src/share/vm/memory/genCollectedHeap.cpp

Sun, 11 Jan 2009 16:58:24 -0800

author
jmasa
date
Sun, 11 Jan 2009 16:58:24 -0800
changeset 953
0af8b0718fc9
parent 952
e9be0e04635a
child 981
05c6d52fa7a9
permissions
-rw-r--r--

6692899: CMS: many vm.parallel_class_loading tests fail with assert "missing Printezis mark"
Summary: The CMS concurrent precleaning and concurrent marking phases should work around classes that are undergoing redefinition.
Reviewed-by: ysr, dcubed

     1 /*
     2  * Copyright 2000-2008 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 # include "incls/_precompiled.incl"
    26 # include "incls/_genCollectedHeap.cpp.incl"
    28 GenCollectedHeap* GenCollectedHeap::_gch;
    29 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
    31 // The set of potentially parallel tasks in strong root scanning.
    32 enum GCH_process_strong_roots_tasks {
    33   // We probably want to parallelize both of these internally, but for now...
    34   GCH_PS_younger_gens,
    35   // Leave this one last.
    36   GCH_PS_NumElements
    37 };
    39 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
    40   SharedHeap(policy),
    41   _gen_policy(policy),
    42   _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
    43   _full_collections_completed(0)
    44 {
    45   if (_gen_process_strong_tasks == NULL ||
    46       !_gen_process_strong_tasks->valid()) {
    47     vm_exit_during_initialization("Failed necessary allocation.");
    48   }
    49   assert(policy != NULL, "Sanity check");
    50   _preloading_shared_classes = false;
    51 }
    53 jint GenCollectedHeap::initialize() {
    54   int i;
    55   _n_gens = gen_policy()->number_of_generations();
    57   // While there are no constraints in the GC code that HeapWordSize
    58   // be any particular value, there are multiple other areas in the
    59   // system which believe this to be true (e.g. oop->object_size in some
    60   // cases incorrectly returns the size in wordSize units rather than
    61   // HeapWordSize).
    62   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
    64   // The heap must be at least as aligned as generations.
    65   size_t alignment = Generation::GenGrain;
    67   _gen_specs = gen_policy()->generations();
    68   PermanentGenerationSpec *perm_gen_spec =
    69                                 collector_policy()->permanent_generation();
    71   // Make sure the sizes are all aligned.
    72   for (i = 0; i < _n_gens; i++) {
    73     _gen_specs[i]->align(alignment);
    74   }
    75   perm_gen_spec->align(alignment);
    77   // If we are dumping the heap, then allocate a wasted block of address
    78   // space in order to push the heap to a lower address.  This extra
    79   // address range allows for other (or larger) libraries to be loaded
    80   // without them occupying the space required for the shared spaces.
    82   if (DumpSharedSpaces) {
    83     uintx reserved = 0;
    84     uintx block_size = 64*1024*1024;
    85     while (reserved < SharedDummyBlockSize) {
    86       char* dummy = os::reserve_memory(block_size);
    87       reserved += block_size;
    88     }
    89   }
    91   // Allocate space for the heap.
    93   char* heap_address;
    94   size_t total_reserved = 0;
    95   int n_covered_regions = 0;
    96   ReservedSpace heap_rs(0);
    98   heap_address = allocate(alignment, perm_gen_spec, &total_reserved,
    99                           &n_covered_regions, &heap_rs);
   101   if (UseSharedSpaces) {
   102     if (!heap_rs.is_reserved() || heap_address != heap_rs.base()) {
   103       if (heap_rs.is_reserved()) {
   104         heap_rs.release();
   105       }
   106       FileMapInfo* mapinfo = FileMapInfo::current_info();
   107       mapinfo->fail_continue("Unable to reserve shared region.");
   108       allocate(alignment, perm_gen_spec, &total_reserved, &n_covered_regions,
   109                &heap_rs);
   110     }
   111   }
   113   if (!heap_rs.is_reserved()) {
   114     vm_shutdown_during_initialization(
   115       "Could not reserve enough space for object heap");
   116     return JNI_ENOMEM;
   117   }
   119   _reserved = MemRegion((HeapWord*)heap_rs.base(),
   120                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
   122   // It is important to do this in a way such that concurrent readers can't
   123   // temporarily think somethings in the heap.  (Seen this happen in asserts.)
   124   _reserved.set_word_size(0);
   125   _reserved.set_start((HeapWord*)heap_rs.base());
   126   size_t actual_heap_size = heap_rs.size() - perm_gen_spec->misc_data_size()
   127                                            - perm_gen_spec->misc_code_size();
   128   _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));
   130   _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
   131   set_barrier_set(rem_set()->bs());
   132   _gch = this;
   134   for (i = 0; i < _n_gens; i++) {
   135     ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(),
   136                                               UseSharedSpaces, UseSharedSpaces);
   137     _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
   138     heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
   139   }
   140   _perm_gen = perm_gen_spec->init(heap_rs, PermSize, rem_set());
   142   clear_incremental_collection_will_fail();
   143   clear_last_incremental_collection_failed();
   145 #ifndef SERIALGC
   146   // If we are running CMS, create the collector responsible
   147   // for collecting the CMS generations.
   148   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
   149     bool success = create_cms_collector();
   150     if (!success) return JNI_ENOMEM;
   151   }
   152 #endif // SERIALGC
   154   return JNI_OK;
   155 }
   158 char* GenCollectedHeap::allocate(size_t alignment,
   159                                  PermanentGenerationSpec* perm_gen_spec,
   160                                  size_t* _total_reserved,
   161                                  int* _n_covered_regions,
   162                                  ReservedSpace* heap_rs){
   163   const char overflow_msg[] = "The size of the object heap + VM data exceeds "
   164     "the maximum representable size";
   166   // Now figure out the total size.
   167   size_t total_reserved = 0;
   168   int n_covered_regions = 0;
   169   const size_t pageSize = UseLargePages ?
