src/share/vm/gc_implementation/g1/heapRegion.hpp

Tue, 01 Mar 2011 14:56:48 -0800

author
iveresov
date
Tue, 01 Mar 2011 14:56:48 -0800
changeset 2606
0ac769a57c64
parent 2472
0fa27f37d4d4
child 2643
1216415d8e35
permissions
-rw-r--r--

6627983: G1: Bad oop deference during marking
Summary: Bulk zeroing reduction didn't work with G1, because arraycopy would call pre-barriers on uninitialized oops. The solution is to have version of arraycopy stubs that don't have pre-barriers. Also refactored arraycopy stubs generation on SPARC to be more readable and reduced the number of stubs necessary in some cases.
Reviewed-by: jrose, kvn, never

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
    28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
    30 #include "gc_implementation/g1/survRateGroup.hpp"
    31 #include "gc_implementation/shared/ageTable.hpp"
    32 #include "gc_implementation/shared/spaceDecorator.hpp"
    33 #include "memory/space.inline.hpp"
    34 #include "memory/watermark.hpp"
    36 #ifndef SERIALGC
    38 // A HeapRegion is the smallest piece of a G1CollectedHeap that
    39 // can be collected independently.
    41 // NOTE: Although a HeapRegion is a Space, its
    42 // Space::initDirtyCardClosure method must not be called.
    43 // The problem is that the existence of this method breaks
    44 // the independence of barrier sets from remembered sets.
    45 // The solution is to remove this method from the definition
    46 // of a Space.
    48 class CompactibleSpace;
    49 class ContiguousSpace;
    50 class HeapRegionRemSet;
    51 class HeapRegionRemSetIterator;
    52 class HeapRegion;
    53 class HeapRegionSetBase;
    55 #define HR_FORMAT "%d:["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
    56 #define HR_FORMAT_PARAMS(__hr) (__hr)->hrs_index(), (__hr)->bottom(), \
    57                                (__hr)->top(), (__hr)->end()
    59 // A dirty card to oop closure for heap regions. It
    60 // knows how to get the G1 heap and how to use the bitmap
    61 // in the concurrent marker used by G1 to filter remembered
    62 // sets.
    64 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
    65 public:
    66   // Specification of possible DirtyCardToOopClosure filtering.
    67   enum FilterKind {
    68     NoFilterKind,
    69     IntoCSFilterKind,
    70     OutOfRegionFilterKind
    71   };
    73 protected:
    74   HeapRegion* _hr;
    75   FilterKind _fk;
    76   G1CollectedHeap* _g1;
    78   void walk_mem_region_with_cl(MemRegion mr,
    79                                HeapWord* bottom, HeapWord* top,
    80                                OopClosure* cl);
    82   // We don't specialize this for FilteringClosure; filtering is handled by
    83   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
    84   // warning.
    85   void walk_mem_region_with_cl(MemRegion mr,
    86                                HeapWord* bottom, HeapWord* top,
    87                                FilteringClosure* cl) {
    88     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
    89                                                        (OopClosure*)cl);
    90   }
    92   // Get the actual top of the area on which the closure will
    93   // operate, given where the top is assumed to be (the end of the
    94   // memory region passed to do_MemRegion) and where the object
    95   // at the top is assumed to start. For example, an object may
    96   // start at the top but actually extend past the assumed top,
    97   // in which case the top becomes the end of the object.
    98   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
    99     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
   100   }
   102   // Walk the given memory region from bottom to (actual) top
   103   // looking for objects and applying the oop closure (_cl) to
   104   // them. The base implementation of this treats the area as
   105   // blocks, where a block may or may not be an object. Sub-
   106   // classes should override this to provide more accurate
   107   // or possibly more efficient walking.
