf_size == (size_t)align_object_size(buf_size),
   210                  "Invariant");
   211           buf_space  = sp->par_allocate(buf_size);
   212           free_bytes = sp->free();
   213         }
   214       }
   215       if (buf_space != NULL) {
   216         plab->set_word_size(buf_size);
   217         plab->set_buf(buf_space);
   218         record_survivor_plab(buf_space, buf_size);
   219         obj = plab->allocate(word_sz);
   220         // Note that we cannot compare buf_size < word_sz below
   221         // because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
   222         assert(obj != NULL || plab->words_remaining() < word_sz,
   223                "Else should have been able to allocate");
   224         // It's conceivable that we may be able to use the
   225         // buffer we just grabbed for subsequent small requests
   226         // even if not for this one.
   227       } else {
   228         // We're used up.
   229         _to_space_full = true;
   230       }
   232     } else {
   233       // Too large; allocate the object individually.
   234       obj = sp->par_allocate(word_sz);
   235     }
   236   }
   237   return obj;
   238 }
   241 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
   242                                                 size_t word_sz) {
   243   // Is the alloc in the current alloc buffer?
   244   if (to_space_alloc_buffer()->contains(obj)) {
   245     assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
   246            "Should contain whole object.");
   247     to_space_alloc_buffer()->undo_allocation(obj, word_sz);
   248   } else {
   249     CollectedHeap::fill_with_object(obj, word_sz);
   250   }
   251 }
   253 void ParScanThreadState::print_and_clear_promotion_failure_size() {
   254   if (_promotion_failure_size != 0) {
   255     if (PrintPromotionFailure) {
   256       gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
   257         _thread_num, _promotion_failure_size);
   258     }
   259     _promotion_failure_size = 0;
   260   }
   261 }
   263 class ParScanThreadStateSet: private ResourceArray {
   264 public:
   265   // Initializes states for the specified number of threads;
   266   ParScanThreadStateSet(int                     num_threads,
   267                         Space&                  to_space,
   268                         ParNewGeneration&       gen,
   269                         Generation&             old_gen,
   270                         ObjToScanQueueSet&      queue_set,
   271                         GrowableArray<oop>**    overflow_stacks_,
   272                         size_t                  desired_plab_sz,
   273                         ParallelTaskTerminator& term);
   274   inline ParScanThreadState& thread_state(int i);
   275   int pushes() { return _pushes; }
   276   int pops()   { return _pops; }
   277   int steals() { return _steals; }
   278   void reset(bool promotion_failed);
   279   void flush();
   280 private:
   281   ParallelTaskTerminator& _term;
   282   ParNewGeneration&       _gen;
   283   Generation&             _next_gen;
   284   // staticstics
   285   int _pushes;
   286   int _pops;
   287   int _steals;
   288 };
   291 ParScanThreadStateSet::ParScanThreadStateSet(
   292   int num_threads, Space& to_space, ParNewGeneration& gen,
   293   Generation& old_gen, ObjToScanQueueSet& queue_set,
   294   GrowableArray<oop>** overflow_stack_set_,
   295   size_t desired_plab_sz, ParallelTaskTerminator& term)
   296   : ResourceArray(sizeof(ParScanThreadState), num_threads),
   297     _gen(gen), _next_gen(old_gen), _term(term),
   298     _pushes(0), _pops(0), _steals(0)
   299 {
   300   assert(num_threads > 0, "sanity check!");
   301   // Initialize states.
   302   for (int i = 0; i < num_threads; ++i) {
   303     new ((ParScanThreadState*)_data + i)
   304         ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
   305                            overflow_stack_set_, desired_plab_sz, term);
   306   }
   307 }
   309 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
   310 {
   311   assert(i >= 0 && i < length(), "sanity check!");
   312   return ((ParScanThreadState*)_data)[i];
   313 }
   316 void ParScanThreadStateSet::reset(bool promotion_failed)
   317 {
   318   _term.reset_for_reuse();
   319   if (promotion_failed) {
   320     for (int i = 0; i < length(); ++i) {
   321       thread_state(i).print_and_clear_promotion_failure_size();
   322     }
   323   }
   324 }
   326 void ParScanThreadStateSet::flush()
   327 {
   328   // Work in this loop should be kept as lightweight as
   329   // possible since this might otherwise become a bottleneck
   330   // to scaling. Should we add heavy-weight work into this
   331   // loop, consider parallelizing the loop into the worker threads.
   332   for (int i = 0; i < length(); ++i) {
   333     ParScanThreadState& par_scan_state = thread_state(i);
   335     // Flush stats related to To-space PLAB activity and
   336     // retire the last buffer.
   337     par_scan_state.to_space_alloc_buffer()->
   338       flush_stats_and_retire(_gen.plab_stats(),
   339                              false /* !retain */);
   341     // Every thread has its own age table.  We need to merge
   342     // them all into one.
   343     ageTable *local_table = par_scan_state.age_table();
   344     _gen.age_table()->merge(local_table);
   346     // Inform old gen that we're done.
   347     _next_gen.par_promote_alloc_done(i);
   348     _next_gen.par_oop_since_save_marks_iterate_done(i);
   350     // Flush stats related to work queue activity (push/pop/steal)
   351     // This could conceivably become a bottleneck; if so, we'll put the
   352     // stat's gathering under the flag.