   170       os::large_page_size() : os::vm_page_size();
   172   for (int i = 0; i < _n_gens; i++) {
   173     total_reserved += _gen_specs[i]->max_size();
   174     if (total_reserved < _gen_specs[i]->max_size()) {
   175       vm_exit_during_initialization(overflow_msg);
   176     }
   177     n_covered_regions += _gen_specs[i]->n_covered_regions();
   178   }
   179   assert(total_reserved % pageSize == 0, "Gen size");
   180   total_reserved += perm_gen_spec->max_size();
   181   assert(total_reserved % pageSize == 0, "Perm Gen size");
   183   if (total_reserved < perm_gen_spec->max_size()) {
   184     vm_exit_during_initialization(overflow_msg);
   185   }
   186   n_covered_regions += perm_gen_spec->n_covered_regions();
   188   // Add the size of the data area which shares the same reserved area
   189   // as the heap, but which is not actually part of the heap.
   190   size_t s = perm_gen_spec->misc_data_size() + perm_gen_spec->misc_code_size();
   192   total_reserved += s;
   193   if (total_reserved < s) {
   194     vm_exit_during_initialization(overflow_msg);
   195   }
   197   if (UseLargePages) {
   198     assert(total_reserved != 0, "total_reserved cannot be 0");
   199     total_reserved = round_to(total_reserved, os::large_page_size());
   200     if (total_reserved < os::large_page_size()) {
   201       vm_exit_during_initialization(overflow_msg);
   202     }
   203   }
   205   // Calculate the address at which the heap must reside in order for
   206   // the shared data to be at the required address.
   208   char* heap_address;
   209   if (UseSharedSpaces) {
   211     // Calculate the address of the first word beyond the heap.
   212     FileMapInfo* mapinfo = FileMapInfo::current_info();
   213     int lr = CompactingPermGenGen::n_regions - 1;
   214     size_t capacity = align_size_up(mapinfo->space_capacity(lr), alignment);
   215     heap_address = mapinfo->region_base(lr) + capacity;
   217     // Calculate the address of the first word of the heap.
   218     heap_address -= total_reserved;
   219   } else {
   220     heap_address = NULL;  // any address will do.
   221   }
   223   *_total_reserved = total_reserved;
   224   *_n_covered_regions = n_covered_regions;
   225   *heap_rs = ReservedHeapSpace(total_reserved, alignment,
   226                                UseLargePages, heap_address);
   228   return heap_address;
   229 }
   232 void GenCollectedHeap::post_initialize() {
   233   SharedHeap::post_initialize();
   234   TwoGenerationCollectorPolicy *policy =
   235     (TwoGenerationCollectorPolicy *)collector_policy();
   236   guarantee(policy->is_two_generation_policy(), "Illegal policy type");
   237   DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
   238   assert(def_new_gen->kind() == Generation::DefNew ||
   239          def_new_gen->kind() == Generation::ParNew ||
   240          def_new_gen->kind() == Generation::ASParNew,
   241          "Wrong generation kind");
   243   Generation* old_gen = get_gen(1);
   244   assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
   245          old_gen->kind() == Generation::ASConcurrentMarkSweep ||
   246          old_gen->kind() == Generation::MarkSweepCompact,
   247     "Wrong generation kind");
   249   policy->initialize_size_policy(def_new_gen->eden()->capacity(),
   250                                  old_gen->capacity(),
   251                                  def_new_gen->from()->capacity());
   252   policy->initialize_gc_policy_counters();
   253 }
   255 void GenCollectedHeap::ref_processing_init() {
   256   SharedHeap::ref_processing_init();
   257   for (int i = 0; i < _n_gens; i++) {
   258     _gens[i]->ref_processor_init();
   259   }
   260 }
   262 size_t GenCollectedHeap::capacity() const {
   263   size_t res = 0;
   264   for (int i = 0; i < _n_gens; i++) {
   265     res += _gens[i]->capacity();
   266   }
   267   return res;
   268 }
   270 size_t GenCollectedHeap::used() const {
   271   size_t res = 0;
   272   for (int i = 0; i < _n_gens; i++) {
   273     res += _gens[i]->used();
   274   }
   275   return res;
   276 }
   278 // Save the "used_region" for generations level and lower,
   279 // and, if perm is true, for perm gen.
   280 void GenCollectedHeap::save_used_regions(int level, bool perm) {
   281   assert(level < _n_gens, "Illegal level parameter");
   282   for (int i = level; i >= 0; i--) {
   283     _gens[i]->save_used_region();
   284   }
   285   if (perm) {
   286     perm_gen()->save_used_region();
   287   }
   288 }
   290 size_t GenCollectedHeap::max_capacity() const {
   291   size_t res = 0;
   292   for (int i = 0; i < _n_gens; i++) {
   293     res += _gens[i]->max_capacity();
   294   }
   295   return res;
   296 }
   298 // Update the _full_collections_completed counter
   299 // at the end of a stop-world full GC.
   300 unsigned int GenCollectedHeap::update_full_collections_completed() {
   301   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   302   assert(_full_collections_completed <= _total_full_collections,
   303          "Can't complete more collections than were started");
   304   _full_collections_completed = _total_full_collections;
   305   ml.notify_all();
   306   return _full_collections_completed;
   307 }
   309 // Update the _full_collections_completed counter, as appropriate,
   310 // at the end of a concurrent GC cycle. Note the conditional update
   311 // below to allow this method to be called by a concurrent collector
   312 // without synchronizing in any manner with the VM thread (which
   313 // may already have initiated a STW full collection "concurrently").
   314 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
   315   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
   316   assert((_full_collections_completed <= _total_full_collections) &&
   317          (count <= _total_full_collections),
   318          "Can't complete more collections than were started");
   319   if (count > _full_collections_completed) {
   320     _full_collections_completed = count;
   321     ml.notify_all();
   322   }
   323   return _full_collections_completed;
   324 }
   327 #ifndef PRODUCT
   328 // Override of memory state checking method in CollectedHeap:
   329 // Some collectors (CMS for example) can't have badHeapWordVal written
   330 // in the first two words of an object. (For instance , in the case of
   331 // CMS these words hold state used to synchronize between certain
   332 // (concurrent) GC steps and direct allocating mutators.)
