src/share/vm/gc_implementation/g1/heapRegion.cpp

Tue, 01 Mar 2011 14:56:48 -0800

author
iveresov
date
Tue, 01 Mar 2011 14:56:48 -0800
changeset 2606
0ac769a57c64
parent 2472
0fa27f37d4d4
child 2715
abdfc822206f
permissions
-rw-r--r--

6627983: G1: Bad oop deference during marking
Summary: Bulk zeroing reduction didn't work with G1, because arraycopy would call pre-barriers on uninitialized oops. The solution is to have version of arraycopy stubs that don't have pre-barriers. Also refactored arraycopy stubs generation on SPARC to be more readable and reduced the number of stubs necessary in some cases.
Reviewed-by: jrose, kvn, never

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    27 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    28 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    29 #include "gc_implementation/g1/heapRegion.inline.hpp"
    30 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    31 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    32 #include "memory/genOopClosures.inline.hpp"
    33 #include "memory/iterator.hpp"
    34 #include "oops/oop.inline.hpp"
    36 int HeapRegion::LogOfHRGrainBytes = 0;
    37 int HeapRegion::LogOfHRGrainWords = 0;
    38 int HeapRegion::GrainBytes        = 0;
    39 int HeapRegion::GrainWords        = 0;
    40 int HeapRegion::CardsPerRegion    = 0;
    42 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
    43                                  HeapRegion* hr, OopClosure* cl,
    44                                  CardTableModRefBS::PrecisionStyle precision,
    45                                  FilterKind fk) :
    46   ContiguousSpaceDCTOC(hr, cl, precision, NULL),
    47   _hr(hr), _fk(fk), _g1(g1)
    48 {}
    50 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
    51                                                    OopClosure* oc) :
    52   _r_bottom(r->bottom()), _r_end(r->end()),
    53   _oc(oc), _out_of_region(0)
    54 {}
    56 class VerifyLiveClosure: public OopClosure {
    57 private:
    58   G1CollectedHeap* _g1h;
    59   CardTableModRefBS* _bs;
    60   oop _containing_obj;
    61   bool _failures;
    62   int _n_failures;
    63   bool _use_prev_marking;
    64 public:
    65   // use_prev_marking == true  -> use "prev" marking information,
    66   // use_prev_marking == false -> use "next" marking information
    67   VerifyLiveClosure(G1CollectedHeap* g1h, bool use_prev_marking) :
    68     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
    69     _failures(false), _n_failures(0), _use_prev_marking(use_prev_marking)
    70   {
    71     BarrierSet* bs = _g1h->barrier_set();
    72     if (bs->is_a(BarrierSet::CardTableModRef))
    73       _bs = (CardTableModRefBS*)bs;
    74   }
    76   void set_containing_obj(oop obj) {
    77     _containing_obj = obj;
    78   }
    80   bool failures() { return _failures; }
    81   int n_failures() { return _n_failures; }
    83   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
    84   virtual void do_oop(      oop* p) { do_oop_work(p); }
    86   void print_object(outputStream* out, oop obj) {
    87 #ifdef PRODUCT
    88     klassOop k = obj->klass();
    89     const char* class_name = instanceKlass::cast(k)->external_name();
    90     out->print_cr("class name %s", class_name);
    91 #else // PRODUCT
    92     obj->print_on(out);
    93 #endif // PRODUCT
    94   }
    96   template <class T> void do_oop_work(T* p) {
    97     assert(_containing_obj != NULL, "Precondition");
    98     assert(!_g1h->is_obj_dead_cond(_containing_obj, _use_prev_marking),
    99            "Precondition");
   100     T heap_oop = oopDesc::load_heap_oop(p);
   101     if (!oopDesc::is_null(heap_oop)) {
   102       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
   103       bool failed = false;
   104       if (!_g1h->is_in_closed_subset(obj) ||
   105           _g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
   106         if (!_failures) {
   107           gclog_or_tty->print_cr("");
   108           gclog_or_tty->print_cr("----------");
   109         }
   110         if (!_g1h->is_in_closed_subset(obj)) {
   111           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   112           gclog_or_tty->print_cr("Field "PTR_FORMAT
   113                                  " of live obj "PTR_FORMAT" in region "
   114                                  "["PTR_FORMAT", "PTR_FORMAT")",
   115                                  p, (void*) _containing_obj,
   116                                  from->bottom(), from->end());
   117           print_object(gclog_or_tty, _containing_obj);
   118           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
   119                                  (void*) obj);
   120         } else {
   121           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   122           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
   123           gclog_or_tty->print_cr("Field "PTR_FORMAT