   353     if (PAR_STATS_ENABLED) {
   354       _pushes += par_scan_state.pushes();
   355       _pops   += par_scan_state.pops();
   356       _steals += par_scan_state.steals();
   357       if (ParallelGCVerbose) {
   358         gclog_or_tty->print("Thread %d complete:\n"
   359                             "  Pushes: %7d    Pops: %7d    Steals %7d (in %d attempts)\n",
   360                             i, par_scan_state.pushes(), par_scan_state.pops(),
   361                             par_scan_state.steals(), par_scan_state.steal_attempts());
   362         if (par_scan_state.overflow_pushes() > 0 ||
   363             par_scan_state.overflow_refills() > 0) {
   364           gclog_or_tty->print("  Overflow pushes: %7d    "
   365                               "Overflow refills: %7d for %d objs.\n",
   366                               par_scan_state.overflow_pushes(),
   367                               par_scan_state.overflow_refills(),
   368                               par_scan_state.overflow_refill_objs());
   369         }
   371         double elapsed = par_scan_state.elapsed();
   372         double strong_roots = par_scan_state.strong_roots_time();
   373         double term = par_scan_state.term_time();
   374         gclog_or_tty->print(
   375                             "  Elapsed: %7.2f ms.\n"
   376                             "    Strong roots: %7.2f ms (%6.2f%%)\n"
   377                             "    Termination:  %7.2f ms (%6.2f%%) (in %d entries)\n",
   378                            elapsed * 1000.0,
   379                            strong_roots * 1000.0, (strong_roots*100.0/elapsed),
   380                            term * 1000.0, (term*100.0/elapsed),
   381                            par_scan_state.term_attempts());
   382       }
   383     }
   384   }
   385   if (UseConcMarkSweepGC && ParallelGCThreads > 0) {
   386     // We need to call this even when ResizeOldPLAB is disabled
   387     // so as to avoid breaking some asserts. While we may be able
   388     // to avoid this by reorganizing the code a bit, I am loathe
   389     // to do that unless we find cases where ergo leads to bad
   390     // performance.
   391     CFLS_LAB::compute_desired_plab_size();
   392   }
   393 }
   395 ParScanClosure::ParScanClosure(ParNewGeneration* g,
   396                                ParScanThreadState* par_scan_state) :
   397   OopsInGenClosure(g), _par_scan_state(par_scan_state), _g(g)
   398 {
   399   assert(_g->level() == 0, "Optimized for youngest generation");
   400   _boundary = _g->reserved().end();
   401 }
   403 void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
   404 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
   406 void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
   407 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
   409 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
   410 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
   412 void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
   413 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
   415 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
   416                                              ParScanThreadState* par_scan_state)
   417   : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
   418 {}
   420 void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
   421 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
   423 #ifdef WIN32
   424 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
   425 #endif
   427 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
   428     ParScanThreadState* par_scan_state_,
   429     ParScanWithoutBarrierClosure* to_space_closure_,
   430     ParScanWithBarrierClosure* old_gen_closure_,
   431     ParRootScanWithoutBarrierClosure* to_space_root_closure_,
   432     ParNewGeneration* par_gen_,
   433     ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
   434     ObjToScanQueueSet* task_queues_,
   435     ParallelTaskTerminator* terminator_) :
   437     _par_scan_state(par_scan_state_),
   438     _to_space_closure(to_space_closure_),
   439     _old_gen_closure(old_gen_closure_),
   440     _to_space_root_closure(to_space_root_closure_),
   441     _old_gen_root_closure(old_gen_root_closure_),
   442     _par_gen(par_gen_),
   443     _task_queues(task_queues_),
   444     _terminator(terminator_)
   445 {}
   447 void ParEvacuateFollowersClosure::do_void() {
   448   ObjToScanQueue* work_q = par_scan_state()->work_queue();
   450   while (true) {
   452     // Scan to-space and old-gen objs until we run out of both.
   453     oop obj_to_scan;
   454     par_scan_state()->trim_queues(0);
   456     // We have no local work, attempt to steal from other threads.
   458     // attempt to steal work from promoted.
   459     par_scan_state()->note_steal_attempt();
   460     if (task_queues()->steal(par_scan_state()->thread_num(),
   461                              par_scan_state()->hash_seed(),
   462                              obj_to_scan)) {
   463       par_scan_state()->note_steal();
   464       bool res = work_q->push(obj_to_scan);
   465       assert(res, "Empty queue should have room for a push.");
   467       par_scan_state()->note_push();
   468       //   if successful, goto Start.
   469       continue;
   471       // try global overflow list.
   472     } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
   473       continue;
   474     }
   476     // Otherwise, offer termination.
   477     par_scan_state()->start_term_time();
   478     if (terminator()->offer_termination()) break;
   479     par_scan_state()->end_term_time();
   480   }
   481   assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
   482          "Broken overflow list?");
   483   // Finish the last termination pause.
   484   par_scan_state()->end_term_time();
   485 }
   487 ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
   488                 HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
   489     AbstractGangTask("ParNewGeneration collection"),
   490     _gen(gen), _next_gen(next_gen),
   491     _young_old_boundary(young_old_boundary),
   492     _state_set(state_set)
   493   {}
   495 void ParNewGenTask::work(int i) {
   496   GenCollectedHeap* gch = GenCollectedHeap::heap();
   497   // Since this is being done in a separate thread, need new resource
   498   // and handle marks.
   499   ResourceMark rm;
   500   HandleMark hm;
   501   // We would need multiple old-gen queues otherwise.
   502   assert(gch->n_gens() == 2, "Par young collection currently only works with one older gen.");
   504   Generation* old_gen = gch->next_gen(_gen);
   506   ParScanThreadState& par_scan_state = _state_set->thread_state(i);
   507   par_scan_state.set_young_old_boundary(_young_old_boundary);
   509   par_scan_state.start_strong_roots();
   510   gch->gen_process_strong_roots(_gen->level(),
   511                                 true,  // Process younger gens, if any,
   512                                        // as strong roots.
   513                                 false, // no scope; this is parallel code
   514                                 false, // not collecting perm generation.
   515                                 SharedHeap::SO_AllClasses,
   516                                 &par_scan_state.to_space_root_closure(),
   517                                 true,   // walk *all* scavengable nmethods
   518                                 &par_scan_state.older_gen_closure());
   519   par_scan_state.end_strong_roots();
   521   // "evacuate followers".