   108   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
   109     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
   110   }
   112 public:
   113   HeapRegionDCTOC(G1CollectedHeap* g1,
   114                   HeapRegion* hr, OopClosure* cl,
   115                   CardTableModRefBS::PrecisionStyle precision,
   116                   FilterKind fk);
   117 };
   120 // The complicating factor is that BlockOffsetTable diverged
   121 // significantly, and we need functionality that is only in the G1 version.
   122 // So I copied that code, which led to an alternate G1 version of
   123 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
   124 // be reconciled, then G1OffsetTableContigSpace could go away.
   126 // The idea behind time stamps is the following. Doing a save_marks on
   127 // all regions at every GC pause is time consuming (if I remember
   128 // well, 10ms or so). So, we would like to do that only for regions
   129 // that are GC alloc regions. To achieve this, we use time
   130 // stamps. For every evacuation pause, G1CollectedHeap generates a
   131 // unique time stamp (essentially a counter that gets
   132 // incremented). Every time we want to call save_marks on a region,
   133 // we set the saved_mark_word to top and also copy the current GC
   134 // time stamp to the time stamp field of the space. Reading the
   135 // saved_mark_word involves checking the time stamp of the
   136 // region. If it is the same as the current GC time stamp, then we
   137 // can safely read the saved_mark_word field, as it is valid. If the
   138 // time stamp of the region is not the same as the current GC time
   139 // stamp, then we instead read top, as the saved_mark_word field is
   140 // invalid. Time stamps (on the regions and also on the
   141 // G1CollectedHeap) are reset at every cleanup (we iterate over
   142 // the regions anyway) and at the end of a Full GC. The current scheme
   143 // that uses sequential unsigned ints will fail only if we have 4b
   144 // evacuation pauses between two cleanups, which is _highly_ unlikely.
   146 class G1OffsetTableContigSpace: public ContiguousSpace {
   147   friend class VMStructs;
   148  protected:
   149   G1BlockOffsetArrayContigSpace _offsets;
   150   Mutex _par_alloc_lock;
   151   volatile unsigned _gc_time_stamp;
   153  public:
   154   // Constructor.  If "is_zeroed" is true, the MemRegion "mr" may be
   155   // assumed to contain zeros.
   156   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   157                            MemRegion mr, bool is_zeroed = false);
   159   void set_bottom(HeapWord* value);
   160   void set_end(HeapWord* value);
   162   virtual HeapWord* saved_mark_word() const;
   163   virtual void set_saved_mark();
   164   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
   166   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   167   virtual void clear(bool mangle_space);
   169   HeapWord* block_start(const void* p);
   170   HeapWord* block_start_const(const void* p) const;
   172   // Add offset table update.
   173   virtual HeapWord* allocate(size_t word_size);
   174   HeapWord* par_allocate(size_t word_size);
   176   // MarkSweep support phase3
   177   virtual HeapWord* initialize_threshold();
   178   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
   180   virtual void print() const;
   182   void reset_bot() {
   183     _offsets.zero_bottom_entry();
   184     _offsets.initialize_threshold();
   185   }
   187   void update_bot_for_object(HeapWord* start, size_t word_size) {
   188     _offsets.alloc_block(start, word_size);
   189   }
   191   void print_bot_on(outputStream* out) {
   192     _offsets.print_on(out);
   193   }
   194 };
   196 class HeapRegion: public G1OffsetTableContigSpace {
   197   friend class VMStructs;
   198  private:
   200   enum HumongousType {
   201     NotHumongous = 0,
   202     StartsHumongous,
   203     ContinuesHumongous
   204   };
   206   // The next filter kind that should be used for a "new_dcto_cl" call with
   207   // the "traditional" signature.
   208   HeapRegionDCTOC::FilterKind _next_fk;
   210   // Requires that the region "mr" be dense with objects, and begin and end
   211   // with an object.
   212   void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
   214   // The remembered set for this region.
   215   // (Might want to make this "inline" later, to avoid some alloc failure
   216   // issues.)
   217   HeapRegionRemSet* _rem_set;
   219   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
   221  protected:
   222   // If this region is a member of a HeapRegionSeq, the index in that
   223   // sequence, otherwise -1.