   124                                  " of live obj "PTR_FORMAT" in region "
   125                                  "["PTR_FORMAT", "PTR_FORMAT")",
   126                                  p, (void*) _containing_obj,
   127                                  from->bottom(), from->end());
   128           print_object(gclog_or_tty, _containing_obj);
   129           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
   130                                  "["PTR_FORMAT", "PTR_FORMAT")",
   131                                  (void*) obj, to->bottom(), to->end());
   132           print_object(gclog_or_tty, obj);
   133         }
   134         gclog_or_tty->print_cr("----------");
   135         _failures = true;
   136         failed = true;
   137         _n_failures++;
   138       }
   140       if (!_g1h->full_collection()) {
   141         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
   142         HeapRegion* to   = _g1h->heap_region_containing(obj);
   143         if (from != NULL && to != NULL &&
   144             from != to &&
   145             !to->isHumongous()) {
   146           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
   147           jbyte cv_field = *_bs->byte_for_const(p);
   148           const jbyte dirty = CardTableModRefBS::dirty_card_val();
   150           bool is_bad = !(from->is_young()
   151                           || to->rem_set()->contains_reference(p)
   152                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
   153                               (_containing_obj->is_objArray() ?
   154                                   cv_field == dirty
   155                                : cv_obj == dirty || cv_field == dirty));
   156           if (is_bad) {
   157             if (!_failures) {
   158               gclog_or_tty->print_cr("");
   159               gclog_or_tty->print_cr("----------");
   160             }
   161             gclog_or_tty->print_cr("Missing rem set entry:");
   162             gclog_or_tty->print_cr("Field "PTR_FORMAT
   163                           " of obj "PTR_FORMAT
   164                           ", in region %d ["PTR_FORMAT
   165                           ", "PTR_FORMAT"),",
   166                           p, (void*) _containing_obj,
   167                           from->hrs_index(),
   168                           from->bottom(),
   169                           from->end());
   170             _containing_obj->print_on(gclog_or_tty);
   171             gclog_or_tty->print_cr("points to obj "PTR_FORMAT
   172                           " in region %d ["PTR_FORMAT
   173                           ", "PTR_FORMAT").",
   174                           (void*) obj, to->hrs_index(),
   175                           to->bottom(), to->end());
   176             obj->print_on(gclog_or_tty);
   177             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
   178                           cv_obj, cv_field);
   179             gclog_or_tty->print_cr("----------");
   180             _failures = true;
   181             if (!failed) _n_failures++;
   182           }
   183         }
   184       }
   185     }
   186   }
   187 };
   189 template<class ClosureType>
   190 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
   191                                HeapRegion* hr,
   192                                HeapWord* cur, HeapWord* top) {
   193   oop cur_oop = oop(cur);
   194   int oop_size = cur_oop->size();
   195   HeapWord* next_obj = cur + oop_size;
   196   while (next_obj < top) {
   197     // Keep filtering the remembered set.
   198     if (!g1h->is_obj_dead(cur_oop, hr)) {
   199       // Bottom lies entirely below top, so we can call the
   200       // non-memRegion version of oop_iterate below.
   201       cur_oop->oop_iterate(cl);
   202     }
   203     cur = next_obj;
   204     cur_oop = oop(cur);
   205     oop_size = cur_oop->size();
   206     next_obj = cur + oop_size;
   207   }
   208   return cur;
   209 }
   211 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
   212                                               HeapWord* bottom,
   213                                               HeapWord* top,
   214                                               OopClosure* cl) {
   215   G1CollectedHeap* g1h = _g1;
   217   int oop_size;
   219   OopClosure* cl2 = cl;
   220   FilterIntoCSClosure intoCSFilt(this, g1h, cl);
   221   FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
   222   switch (_fk) {
   223   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
   224   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
   225   }
   227   // Start filtering what we add to the remembered set. If the object is
   228   // not considered dead, either because it is marked (in the mark bitmap)
   229   // or it was allocated after marking finished, then we add it. Otherwise
   230   // we can safely ignore the object.