   333 // The skip_header_HeapWords() method below, allows us to skip
   334 // over the requisite number of HeapWord's. Note that (for
   335 // generational collectors) this means that those many words are
   336 // skipped in each object, irrespective of the generation in which
   337 // that object lives. The resultant loss of precision seems to be
   338 // harmless and the pain of avoiding that imprecision appears somewhat
   339 // higher than we are prepared to pay for such rudimentary debugging
   340 // support.
   341 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
   342                                                          size_t size) {
   343   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
   344     // We are asked to check a size in HeapWords,
   345     // but the memory is mangled in juint words.
   346     juint* start = (juint*) (addr + skip_header_HeapWords());
   347     juint* end   = (juint*) (addr + size);
   348     for (juint* slot = start; slot < end; slot += 1) {
   349       assert(*slot == badHeapWordVal,
   350              "Found non badHeapWordValue in pre-allocation check");
   351     }
   352   }
   353 }
   354 #endif
   356 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
   357                                                bool is_tlab,
   358                                                bool first_only) {
   359   HeapWord* res;
   360   for (int i = 0; i < _n_gens; i++) {
   361     if (_gens[i]->should_allocate(size, is_tlab)) {
   362       res = _gens[i]->allocate(size, is_tlab);
   363       if (res != NULL) return res;
   364       else if (first_only) break;
   365     }
   366   }
   367   // Otherwise...
   368   return NULL;
   369 }
   371 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
   372                                          bool is_large_noref,
   373                                          bool is_tlab,
   374                                          bool* gc_overhead_limit_was_exceeded) {
   375   return collector_policy()->mem_allocate_work(size,
   376                                                is_tlab,
   377                                                gc_overhead_limit_was_exceeded);
   378 }
   380 bool GenCollectedHeap::must_clear_all_soft_refs() {
   381   return _gc_cause == GCCause::_last_ditch_collection;
   382 }
   384 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
   385   return (cause == GCCause::_java_lang_system_gc ||
   386           cause == GCCause::_gc_locker) &&
   387          UseConcMarkSweepGC && ExplicitGCInvokesConcurrent;
   388 }
   390 void GenCollectedHeap::do_collection(bool  full,
   391                                      bool   clear_all_soft_refs,
   392                                      size_t size,
   393                                      bool   is_tlab,
   394                                      int    max_level) {
   395   bool prepared_for_verification = false;
   396   ResourceMark rm;
   397   DEBUG_ONLY(Thread* my_thread = Thread::current();)
   399   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
   400   assert(my_thread->is_VM_thread() ||
   401          my_thread->is_ConcurrentGC_thread(),
   402          "incorrect thread type capability");
   403   assert(Heap_lock->is_locked(), "the requesting thread should have the Heap_lock");
   404   guarantee(!is_gc_active(), "collection is not reentrant");
   405   assert(max_level < n_gens(), "sanity check");
   407   if (GC_locker::check_active_before_gc()) {
   408     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
   409   }
   411   const size_t perm_prev_used = perm_gen()->used();
   413   if (PrintHeapAtGC) {
   414     Universe::print_heap_before_gc();
   415     if (Verbose) {
   416       gclog_or_tty->print_cr("GC Cause: %s", GCCause::to_string(gc_cause()));
   417     }
   418   }
   420   {
   421     FlagSetting fl(_is_gc_active, true);
   423     bool complete = full && (max_level == (n_gens()-1));
   424     const char* gc_cause_str = "GC ";
   425     if (complete) {
   426       GCCause::Cause cause = gc_cause();
   427       if (cause == GCCause::_java_lang_system_gc) {
   428         gc_cause_str = "Full GC (System) ";
   429       } else {
   430         gc_cause_str = "Full GC ";
   431       }
   432     }
   433     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
   434     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
   435     TraceTime t(gc_cause_str, PrintGCDetails, false, gclog_or_tty);
   437     gc_prologue(complete);
   438     increment_total_collections(complete);
   440     size_t gch_prev_used = used();
   442     int starting_level = 0;
   443     if (full) {
   444       // Search for the oldest generation which will collect all younger
   445       // generations, and start collection loop there.
   446       for (int i = max_level; i >= 0; i--) {
   447         if (_gens[i]->full_collects_younger_generations()) {
   448           starting_level = i;
   449           break;
   450         }
   451       }
   452     }
   454     bool must_restore_marks_for_biased_locking = false;
   456     int max_level_collected = starting_level;
   457     for (int i = starting_level; i <= max_level; i++) {
   458       if (_gens[i]->should_collect(full, size, is_tlab)) {
   459         // Timer for individual generations. Last argument is false: no CR
   460         TraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, gclog_or_tty);
   461         TraceCollectorStats tcs(_gens[i]->counters());
   462         TraceMemoryManagerStats tmms(_gens[i]->kind());
   464         size_t prev_used = _gens[i]->used();
   465         _gens[i]->stat_record()->invocations++;
   466         _gens[i]->stat_record()->accumulated_time.start();
   468         // Must be done anew before each collection because
   469         // a previous collection will do mangling and will
   470         // change top of some spaces.
   471         record_gen_tops_before_GC();
   473         if (PrintGC && Verbose) {
   474           gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
   475                      i,
   476                      _gens[i]->stat_record()->invocations,
   477                      size*HeapWordSize);
   478         }
   480         if (VerifyBeforeGC && i >= VerifyGCLevel &&
   481             total_collections() >= VerifyGCStartAt) {
   482           HandleMark hm;  // Discard invalid handles created during verification
   483           if (!prepared_for_verification) {
   484             prepare_for_verify();
   485             prepared_for_verification = true;
   486           }
   487           gclog_or_tty->print(" VerifyBeforeGC:");
   488           Universe::verify(true);
   489         }
   490         COMPILER2_PRESENT(DerivedPointerTable::clear());
   492         if (!must_restore_marks_for_biased_locking &&
   493             _gens[i]->performs_in_place_marking()) {
   494           // We perform this mark word preservation work lazily
   495           // because it's only at this point that we know whether we
   496           // absolutely have to do it; we want to avoid doing it for
   497           // scavenge-only collections where it's unnecessary
   498           must_restore_marks_for_biased_locking = true;
   499           BiasedLocking::preserve_marks();
   500         }
   502         // Do collection work
   503         {
   504           // Note on ref discovery: For what appear to be historical reasons,
   505           // GCH enables and disabled (by enqueing) refs discovery.