   224   int  _hrs_index;
   226   HumongousType _humongous_type;
   227   // For a humongous region, region in which it starts.
   228   HeapRegion* _humongous_start_region;
   229   // For the start region of a humongous sequence, it's original end().
   230   HeapWord* _orig_end;
   232   // True iff the region is in current collection_set.
   233   bool _in_collection_set;
   235   // Is this or has it been an allocation region in the current collection
   236   // pause.
   237   bool _is_gc_alloc_region;
   239   // True iff an attempt to evacuate an object in the region failed.
   240   bool _evacuation_failed;
   242   // A heap region may be a member one of a number of special subsets, each
   243   // represented as linked lists through the field below.  Currently, these
   244   // sets include:
   245   //   The collection set.
   246   //   The set of allocation regions used in a collection pause.
   247   //   Spaces that may contain gray objects.
   248   HeapRegion* _next_in_special_set;
   250   // next region in the young "generation" region set
   251   HeapRegion* _next_young_region;
   253   // Next region whose cards need cleaning
   254   HeapRegion* _next_dirty_cards_region;
   256   // Fields used by the HeapRegionSetBase class and subclasses.
   257   HeapRegion* _next;
   258 #ifdef ASSERT
   259   HeapRegionSetBase* _containing_set;
   260 #endif // ASSERT
   261   bool _pending_removal;
   263   // For parallel heapRegion traversal.
   264   jint _claimed;
   266   // We use concurrent marking to determine the amount of live data
   267   // in each heap region.
   268   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
   269   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
   271   // See "sort_index" method.  -1 means is not in the array.
   272   int _sort_index;
   274   // <PREDICTION>
   275   double _gc_efficiency;
   276   // </PREDICTION>
   278   enum YoungType {
   279     NotYoung,                   // a region is not young
   280     Young,                      // a region is young
   281     Survivor                    // a region is young and it contains
   282                                 // survivor
   283   };
   285   volatile YoungType _young_type;
   286   int  _young_index_in_cset;
   287   SurvRateGroup* _surv_rate_group;
   288   int  _age_index;
   290   // The start of the unmarked area. The unmarked area extends from this
   291   // word until the top and/or end of the region, and is the part
   292   // of the region for which no marking was done, i.e. objects may
   293   // have been allocated in this part since the last mark phase.
   294   // "prev" is the top at the start of the last completed marking.
   295   // "next" is the top at the start of the in-progress marking (if any.)
   296   HeapWord* _prev_top_at_mark_start;
   297   HeapWord* _next_top_at_mark_start;
   298   // If a collection pause is in progress, this is the top at the start
   299   // of that pause.
   301   // We've counted the marked bytes of objects below here.
   302   HeapWord* _top_at_conc_mark_count;
   304   void init_top_at_mark_start() {
   305     assert(_prev_marked_bytes == 0 &&
   306            _next_marked_bytes == 0,
   307            "Must be called after zero_marked_bytes.");
   308     HeapWord* bot = bottom();
   309     _prev_top_at_mark_start = bot;
   310     _next_top_at_mark_start = bot;
   311     _top_at_conc_mark_count = bot;
   312   }
   314   void set_young_type(YoungType new_type) {
   315     //assert(_young_type != new_type, "setting the same type" );
   316     // TODO: add more assertions here
   317     _young_type = new_type;
   318   }
   320   // Cached attributes used in the collection set policy information
   322   // The RSet length that was added to the total value
   323   // for the collection set.
   324   size_t _recorded_rs_length;
   326   // The predicted elapsed time that was added to total value
   327   // for the collection set.
   328   double _predicted_elapsed_time_ms;
   330   // The predicted number of bytes to copy that was added to
   331   // the total value for the collection set.