   231   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   232     oop_size = oop(bottom)->oop_iterate(cl2, mr);
   233   } else {
   234     oop_size = oop(bottom)->size();
   235   }
   237   bottom += oop_size;
   239   if (bottom < top) {
   240     // We replicate the loop below for several kinds of possible filters.
   241     switch (_fk) {
   242     case NoFilterKind:
   243       bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
   244       break;
   245     case IntoCSFilterKind: {
   246       FilterIntoCSClosure filt(this, g1h, cl);
   247       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   248       break;
   249     }
   250     case OutOfRegionFilterKind: {
   251       FilterOutOfRegionClosure filt(_hr, cl);
   252       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
   253       break;
   254     }
   255     default:
   256       ShouldNotReachHere();
   257     }
   259     // Last object. Need to do dead-obj filtering here too.
   260     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
   261       oop(bottom)->oop_iterate(cl2, mr);
   262     }
   263   }
   264 }
   266 // Minimum region size; we won't go lower than that.
   267 // We might want to decrease this in the future, to deal with small
   268 // heaps a bit more efficiently.
   269 #define MIN_REGION_SIZE  (      1024 * 1024 )
   271 // Maximum region size; we don't go higher than that. There's a good
   272 // reason for having an upper bound. We don't want regions to get too
   273 // large, otherwise cleanup's effectiveness would decrease as there
   274 // will be fewer opportunities to find totally empty regions after
   275 // marking.
   276 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
   278 // The automatic region size calculation will try to have around this
   279 // many regions in the heap (based on the min heap size).
   280 #define TARGET_REGION_NUMBER          2048
   282 void HeapRegion::setup_heap_region_size(uintx min_heap_size) {
   283   // region_size in bytes
   284   uintx region_size = G1HeapRegionSize;
   285   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
   286     // We base the automatic calculation on the min heap size. This
   287     // can be problematic if the spread between min and max is quite
   288     // wide, imagine -Xms128m -Xmx32g. But, if we decided it based on
   289     // the max size, the region size might be way too large for the
   290     // min size. Either way, some users might have to set the region
   291     // size manually for some -Xms / -Xmx combos.
   293     region_size = MAX2(min_heap_size / TARGET_REGION_NUMBER,
   294                        (uintx) MIN_REGION_SIZE);
   295   }
   297   int region_size_log = log2_long((jlong) region_size);
   298   // Recalculate the region size to make sure it's a power of
   299   // 2. This means that region_size is the largest power of 2 that's
   300   // <= what we've calculated so far.
   301   region_size = ((uintx)1 << region_size_log);
   303   // Now make sure that we don't go over or under our limits.
   304   if (region_size < MIN_REGION_SIZE) {
   305     region_size = MIN_REGION_SIZE;
   306   } else if (region_size > MAX_REGION_SIZE) {
   307     region_size = MAX_REGION_SIZE;
   308   }
   310   // And recalculate the log.
   311   region_size_log = log2_long((jlong) region_size);
   313   // Now, set up the globals.
   314   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
   315   LogOfHRGrainBytes = region_size_log;
   317   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
   318   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
   320   guarantee(GrainBytes == 0, "we should only set it once");
   321   // The cast to int is safe, given that we've bounded region_size by
   322   // MIN_REGION_SIZE and MAX_REGION_SIZE.
   323   GrainBytes = (int) region_size;
   325   guarantee(GrainWords == 0, "we should only set it once");
   326   GrainWords = GrainBytes >> LogHeapWordSize;
   327   guarantee(1 << LogOfHRGrainWords == GrainWords, "sanity");
   329   guarantee(CardsPerRegion == 0, "we should only set it once");
   330   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
   331 }
   333 void HeapRegion::reset_after_compaction() {
   334   G1OffsetTableContigSpace::reset_after_compaction();
   335   // After a compaction the mark bitmap is invalid, so we must
   336   // treat all objects as being inside the unmarked area.