   506           // In the future this should be moved into the generation's
   507           // collect method so that ref discovery and enqueueing concerns
   508           // are local to a generation. The collect method could return
   509           // an appropriate indication in the case that notification on
   510           // the ref lock was needed. This will make the treatment of
   511           // weak refs more uniform (and indeed remove such concerns
   512           // from GCH). XXX
   514           HandleMark hm;  // Discard invalid handles created during gc
   515           save_marks();   // save marks for all gens
   516           // We want to discover references, but not process them yet.
   517           // This mode is disabled in process_discovered_references if the
   518           // generation does some collection work, or in
   519           // enqueue_discovered_references if the generation returns
   520           // without doing any work.
   521           ReferenceProcessor* rp = _gens[i]->ref_processor();
   522           // If the discovery of ("weak") refs in this generation is
   523           // atomic wrt other collectors in this configuration, we
   524           // are guaranteed to have empty discovered ref lists.
   525           if (rp->discovery_is_atomic()) {
   526             rp->verify_no_references_recorded();
   527             rp->enable_discovery();
   528             rp->setup_policy(clear_all_soft_refs);
   529           } else {
   530             // collect() below will enable discovery as appropriate
   531           }
   532           _gens[i]->collect(full, clear_all_soft_refs, size, is_tlab);
   533           if (!rp->enqueuing_is_done()) {
   534             rp->enqueue_discovered_references();
   535           } else {
   536             rp->set_enqueuing_is_done(false);
   537           }
   538           rp->verify_no_references_recorded();
   539         }
   540         max_level_collected = i;
   542         // Determine if allocation request was met.
   543         if (size > 0) {
   544           if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
   545             if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
   546               size = 0;
   547             }
   548           }
   549         }
   551         COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
   553         _gens[i]->stat_record()->accumulated_time.stop();
   555         update_gc_stats(i, full);
   557         if (VerifyAfterGC && i >= VerifyGCLevel &&
   558             total_collections() >= VerifyGCStartAt) {
   559           HandleMark hm;  // Discard invalid handles created during verification
   560           gclog_or_tty->print(" VerifyAfterGC:");
   561           Universe::verify(false);
   562         }
   564         if (PrintGCDetails) {
   565           gclog_or_tty->print(":");
   566           _gens[i]->print_heap_change(prev_used);
   567         }
   568       }
   569     }
   571     // Update "complete" boolean wrt what actually transpired --
   572     // for instance, a promotion failure could have led to
   573     // a whole heap collection.
   574     complete = complete || (max_level_collected == n_gens() - 1);
   576     if (PrintGCDetails) {
   577       print_heap_change(gch_prev_used);
   579       // Print perm gen info for full GC with PrintGCDetails flag.
   580       if (complete) {
   581         print_perm_heap_change(perm_prev_used);
   582       }
   583     }
   585     for (int j = max_level_collected; j >= 0; j -= 1) {
   586       // Adjust generation sizes.
   587       _gens[j]->compute_new_size();
   588     }
   590     if (complete) {
   591       // Ask the permanent generation to adjust size for full collections
   592       perm()->compute_new_size();
   593       update_full_collections_completed();
   594     }
   596     // Track memory usage and detect low memory after GC finishes
   597     MemoryService::track_memory_usage();
   599     gc_epilogue(complete);
   601     if (must_restore_marks_for_biased_locking) {
   602       BiasedLocking::restore_marks();
   603     }
   604   }
   606   AdaptiveSizePolicy* sp = gen_policy()->size_policy();
   607   AdaptiveSizePolicyOutput(sp, total_collections());
   609   if (PrintHeapAtGC) {
   610     Universe::print_heap_after_gc();
   611   }
   613   if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
   614     tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
   615     vm_exit(-1);
   616   }
   617 }
   619 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
   620   return collector_policy()->satisfy_failed_allocation(size, is_tlab);
   621 }
   623 void GenCollectedHeap::set_par_threads(int t) {
   624   SharedHeap::set_par_threads(t);
   625   _gen_process_strong_tasks->set_par_threads(t);
   626 }
   628 class AssertIsPermClosure: public OopClosure {
   629 public:
   630   void do_oop(oop* p) {
   631     assert((*p) == NULL || (*p)->is_perm(), "Referent should be perm.");
   632   }
   633   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
   634 };
   635 static AssertIsPermClosure assert_is_perm_closure;
   637 void GenCollectedHeap::
   638 gen_process_strong_roots(int level,
   639                          bool younger_gens_as_roots,
   640                          bool collecting_perm_gen,
   641                          SharedHeap::ScanningOption so,
   642                          OopsInGenClosure* older_gens,
   643                          OopsInGenClosure* not_older_gens) {
   644   // General strong roots.
   645   SharedHeap::process_strong_roots(collecting_perm_gen, so,
   646                                    not_older_gens, older_gens);
   648   if (younger_gens_as_roots) {
   649     if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
   650       for (int i = 0; i < level; i++) {
   651         not_older_gens->set_generation(_gens[i]);
   652         _gens[i]->oop_iterate(not_older_gens);
   653       }
   654       not_older_gens->reset_generation();
   655     }
   656   }
   657   // When collection is parallel, all threads get to cooperate to do
   658   // older-gen scanning.