   332   size_t _predicted_bytes_to_copy;
   334  public:
   335   // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
   336   HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
   337              MemRegion mr, bool is_zeroed);
   339   static int LogOfHRGrainBytes;
   340   static int LogOfHRGrainWords;
   341   // The normal type of these should be size_t. However, they used to
   342   // be members of an enum before and they are assumed by the
   343   // compilers to be ints. To avoid going and fixing all their uses,
   344   // I'm declaring them as ints. I'm not anticipating heap region
   345   // sizes to reach anywhere near 2g, so using an int here is safe.
   346   static int GrainBytes;
   347   static int GrainWords;
   348   static int CardsPerRegion;
   350   // It sets up the heap region size (GrainBytes / GrainWords), as
   351   // well as other related fields that are based on the heap region
   352   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
   353   // CardsPerRegion). All those fields are considered constant
   354   // throughout the JVM's execution, therefore they should only be set
   355   // up once during initialization time.
   356   static void setup_heap_region_size(uintx min_heap_size);
   358   enum ClaimValues {
   359     InitialClaimValue     = 0,
   360     FinalCountClaimValue  = 1,
   361     NoteEndClaimValue     = 2,
   362     ScrubRemSetClaimValue = 3,
   363     ParVerifyClaimValue   = 4,
   364     RebuildRSClaimValue   = 5
   365   };
   367   inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
   368     assert(is_young(), "we can only skip BOT updates on young regions");
   369     return ContiguousSpace::par_allocate(word_size);
   370   }
   371   inline HeapWord* allocate_no_bot_updates(size_t word_size) {
   372     assert(is_young(), "we can only skip BOT updates on young regions");
   373     return ContiguousSpace::allocate(word_size);
   374   }
   376   // If this region is a member of a HeapRegionSeq, the index in that
   377   // sequence, otherwise -1.
   378   int hrs_index() const { return _hrs_index; }
   379   void set_hrs_index(int index) { _hrs_index = index; }
   381   // The number of bytes marked live in the region in the last marking phase.
   382   size_t marked_bytes()    { return _prev_marked_bytes; }
   383   // The number of bytes counted in the next marking.
   384   size_t next_marked_bytes() { return _next_marked_bytes; }
   385   // The number of bytes live wrt the next marking.
   386   size_t next_live_bytes() {
   387     return (top() - next_top_at_mark_start())
   388       * HeapWordSize
   389       + next_marked_bytes();
   390   }
   392   // A lower bound on the amount of garbage bytes in the region.
   393   size_t garbage_bytes() {
   394     size_t used_at_mark_start_bytes =
   395       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
   396     assert(used_at_mark_start_bytes >= marked_bytes(),
   397            "Can't mark more than we have.");
   398     return used_at_mark_start_bytes - marked_bytes();
   399   }
   401   // An upper bound on the number of live bytes in the region.
   402   size_t max_live_bytes() { return used() - garbage_bytes(); }
   404   void add_to_marked_bytes(size_t incr_bytes) {
   405     _next_marked_bytes = _next_marked_bytes + incr_bytes;
   406     guarantee( _next_marked_bytes <= used(), "invariant" );
   407   }
   409   void zero_marked_bytes()      {
   410     _prev_marked_bytes = _next_marked_bytes = 0;
   411   }
   413   bool isHumongous() const { return _humongous_type != NotHumongous; }
   414   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
   415   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
   416   // For a humongous region, region in which it starts.
   417   HeapRegion* humongous_start_region() const {
   418     return _humongous_start_region;
   419   }
   421   // Makes the current region be a "starts humongous" region, i.e.,
   422   // the first region in a series of one or more contiguous regions
   423   // that will contain a single "humongous" object. The two parameters
   424   // are as follows:
   425   //
   426   // new_top : The new value of the top field of this region which
   427   // points to the end of the humongous object that's being
   428   // allocated. If there is more than one region in the series, top
   429   // will lie beyond this region's original end field and on the last
   430   // region in the series.
   431   //
   432   // new_end : The new value of the end field of this region which
   433   // points to the end of the last region in the series. If there is
   434   // one region in the series (namely: this one) end will be the same
   435   // as the original end of this region.