   337   zero_marked_bytes();
   338   init_top_at_mark_start();
   339 }
   341 DirtyCardToOopClosure*
   342 HeapRegion::new_dcto_closure(OopClosure* cl,
   343                              CardTableModRefBS::PrecisionStyle precision,
   344                              HeapRegionDCTOC::FilterKind fk) {
   345   return new HeapRegionDCTOC(G1CollectedHeap::heap(),
   346                              this, cl, precision, fk);
   347 }
   349 void HeapRegion::hr_clear(bool par, bool clear_space) {
   350   assert(_humongous_type == NotHumongous,
   351          "we should have already filtered out humongous regions");
   352   assert(_humongous_start_region == NULL,
   353          "we should have already filtered out humongous regions");
   354   assert(_end == _orig_end,
   355          "we should have already filtered out humongous regions");
   357   _in_collection_set = false;
   358   _is_gc_alloc_region = false;
   360   set_young_index_in_cset(-1);
   361   uninstall_surv_rate_group();
   362   set_young_type(NotYoung);
   364   if (!par) {
   365     // If this is parallel, this will be done later.
   366     HeapRegionRemSet* hrrs = rem_set();
   367     if (hrrs != NULL) hrrs->clear();
   368     _claimed = InitialClaimValue;
   369   }
   370   zero_marked_bytes();
   371   set_sort_index(-1);
   373   _offsets.resize(HeapRegion::GrainWords);
   374   init_top_at_mark_start();
   375   if (clear_space) clear(SpaceDecorator::Mangle);
   376 }
   378 // <PREDICTION>
   379 void HeapRegion::calc_gc_efficiency() {
   380   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   381   _gc_efficiency = (double) garbage_bytes() /
   382                             g1h->predict_region_elapsed_time_ms(this, false);
   383 }
   384 // </PREDICTION>
   386 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
   387   assert(!isHumongous(), "sanity / pre-condition");
   388   assert(end() == _orig_end,
   389          "Should be normal before the humongous object allocation");
   390   assert(top() == bottom(), "should be empty");
   391   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
   393   _humongous_type = StartsHumongous;
   394   _humongous_start_region = this;
   396   set_end(new_end);
   397   _offsets.set_for_starts_humongous(new_top);
   398 }
   400 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
   401   assert(!isHumongous(), "sanity / pre-condition");
   402   assert(end() == _orig_end,
   403          "Should be normal before the humongous object allocation");
   404   assert(top() == bottom(), "should be empty");
   405   assert(first_hr->startsHumongous(), "pre-condition");
   407   _humongous_type = ContinuesHumongous;
   408   _humongous_start_region = first_hr;
   409 }
   411 void HeapRegion::set_notHumongous() {
   412   assert(isHumongous(), "pre-condition");
   414   if (startsHumongous()) {
   415     assert(top() <= end(), "pre-condition");
   416     set_end(_orig_end);
   417     if (top() > end()) {
   418       // at least one "continues humongous" region after it
   419       set_top(end());
   420     }
   421   } else {
   422     // continues humongous
   423     assert(end() == _orig_end, "sanity");
   424   }
   426   assert(capacity() == (size_t) HeapRegion::GrainBytes, "pre-condition");
   427   _humongous_type = NotHumongous;
   428   _humongous_start_region = NULL;
   429 }
   431 bool HeapRegion::claimHeapRegion(jint claimValue) {
   432   jint current = _claimed;
   433   if (current != claimValue) {
   434     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
   435     if (res == current) {
   436       return true;
   437     }
   438   }
   439   return false;
   440 }
   442 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
   443   HeapWord* low = addr;
   444   HeapWord* high = end();
   445   while (low < high) {
   446     size_t diff = pointer_delta(high, low);
   447     // Must add one below to bias toward the high amount.  Otherwise, if
   448   // "high" were at the desired value, and "low" were one less, we
   449     // would not converge on "high".  This is not symmetric, because
   450     // we set "high" to a block start, which might be the right one,
   451     // which we don't do for "low".