   659   for (int i = level+1; i < _n_gens; i++) {
   660     older_gens->set_generation(_gens[i]);
   661     rem_set()->younger_refs_iterate(_gens[i], older_gens);
   662     older_gens->reset_generation();
   663   }
   665   _gen_process_strong_tasks->all_tasks_completed();
   666 }
   668 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
   669                                               OopClosure* non_root_closure) {
   670   SharedHeap::process_weak_roots(root_closure, non_root_closure);
   671   // "Local" "weak" refs
   672   for (int i = 0; i < _n_gens; i++) {
   673     _gens[i]->ref_processor()->weak_oops_do(root_closure);
   674   }
   675 }
   677 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
   678 void GenCollectedHeap::                                                 \
   679 oop_since_save_marks_iterate(int level,                                 \
   680                              OopClosureType* cur,                       \
   681                              OopClosureType* older) {                   \
   682   _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
   683   for (int i = level+1; i < n_gens(); i++) {                            \
   684     _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
   685   }                                                                     \
   686   perm_gen()->oop_since_save_marks_iterate##nv_suffix(older);           \
   687 }
   689 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
   691 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
   693 bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
   694   for (int i = level; i < _n_gens; i++) {
   695     if (!_gens[i]->no_allocs_since_save_marks()) return false;
   696   }
   697   return perm_gen()->no_allocs_since_save_marks();
   698 }
   700 bool GenCollectedHeap::supports_inline_contig_alloc() const {
   701   return _gens[0]->supports_inline_contig_alloc();
   702 }
   704 HeapWord** GenCollectedHeap::top_addr() const {
   705   return _gens[0]->top_addr();
   706 }
   708 HeapWord** GenCollectedHeap::end_addr() const {
   709   return _gens[0]->end_addr();
   710 }
   712 size_t GenCollectedHeap::unsafe_max_alloc() {
   713   return _gens[0]->unsafe_max_alloc_nogc();
   714 }
   716 // public collection interfaces
   718 void GenCollectedHeap::collect(GCCause::Cause cause) {
   719   if (should_do_concurrent_full_gc(cause)) {
   720 #ifndef SERIALGC
   721     // mostly concurrent full collection
   722     collect_mostly_concurrent(cause);
   723 #else  // SERIALGC
   724     ShouldNotReachHere();
   725 #endif // SERIALGC
   726   } else {
   727 #ifdef ASSERT
   728     if (cause == GCCause::_scavenge_alot) {
   729       // minor collection only
   730       collect(cause, 0);
   731     } else {
   732       // Stop-the-world full collection
   733       collect(cause, n_gens() - 1);
   734     }
   735 #else
   736     // Stop-the-world full collection
   737     collect(cause, n_gens() - 1);
   738 #endif
   739   }
   740 }
   742 void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
   743   // The caller doesn't have the Heap_lock
   744   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
   745   MutexLocker ml(Heap_lock);
   746   collect_locked(cause, max_level);
   747 }
   749 // This interface assumes that it's being called by the
   750 // vm thread. It collects the heap assuming that the
   751 // heap lock is already held and that we are executing in
   752 // the context of the vm thread.
   753 void GenCollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
   754   assert(Thread::current()->is_VM_thread(), "Precondition#1");
   755   assert(Heap_lock->is_locked(), "Precondition#2");
   756   GCCauseSetter gcs(this, cause);
   757   switch (cause) {
   758     case GCCause::_heap_inspection:
   759     case GCCause::_heap_dump: {
   760       HandleMark hm;
   761       do_full_collection(false,         // don't clear all soft refs
   762                          n_gens() - 1);
   763       break;
   764     }
   765     default: // XXX FIX ME
   766       ShouldNotReachHere(); // Unexpected use of this function
   767   }
   768 }
   770 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
   771   // The caller has the Heap_lock
   772   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
   773   collect_locked(cause, n_gens() - 1);
   774 }
   776 // this is the private collection interface
   777 // The Heap_lock is expected to be held on entry.
   779 void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
   780   if (_preloading_shared_classes) {
   781     warning("\nThe permanent generation is not large enough to preload "
   782             "requested classes.\nUse -XX:PermSize= to increase the initial "
   783             "size of the permanent generation.\n");
   784     vm_exit(2);
   785   }
   786   // Read the GC count while holding the Heap_lock
   787   unsigned int gc_count_before      = total_collections();
   788   unsigned int full_gc_count_before = total_full_collections();
   789   {
   790     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
   791     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
   792                          cause, max_level);
   793     VMThread::execute(&op);
   794   }
   795 }
   797 #ifndef SERIALGC
   798 bool GenCollectedHeap::create_cms_collector() {
   800   assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
   801          (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)) &&
   802          _perm_gen->as_gen()->kind() == Generation::ConcurrentMarkSweep,
   803          "Unexpected generation kinds");
   804   // Skip two header words in the block content verification
   805   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
   806   CMSCollector* collector = new CMSCollector(
   807     (ConcurrentMarkSweepGeneration*)_gens[1],
   808     (ConcurrentMarkSweepGeneration*)_perm_gen->as_gen(),
   809     _rem_set->as_CardTableRS(),
   810     (ConcurrentMarkSweepPolicy*) collector_policy());
   812   if (collector == NULL || !collector->completed_initialization()) {
   813     if (collector) {
   814       delete collector;  // Be nice in embedded situation
   815     }
   816     vm_shutdown_during_initialization("Could not create CMS collector");
   817     return false;
   818   }
   819   return true;  // success
   820 }
   822 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
   823   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
   825   MutexLocker ml(Heap_lock);
   826   // Read the GC counts while holding the Heap_lock
   827   unsigned int full_gc_count_before = total_full_collections();
   828   unsigned int gc_count_before      = total_collections();
   829   {
   830     MutexUnlocker mu(Heap_lock);
   831     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
   832     VMThread::execute(&op);
   833   }
   834 }
   835 #endif // SERIALGC
   838 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
   839                                           int max_level) {
   840   int local_max_level;
   841   if (!incremental_collection_will_fail() &&
   842       gc_cause() == GCCause::_gc_locker) {
   843     local_max_level = 0;
   844   } else {
   845     local_max_level = max_level;
   846   }
   848   do_collection(true                 /* full */,
   849                 clear_all_soft_refs  /* clear_all_soft_refs */,
   850                 0                    /* size */,
   851                 false                /* is_tlab */,
   852                 local_max_level      /* max_level */);
   853   // Hack XXX FIX ME !!!