   522   par_scan_state.evacuate_followers_closure().do_void();
   523 }
   525 #ifdef _MSC_VER
   526 #pragma warning( push )
   527 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   528 #endif
   529 ParNewGeneration::
   530 ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
   531   : DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
   532   _overflow_list(NULL),
   533   _is_alive_closure(this),
   534   _plab_stats(YoungPLABSize, PLABWeight)
   535 {
   536   NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
   537   NOT_PRODUCT(_num_par_pushes = 0;)
   538   _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
   539   guarantee(_task_queues != NULL, "task_queues allocation failure.");
   541   for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
   542     ObjToScanQueuePadded *q_padded = new ObjToScanQueuePadded();
   543     guarantee(q_padded != NULL, "work_queue Allocation failure.");
   545     _task_queues->register_queue(i1, &q_padded->work_queue);
   546   }
   548   for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
   549     _task_queues->queue(i2)->initialize();
   551   _overflow_stacks = NEW_C_HEAP_ARRAY(GrowableArray<oop>*, ParallelGCThreads);
   552   guarantee(_overflow_stacks != NULL, "Overflow stack set allocation failure");
   553   for (uint i = 0; i < ParallelGCThreads; i++) {
   554     if (ParGCUseLocalOverflow) {
   555       _overflow_stacks[i] = new (ResourceObj::C_HEAP) GrowableArray<oop>(512, true);
   556       guarantee(_overflow_stacks[i] != NULL, "Overflow Stack allocation failure.");
   557     } else {
   558       _overflow_stacks[i] = NULL;
   559     }
   560   }
   562   if (UsePerfData) {
   563     EXCEPTION_MARK;
   564     ResourceMark rm;
   566     const char* cname =
   567          PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
   568     PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
   569                                      ParallelGCThreads, CHECK);
   570   }
   571 }
   572 #ifdef _MSC_VER
   573 #pragma warning( pop )
   574 #endif
   576 // ParNewGeneration::
   577 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
   578   DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
   580 template <class T>
   581 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
   582 #ifdef ASSERT
   583   {
   584     assert(!oopDesc::is_null(*p), "expected non-null ref");
   585     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   586     // We never expect to see a null reference being processed
   587     // as a weak reference.
   588     assert(obj->is_oop(), "expected an oop while scanning weak refs");
   589   }
   590 #endif // ASSERT
   592   _par_cl->do_oop_nv(p);
   594   if (Universe::heap()->is_in_reserved(p)) {
   595     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   596     _rs->write_ref_field_gc_par(p, obj);
   597   }
   598 }
   600 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
   601 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
   603 // ParNewGeneration::
   604 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
   605   DefNewGeneration::KeepAliveClosure(cl) {}
   607 template <class T>
   608 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
   609 #ifdef ASSERT
   610   {
   611     assert(!oopDesc::is_null(*p), "expected non-null ref");
   612     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   613     // We never expect to see a null reference being processed
   614     // as a weak reference.
   615     assert(obj->is_oop(), "expected an oop while scanning weak refs");
   616   }
   617 #endif // ASSERT
   619   _cl->do_oop_nv(p);
   621   if (Universe::heap()->is_in_reserved(p)) {
   622     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
   623     _rs->write_ref_field_gc_par(p, obj);
   624   }
   625 }
   627 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
   628 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
   630 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
   631   T heap_oop = oopDesc::load_heap_oop(p);
   632   if (!oopDesc::is_null(heap_oop)) {
   633     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   634     if ((HeapWord*)obj < _boundary) {
   635       assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
   636       oop new_obj = obj->is_forwarded()
   637                       ? obj->forwardee()
   638                       : _g->DefNewGeneration::copy_to_survivor_space(obj);
   639       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
   640     }
   641     if (_gc_barrier) {
   642       // If p points to a younger generation, mark the card.
   643       if ((HeapWord*)obj < _gen_boundary) {
   644         _rs->write_ref_field_gc_par(p, obj);
   645       }
   646     }
   647   }
   648 }
   650 void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
   651 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
   653 class ParNewRefProcTaskProxy: public AbstractGangTask {
   654   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
   655 public:
   656   ParNewRefProcTaskProxy(ProcessTask& task, ParNewGeneration& gen,
   657                          Generation& next_gen,
   658                          HeapWord* young_old_boundary,
   659                          ParScanThreadStateSet& state_set);
   661 private:
   662   virtual void work(int i);
   664 private:
   665   ParNewGeneration&      _gen;
   666   ProcessTask&           _task;
   667   Generation&            _next_gen;
   668   HeapWord*              _young_old_boundary;
   669   ParScanThreadStateSet& _state_set;
   670 };
   672 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(
   673     ProcessTask& task, ParNewGeneration& gen,
   674     Generation& next_gen,
   675     HeapWord* young_old_boundary,
   676     ParScanThreadStateSet& state_set)
   677   : AbstractGangTask("ParNewGeneration parallel reference processing"),
   678     _gen(gen),
   679     _task(task),
   680     _next_gen(next_gen),
   681     _young_old_boundary(young_old_boundary),
   682     _state_set(state_set)
   683 {
   684 }
   686 void ParNewRefProcTaskProxy::work(int i)
   687 {
   688   ResourceMark rm;
   689   HandleMark hm;
   690   ParScanThreadState& par_scan_state = _state_set.thread_state(i);
   691   par_scan_state.set_young_old_boundary(_young_old_boundary);
   692   _task.work(i, par_scan_state.is_alive_closure(),
   693              par_scan_state.keep_alive_closure(),
   694              par_scan_state.evacuate_followers_closure());
   695 }
   697 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
   698   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
   699   EnqueueTask& _task;
   701 public:
   702   ParNewRefEnqueueTaskProxy(EnqueueTask& task)
   703     : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
   704       _task(task)
   705   { }
   707   virtual void work(int i)
   708   {
   709     _task.work(i);
   710   }
   711 };
   714 void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
   715 {
   716   GenCollectedHeap* gch = GenCollectedHeap::heap();
   717   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   718          "not a generational heap");
   719   WorkGang* workers = gch->workers();
   720   assert(workers != NULL, "Need parallel worker threads.");
   721   ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
   722                                  _generation.reserved().end(), _state_set);
   723   workers->run_task(&rp_task);
   724   _state_set.reset(_generation.promotion_failed());
   725 }
   727 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
   728 {
   729   GenCollectedHeap* gch = GenCollectedHeap::heap();
   730   WorkGang* workers = gch->workers();
   731   assert(workers != NULL, "Need parallel worker threads.");
   732   ParNewRefEnqueueTaskProxy enq_task(task);
   733   workers->run_task(&enq_task);
   734 }
   736 void ParNewRefProcTaskExecutor::set_single_threaded_mode()
   737 {
   738   _state_set.flush();
   739   GenCollectedHeap* gch = GenCollectedHeap::heap();
   740   gch->set_par_threads(0);  // 0 ==> non-parallel.