   452     HeapWord* middle = low + (diff+1)/2;
   453     if (middle == high) return high;
   454     HeapWord* mid_bs = block_start_careful(middle);
   455     if (mid_bs < addr) {
   456       low = middle;
   457     } else {
   458       high = mid_bs;
   459     }
   460   }
   461   assert(low == high && low >= addr, "Didn't work.");
   462   return low;
   463 }
   465 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
   466   G1OffsetTableContigSpace::initialize(mr, false, mangle_space);
   467   hr_clear(false/*par*/, clear_space);
   468 }
   469 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
   470 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
   471 #endif // _MSC_VER
   474 HeapRegion::
   475 HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
   476                      MemRegion mr, bool is_zeroed)
   477   : G1OffsetTableContigSpace(sharedOffsetArray, mr, is_zeroed),
   478     _next_fk(HeapRegionDCTOC::NoFilterKind),
   479     _hrs_index(-1),
   480     _humongous_type(NotHumongous), _humongous_start_region(NULL),
   481     _in_collection_set(false), _is_gc_alloc_region(false),
   482     _next_in_special_set(NULL), _orig_end(NULL),
   483     _claimed(InitialClaimValue), _evacuation_failed(false),
   484     _prev_marked_bytes(0), _next_marked_bytes(0), _sort_index(-1),
   485     _young_type(NotYoung), _next_young_region(NULL),
   486     _next_dirty_cards_region(NULL), _next(NULL), _pending_removal(false),
   487 #ifdef ASSERT
   488     _containing_set(NULL),
   489 #endif // ASSERT
   490      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
   491     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
   492     _predicted_bytes_to_copy(0)
   493 {
   494   _orig_end = mr.end();
   495   // Note that initialize() will set the start of the unmarked area of the
   496   // region.
   497   this->initialize(mr, !is_zeroed, SpaceDecorator::Mangle);
   498   set_top(bottom());
   499   set_saved_mark();
   501   _rem_set =  new HeapRegionRemSet(sharedOffsetArray, this);
   503   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
   504   // In case the region is allocated during a pause, note the top.
   505   // We haven't done any counting on a brand new region.
   506   _top_at_conc_mark_count = bottom();
   507 }
   509 class NextCompactionHeapRegionClosure: public HeapRegionClosure {
   510   const HeapRegion* _target;
   511   bool _target_seen;
   512   HeapRegion* _last;
   513   CompactibleSpace* _res;
   514 public:
   515   NextCompactionHeapRegionClosure(const HeapRegion* target) :
   516     _target(target), _target_seen(false), _res(NULL) {}
   517   bool doHeapRegion(HeapRegion* cur) {
   518     if (_target_seen) {
   519       if (!cur->isHumongous()) {
   520         _res = cur;
   521         return true;
   522       }
   523     } else if (cur == _target) {
   524       _target_seen = true;
   525     }
   526     return false;
   527   }
   528   CompactibleSpace* result() { return _res; }
   529 };
   531 CompactibleSpace* HeapRegion::next_compaction_space() const {
   532   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   533   // cast away const-ness
   534   HeapRegion* r = (HeapRegion*) this;
   535   NextCompactionHeapRegionClosure blk(r);
   536   g1h->heap_region_iterate_from(r, &blk);
   537   return blk.result();
   538 }
   540 void HeapRegion::save_marks() {
   541   set_saved_mark();
   542 }
   544 void HeapRegion::oops_in_mr_iterate(MemRegion mr, OopClosure* cl) {
   545   HeapWord* p = mr.start();
   546   HeapWord* e = mr.end();
   547   oop obj;
   548   while (p < e) {
   549     obj = oop(p);
   550     p += obj->oop_iterate(cl);
   551   }
   552   assert(p == e, "bad memregion: doesn't end on obj boundary");
   553 }
   555 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
   556 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
   557   ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
   558 }
   559 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
   562 void HeapRegion::oop_before_save_marks_iterate(OopClosure* cl) {
   563   oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
   564 }
   566 HeapWord*
   567 HeapRegion::object_iterate_mem_careful(MemRegion mr,
   568                                                  ObjectClosure* cl) {
   569   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   570   // We used to use "block_start_careful" here.  But we're actually happy
   571   // to update the BOT while we do this...