   436   //
   437   // Updating top and end as described above makes this region look as
   438   // if it spans the entire space taken up by all the regions in the
   439   // series and an single allocation moved its top to new_top. This
   440   // ensures that the space (capacity / allocated) taken up by all
   441   // humongous regions can be calculated by just looking at the
   442   // "starts humongous" regions and by ignoring the "continues
   443   // humongous" regions.
   444   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
   446   // Makes the current region be a "continues humongous'
   447   // region. first_hr is the "start humongous" region of the series
   448   // which this region will be part of.
   449   void set_continuesHumongous(HeapRegion* first_hr);
   451   // Unsets the humongous-related fields on the region.
   452   void set_notHumongous();
   454   // If the region has a remembered set, return a pointer to it.
   455   HeapRegionRemSet* rem_set() const {
   456     return _rem_set;
   457   }
   459   // True iff the region is in current collection_set.
   460   bool in_collection_set() const {
   461     return _in_collection_set;
   462   }
   463   void set_in_collection_set(bool b) {
   464     _in_collection_set = b;
   465   }
   466   HeapRegion* next_in_collection_set() {
   467     assert(in_collection_set(), "should only invoke on member of CS.");
   468     assert(_next_in_special_set == NULL ||
   469            _next_in_special_set->in_collection_set(),
   470            "Malformed CS.");
   471     return _next_in_special_set;
   472   }
   473   void set_next_in_collection_set(HeapRegion* r) {
   474     assert(in_collection_set(), "should only invoke on member of CS.");
   475     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
   476     _next_in_special_set = r;
   477   }
   479   // True iff it is or has been an allocation region in the current
   480   // collection pause.
   481   bool is_gc_alloc_region() const {
   482     return _is_gc_alloc_region;
   483   }
   484   void set_is_gc_alloc_region(bool b) {
   485     _is_gc_alloc_region = b;
   486   }
   487   HeapRegion* next_gc_alloc_region() {
   488     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
   489     assert(_next_in_special_set == NULL ||
   490            _next_in_special_set->is_gc_alloc_region(),
   491            "Malformed CS.");
   492     return _next_in_special_set;
   493   }
   494   void set_next_gc_alloc_region(HeapRegion* r) {
   495     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
   496     assert(r == NULL || r->is_gc_alloc_region(), "Malformed CS.");
   497     _next_in_special_set = r;
   498   }
   500   // Methods used by the HeapRegionSetBase class and subclasses.
   502   // Getter and setter for the next field used to link regions into
   503   // linked lists.
   504   HeapRegion* next()              { return _next; }
   506   void set_next(HeapRegion* next) { _next = next; }
   508   // Every region added to a set is tagged with a reference to that
   509   // set. This is used for doing consistency checking to make sure that
   510   // the contents of a set are as they should be and it's only
   511   // available in non-product builds.
   512 #ifdef ASSERT
   513   void set_containing_set(HeapRegionSetBase* containing_set) {
   514     assert((containing_set == NULL && _containing_set != NULL) ||
   515            (containing_set != NULL && _containing_set == NULL),
   516            err_msg("containing_set: "PTR_FORMAT" "
   517                    "_containing_set: "PTR_FORMAT,
   518                    containing_set, _containing_set));
   520     _containing_set = containing_set;
   521 }
   523   HeapRegionSetBase* containing_set() { return _containing_set; }
   524 #else // ASSERT
   525   void set_containing_set(HeapRegionSetBase* containing_set) { }
   527   // containing_set() is only used in asserts so there's not reason
   528   // to provide a dummy version of it.
   529 #endif // ASSERT
   531   // If we want to remove regions from a list in bulk we can simply tag
   532   // them with the pending_removal tag and call the
   533   // remove_all_pending() method on the list.
   535   bool pending_removal() { return _pending_removal; }
   537   void set_pending_removal(bool pending_removal) {
   538     // We can only set pending_removal to true, if it's false and the
   539     // region belongs to a set.