   854   // A scavenge may not have been attempted, or may have
   855   // been attempted and failed, because the old gen was too full
   856   if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
   857       incremental_collection_will_fail()) {
   858     if (PrintGCDetails) {
   859       gclog_or_tty->print_cr("GC locker: Trying a full collection "
   860                              "because scavenge failed");
   861     }
   862     // This time allow the old gen to be collected as well
   863     do_collection(true                 /* full */,
   864                   clear_all_soft_refs  /* clear_all_soft_refs */,
   865                   0                    /* size */,
   866                   false                /* is_tlab */,
   867                   n_gens() - 1         /* max_level */);
   868   }
   869 }
   871 // Returns "TRUE" iff "p" points into the allocated area of the heap.
   872 bool GenCollectedHeap::is_in(const void* p) const {
   873   #ifndef ASSERT
   874   guarantee(VerifyBeforeGC   ||
   875             VerifyDuringGC   ||
   876             VerifyBeforeExit ||
   877             VerifyAfterGC, "too expensive");
   878   #endif
   879   // This might be sped up with a cache of the last generation that
   880   // answered yes.
   881   for (int i = 0; i < _n_gens; i++) {
   882     if (_gens[i]->is_in(p)) return true;
   883   }
   884   if (_perm_gen->as_gen()->is_in(p)) return true;
   885   // Otherwise...
   886   return false;
   887 }
   889 // Returns "TRUE" iff "p" points into the allocated area of the heap.
   890 bool GenCollectedHeap::is_in_youngest(void* p) {
   891   return _gens[0]->is_in(p);
   892 }
   894 void GenCollectedHeap::oop_iterate(OopClosure* cl) {
   895   for (int i = 0; i < _n_gens; i++) {
   896     _gens[i]->oop_iterate(cl);
   897   }
   898 }
   900 void GenCollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) {
   901   for (int i = 0; i < _n_gens; i++) {
   902     _gens[i]->oop_iterate(mr, cl);
   903   }
   904 }
   906 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
   907   for (int i = 0; i < _n_gens; i++) {
   908     _gens[i]->object_iterate(cl);
   909   }
   910   perm_gen()->object_iterate(cl);
   911 }
   913 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
   914   for (int i = 0; i < _n_gens; i++) {
   915     _gens[i]->safe_object_iterate(cl);
   916   }
   917   perm_gen()->safe_object_iterate(cl);
   918 }
   920 void GenCollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
   921   for (int i = 0; i < _n_gens; i++) {
   922     _gens[i]->object_iterate_since_last_GC(cl);
   923   }
   924 }
   926 Space* GenCollectedHeap::space_containing(const void* addr) const {
   927   for (int i = 0; i < _n_gens; i++) {
   928     Space* res = _gens[i]->space_containing(addr);
   929     if (res != NULL) return res;
   930   }
   931   Space* res = perm_gen()->space_containing(addr);
   932   if (res != NULL) return res;
   933   // Otherwise...
   934   assert(false, "Could not find containing space");
   935   return NULL;
   936 }
   939 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
   940   assert(is_in_reserved(addr), "block_start of address outside of heap");
   941   for (int i = 0; i < _n_gens; i++) {
   942     if (_gens[i]->is_in_reserved(addr)) {
   943       assert(_gens[i]->is_in(addr),
   944              "addr should be in allocated part of generation");
   945       return _gens[i]->block_start(addr);
   946     }
   947   }
   948   if (perm_gen()->is_in_reserved(addr)) {
   949     assert(perm_gen()->is_in(addr),
   950            "addr should be in allocated part of perm gen");
   951     return perm_gen()->block_start(addr);
   952   }
   953   assert(false, "Some generation should contain the address");
   954   return NULL;
   955 }
   957 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
   958   assert(is_in_reserved(addr), "block_size of address outside of heap");
   959   for (int i = 0; i < _n_gens; i++) {
   960     if (_gens[i]->is_in_reserved(addr)) {
   961       assert(_gens[i]->is_in(addr),
   962              "addr should be in allocated part of generation");
   963       return _gens[i]->block_size(addr);
   964     }
   965   }
   966   if (perm_gen()->is_in_reserved(addr)) {
   967     assert(perm_gen()->is_in(addr),
   968            "addr should be in allocated part of perm gen");
   969     return perm_gen()->block_size(addr);
   970   }
   971   assert(false, "Some generation should contain the address");
   972   return 0;
   973 }
   975 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
   976   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
   977   assert(block_start(addr) == addr, "addr must be a block start");
   978   for (int i = 0; i < _n_gens; i++) {
   979     if (_gens[i]->is_in_reserved(addr)) {
   980       return _gens[i]->block_is_obj(addr);
   981     }
   982   }
   983   if (perm_gen()->is_in_reserved(addr)) {
   984     return perm_gen()->block_is_obj(addr);
   985   }
   986   assert(false, "Some generation should contain the address");
   987   return false;
   988 }
   990 bool GenCollectedHeap::supports_tlab_allocation() const {
   991   for (int i = 0; i < _n_gens; i += 1) {
   992     if (_gens[i]->supports_tlab_allocation()) {
   993       return true;
   994     }
   995   }
   996   return false;
   997 }
   999 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
  1000   size_t result = 0;
  1001   for (int i = 0; i < _n_gens; i += 1) {
  1002     if (_gens[i]->supports_tlab_allocation()) {
  1003       result += _gens[i]->tlab_capacity();
  1006   return result;
  1009 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
  1010   size_t result = 0;
  1011   for (int i = 0; i < _n_gens; i += 1) {
  1012     if (_gens[i]->supports_tlab_allocation()) {
  1013       result += _gens[i]->unsafe_max_tlab_alloc();
  1016   return result;
  1019 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
  1020   bool gc_overhead_limit_was_exceeded;
  1021   HeapWord* result = mem_allocate(size   /* size */,
  1022                                   false  /* is_large_noref */,
  1023                                   true   /* is_tlab */,
  1024                                   &gc_overhead_limit_was_exceeded);
  1025   return result;
  1028 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
  1029 // from the list headed by "*prev_ptr".
  1030 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
  1031   bool first = true;
  1032   size_t min_size = 0;   // "first" makes this conceptually infinite.