   572   HeapWord* cur = block_start(mr.start());
   573   mr = mr.intersection(used_region());
   574   if (mr.is_empty()) return NULL;
   575   // Otherwise, find the obj that extends onto mr.start().
   577   assert(cur <= mr.start()
   578          && (oop(cur)->klass_or_null() == NULL ||
   579              cur + oop(cur)->size() > mr.start()),
   580          "postcondition of block_start");
   581   oop obj;
   582   while (cur < mr.end()) {
   583     obj = oop(cur);
   584     if (obj->klass_or_null() == NULL) {
   585       // Ran into an unparseable point.
   586       return cur;
   587     } else if (!g1h->is_obj_dead(obj)) {
   588       cl->do_object(obj);
   589     }
   590     if (cl->abort()) return cur;
   591     // The check above must occur before the operation below, since an
   592     // abort might invalidate the "size" operation.
   593     cur += obj->size();
   594   }
   595   return NULL;
   596 }
   598 HeapWord*
   599 HeapRegion::
   600 oops_on_card_seq_iterate_careful(MemRegion mr,
   601                                  FilterOutOfRegionClosure* cl,
   602                                  bool filter_young) {
   603   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   605   // If we're within a stop-world GC, then we might look at a card in a
   606   // GC alloc region that extends onto a GC LAB, which may not be
   607   // parseable.  Stop such at the "saved_mark" of the region.
   608   if (G1CollectedHeap::heap()->is_gc_active()) {
   609     mr = mr.intersection(used_region_at_save_marks());
   610   } else {
   611     mr = mr.intersection(used_region());
   612   }
   613   if (mr.is_empty()) return NULL;
   614   // Otherwise, find the obj that extends onto mr.start().
   616   // The intersection of the incoming mr (for the card) and the
   617   // allocated part of the region is non-empty. This implies that
   618   // we have actually allocated into this region. The code in
   619   // G1CollectedHeap.cpp that allocates a new region sets the
   620   // is_young tag on the region before allocating. Thus we
   621   // safely know if this region is young.
   622   if (is_young() && filter_young) {
   623     return NULL;
   624   }
   626   assert(!is_young(), "check value of filter_young");
   628   // We used to use "block_start_careful" here.  But we're actually happy
   629   // to update the BOT while we do this...
   630   HeapWord* cur = block_start(mr.start());
   631   assert(cur <= mr.start(), "Postcondition");
   633   while (cur <= mr.start()) {
   634     if (oop(cur)->klass_or_null() == NULL) {
   635       // Ran into an unparseable point.
   636       return cur;
   637     }
   638     // Otherwise...
   639     int sz = oop(cur)->size();
   640     if (cur + sz > mr.start()) break;
   641     // Otherwise, go on.
   642     cur = cur + sz;
   643   }
   644   oop obj;
   645   obj = oop(cur);
   646   // If we finish this loop...
   647   assert(cur <= mr.start()
   648          && obj->klass_or_null() != NULL
   649          && cur + obj->size() > mr.start(),
   650          "Loop postcondition");
   651   if (!g1h->is_obj_dead(obj)) {
   652     obj->oop_iterate(cl, mr);
   653   }
   655   HeapWord* next;
   656   while (cur < mr.end()) {
   657     obj = oop(cur);
   658     if (obj->klass_or_null() == NULL) {
   659       // Ran into an unparseable point.
   660       return cur;
   661     };
   662     // Otherwise:
   663     next = (cur + obj->size());
   664     if (!g1h->is_obj_dead(obj)) {
   665       if (next < mr.end()) {
   666         obj->oop_iterate(cl);
   667       } else {
   668         // this obj spans the boundary.  If it's an array, stop at the
   669         // boundary.