   540     assert(!pending_removal ||
   541            (!_pending_removal && containing_set() != NULL), "pre-condition");
   542     // We can only set pending_removal to false, if it's true and the
   543     // region does not belong to a set.
   544     assert( pending_removal ||
   545            ( _pending_removal && containing_set() == NULL), "pre-condition");
   547     _pending_removal = pending_removal;
   548   }
   550   HeapRegion* get_next_young_region() { return _next_young_region; }
   551   void set_next_young_region(HeapRegion* hr) {
   552     _next_young_region = hr;
   553   }
   555   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
   556   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
   557   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
   558   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
   560   // Allows logical separation between objects allocated before and after.
   561   void save_marks();
   563   // Reset HR stuff to default values.
   564   void hr_clear(bool par, bool clear_space);
   566   void initialize(MemRegion mr, bool clear_space, bool mangle_space);
   568   // Get the start of the unmarked area in this region.
   569   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
   570   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
   572   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
   573   // allocated in the current region before the last call to "save_mark".
   574   void oop_before_save_marks_iterate(OopClosure* cl);
   576   // This call determines the "filter kind" argument that will be used for
   577   // the next call to "new_dcto_cl" on this region with the "traditional"
   578   // signature (i.e., the call below.)  The default, in the absence of a
   579   // preceding call to this method, is "NoFilterKind", and a call to this
   580   // method is necessary for each such call, or else it reverts to the
   581   // default.
   582   // (This is really ugly, but all other methods I could think of changed a
   583   // lot of main-line code for G1.)
   584   void set_next_filter_kind(HeapRegionDCTOC::FilterKind nfk) {
   585     _next_fk = nfk;
   586   }
   588   DirtyCardToOopClosure*
   589   new_dcto_closure(OopClosure* cl,
   590                    CardTableModRefBS::PrecisionStyle precision,
   591                    HeapRegionDCTOC::FilterKind fk);
   593 #if WHASSUP
   594   DirtyCardToOopClosure*
   595   new_dcto_closure(OopClosure* cl,
   596                    CardTableModRefBS::PrecisionStyle precision,
   597                    HeapWord* boundary) {
   598     assert(boundary == NULL, "This arg doesn't make sense here.");
   599     DirtyCardToOopClosure* res = new_dcto_closure(cl, precision, _next_fk);
   600     _next_fk = HeapRegionDCTOC::NoFilterKind;
   601     return res;
   602   }
   603 #endif
   605   //
   606   // Note the start or end of marking. This tells the heap region
   607   // that the collector is about to start or has finished (concurrently)
   608   // marking the heap.
   609   //
   611   // Note the start of a marking phase. Record the
   612   // start of the unmarked area of the region here.
   613   void note_start_of_marking(bool during_initial_mark) {
   614     init_top_at_conc_mark_count();
   615     _next_marked_bytes = 0;
   616     if (during_initial_mark && is_young() && !is_survivor())
   617       _next_top_at_mark_start = bottom();
   618     else
   619       _next_top_at_mark_start = top();
   620   }
   622   // Note the end of a marking phase. Install the start of
   623   // the unmarked area that was captured at start of marking.
   624   void note_end_of_marking() {
   625     _prev_top_at_mark_start = _next_top_at_mark_start;
   626     _prev_marked_bytes = _next_marked_bytes;
   627     _next_marked_bytes = 0;
   629     guarantee(_prev_marked_bytes <=
   630               (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
   631               "invariant");
   632   }
   634   // After an evacuation, we need to update _next_top_at_mark_start
   635   // to be the current top.  Note this is only valid if we have only
   636   // ever evacuated into this region.  If we evacuate, allocate, and
   637   // then evacuate we are in deep doodoo.
   638   void note_end_of_copying() {
   639     assert(top() >= _next_top_at_mark_start, "Increase only");
   640     _next_top_at_mark_start = top();
   641   }
   643   // Returns "false" iff no object in the region was allocated when the
   644   // last mark phase ended.