  1033   ScratchBlock **smallest_ptr, *smallest;
  1034   ScratchBlock  *cur = *prev_ptr;
  1035   while (cur) {
  1036     assert(*prev_ptr == cur, "just checking");
  1037     if (first || cur->num_words < min_size) {
  1038       smallest_ptr = prev_ptr;
  1039       smallest     = cur;
  1040       min_size     = smallest->num_words;
  1041       first        = false;
  1043     prev_ptr = &cur->next;
  1044     cur     =  cur->next;
  1046   smallest      = *smallest_ptr;
  1047   *smallest_ptr = smallest->next;
  1048   return smallest;
  1051 // Sort the scratch block list headed by res into decreasing size order,
  1052 // and set "res" to the result.
  1053 static void sort_scratch_list(ScratchBlock*& list) {
  1054   ScratchBlock* sorted = NULL;
  1055   ScratchBlock* unsorted = list;
  1056   while (unsorted) {
  1057     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
  1058     smallest->next  = sorted;
  1059     sorted          = smallest;
  1061   list = sorted;
  1064 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
  1065                                                size_t max_alloc_words) {
  1066   ScratchBlock* res = NULL;
  1067   for (int i = 0; i < _n_gens; i++) {
  1068     _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
  1070   sort_scratch_list(res);
  1071   return res;
  1074 void GenCollectedHeap::release_scratch() {
  1075   for (int i = 0; i < _n_gens; i++) {
  1076     _gens[i]->reset_scratch();
  1080 size_t GenCollectedHeap::large_typearray_limit() {
  1081   return gen_policy()->large_typearray_limit();
  1084 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
  1085   void do_generation(Generation* gen) {
  1086     gen->prepare_for_verify();
  1088 };
  1090 void GenCollectedHeap::prepare_for_verify() {
  1091   ensure_parsability(false);        // no need to retire TLABs
  1092   GenPrepareForVerifyClosure blk;
  1093   generation_iterate(&blk, false);
  1094   perm_gen()->prepare_for_verify();
  1098 void GenCollectedHeap::generation_iterate(GenClosure* cl,
  1099                                           bool old_to_young) {
  1100   if (old_to_young) {
  1101     for (int i = _n_gens-1; i >= 0; i--) {
  1102       cl->do_generation(_gens[i]);
  1104   } else {
  1105     for (int i = 0; i < _n_gens; i++) {
  1106       cl->do_generation(_gens[i]);
  1111 void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
  1112   for (int i = 0; i < _n_gens; i++) {
  1113     _gens[i]->space_iterate(cl, true);
  1115   perm_gen()->space_iterate(cl, true);
  1118 bool GenCollectedHeap::is_maximal_no_gc() const {
  1119   for (int i = 0; i < _n_gens; i++) {  // skip perm gen
  1120     if (!_gens[i]->is_maximal_no_gc()) {
  1121       return false;
  1124   return true;
  1127 void GenCollectedHeap::save_marks() {
  1128   for (int i = 0; i < _n_gens; i++) {
  1129     _gens[i]->save_marks();
  1131   perm_gen()->save_marks();
  1134 void GenCollectedHeap::compute_new_generation_sizes(int collectedGen) {
  1135   for (int i = 0; i <= collectedGen; i++) {
  1136     _gens[i]->compute_new_size();
  1140 GenCollectedHeap* GenCollectedHeap::heap() {
  1141   assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
  1142   assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
  1143   return _gch;
  1147 void GenCollectedHeap::prepare_for_compaction() {
  1148   Generation* scanning_gen = _gens[_n_gens-1];
  1149   // Start by compacting into same gen.
  1150   CompactPoint cp(scanning_gen, NULL, NULL);
  1151   while (scanning_gen != NULL) {
  1152     scanning_gen->prepare_for_compaction(&cp);
  1153     scanning_gen = prev_gen(scanning_gen);
  1157 GCStats* GenCollectedHeap::gc_stats(int level) const {
  1158   return _gens[level]->gc_stats();
  1161 void GenCollectedHeap::verify(bool allow_dirty, bool silent) {
  1162   if (!silent) {
  1163     gclog_or_tty->print("permgen ");
  1165   perm_gen()->verify(allow_dirty);
  1166   for (int i = _n_gens-1; i >= 0; i--) {
  1167     Generation* g = _gens[i];
  1168     if (!silent) {
  1169       gclog_or_tty->print(g->name());
  1170       gclog_or_tty->print(" ");
  1172     g->verify(allow_dirty);
  1174   if (!silent) {
  1175     gclog_or_tty->print("remset ");
  1177   rem_set()->verify();
  1178   if (!silent) {
  1179      gclog_or_tty->print("ref_proc ");
  1181   ReferenceProcessor::verify();
  1184 void GenCollectedHeap::print() const { print_on(tty); }
  1185 void GenCollectedHeap::print_on(outputStream* st) const {
  1186   for (int i = 0; i < _n_gens; i++) {
  1187     _gens[i]->print_on(st);
  1189   perm_gen()->print_on(st);
  1192 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  1193   if (workers() != NULL) {
  1194     workers()->threads_do(tc);
  1196 #ifndef SERIALGC
  1197   if (UseConcMarkSweepGC) {
  1198     ConcurrentMarkSweepThread::threads_do(tc);
  1200 #endif // SERIALGC
  1203 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
  1204 #ifndef SERIALGC
  1205   if (UseParNewGC) {
  1206     workers()->print_worker_threads_on(st);
  1208   if (UseConcMarkSweepGC) {
  1209     ConcurrentMarkSweepThread::print_all_on(st);
  1211 #endif // SERIALGC
  1214 void GenCollectedHeap::print_tracing_info() const {
  1215   if (TraceGen0Time) {
  1216     get_gen(0)->print_summary_info();
  1218   if (TraceGen1Time) {
  1219     get_gen(1)->print_summary_info();
  1223 void GenCollectedHeap::print_heap_change(size_t prev_used) const {
  1224   if (PrintGCDetails && Verbose) {
  1225     gclog_or_tty->print(" "  SIZE_FORMAT
  1226                         "->" SIZE_FORMAT
  1227                         "("  SIZE_FORMAT ")",
  1228                         prev_used, used(), capacity());
  1229   } else {
  1230     gclog_or_tty->print(" "  SIZE_FORMAT "K"
  1231                         "->" SIZE_FORMAT "K"
  1232                         "("  SIZE_FORMAT "K)",
  1233                         prev_used / K, used() / K, capacity() / K);
  1237 //New method to print perm gen info with PrintGCDetails flag
  1238 void GenCollectedHeap::print_perm_heap_change(size_t perm_prev_used) const {
  1239   gclog_or_tty->print(", [%s :", perm_gen()->short_name());
  1240   perm_gen()->print_heap_change(perm_prev_used);
  1241   gclog_or_tty->print("]");
  1244 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
  1245  private:
  1246   bool _full;
  1247  public:
  1248   void do_generation(Generation* gen) {
  1249     gen->gc_prologue(_full);
  1251   GenGCPrologueClosure(bool full) : _full(full) {};
  1252 };
  1254 void GenCollectedHeap::gc_prologue(bool full) {
  1255   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  1257   always_do_update_barrier = false;
  1258   // Fill TLAB's and such
  1259   CollectedHeap::accumulate_statistics_all_tlabs();
  1260   ensure_parsability(true);   // retire TLABs
  1262   // Call allocation profiler
  1263   AllocationProfiler::iterate_since_last_gc();
  1264   // Walk generations
  1265   GenGCPrologueClosure blk(full);
  1266   generation_iterate(&blk, false);  // not old-to-young.
  1267   perm_gen()->gc_prologue(full);
  1268 };
  1270 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
  1271  private:
  1272   bool _full;
  1273  public:
  1274   void do_generation(Generation* gen) {
  1275     gen->gc_epilogue(_full);
  1277   GenGCEpilogueClosure(bool full) : _full(full) {};
  1278 };
  1280 void GenCollectedHeap::gc_epilogue(bool full) {
  1281   // Remember if a partial collection of the heap failed, and
  1282   // we did a complete collection.
  1283   if (full && incremental_collection_will_fail()) {
  1284     set_last_incremental_collection_failed();
  1285   } else {
  1286     clear_last_incremental_collection_failed();
  1288   // Clear the flag, if set; the generation gc_epilogues will set the
  1289   // flag again if the condition persists despite the collection.
  1290   clear_incremental_collection_will_fail();
  1292 #ifdef COMPILER2
  1293   assert(DerivedPointerTable::is_empty(), "derived pointer present");
  1294   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
  1295   guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
  1296 #endif /* COMPILER2 */
  1298   resize_all_tlabs();
  1300   GenGCEpilogueClosure blk(full);
  1301   generation_iterate(&blk, false);  // not old-to-young.
  1302   perm_gen()->gc_epilogue(full);
  1304   always_do_update_barrier = UseConcMarkSweepGC;
  1305 };
  1307 #ifndef PRODUCT
  1308 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
  1309  private:
  1310  public:
  1311   void do_generation(Generation* gen) {
  1312     gen->record_spaces_top();
  1314 };
  1316 void GenCollectedHeap::record_gen_tops_before_GC() {
  1317   if (ZapUnusedHeapArea) {
  1318     GenGCSaveTopsBeforeGCClosure blk;
  1319     generation_iterate(&blk, false);  // not old-to-young.
  1320     perm_gen()->record_spaces_top();
  1323 #endif  // not PRODUCT
  1325 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
  1326  public:
  1327   void do_generation(Generation* gen) {
  1328     gen->ensure_parsability();
  1330 };
  1332 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
  1333   CollectedHeap::ensure_parsability(retire_tlabs);
  1334   GenEnsureParsabilityClosure ep_cl;
  1335   generation_iterate(&ep_cl, false);
  1336   perm_gen()->ensure_parsability();
  1339 oop GenCollectedHeap::handle_failed_promotion(Generation* gen,
  1340                                               oop obj,
  1341                                               size_t obj_size) {
  1342   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  1343   HeapWord* result = NULL;
  1345   // First give each higher generation a chance to allocate the promoted object.
  1346   Generation* allocator = next_gen(gen);
  1347   if (allocator != NULL) {
  1348     do {
  1349       result = allocator->allocate(obj_size, false);
  1350     } while (result == NULL && (allocator = next_gen(allocator)) != NULL);
  1353   if (result == NULL) {
  1354     // Then give gen and higher generations a chance to expand and allocate the
  1355     // object.
  1356     do {
  1357       result = gen->expand_and_allocate(obj_size, false);
  1358     } while (result == NULL && (gen = next_gen(gen)) != NULL);
  1361   if (result != NULL) {
  1362     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
  1364   return oop(result);
  1367 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
  1368   jlong _time;   // in ms
  1369   jlong _now;    // in ms
  1371  public:
  1372   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
  1374   jlong time() { return _time; }
  1376   void do_generation(Generation* gen) {
  1377     _time = MIN2(_time, gen->time_of_last_gc(_now));
  1379 };
  1381 jlong GenCollectedHeap::millis_since_last_gc() {
  1382   jlong now = os::javaTimeMillis();
  1383   GenTimeOfLastGCClosure tolgc_cl(now);
  1384   // iterate over generations getting the oldest
  1385   // time that a generation was collected
  1386   generation_iterate(&tolgc_cl, false);
  1387   tolgc_cl.do_generation(perm_gen());
  1388   // XXX Despite the assert above, since javaTimeMillis()
  1389   // doesnot guarantee monotonically increasing return
  1390   // values (note, i didn't say "strictly monotonic"),
  1391   // we need to guard against getting back a time
  1392   // later than now. This should be fixed by basing
  1393   // on someting like gethrtime() which guarantees
  1394   // monotonicity. Note that cond_wait() is susceptible
  1395   // to a similar problem, because its interface is
  1396   // based on absolute time in the form of the
  1397   // system time's notion of UCT. See also 4506635
  1398   // for yet another problem of similar nature. XXX
  1399   jlong retVal = now - tolgc_cl.time();
  1400   if (retVal < 0) {
  1401     NOT_PRODUCT(warning("time warp: %d", retVal);)
  1402     return 0;
  1404   return retVal;

mercurial