   670         if (obj->is_objArray()) {
   671           obj->oop_iterate(cl, mr);
   672         } else {
   673           obj->oop_iterate(cl);
   674         }
   675       }
   676     }
   677     cur = next;
   678   }
   679   return NULL;
   680 }
   682 void HeapRegion::print() const { print_on(gclog_or_tty); }
   683 void HeapRegion::print_on(outputStream* st) const {
   684   if (isHumongous()) {
   685     if (startsHumongous())
   686       st->print(" HS");
   687     else
   688       st->print(" HC");
   689   } else {
   690     st->print("   ");
   691   }
   692   if (in_collection_set())
   693     st->print(" CS");
   694   else if (is_gc_alloc_region())
   695     st->print(" A ");
   696   else
   697     st->print("   ");
   698   if (is_young())
   699     st->print(is_survivor() ? " SU" : " Y ");
   700   else
   701     st->print("   ");
   702   if (is_empty())
   703     st->print(" F");
   704   else
   705     st->print("  ");
   706   st->print(" %5d", _gc_time_stamp);
   707   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
   708             prev_top_at_mark_start(), next_top_at_mark_start());
   709   G1OffsetTableContigSpace::print_on(st);
   710 }
   712 void HeapRegion::verify(bool allow_dirty) const {
   713   bool dummy = false;
   714   verify(allow_dirty, /* use_prev_marking */ true, /* failures */ &dummy);
   715 }
   717 // This really ought to be commoned up into OffsetTableContigSpace somehow.
   718 // We would need a mechanism to make that code skip dead objects.
   720 void HeapRegion::verify(bool allow_dirty,
   721                         bool use_prev_marking,
   722                         bool* failures) const {
   723   G1CollectedHeap* g1 = G1CollectedHeap::heap();
   724   *failures = false;
   725   HeapWord* p = bottom();
   726   HeapWord* prev_p = NULL;
   727   VerifyLiveClosure vl_cl(g1, use_prev_marking);
   728   bool is_humongous = isHumongous();
   729   bool do_bot_verify = !is_young();
   730   size_t object_num = 0;
   731   while (p < top()) {
   732     oop obj = oop(p);
   733     size_t obj_size = obj->size();
   734     object_num += 1;
   736     if (is_humongous != g1->isHumongous(obj_size)) {
   737       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
   738                              SIZE_FORMAT" words) in a %shumongous region",
   739                              p, g1->isHumongous(obj_size) ? "" : "non-",
   740                              obj_size, is_humongous ? "" : "non-");
   741        *failures = true;
   742        return;
   743     }
   745     // If it returns false, verify_for_object() will output the
   746     // appropriate messasge.
   747     if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
   748       *failures = true;
   749       return;
   750     }
   752     if (!g1->is_obj_dead_cond(obj, this, use_prev_marking)) {
   753       if (obj->is_oop()) {
   754         klassOop klass = obj->klass();
   755         if (!klass->is_perm()) {
   756           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   757                                  "not in perm", klass, obj);
   758           *failures = true;
   759           return;
   760         } else if (!klass->is_klass()) {
   761           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
   762                                  "not a klass", klass, obj);
   763           *failures = true;
   764           return;
   765         } else {
   766           vl_cl.set_containing_obj(obj);
   767           obj->oop_iterate(&vl_cl);
   768           if (vl_cl.failures()) {
   769             *failures = true;
   770           }
   771           if (G1MaxVerifyFailures >= 0 &&
   772               vl_cl.n_failures() >= G1MaxVerifyFailures) {
   773             return;
   774           }
   775         }
   776       } else {
   777         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
   778         *failures = true;
   779         return;
   780       }
   781     }
   782     prev_p = p;
   783     p += obj_size;
   784   }
   786   if (p != top()) {
   787     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
   788                            "does not match top "PTR_FORMAT, p, top());
   789     *failures = true;
   790     return;
   791   }
   793   HeapWord* the_end = end();
   794   assert(p == top(), "it should still hold");
   795   // Do some extra BOT consistency checking for addresses in the
   796   // range [top, end). BOT look-ups in this range should yield
   797   // top. No point in doing that if top == end (there's nothing there).