   645   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
   647   // If "is_marked()" is true, then this is the index of the region in
   648   // an array constructed at the end of marking of the regions in a
   649   // "desirability" order.
   650   int sort_index() {
   651     return _sort_index;
   652   }
   653   void set_sort_index(int i) {
   654     _sort_index = i;
   655   }
   657   void init_top_at_conc_mark_count() {
   658     _top_at_conc_mark_count = bottom();
   659   }
   661   void set_top_at_conc_mark_count(HeapWord *cur) {
   662     assert(bottom() <= cur && cur <= end(), "Sanity.");
   663     _top_at_conc_mark_count = cur;
   664   }
   666   HeapWord* top_at_conc_mark_count() {
   667     return _top_at_conc_mark_count;
   668   }
   670   void reset_during_compaction() {
   671     guarantee( isHumongous() && startsHumongous(),
   672                "should only be called for humongous regions");
   674     zero_marked_bytes();
   675     init_top_at_mark_start();
   676   }
   678   // <PREDICTION>
   679   void calc_gc_efficiency(void);
   680   double gc_efficiency() { return _gc_efficiency;}
   681   // </PREDICTION>
   683   bool is_young() const     { return _young_type != NotYoung; }
   684   bool is_survivor() const  { return _young_type == Survivor; }
   686   int  young_index_in_cset() const { return _young_index_in_cset; }
   687   void set_young_index_in_cset(int index) {
   688     assert( (index == -1) || is_young(), "pre-condition" );
   689     _young_index_in_cset = index;
   690   }
   692   int age_in_surv_rate_group() {
   693     assert( _surv_rate_group != NULL, "pre-condition" );
   694     assert( _age_index > -1, "pre-condition" );
   695     return _surv_rate_group->age_in_group(_age_index);
   696   }
   698   void record_surv_words_in_group(size_t words_survived) {
   699     assert( _surv_rate_group != NULL, "pre-condition" );
   700     assert( _age_index > -1, "pre-condition" );
   701     int age_in_group = age_in_surv_rate_group();
   702     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
   703   }
   705   int age_in_surv_rate_group_cond() {
   706     if (_surv_rate_group != NULL)
   707       return age_in_surv_rate_group();
   708     else
   709       return -1;
   710   }
   712   SurvRateGroup* surv_rate_group() {
   713     return _surv_rate_group;
   714   }
   716   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
   717     assert( surv_rate_group != NULL, "pre-condition" );
   718     assert( _surv_rate_group == NULL, "pre-condition" );
   719     assert( is_young(), "pre-condition" );
   721     _surv_rate_group = surv_rate_group;
   722     _age_index = surv_rate_group->next_age_index();
   723   }
   725   void uninstall_surv_rate_group() {
   726     if (_surv_rate_group != NULL) {
   727       assert( _age_index > -1, "pre-condition" );
   728       assert( is_young(), "pre-condition" );
   730       _surv_rate_group = NULL;
   731       _age_index = -1;
   732     } else {
   733       assert( _age_index == -1, "pre-condition" );
   734     }
   735   }
   737   void set_young() { set_young_type(Young); }
   739   void set_survivor() { set_young_type(Survivor); }
   741   void set_not_young() { set_young_type(NotYoung); }
   743   // Determine if an object has been allocated since the last
   744   // mark performed by the collector. This returns true iff the object
   745   // is within the unmarked area of the region.
   746   bool obj_allocated_since_prev_marking(oop obj) const {
   747     return (HeapWord *) obj >= prev_top_at_mark_start();
   748   }
   749   bool obj_allocated_since_next_marking(oop obj) const {
   750     return (HeapWord *) obj >= next_top_at_mark_start();
   751   }
   753   // For parallel heapRegion traversal.
   754   bool claimHeapRegion(int claimValue);
   755   jint claim_value() { return _claimed; }
   756   // Use this carefully: only when you're sure no one is claiming...