   741   gch->save_marks();
   742 }
   744 ScanClosureWithParBarrier::
   745 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
   746   ScanClosure(g, gc_barrier) {}
   748 EvacuateFollowersClosureGeneral::
   749 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
   750                                 OopsInGenClosure* cur,
   751                                 OopsInGenClosure* older) :
   752   _gch(gch), _level(level),
   753   _scan_cur_or_nonheap(cur), _scan_older(older)
   754 {}
   756 void EvacuateFollowersClosureGeneral::do_void() {
   757   do {
   758     // Beware: this call will lead to closure applications via virtual
   759     // calls.
   760     _gch->oop_since_save_marks_iterate(_level,
   761                                        _scan_cur_or_nonheap,
   762                                        _scan_older);
   763   } while (!_gch->no_allocs_since_save_marks(_level));
   764 }
   767 bool ParNewGeneration::_avoid_promotion_undo = false;
   769 void ParNewGeneration::adjust_desired_tenuring_threshold() {
   770   // Set the desired survivor size to half the real survivor space
   771   _tenuring_threshold =
   772     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize);
   773 }
   775 // A Generation that does parallel young-gen collection.
   777 void ParNewGeneration::collect(bool   full,
   778                                bool   clear_all_soft_refs,
   779                                size_t size,
   780                                bool   is_tlab) {
   781   assert(full || size > 0, "otherwise we don't want to collect");
   782   GenCollectedHeap* gch = GenCollectedHeap::heap();
   783   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
   784     "not a CMS generational heap");
   785   AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
   786   WorkGang* workers = gch->workers();
   787   _next_gen = gch->next_gen(this);
   788   assert(_next_gen != NULL,
   789     "This must be the youngest gen, and not the only gen");
   790   assert(gch->n_gens() == 2,
   791          "Par collection currently only works with single older gen.");
   792   // Do we have to avoid promotion_undo?
   793   if (gch->collector_policy()->is_concurrent_mark_sweep_policy()) {
   794     set_avoid_promotion_undo(true);
   795   }
   797   // If the next generation is too full to accomodate worst-case promotion
   798   // from this generation, pass on collection; let the next generation
   799   // do it.
   800   if (!collection_attempt_is_safe()) {
   801     gch->set_incremental_collection_will_fail();
   802     return;
   803   }
   804   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
   806   init_assuming_no_promotion_failure();
   808   if (UseAdaptiveSizePolicy) {
   809     set_survivor_overflow(false);
   810     size_policy->minor_collection_begin();
   811   }
   813   TraceTime t1("GC", PrintGC && !PrintGCDetails, true, gclog_or_tty);
   814   // Capture heap used before collection (for printing).
   815   size_t gch_prev_used = gch->used();
   817   SpecializationStats::clear();
   819   age_table()->clear();
   820   to()->clear(SpaceDecorator::Mangle);
   822   gch->save_marks();
   823   assert(workers != NULL, "Need parallel worker threads.");
   824   ParallelTaskTerminator _term(workers->total_workers(), task_queues());
   825   ParScanThreadStateSet thread_state_set(workers->total_workers(),
   826                                          *to(), *this, *_next_gen, *task_queues(),
   827                                          _overflow_stacks, desired_plab_sz(), _term);
   829   ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
   830   int n_workers = workers->total_workers();
   831   gch->set_par_threads(n_workers);
   832   gch->rem_set()->prepare_for_younger_refs_iterate(true);
   833   // It turns out that even when we're using 1 thread, doing the work in a
   834   // separate thread causes wide variance in run times.  We can't help this
   835   // in the multi-threaded case, but we special-case n=1 here to get
   836   // repeatable measurements of the 1-thread overhead of the parallel code.
   837   if (n_workers > 1) {
   838     GenCollectedHeap::StrongRootsScope srs(gch);
   839     workers->run_task(&tsk);
   840   } else {
   841     GenCollectedHeap::StrongRootsScope srs(gch);
   842     tsk.work(0);
   843   }
   844   thread_state_set.reset(promotion_failed());
   846   if (PAR_STATS_ENABLED && ParallelGCVerbose) {
   847     gclog_or_tty->print("Thread totals:\n"
   848                "  Pushes: %7d    Pops: %7d    Steals %7d (sum = %7d).\n",
   849                thread_state_set.pushes(), thread_state_set.pops(),
   850                thread_state_set.steals(),
   851                thread_state_set.pops()+thread_state_set.steals());
   852   }
   853   assert(thread_state_set.pushes() == thread_state_set.pops()
   854                                     + thread_state_set.steals(),
   855          "Or else the queues are leaky.");
   857   // Process (weak) reference objects found during scavenge.
   858   ReferenceProcessor* rp = ref_processor();
   859   IsAliveClosure is_alive(this);
   860   ScanWeakRefClosure scan_weak_ref(this);
   861   KeepAliveClosure keep_alive(&scan_weak_ref);
   862   ScanClosure               scan_without_gc_barrier(this, false);
   863   ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
   864   set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
   865   EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
   866     &scan_without_gc_barrier, &scan_with_gc_barrier);
   867   rp->setup_policy(clear_all_soft_refs);
   868   if (rp->processing_is_mt()) {
   869     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
   870     rp->process_discovered_references(&is_alive, &keep_alive,
   871                                       &evacuate_followers, &task_executor);
   872   } else {
   873     thread_state_set.flush();
   874     gch->set_par_threads(0);  // 0 ==> non-parallel.
   875     gch->save_marks();
   876     rp->process_discovered_references(&is_alive, &keep_alive,
   877                                       &evacuate_followers, NULL);
   878   }
   879   if (!promotion_failed()) {
   880     // Swap the survivor spaces.
   881     eden()->clear(SpaceDecorator::Mangle);
   882     from()->clear(SpaceDecorator::Mangle);
   883     if (ZapUnusedHeapArea) {
   884       // This is now done here because of the piece-meal mangling which
   885       // can check for valid mangling at intermediate points in the
   886       // collection(s).  When a minor collection fails to collect
   887       // sufficient space resizing of the young generation can occur
   888       // an redistribute the spaces in the young generation.  Mangle
   889       // here so that unzapped regions don't get distributed to
   890       // other spaces.
   891       to()->mangle_unused_area();
   892     }
   893     swap_spaces();
   895     // A successful scavenge should restart the GC time limit count which is
   896     // for full GC's.
   897     size_policy->reset_gc_overhead_limit_count();
   899     assert(to()->is_empty(), "to space should be empty now");
   900   } else {
   901     assert(HandlePromotionFailure,
   902       "Should only be here if promotion failure handling is on");
   903     if (_promo_failure_scan_stack != NULL) {
   904       // Can be non-null because of reference processing.
   905       // Free stack with its elements.
   906       delete _promo_failure_scan_stack;
   907       _promo_failure_scan_stack = NULL;
   908     }
   909     remove_forwarding_pointers();
   910     if (PrintGCDetails) {
   911       gclog_or_tty->print(" (promotion failed)");
   912     }
   913     // All the spaces are in play for mark-sweep.
   914     swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
   915     from()->set_next_compaction_space(to());
   916     gch->set_incremental_collection_will_fail();
   917     // Inform the next generation that a promotion failure occurred.
   918     _next_gen->promotion_failure_occurred();
   920     // Reset the PromotionFailureALot counters.
   921     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
   922   }
   923   // set new iteration safe limit for the survivor spaces
   924   from()->set_concurrent_iteration_safe_limit(from()->top());
   925   to()->set_concurrent_iteration_safe_limit(to()->top());
   927   adjust_desired_tenuring_threshold();
   928   if (ResizePLAB) {
   929     plab_stats()->adjust_desired_plab_sz();
   930   }
   932   if (PrintGC && !PrintGCDetails) {
   933     gch->print_heap_change(gch_prev_used);
   934   }
   936   if (UseAdaptiveSizePolicy) {
   937     size_policy->minor_collection_end(gch->gc_cause());
   938     size_policy->avg_survived()->sample(from()->used());
   939   }
   941   update_time_of_last_gc(os::javaTimeMillis());
   943   SpecializationStats::print();
   945   rp->set_enqueuing_is_done(true);
   946   if (rp->processing_is_mt()) {
   947     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
   948     rp->enqueue_discovered_references(&task_executor);
   949   } else {
   950     rp->enqueue_discovered_references(NULL);
   951   }
   952   rp->verify_no_references_recorded();
   953 }
   955 static int sum;
   956 void ParNewGeneration::waste_some_time() {
   957   for (int i = 0; i < 100; i++) {
   958     sum += i;
   959   }
   960 }
   962 static const oop ClaimedForwardPtr = oop(0x4);
   964 // Because of concurrency, there are times where an object for which
   965 // "is_forwarded()" is true contains an "interim" forwarding pointer
   966 // value.  Such a value will soon be overwritten with a real value.
   967 // This method requires "obj" to have a forwarding pointer, and waits, if
   968 // necessary for a real one to be inserted, and returns it.
   970 oop ParNewGeneration::real_forwardee(oop obj) {
   971   oop forward_ptr = obj->forwardee();
   972   if (forward_ptr != ClaimedForwardPtr) {
   973     return forward_ptr;
   974   } else {
   975     return real_forwardee_slow(obj);
   976   }
   977 }
   979 oop ParNewGeneration::real_forwardee_slow(oop obj) {
   980   // Spin-read if it is claimed but not yet written by another thread.
   981   oop forward_ptr = obj->forwardee();
   982   while (forward_ptr == ClaimedForwardPtr) {
   983     waste_some_time();
   984     assert(obj->is_forwarded(), "precondition");
   985     forward_ptr = obj->forwardee();
   986   }
   987   return forward_ptr;
   988 }
   990 #ifdef ASSERT
   991 bool ParNewGeneration::is_legal_forward_ptr(oop p) {
   992   return
   993     (_avoid_promotion_undo && p == ClaimedForwardPtr)
   994     || Universe::heap()->is_in_reserved(p);
   995 }
   996 #endif
   998 void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
   999   if ((m != markOopDesc::prototype()) &&
  1000       (!UseBiasedLocking || (m != markOopDesc::biased_locking_prototype()))) {
  1001     MutexLocker ml(ParGCRareEvent_lock);
  1002     DefNewGeneration::preserve_mark_if_necessary(obj, m);
  1006 // Multiple GC threads may try to promote an object.  If the object
  1007 // is successfully promoted, a forwarding pointer will be installed in
  1008 // the object in the young generation.  This method claims the right
  1009 // to install the forwarding pointer before it copies the object,
  1010 // thus avoiding the need to undo the copy as in
  1011 // copy_to_survivor_space_avoiding_with_undo.
  1013 oop ParNewGeneration::copy_to_survivor_space_avoiding_promotion_undo(
  1014         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
  1015   // In the sequential version, this assert also says that the object is
  1016   // not forwarded.  That might not be the case here.  It is the case that
  1017   // the caller observed it to be not forwarded at some time in the past.
  1018   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
  1020   // The sequential code read "old->age()" below.  That doesn't work here,
  1021   // since the age is in the mark word, and that might be overwritten with
  1022   // a forwarding pointer by a parallel thread.  So we must save the mark
  1023   // word in a local and then analyze it.
  1024   oopDesc dummyOld;
  1025   dummyOld.set_mark(m);
  1026   assert(!dummyOld.is_forwarded(),
  1027          "should not be called with forwarding pointer mark word.");
  1029   oop new_obj = NULL;
  1030   oop forward_ptr;
  1032   // Try allocating obj in to-space (unless too old)
  1033   if (dummyOld.age() < tenuring_threshold()) {
  1034     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
  1035     if (new_obj == NULL) {
  1036       set_survivor_overflow(true);
  1040   if (new_obj == NULL) {
  1041     // Either to-space is full or we decided to promote
  1042     // try allocating obj tenured
  1044     // Attempt to install a null forwarding pointer (atomically),
  1045     // to claim the right to install the real forwarding pointer.
  1046     forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
  1047     if (forward_ptr != NULL) {
  1048       // someone else beat us to it.
  1049         return real_forwardee(old);
  1052     new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
  1053                                        old, m, sz);
  1055     if (new_obj == NULL) {
  1056       if (!HandlePromotionFailure) {
  1057         // A failed promotion likely means the MaxLiveObjectEvacuationRatio flag
  1058         // is incorrectly set. In any case, its seriously wrong to be here!
  1059         vm_exit_out_of_memory(sz*wordSize, "promotion");
  1061       // promotion failed, forward to self
  1062       _promotion_failed = true;
  1063       new_obj = old;
  1065       preserve_mark_if_necessary(old, m);
  1066       // Log the size of the maiden promotion failure
  1067       par_scan_state->log_promotion_failure(sz);
  1070     old->forward_to(new_obj);
  1071     forward_ptr = NULL;
  1072   } else {
  1073     // Is in to-space; do copying ourselves.
  1074     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
  1075     forward_ptr = old->forward_to_atomic(new_obj);
  1076     // Restore the mark word copied above.
  1077     new_obj->set_mark(m);
  1078     // Increment age if obj still in new generation
  1079     new_obj->incr_age();
  1080     par_scan_state->age_table()->add(new_obj, sz);
  1082   assert(new_obj != NULL, "just checking");
  1084   if (forward_ptr == NULL) {
  1085     oop obj_to_push = new_obj;
  1086     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
  1087       // Length field used as index of next element to be scanned.
  1088       // Real length can be obtained from real_forwardee()
  1089       arrayOop(old)->set_length(0);
  1090       obj_to_push = old;
  1091       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
  1092              "push forwarded object");
  1094     // Push it on one of the queues of to-be-scanned objects.
  1095     bool simulate_overflow = false;
  1096     NOT_PRODUCT(
  1097       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
  1098         // simulate a stack overflow
  1099         simulate_overflow = true;
  1102     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
  1103       // Add stats for overflow pushes.
  1104       if (Verbose && PrintGCDetails) {
  1105         gclog_or_tty->print("queue overflow!\n");
  1107       push_on_overflow_list(old, par_scan_state);
  1108       par_scan_state->note_overflow_push();
  1110     par_scan_state->note_push();
  1112     return new_obj;
  1115   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
  1116   // allocate it?
  1117   if (is_in_reserved(new_obj)) {
  1118     // Must be in to_space.
  1119     assert(to()->is_in_reserved(new_obj), "Checking");
  1120     if (forward_ptr == ClaimedForwardPtr) {
  1121       // Wait to get the real forwarding pointer value.
  1122       forward_ptr = real_forwardee(old);
  1124     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
  1127   return forward_ptr;
  1131 // Multiple GC threads may try to promote the same object.  If two
  1132 // or more GC threads copy the object, only one wins the race to install
  1133 // the forwarding pointer.  The other threads have to undo their copy.
  1135 oop ParNewGeneration::copy_to_survivor_space_with_undo(
  1136         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
  1138   // In the sequential version, this assert also says that the object is
  1139   // not forwarded.  That might not be the case here.  It is the case that
  1140   // the caller observed it to be not forwarded at some time in the past.
  1141   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
  1143   // The sequential code read "old->age()" below.  That doesn't work here,
  1144   // since the age is in the mark word, and that might be overwritten with
  1145   // a forwarding pointer by a parallel thread.  So we must save the mark
  1146   // word here, install it in a local oopDesc, and then analyze it.
  1147   oopDesc dummyOld;
  1148   dummyOld.set_mark(m);
  1149   assert(!dummyOld.is_forwarded(),
  1150          "should not be called with forwarding pointer mark word.");
  1152   bool failed_to_promote = false;
  1153   oop new_obj = NULL;
  1154   oop forward_ptr;
  1156   // Try allocating obj in to-space (unless too old)
  1157   if (dummyOld.age() < tenuring_threshold()) {
  1158     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
  1159     if (new_obj == NULL) {
  1160       set_survivor_overflow(true);
  1164   if (new_obj == NULL) {
  1165     // Either to-space is full or we decided to promote
  1166     // try allocating obj tenured
  1167     new_obj = _next_gen->par_promote(par_scan_state->thread_num(),
  1168                                        old, m, sz);
  1170     if (new_obj == NULL) {
  1171       if (!HandlePromotionFailure) {
  1172         // A failed promotion likely means the MaxLiveObjectEvacuationRatio
  1173         // flag is incorrectly set. In any case, its seriously wrong to be
  1174         // here!
  1175         vm_exit_out_of_memory(sz*wordSize, "promotion");
  1177       // promotion failed, forward to self
  1178       forward_ptr = old->forward_to_atomic(old);
  1179       new_obj = old;
  1181       if (forward_ptr != NULL) {
  1182         return forward_ptr;   // someone else succeeded
  1185       _promotion_failed = true;
  1186       failed_to_promote = true;
  1188       preserve_mark_if_necessary(old, m);
  1189       // Log the size of the maiden promotion failure
  1190       par_scan_state->log_promotion_failure(sz);
  1192   } else {
  1193     // Is in to-space; do copying ourselves.
  1194     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
  1195     // Restore the mark word copied above.
  1196     new_obj->set_mark(m);
  1197     // Increment age if new_obj still in new generation
  1198     new_obj->incr_age();
  1199     par_scan_state->age_table()->add(new_obj, sz);
  1201   assert(new_obj != NULL, "just checking");
  1203   // Now attempt to install the forwarding pointer (atomically).
  1204   // We have to copy the mark word before overwriting with forwarding
  1205   // ptr, so we can restore it below in the copy.
  1206   if (!failed_to_promote) {
  1207     forward_ptr = old->forward_to_atomic(new_obj);
  1210   if (forward_ptr == NULL) {
  1211     oop obj_to_push = new_obj;
  1212     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
  1213       // Length field used as index of next element to be scanned.
  1214       // Real length can be obtained from real_forwardee()
  1215       arrayOop(old)->set_length(0);
  1216       obj_to_push = old;
  1217       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
  1218              "push forwarded object");
  1220     // Push it on one of the queues of to-be-scanned objects.
  1221     bool simulate_overflow = false;
  1222     NOT_PRODUCT(
  1223       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
  1224         // simulate a stack overflow
  1225         simulate_overflow = true;
  1228     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
  1229       // Add stats for overflow pushes.
  1230       push_on_overflow_list(old, par_scan_state);
  1231       par_scan_state->note_overflow_push();
  1233     par_scan_state->note_push();
  1235     return new_obj;
  1238   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
  1239   // allocate it?
  1240   if (is_in_reserved(new_obj)) {
  1241     // Must be in to_space.
  1242     assert(to()->is_in_reserved(new_obj), "Checking");
  1243     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
  1244   } else {
  1245     assert(!_avoid_promotion_undo, "Should not be here if avoiding.");
  1246     _next_gen->par_promote_alloc_undo(par_scan_state->thread_num(),
  1247                                       (HeapWord*)new_obj, sz);
  1250   return forward_ptr;
  1253 #ifndef PRODUCT
  1254 // It's OK to call this multi-threaded;  the worst thing
  1255 // that can happen is that we'll get a bunch of closely
  1256 // spaced simulated oveflows, but that's OK, in fact
  1257 // probably good as it would exercise the overflow code
  1258 // under contention.
  1259 bool ParNewGeneration::should_simulate_overflow() {
  1260   if (_overflow_counter-- <= 0) { // just being defensive
  1261     _overflow_counter = ParGCWorkQueueOverflowInterval;
  1262     return true;
  1263   } else {
  1264     return false;
  1267 #endif
  1269 // In case we are using compressed oops, we need to be careful.
  1270 // If the object being pushed is an object array, then its length
  1271 // field keeps track of the "grey boundary" at which the next
  1272 // incremental scan will be done (see ParGCArrayScanChunk).
  1273 // When using compressed oops, this length field is kept in the
  1274 // lower 32 bits of the erstwhile klass word and cannot be used
  1275 // for the overflow chaining pointer (OCP below). As such the OCP
  1276 // would itself need to be compressed into the top 32-bits in this
  1277 // case. Unfortunately, see below, in the event that we have a
  1278 // promotion failure, the node to be pushed on the list can be
  1279 // outside of the Java heap, so the heap-based pointer compression
  1280 // would not work (we would have potential aliasing between C-heap
  1281 // and Java-heap pointers). For this reason, when using compressed
  1282 // oops, we simply use a worker-thread-local, non-shared overflow
  1283 // list in the form of a growable array, with a slightly different
  1284 // overflow stack draining strategy. If/when we start using fat
  1285 // stacks here, we can go back to using (fat) pointer chains
  1286 // (although some performance comparisons would be useful since
  1287 // single global lists have their own performance disadvantages
  1288 // as we were made painfully aware not long ago, see 6786503).
  1289 #define BUSY (oop(0x1aff1aff))
  1290 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
  1291   assert(is_in_reserved(from_space_obj), "Should be from this generation");
  1292   if (ParGCUseLocalOverflow) {
  1293     // In the case of compressed oops, we use a private, not-shared
  1294     // overflow stack.
  1295     par_scan_state->push_on_overflow_stack(from_space_obj);
  1296   } else {
  1297     assert(!UseCompressedOops, "Error");
  1298     // if the object has been forwarded to itself, then we cannot
  1299     // use the klass pointer for the linked list.  Instead we have
  1300     // to allocate an oopDesc in the C-Heap and use that for the linked list.
  1301     // XXX This is horribly inefficient when a promotion failure occurs
  1302     // and should be fixed. XXX FIX ME !!!
  1303 #ifndef PRODUCT
  1304     Atomic::inc_ptr(&_num_par_pushes);
  1305     assert(_num_par_pushes > 0, "Tautology");
  1306 #endif
  1307     if (from_space_obj->forwardee() == from_space_obj) {
  1308       oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1);
  1309       listhead->forward_to(from_space_obj);
  1310       from_space_obj = listhead;
  1312     oop observed_overflow_list = _overflow_list;
  1313     oop cur_overflow_list;
  1314     do {
  1315       cur_overflow_list = observed_overflow_list;
  1316       if (cur_overflow_list != BUSY) {
  1317         from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
  1318       } else {
  1319         from_space_obj->set_klass_to_list_ptr(NULL);
  1321       observed_overflow_list =
  1322         (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
  1323     } while (cur_overflow_list != observed_overflow_list);
  1327 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
  1328   bool res;
  1330   if (ParGCUseLocalOverflow) {
  1331     res = par_scan_state->take_from_overflow_stack();
  1332   } else {
  1333     assert(!UseCompressedOops, "Error");
  1334     res = take_from_overflow_list_work(par_scan_state);
  1336   return res;
  1340 // *NOTE*: The overflow list manipulation code here and
  1341 // in CMSCollector:: are very similar in shape,
  1342 // except that in the CMS case we thread the objects
  1343 // directly into the list via their mark word, and do
  1344 // not need to deal with special cases below related
  1345 // to chunking of object arrays and promotion failure
  1346 // handling.
  1347 // CR 6797058 has been filed to attempt consolidation of
  1348 // the common code.
  1349 // Because of the common code, if you make any changes in
  1350 // the code below, please check the CMS version to see if
  1351 // similar changes might be needed.
  1352 // See CMSCollector::par_take_from_overflow_list() for
  1353 // more extensive documentation comments.
  1354 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
  1355   ObjToScanQueue* work_q = par_scan_state->work_queue();
  1356   // How many to take?
  1357   size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
  1358                                  (size_t)ParGCDesiredObjsFromOverflowList);
  1360   assert(par_scan_state->overflow_stack() == NULL, "Error");
  1361   assert(!UseCompressedOops, "Error");
  1362   if (_overflow_list == NULL) return false;
  1364   // Otherwise, there was something there; try claiming the list.
  1365   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
  1366   // Trim off a prefix of at most objsFromOverflow items
  1367   Thread* tid = Thread::current();
  1368   size_t spin_count = (size_t)ParallelGCThreads;
  1369   size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
  1370   for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
  1371     // someone grabbed it before we did ...
  1372     // ... we spin for a short while...
  1373     os::sleep(tid, sleep_time_millis, false);
  1374     if (_overflow_list == NULL) {
  1375       // nothing left to take
  1376       return false;
  1377     } else if (_overflow_list != BUSY) {
  1378      // try and grab the prefix
  1379      prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
  1382   if (prefix == NULL || prefix == BUSY) {
  1383      // Nothing to take or waited long enough
  1384      if (prefix == NULL) {
  1385        // Write back the NULL in case we overwrote it with BUSY above
  1386        // and it is still the same value.
  1387        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  1389      return false;
  1391   assert(prefix != NULL && prefix != BUSY, "Error");
  1392   size_t i = 1;
  1393   oop cur = prefix;
  1394   while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
  1395     i++; cur = oop(cur->klass());
  1398   // Reattach remaining (suffix) to overflow list
  1399   if (cur->klass_or_null() == NULL) {
  1400     // Write back the NULL in lieu of the BUSY we wrote
  1401     // above and it is still the same value.
  1402     if (_overflow_list == BUSY) {
  1403       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
  1405   } else {
  1406     assert(cur->klass_or_null() != BUSY, "Error");
  1407     oop suffix = oop(cur->klass());       // suffix will be put back on global list
  1408     cur->set_klass_to_list_ptr(NULL);     // break off suffix
  1409     // It's possible that the list is still in the empty(busy) state
  1410     // we left it in a short while ago; in that case we may be
  1411     // able to place back the suffix.
  1412     oop observed_overflow_list = _overflow_list;
  1413     oop cur_overflow_list = observed_overflow_list;
  1414     bool attached = false;
  1415     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
  1416       observed_overflow_list =
  1417         (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
  1418       if (cur_overflow_list == observed_overflow_list) {
  1419         attached = true;
  1420         break;
  1421       } else cur_overflow_list = observed_overflow_list;
  1423     if (!attached) {
  1424       // Too bad, someone else got in in between; we'll need to do a splice.
  1425       // Find the last item of suffix list
  1426       oop last = suffix;
  1427       while (last->klass_or_null() != NULL) {
  1428         last = oop(last->klass());
  1430       // Atomically prepend suffix to current overflow list
  1431       observed_overflow_list = _overflow_list;
  1432       do {
  1433         cur_overflow_list = observed_overflow_list;
  1434         if (cur_overflow_list != BUSY) {
  1435           // Do the splice ...
  1436           last->set_klass_to_list_ptr(cur_overflow_list);
  1437         } else { // cur_overflow_list == BUSY
  1438           last->set_klass_to_list_ptr(NULL);
  1440         observed_overflow_list =
  1441           (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
  1442       } while (cur_overflow_list != observed_overflow_list);
  1446   // Push objects on prefix list onto this thread's work queue
  1447   assert(prefix != NULL && prefix != BUSY, "program logic");
  1448   cur = prefix;
  1449   ssize_t n = 0;
  1450   while (cur != NULL) {
  1451     oop obj_to_push = cur->forwardee();
  1452     oop next        = oop(cur->klass_or_null());
  1453     cur->set_klass(obj_to_push->klass());
  1454     // This may be an array object that is self-forwarded. In that case, the list pointer
  1455     // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
  1456     if (!is_in_reserved(cur)) {
  1457       // This can become a scaling bottleneck when there is work queue overflow coincident
  1458       // with promotion failure.
  1459       oopDesc* f = cur;
  1460       FREE_C_HEAP_ARRAY(oopDesc, f);
  1461     } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
  1462       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
  1463       obj_to_push = cur;
  1465     bool ok = work_q->push(obj_to_push);
  1466     assert(ok, "Should have succeeded");
  1467     cur = next;
  1468     n++;
  1470   par_scan_state->note_overflow_refill(n);
  1471 #ifndef PRODUCT
  1472   assert(_num_par_pushes >= n, "Too many pops?");
  1473   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
  1474 #endif
  1475   return true;
  1477 #undef BUSY
  1479 void ParNewGeneration::ref_processor_init()
  1481   if (_ref_processor == NULL) {
  1482     // Allocate and initialize a reference processor
  1483     _ref_processor = ReferenceProcessor::create_ref_processor(
  1484         _reserved,                  // span
  1485         refs_discovery_is_atomic(), // atomic_discovery
  1486         refs_discovery_is_mt(),     // mt_discovery
  1487         NULL,                       // is_alive_non_header
  1488         ParallelGCThreads,
  1489         ParallelRefProcEnabled);
  1493 const char* ParNewGeneration::name() const {
  1494   return "par new generation";

mercurial