   798   if (p < the_end) {
   799     // Look up top
   800     HeapWord* addr_1 = p;
   801     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
   802     if (b_start_1 != p) {
   803       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
   804                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   805                              addr_1, b_start_1, p);
   806       *failures = true;
   807       return;
   808     }
   810     // Look up top + 1
   811     HeapWord* addr_2 = p + 1;
   812     if (addr_2 < the_end) {
   813       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
   814       if (b_start_2 != p) {
   815         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
   816                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   817                                addr_2, b_start_2, p);
   818         *failures = true;
   819         return;
   820       }
   821     }
   823     // Look up an address between top and end
   824     size_t diff = pointer_delta(the_end, p) / 2;
   825     HeapWord* addr_3 = p + diff;
   826     if (addr_3 < the_end) {
   827       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
   828       if (b_start_3 != p) {
   829         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
   830                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   831                                addr_3, b_start_3, p);
   832         *failures = true;
   833         return;
   834       }
   835     }
   837     // Loook up end - 1
   838     HeapWord* addr_4 = the_end - 1;
   839     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
   840     if (b_start_4 != p) {
   841       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
   842                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
   843                              addr_4, b_start_4, p);
   844       *failures = true;
   845       return;
   846     }
   847   }
   849   if (is_humongous && object_num > 1) {
   850     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
   851                            "but has "SIZE_FORMAT", objects",
   852                            bottom(), end(), object_num);
   853     *failures = true;
   854     return;
   855   }
   856 }
   858 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
   859 // away eventually.
   861 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
   862   // false ==> we'll do the clearing if there's clearing to be done.
   863   ContiguousSpace::initialize(mr, false, mangle_space);
   864   _offsets.zero_bottom_entry();
   865   _offsets.initialize_threshold();
   866   if (clear_space) clear(mangle_space);
   867 }
   869 void G1OffsetTableContigSpace::clear(bool mangle_space) {
   870   ContiguousSpace::clear(mangle_space);
   871   _offsets.zero_bottom_entry();
   872   _offsets.initialize_threshold();
   873 }
   875 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
   876   Space::set_bottom(new_bottom);
   877   _offsets.set_bottom(new_bottom);
   878 }
   880 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
   881   Space::set_end(new_end);
   882   _offsets.resize(new_end - bottom());
   883 }
   885 void G1OffsetTableContigSpace::print() const {
   886   print_short();
   887   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
   888                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
   889                 bottom(), top(), _offsets.threshold(), end());
   890 }
   892 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
   893   return _offsets.initialize_threshold();
   894 }
   896 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
   897                                                     HeapWord* end) {
   898   _offsets.alloc_block(start, end);
   899   return _offsets.threshold();
   900 }
   902 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
   903   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   904   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
   905   if (_gc_time_stamp < g1h->get_gc_time_stamp())
   906     return top();
   907   else
   908     return ContiguousSpace::saved_mark_word();
   909 }
   911 void G1OffsetTableContigSpace::set_saved_mark() {
   912   G1CollectedHeap* g1h = G1CollectedHeap::heap();
   913   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
   915   if (_gc_time_stamp < curr_gc_time_stamp) {
   916     // The order of these is important, as another thread might be
   917     // about to start scanning this region. If it does so after
   918     // set_saved_mark and before _gc_time_stamp = ..., then the latter
   919     // will be false, and it will pick up top() as the high water mark
   920     // of region. If it does so after _gc_time_stamp = ..., then it
   921     // will pick up the right saved_mark_word() as the high water mark
   922     // of the region. Either way, the behaviour will be correct.
   923     ContiguousSpace::set_saved_mark();
   924     OrderAccess::storestore();
   925     _gc_time_stamp = curr_gc_time_stamp;
   926     // The following fence is to force a flush of the writes above, but
   927     // is strictly not needed because when an allocating worker thread
   928     // calls set_saved_mark() it does so under the ParGCRareEvent_lock;
   929     // when the lock is released, the write will be flushed.
   930     // OrderAccess::fence();
   931   }
   932 }
   934 G1OffsetTableContigSpace::
   935 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
   936                          MemRegion mr, bool is_zeroed) :
   937   _offsets(sharedOffsetArray, mr),
   938   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
   939   _gc_time_stamp(0)
   940 {
   941   _offsets.set_space(this);
   942   initialize(mr, !is_zeroed, SpaceDecorator::Mangle);
   943 }

mercurial