   757   void set_claim_value(int claimValue) { _claimed = claimValue; }
   759   // Returns the "evacuation_failed" property of the region.
   760   bool evacuation_failed() { return _evacuation_failed; }
   762   // Sets the "evacuation_failed" property of the region.
   763   void set_evacuation_failed(bool b) {
   764     _evacuation_failed = b;
   766     if (b) {
   767       init_top_at_conc_mark_count();
   768       _next_marked_bytes = 0;
   769     }
   770   }
   772   // Requires that "mr" be entirely within the region.
   773   // Apply "cl->do_object" to all objects that intersect with "mr".
   774   // If the iteration encounters an unparseable portion of the region,
   775   // or if "cl->abort()" is true after a closure application,
   776   // terminate the iteration and return the address of the start of the
   777   // subregion that isn't done.  (The two can be distinguished by querying
   778   // "cl->abort()".)  Return of "NULL" indicates that the iteration
   779   // completed.
   780   HeapWord*
   781   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
   783   // In this version - if filter_young is true and the region
   784   // is a young region then we skip the iteration.
   785   HeapWord*
   786   oops_on_card_seq_iterate_careful(MemRegion mr,
   787                                    FilterOutOfRegionClosure* cl,
   788                                    bool filter_young);
   790   // A version of block start that is guaranteed to find *some* block
   791   // boundary at or before "p", but does not object iteration, and may
   792   // therefore be used safely when the heap is unparseable.
   793   HeapWord* block_start_careful(const void* p) const {
   794     return _offsets.block_start_careful(p);
   795   }
   797   // Requires that "addr" is within the region.  Returns the start of the
   798   // first ("careful") block that starts at or after "addr", or else the
   799   // "end" of the region if there is no such block.
   800   HeapWord* next_block_start_careful(HeapWord* addr);
   802   size_t recorded_rs_length() const        { return _recorded_rs_length; }
   803   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
   804   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
   806   void set_recorded_rs_length(size_t rs_length) {
   807     _recorded_rs_length = rs_length;
   808   }
   810   void set_predicted_elapsed_time_ms(double ms) {
   811     _predicted_elapsed_time_ms = ms;
   812   }
   814   void set_predicted_bytes_to_copy(size_t bytes) {
   815     _predicted_bytes_to_copy = bytes;
   816   }
   818 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
   819   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
   820   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
   822   CompactibleSpace* next_compaction_space() const;
   824   virtual void reset_after_compaction();
   826   void print() const;
   827   void print_on(outputStream* st) const;
   829   // use_prev_marking == true  -> use "prev" marking information,
   830   // use_prev_marking == false -> use "next" marking information
   831   // NOTE: Only the "prev" marking information is guaranteed to be
   832   // consistent most of the time, so most calls to this should use
   833   // use_prev_marking == true. Currently, there is only one case where
   834   // this is called with use_prev_marking == false, which is to verify
   835   // the "next" marking information at the end of remark.
   836   void verify(bool allow_dirty, bool use_prev_marking, bool *failures) const;
   838   // Override; it uses the "prev" marking information
   839   virtual void verify(bool allow_dirty) const;
   840 };
   842 // HeapRegionClosure is used for iterating over regions.
   843 // Terminates the iteration when the "doHeapRegion" method returns "true".
   844 class HeapRegionClosure : public StackObj {
   845   friend class HeapRegionSeq;
   846   friend class G1CollectedHeap;
   848   bool _complete;
   849   void incomplete() { _complete = false; }
   851  public:
   852   HeapRegionClosure(): _complete(true) {}
   854   // Typically called on each region until it returns true.
   855   virtual bool doHeapRegion(HeapRegion* r) = 0;
   857   // True after iteration if the closure was applied to all heap regions
   858   // and returned "false" in all cases.
   859   bool complete() { return _complete; }
   860 };
   862 #endif // SERIALGC
   864 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial