src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Tue, 01 Mar 2011 14:56:48 -0800

author
iveresov
date
Tue, 01 Mar 2011 14:56:48 -0800
changeset 2606
0ac769a57c64
parent 2504
c33825b68624
child 2593
4e0069ff33df
permissions
-rw-r--r--

6627983: G1: Bad oop deference during marking
Summary: Bulk zeroing reduction didn't work with G1, because arraycopy would call pre-barriers on uninitialized oops. The solution is to have version of arraycopy stubs that don't have pre-barriers. Also refactored arraycopy stubs generation on SPARC to be more readable and reduced the number of stubs necessary in some cases.
Reviewed-by: jrose, kvn, never

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/g1RemSet.hpp"
    30 #include "gc_implementation/g1/heapRegionSets.hpp"
    31 #include "gc_implementation/parNew/parGCAllocBuffer.hpp"
    32 #include "memory/barrierSet.hpp"
    33 #include "memory/memRegion.hpp"
    34 #include "memory/sharedHeap.hpp"
    36 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    37 // It uses the "Garbage First" heap organization and algorithm, which
    38 // may combine concurrent marking with parallel, incremental compaction of
    39 // heap subsets that will yield large amounts of garbage.
    41 class HeapRegion;
    42 class HeapRegionSeq;
    43 class HRRSCleanupTask;
    44 class PermanentGenerationSpec;
    45 class GenerationSpec;
    46 class OopsInHeapRegionClosure;
    47 class G1ScanHeapEvacClosure;
    48 class ObjectClosure;
    49 class SpaceClosure;
    50 class CompactibleSpaceClosure;
    51 class Space;
    52 class G1CollectorPolicy;
    53 class GenRemSet;
    54 class G1RemSet;
    55 class HeapRegionRemSetIterator;
    56 class ConcurrentMark;
    57 class ConcurrentMarkThread;
    58 class ConcurrentG1Refine;
    59 class ConcurrentZFThread;
    61 typedef OverflowTaskQueue<StarTask>         RefToScanQueue;
    62 typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
    64 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    65 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    67 enum G1GCThreadGroups {
    68   G1CRGroup = 0,
    69   G1ZFGroup = 1,
    70   G1CMGroup = 2
    71 };
    73 enum GCAllocPurpose {
    74   GCAllocForTenured,
    75   GCAllocForSurvived,
    76   GCAllocPurposeCount
    77 };
    79 class YoungList : public CHeapObj {
    80 private:
    81   G1CollectedHeap* _g1h;
    83   HeapRegion* _head;
    85   HeapRegion* _survivor_head;
    86   HeapRegion* _survivor_tail;
    88   HeapRegion* _curr;
    90   size_t      _length;
    91   size_t      _survivor_length;
    93   size_t      _last_sampled_rs_lengths;
    94   size_t      _sampled_rs_lengths;
    96   void         empty_list(HeapRegion* list);
    98 public:
    99   YoungList(G1CollectedHeap* g1h);
   101   void         push_region(HeapRegion* hr);
   102   void         add_survivor_region(HeapRegion* hr);
   104   void         empty_list();
   105   bool         is_empty() { return _length == 0; }
   106   size_t       length() { return _length; }
   107   size_t       survivor_length() { return _survivor_length; }
   109   void rs_length_sampling_init();
   110   bool rs_length_sampling_more();
   111   void rs_length_sampling_next();
   113   void reset_sampled_info() {
   114     _last_sampled_rs_lengths =   0;
   115   }
   116   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   118   // for development purposes
   119   void reset_auxilary_lists();
   120   void clear() { _head = NULL; _length = 0; }
   122   void clear_survivors() {
   123     _survivor_head    = NULL;
   124     _survivor_tail    = NULL;
   125     _survivor_length  = 0;
   126   }
   128   HeapRegion* first_region() { return _head; }
   129   HeapRegion* first_survivor_region() { return _survivor_head; }
   130   HeapRegion* last_survivor_region() { return _survivor_tail; }
   132   // debugging
   133   bool          check_list_well_formed();
   134   bool          check_list_empty(bool check_sample = true);
   135   void          print();
   136 };
   138 class RefineCardTableEntryClosure;
   139 class G1CollectedHeap : public SharedHeap {
   140   friend class VM_G1CollectForAllocation;
   141   friend class VM_GenCollectForPermanentAllocation;
   142   friend class VM_G1CollectFull;
   143   friend class VM_G1IncCollectionPause;
   144   friend class VMStructs;
   146   // Closures used in implementation.
   147   friend class G1ParCopyHelper;
   148   friend class G1IsAliveClosure;
   149   friend class G1EvacuateFollowersClosure;
   150   friend class G1ParScanThreadState;
   151   friend class G1ParScanClosureSuper;
   152   friend class G1ParEvacuateFollowersClosure;
   153   friend class G1ParTask;
   154   friend class G1FreeGarbageRegionClosure;
   155   friend class RefineCardTableEntryClosure;
   156   friend class G1PrepareCompactClosure;
   157   friend class RegionSorter;
   158   friend class RegionResetter;
   159   friend class CountRCClosure;
   160   friend class EvacPopObjClosure;
   161   friend class G1ParCleanupCTTask;
   163   // Other related classes.
   164   friend class G1MarkSweep;
   166 private:
   167   // The one and only G1CollectedHeap, so static functions can find it.
   168   static G1CollectedHeap* _g1h;
   170   static size_t _humongous_object_threshold_in_words;
   172   // Storage for the G1 heap (excludes the permanent generation).
   173   VirtualSpace _g1_storage;
   174   MemRegion    _g1_reserved;
   176   // The part of _g1_storage that is currently committed.
   177   MemRegion _g1_committed;
   179   // The maximum part of _g1_storage that has ever been committed.
   180   MemRegion _g1_max_committed;
   182   // The master free list. It will satisfy all new region allocations.
   183   MasterFreeRegionList      _free_list;
   185   // The secondary free list which contains regions that have been
   186   // freed up during the cleanup process. This will be appended to the
   187   // master free list when appropriate.
   188   SecondaryFreeRegionList   _secondary_free_list;
   190   // It keeps track of the humongous regions.
   191   MasterHumongousRegionSet  _humongous_set;
   193   // The number of regions we could create by expansion.
   194   size_t _expansion_regions;
   196   // The block offset table for the G1 heap.
   197   G1BlockOffsetSharedArray* _bot_shared;
   199   // Move all of the regions off the free lists, then rebuild those free
   200   // lists, before and after full GC.
   201   void tear_down_region_lists();
   202   void rebuild_region_lists();
   204   // The sequence of all heap regions in the heap.
   205   HeapRegionSeq* _hrs;
   207   // The region from which normal-sized objects are currently being
   208   // allocated.  May be NULL.
   209   HeapRegion* _cur_alloc_region;
   211   // Postcondition: cur_alloc_region == NULL.
   212   void abandon_cur_alloc_region();
   213   void abandon_gc_alloc_regions();
   215   // The to-space memory regions into which objects are being copied during
   216   // a GC.
   217   HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
   218   size_t _gc_alloc_region_counts[GCAllocPurposeCount];
   219   // These are the regions, one per GCAllocPurpose, that are half-full
   220   // at the end of a collection and that we want to reuse during the
   221   // next collection.
   222   HeapRegion* _retained_gc_alloc_regions[GCAllocPurposeCount];
   223   // This specifies whether we will keep the last half-full region at
   224   // the end of a collection so that it can be reused during the next
   225   // collection (this is specified per GCAllocPurpose)
   226   bool _retain_gc_alloc_region[GCAllocPurposeCount];
   228   // A list of the regions that have been set to be alloc regions in the
   229   // current collection.
   230   HeapRegion* _gc_alloc_region_list;
   232   // Determines PLAB size for a particular allocation purpose.
   233   static size_t desired_plab_sz(GCAllocPurpose purpose);
   235   // When called by par thread, requires the FreeList_lock to be held.
   236   void push_gc_alloc_region(HeapRegion* hr);
   238   // This should only be called single-threaded.  Undeclares all GC alloc
   239   // regions.
   240   void forget_alloc_region_list();
   242   // Should be used to set an alloc region, because there's other
   243   // associated bookkeeping.
   244   void set_gc_alloc_region(int purpose, HeapRegion* r);
   246   // Check well-formedness of alloc region list.
   247   bool check_gc_alloc_regions();
   249   // Outside of GC pauses, the number of bytes used in all regions other
   250   // than the current allocation region.
   251   size_t _summary_bytes_used;
   253   // This is used for a quick test on whether a reference points into
   254   // the collection set or not. Basically, we have an array, with one
   255   // byte per region, and that byte denotes whether the corresponding
   256   // region is in the collection set or not. The entry corresponding
   257   // the bottom of the heap, i.e., region 0, is pointed to by
   258   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
   259   // biased so that it actually points to address 0 of the address
   260   // space, to make the test as fast as possible (we can simply shift
   261   // the address to address into it, instead of having to subtract the
   262   // bottom of the heap from the address before shifting it; basically
   263   // it works in the same way the card table works).
   264   bool* _in_cset_fast_test;
   266   // The allocated array used for the fast test on whether a reference
   267   // points into the collection set or not. This field is also used to
   268   // free the array.
   269   bool* _in_cset_fast_test_base;
   271   // The length of the _in_cset_fast_test_base array.
   272   size_t _in_cset_fast_test_length;
   274   volatile unsigned _gc_time_stamp;
   276   size_t* _surviving_young_words;
   278   void setup_surviving_young_words();
   279   void update_surviving_young_words(size_t* surv_young_words);
   280   void cleanup_surviving_young_words();
   282   // It decides whether an explicit GC should start a concurrent cycle
   283   // instead of doing a STW GC. Currently, a concurrent cycle is
   284   // explicitly started if:
   285   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   286   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   287   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   289   // Keeps track of how many "full collections" (i.e., Full GCs or
   290   // concurrent cycles) we have completed. The number of them we have
   291   // started is maintained in _total_full_collections in CollectedHeap.
   292   volatile unsigned int _full_collections_completed;
   294   // These are macros so that, if the assert fires, we get the correct
   295   // line number, file, etc.
   297 #define heap_locking_asserts_err_msg(__extra_message)                         \
   298   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   299           (__extra_message),                                                  \
   300           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   301           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   302           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   304 #define assert_heap_locked()                                                  \
   305   do {                                                                        \
   306     assert(Heap_lock->owned_by_self(),                                        \
   307            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   308   } while (0)
   310 #define assert_heap_locked_or_at_safepoint(__should_be_vm_thread)             \
   311   do {                                                                        \
   312     assert(Heap_lock->owned_by_self() ||                                      \
   313            (SafepointSynchronize::is_at_safepoint() &&                        \
   314              ((__should_be_vm_thread) == Thread::current()->is_VM_thread())), \
   315            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   316                                         "should be at a safepoint"));         \
   317   } while (0)
   319 #define assert_heap_locked_and_not_at_safepoint()                             \
   320   do {                                                                        \
   321     assert(Heap_lock->owned_by_self() &&                                      \
   322                                     !SafepointSynchronize::is_at_safepoint(), \
   323           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   324                                        "should not be at a safepoint"));      \
   325   } while (0)
   327 #define assert_heap_not_locked()                                              \
   328   do {                                                                        \
   329     assert(!Heap_lock->owned_by_self(),                                       \
   330         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   331   } while (0)
   333 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   334   do {                                                                        \
   335     assert(!Heap_lock->owned_by_self() &&                                     \
   336                                     !SafepointSynchronize::is_at_safepoint(), \
   337       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   338                                    "should not be at a safepoint"));          \
   339   } while (0)
   341 #define assert_at_safepoint(__should_be_vm_thread)                            \
   342   do {                                                                        \
   343     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   344               ((__should_be_vm_thread) == Thread::current()->is_VM_thread()), \
   345            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   346   } while (0)
   348 #define assert_not_at_safepoint()                                             \
   349   do {                                                                        \
   350     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   351            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   352   } while (0)
   354 protected:
   356   // Returns "true" iff none of the gc alloc regions have any allocations
   357   // since the last call to "save_marks".
   358   bool all_alloc_regions_no_allocs_since_save_marks();
   359   // Perform finalization stuff on all allocation regions.
   360   void retire_all_alloc_regions();
   362   // The number of regions allocated to hold humongous objects.
   363   int         _num_humongous_regions;
   364   YoungList*  _young_list;
   366   // The current policy object for the collector.
   367   G1CollectorPolicy* _g1_policy;
   369   // This is the second level of trying to allocate a new region. If
   370   // new_region_work didn't find a region in the free_list, this call
   371   // will check whether there's anything available in the
   372   // secondary_free_list and/or wait for more regions to appear in that
   373   // list, if _free_regions_coming is set.
   374   HeapRegion* new_region_try_secondary_free_list(size_t word_size);
   376   // It will try to allocate a single non-humongous HeapRegion
   377   // sufficient for an allocation of the given word_size.  If
   378   // do_expand is true, it will attempt to expand the heap if
   379   // necessary to satisfy the allocation request. Note that word_size
   380   // is only used to make sure that we expand sufficiently but, given
   381   // that the allocation request is assumed not to be humongous,
   382   // having word_size is not strictly necessary (expanding by a single
   383   // region will always be sufficient). But let's keep that parameter
   384   // in case we need it in the future.
   385   HeapRegion* new_region_work(size_t word_size, bool do_expand);
   387   // It will try to allocate a new region to be used for allocation by
   388   // mutator threads. It will not try to expand the heap if not region
   389   // is available.
   390   HeapRegion* new_alloc_region(size_t word_size) {
   391     return new_region_work(word_size, false /* do_expand */);
   392   }
   394   // It will try to allocate a new region to be used for allocation by
   395   // a GC thread. It will try to expand the heap if no region is
   396   // available.
   397   HeapRegion* new_gc_alloc_region(int purpose, size_t word_size);
   399   int humongous_obj_allocate_find_first(size_t num_regions, size_t word_size);
   401   // Attempt to allocate an object of the given (very large) "word_size".
   402   // Returns "NULL" on failure.
   403   HeapWord* humongous_obj_allocate(size_t word_size);
   405   // The following two methods, allocate_new_tlab() and
   406   // mem_allocate(), are the two main entry points from the runtime
   407   // into the G1's allocation routines. They have the following
   408   // assumptions:
   409   //
   410   // * They should both be called outside safepoints.
   411   //
   412   // * They should both be called without holding the Heap_lock.
   413   //
   414   // * All allocation requests for new TLABs should go to
   415   //   allocate_new_tlab().
   416   //
   417   // * All non-TLAB allocation requests should go to mem_allocate()
   418   //   and mem_allocate() should never be called with is_tlab == true.
   419   //
   420   // * If the GC locker is active we currently stall until we can
   421   //   allocate a new young region. This will be changed in the
   422   //   near future (see CR 6994056).
   423   //
   424   // * If either call cannot satisfy the allocation request using the
   425   //   current allocating region, they will try to get a new one. If
   426   //   this fails, they will attempt to do an evacuation pause and
   427   //   retry the allocation.
   428   //
   429   // * If all allocation attempts fail, even after trying to schedule
   430   //   an evacuation pause, allocate_new_tlab() will return NULL,
   431   //   whereas mem_allocate() will attempt a heap expansion and/or
   432   //   schedule a Full GC.
   433   //
   434   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   435   //   should never be called with word_size being humongous. All
   436   //   humongous allocation requests should go to mem_allocate() which
   437   //   will satisfy them with a special path.
   439   virtual HeapWord* allocate_new_tlab(size_t word_size);
   441   virtual HeapWord* mem_allocate(size_t word_size,
   442                                  bool   is_noref,
   443                                  bool   is_tlab, /* expected to be false */
   444                                  bool*  gc_overhead_limit_was_exceeded);
   446   // The following methods, allocate_from_cur_allocation_region(),
   447   // attempt_allocation(), attempt_allocation_locked(),
   448   // replace_cur_alloc_region_and_allocate(),
   449   // attempt_allocation_slow(), and attempt_allocation_humongous()
   450   // have very awkward pre- and post-conditions with respect to
   451   // locking:
   452   //
   453   // If they are called outside a safepoint they assume the caller
   454   // holds the Heap_lock when it calls them. However, on exit they
   455   // will release the Heap_lock if they return a non-NULL result, but
   456   // keep holding the Heap_lock if they return a NULL result. The
   457   // reason for this is that we need to dirty the cards that span
   458   // allocated blocks on young regions to avoid having to take the
   459   // slow path of the write barrier (for performance reasons we don't
   460   // update RSets for references whose source is a young region, so we
   461   // don't need to look at dirty cards on young regions). But, doing
   462   // this card dirtying while holding the Heap_lock can be a
   463   // scalability bottleneck, especially given that some allocation
   464   // requests might be of non-trivial size (and the larger the region
   465   // size is, the fewer allocations requests will be considered
   466   // humongous, as the humongous size limit is a fraction of the
   467   // region size). So, when one of these calls succeeds in allocating
   468   // a block it does the card dirtying after it releases the Heap_lock
   469   // which is why it will return without holding it.
   470   //
   471   // The above assymetry is the reason why locking / unlocking is done
   472   // explicitly (i.e., with Heap_lock->lock() and
   473   // Heap_lock->unlocked()) instead of using MutexLocker and
   474   // MutexUnlocker objects. The latter would ensure that the lock is
   475   // unlocked / re-locked at every possible exit out of the basic
   476   // block. However, we only want that action to happen in selected
   477   // places.
   478   //
   479   // Further, if the above methods are called during a safepoint, then
   480   // naturally there's no assumption about the Heap_lock being held or
   481   // there's no attempt to unlock it. The parameter at_safepoint
   482   // indicates whether the call is made during a safepoint or not (as
   483   // an optimization, to avoid reading the global flag with
   484   // SafepointSynchronize::is_at_safepoint()).
   485   //
   486   // The methods share these parameters:
   487   //
   488   // * word_size     : the size of the allocation request in words
   489   // * at_safepoint  : whether the call is done at a safepoint; this
   490   //                   also determines whether a GC is permitted
   491   //                   (at_safepoint == false) or not (at_safepoint == true)
   492   // * do_dirtying   : whether the method should dirty the allocated
   493   //                   block before returning
   494   //
   495   // They all return either the address of the block, if they
   496   // successfully manage to allocate it, or NULL.
   498   // It tries to satisfy an allocation request out of the current
   499   // alloc region, which is passed as a parameter. It assumes that the
   500   // caller has checked that the current alloc region is not NULL.
   501   // Given that the caller has to check the current alloc region for
   502   // at least NULL, it might as well pass it as the first parameter so
   503   // that the method doesn't have to read it from the
   504   // _cur_alloc_region field again. It is called from both
   505   // attempt_allocation() and attempt_allocation_locked() and the
   506   // with_heap_lock parameter indicates whether the caller was holding
   507   // the heap lock when it called it or not.
   508   inline HeapWord* allocate_from_cur_alloc_region(HeapRegion* cur_alloc_region,
   509                                                   size_t word_size,
   510                                                   bool with_heap_lock);
   512   // First-level of allocation slow path: it attempts to allocate out
   513   // of the current alloc region in a lock-free manner using a CAS. If
   514   // that fails it takes the Heap_lock and calls
   515   // attempt_allocation_locked() for the second-level slow path.
   516   inline HeapWord* attempt_allocation(size_t word_size);
   518   // Second-level of allocation slow path: while holding the Heap_lock
   519   // it tries to allocate out of the current alloc region and, if that
   520   // fails, tries to allocate out of a new current alloc region.
   521   inline HeapWord* attempt_allocation_locked(size_t word_size);
   523   // It assumes that the current alloc region has been retired and
   524   // tries to allocate a new one. If it's successful, it performs the
   525   // allocation out of the new current alloc region and updates
   526   // _cur_alloc_region. Normally, it would try to allocate a new
   527   // region if the young gen is not full, unless can_expand is true in
   528   // which case it would always try to allocate a new region.
   529   HeapWord* replace_cur_alloc_region_and_allocate(size_t word_size,
   530                                                   bool at_safepoint,
   531                                                   bool do_dirtying,
   532                                                   bool can_expand);
   534   // Third-level of allocation slow path: when we are unable to
   535   // allocate a new current alloc region to satisfy an allocation
   536   // request (i.e., when attempt_allocation_locked() fails). It will
   537   // try to do an evacuation pause, which might stall due to the GC
   538   // locker, and retry the allocation attempt when appropriate.
   539   HeapWord* attempt_allocation_slow(size_t word_size);
   541   // The method that tries to satisfy a humongous allocation
   542   // request. If it cannot satisfy it it will try to do an evacuation
   543   // pause to perhaps reclaim enough space to be able to satisfy the
   544   // allocation request afterwards.
   545   HeapWord* attempt_allocation_humongous(size_t word_size,
   546                                          bool at_safepoint);
   548   // It does the common work when we are retiring the current alloc region.
   549   inline void retire_cur_alloc_region_common(HeapRegion* cur_alloc_region);
   551   // It retires the current alloc region, which is passed as a
   552   // parameter (since, typically, the caller is already holding on to
   553   // it). It sets _cur_alloc_region to NULL.
   554   void retire_cur_alloc_region(HeapRegion* cur_alloc_region);
   556   // It attempts to do an allocation immediately before or after an
   557   // evacuation pause and can only be called by the VM thread. It has
   558   // slightly different assumptions that the ones before (i.e.,
   559   // assumes that the current alloc region has been retired).
   560   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   561                                             bool expect_null_cur_alloc_region);
   563   // It dirties the cards that cover the block so that so that the post
   564   // write barrier never queues anything when updating objects on this
   565   // block. It is assumed (and in fact we assert) that the block
   566   // belongs to a young region.
   567   inline void dirty_young_block(HeapWord* start, size_t word_size);
   569   // Allocate blocks during garbage collection. Will ensure an
   570   // allocation region, either by picking one or expanding the
   571   // heap, and then allocate a block of the given size. The block
   572   // may not be a humongous - it must fit into a single heap region.
   573   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   575   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   576                                     HeapRegion*    alloc_region,
   577                                     bool           par,
   578                                     size_t         word_size);
   580   // Ensure that no further allocations can happen in "r", bearing in mind
   581   // that parallel threads might be attempting allocations.
   582   void par_allocate_remaining_space(HeapRegion* r);
   584   // Retires an allocation region when it is full or at the end of a
   585   // GC pause.
   586   void  retire_alloc_region(HeapRegion* alloc_region, bool par);
   588   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   589   //   inspection request and should collect the entire heap
   590   // - if clear_all_soft_refs is true, all soft references should be
   591   //   cleared during the GC
   592   // - if explicit_gc is false, word_size describes the allocation that
   593   //   the GC should attempt (at least) to satisfy
   594   // - it returns false if it is unable to do the collection due to the
   595   //   GC locker being active, true otherwise
   596   bool do_collection(bool explicit_gc,
   597                      bool clear_all_soft_refs,
   598                      size_t word_size);
   600   // Callback from VM_G1CollectFull operation.
   601   // Perform a full collection.
   602   void do_full_collection(bool clear_all_soft_refs);
   604   // Resize the heap if necessary after a full collection.  If this is
   605   // after a collect-for allocation, "word_size" is the allocation size,
   606   // and will be considered part of the used portion of the heap.
   607   void resize_if_necessary_after_full_collection(size_t word_size);
   609   // Callback from VM_G1CollectForAllocation operation.
   610   // This function does everything necessary/possible to satisfy a
   611   // failed allocation request (including collection, expansion, etc.)
   612   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   614   // Attempting to expand the heap sufficiently
   615   // to support an allocation of the given "word_size".  If
   616   // successful, perform the allocation and return the address of the
   617   // allocated block, or else "NULL".
   618   HeapWord* expand_and_allocate(size_t word_size);
   620 public:
   621   // Expand the garbage-first heap by at least the given size (in bytes!).
   622   // Returns true if the heap was expanded by the requested amount;
   623   // false otherwise.
   624   // (Rounds up to a HeapRegion boundary.)
   625   bool expand(size_t expand_bytes);
   627   // Do anything common to GC's.
   628   virtual void gc_prologue(bool full);
   629   virtual void gc_epilogue(bool full);
   631   // We register a region with the fast "in collection set" test. We
   632   // simply set to true the array slot corresponding to this region.
   633   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   634     assert(_in_cset_fast_test_base != NULL, "sanity");
   635     assert(r->in_collection_set(), "invariant");
   636     int index = r->hrs_index();
   637     assert(0 <= index && (size_t) index < _in_cset_fast_test_length, "invariant");
   638     assert(!_in_cset_fast_test_base[index], "invariant");
   639     _in_cset_fast_test_base[index] = true;
   640   }
   642   // This is a fast test on whether a reference points into the
   643   // collection set or not. It does not assume that the reference
   644   // points into the heap; if it doesn't, it will return false.
   645   bool in_cset_fast_test(oop obj) {
   646     assert(_in_cset_fast_test != NULL, "sanity");
   647     if (_g1_committed.contains((HeapWord*) obj)) {
   648       // no need to subtract the bottom of the heap from obj,
   649       // _in_cset_fast_test is biased
   650       size_t index = ((size_t) obj) >> HeapRegion::LogOfHRGrainBytes;
   651       bool ret = _in_cset_fast_test[index];
   652       // let's make sure the result is consistent with what the slower
   653       // test returns
   654       assert( ret || !obj_in_cs(obj), "sanity");
   655       assert(!ret ||  obj_in_cs(obj), "sanity");
   656       return ret;
   657     } else {
   658       return false;
   659     }
   660   }
   662   void clear_cset_fast_test() {
   663     assert(_in_cset_fast_test_base != NULL, "sanity");
   664     memset(_in_cset_fast_test_base, false,
   665         _in_cset_fast_test_length * sizeof(bool));
   666   }
   668   // This is called at the end of either a concurrent cycle or a Full
   669   // GC to update the number of full collections completed. Those two
   670   // can happen in a nested fashion, i.e., we start a concurrent
   671   // cycle, a Full GC happens half-way through it which ends first,
   672   // and then the cycle notices that a Full GC happened and ends
   673   // too. The concurrent parameter is a boolean to help us do a bit
   674   // tighter consistency checking in the method. If concurrent is
   675   // false, the caller is the inner caller in the nesting (i.e., the
   676   // Full GC). If concurrent is true, the caller is the outer caller
   677   // in this nesting (i.e., the concurrent cycle). Further nesting is
   678   // not currently supported. The end of the this call also notifies
   679   // the FullGCCount_lock in case a Java thread is waiting for a full
   680   // GC to happen (e.g., it called System.gc() with
   681   // +ExplicitGCInvokesConcurrent).
   682   void increment_full_collections_completed(bool concurrent);
   684   unsigned int full_collections_completed() {
   685     return _full_collections_completed;
   686   }
   688 protected:
   690   // Shrink the garbage-first heap by at most the given size (in bytes!).
   691   // (Rounds down to a HeapRegion boundary.)
   692   virtual void shrink(size_t expand_bytes);
   693   void shrink_helper(size_t expand_bytes);
   695   #if TASKQUEUE_STATS
   696   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   697   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   698   void reset_taskqueue_stats();
   699   #endif // TASKQUEUE_STATS
   701   // Schedule the VM operation that will do an evacuation pause to
   702   // satisfy an allocation request of word_size. *succeeded will
   703   // return whether the VM operation was successful (it did do an
   704   // evacuation pause) or not (another thread beat us to it or the GC
   705   // locker was active). Given that we should not be holding the
   706   // Heap_lock when we enter this method, we will pass the
   707   // gc_count_before (i.e., total_collections()) as a parameter since
   708   // it has to be read while holding the Heap_lock. Currently, both
   709   // methods that call do_collection_pause() release the Heap_lock
   710   // before the call, so it's easy to read gc_count_before just before.
   711   HeapWord* do_collection_pause(size_t       word_size,
   712                                 unsigned int gc_count_before,
   713                                 bool*        succeeded);
   715   // The guts of the incremental collection pause, executed by the vm
   716   // thread. It returns false if it is unable to do the collection due
   717   // to the GC locker being active, true otherwise
   718   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   720   // Actually do the work of evacuating the collection set.
   721   void evacuate_collection_set();
   723   // The g1 remembered set of the heap.
   724   G1RemSet* _g1_rem_set;
   725   // And it's mod ref barrier set, used to track updates for the above.
   726   ModRefBarrierSet* _mr_bs;
   728   // A set of cards that cover the objects for which the Rsets should be updated
   729   // concurrently after the collection.
   730   DirtyCardQueueSet _dirty_card_queue_set;
   732   // The Heap Region Rem Set Iterator.
   733   HeapRegionRemSetIterator** _rem_set_iterator;
   735   // The closure used to refine a single card.
   736   RefineCardTableEntryClosure* _refine_cte_cl;
   738   // A function to check the consistency of dirty card logs.
   739   void check_ct_logs_at_safepoint();
   741   // A DirtyCardQueueSet that is used to hold cards that contain
   742   // references into the current collection set. This is used to
   743   // update the remembered sets of the regions in the collection
   744   // set in the event of an evacuation failure.
   745   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   747   // After a collection pause, make the regions in the CS into free
   748   // regions.
   749   void free_collection_set(HeapRegion* cs_head);
   751   // Abandon the current collection set without recording policy
   752   // statistics or updating free lists.
   753   void abandon_collection_set(HeapRegion* cs_head);
   755   // Applies "scan_non_heap_roots" to roots outside the heap,
   756   // "scan_rs" to roots inside the heap (having done "set_region" to
   757   // indicate the region in which the root resides), and does "scan_perm"
   758   // (setting the generation to the perm generation.)  If "scan_rs" is
   759   // NULL, then this step is skipped.  The "worker_i"
   760   // param is for use with parallel roots processing, and should be
   761   // the "i" of the calling parallel worker thread's work(i) function.
   762   // In the sequential case this param will be ignored.
   763   void g1_process_strong_roots(bool collecting_perm_gen,
   764                                SharedHeap::ScanningOption so,
   765                                OopClosure* scan_non_heap_roots,
   766                                OopsInHeapRegionClosure* scan_rs,
   767                                OopsInGenClosure* scan_perm,
   768                                int worker_i);
   770   // Apply "blk" to all the weak roots of the system.  These include
   771   // JNI weak roots, the code cache, system dictionary, symbol table,
   772   // string table, and referents of reachable weak refs.
   773   void g1_process_weak_roots(OopClosure* root_closure,
   774                              OopClosure* non_root_closure);
   776   // Invoke "save_marks" on all heap regions.
   777   void save_marks();
   779   // It frees a non-humongous region by initializing its contents and
   780   // adding it to the free list that's passed as a parameter (this is
   781   // usually a local list which will be appended to the master free
   782   // list later). The used bytes of freed regions are accumulated in
   783   // pre_used. If par is true, the region's RSet will not be freed
   784   // up. The assumption is that this will be done later.
   785   void free_region(HeapRegion* hr,
   786                    size_t* pre_used,
   787                    FreeRegionList* free_list,
   788                    bool par);
   790   // It frees a humongous region by collapsing it into individual
   791   // regions and calling free_region() for each of them. The freed
   792   // regions will be added to the free list that's passed as a parameter
   793   // (this is usually a local list which will be appended to the
   794   // master free list later). The used bytes of freed regions are
   795   // accumulated in pre_used. If par is true, the region's RSet will
   796   // not be freed up. The assumption is that this will be done later.
   797   void free_humongous_region(HeapRegion* hr,
   798                              size_t* pre_used,
   799                              FreeRegionList* free_list,
   800                              HumongousRegionSet* humongous_proxy_set,
   801                              bool par);
   803   // The concurrent marker (and the thread it runs in.)
   804   ConcurrentMark* _cm;
   805   ConcurrentMarkThread* _cmThread;
   806   bool _mark_in_progress;
   808   // The concurrent refiner.
   809   ConcurrentG1Refine* _cg1r;
   811   // The parallel task queues
   812   RefToScanQueueSet *_task_queues;
   814   // True iff a evacuation has failed in the current collection.
   815   bool _evacuation_failed;
   817   // Set the attribute indicating whether evacuation has failed in the
   818   // current collection.
   819   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
   821   // Failed evacuations cause some logical from-space objects to have
   822   // forwarding pointers to themselves.  Reset them.
   823   void remove_self_forwarding_pointers();
   825   // When one is non-null, so is the other.  Together, they each pair is
   826   // an object with a preserved mark, and its mark value.
   827   GrowableArray<oop>*     _objs_with_preserved_marks;
   828   GrowableArray<markOop>* _preserved_marks_of_objs;
   830   // Preserve the mark of "obj", if necessary, in preparation for its mark
   831   // word being overwritten with a self-forwarding-pointer.
   832   void preserve_mark_if_necessary(oop obj, markOop m);
   834   // The stack of evac-failure objects left to be scanned.
   835   GrowableArray<oop>*    _evac_failure_scan_stack;
   836   // The closure to apply to evac-failure objects.
   838   OopsInHeapRegionClosure* _evac_failure_closure;
   839   // Set the field above.
   840   void
   841   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   842     _evac_failure_closure = evac_failure_closure;
   843   }
   845   // Push "obj" on the scan stack.
   846   void push_on_evac_failure_scan_stack(oop obj);
   847   // Process scan stack entries until the stack is empty.
   848   void drain_evac_failure_scan_stack();
   849   // True iff an invocation of "drain_scan_stack" is in progress; to
   850   // prevent unnecessary recursion.
   851   bool _drain_in_progress;
   853   // Do any necessary initialization for evacuation-failure handling.
   854   // "cl" is the closure that will be used to process evac-failure
   855   // objects.
   856   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   857   // Do any necessary cleanup for evacuation-failure handling data
   858   // structures.
   859   void finalize_for_evac_failure();
   861   // An attempt to evacuate "obj" has failed; take necessary steps.
   862   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
   863   void handle_evacuation_failure_common(oop obj, markOop m);
   866   // Ensure that the relevant gc_alloc regions are set.
   867   void get_gc_alloc_regions();
   868   // We're done with GC alloc regions. We are going to tear down the
   869   // gc alloc list and remove the gc alloc tag from all the regions on
   870   // that list. However, we will also retain the last (i.e., the one
   871   // that is half-full) GC alloc region, per GCAllocPurpose, for
   872   // possible reuse during the next collection, provided
   873   // _retain_gc_alloc_region[] indicates that it should be the
   874   // case. Said regions are kept in the _retained_gc_alloc_regions[]
   875   // array. If the parameter totally is set, we will not retain any
   876   // regions, irrespective of what _retain_gc_alloc_region[]
   877   // indicates.
   878   void release_gc_alloc_regions(bool totally);
   879 #ifndef PRODUCT
   880   // Useful for debugging.
   881   void print_gc_alloc_regions();
   882 #endif // !PRODUCT
   884   // Instance of the concurrent mark is_alive closure for embedding
   885   // into the reference processor as the is_alive_non_header. This
   886   // prevents unnecessary additions to the discovered lists during
   887   // concurrent discovery.
   888   G1CMIsAliveClosure _is_alive_closure;
   890   // ("Weak") Reference processing support
   891   ReferenceProcessor* _ref_processor;
   893   enum G1H_process_strong_roots_tasks {
   894     G1H_PS_mark_stack_oops_do,
   895     G1H_PS_refProcessor_oops_do,
   896     // Leave this one last.
   897     G1H_PS_NumElements
   898   };
   900   SubTasksDone* _process_strong_tasks;
   902   volatile bool _free_regions_coming;
   904 public:
   906   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
   908   void set_refine_cte_cl_concurrency(bool concurrent);
   910   RefToScanQueue *task_queue(int i) const;
   912   // A set of cards where updates happened during the GC
   913   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
   915   // A DirtyCardQueueSet that is used to hold cards that contain
   916   // references into the current collection set. This is used to
   917   // update the remembered sets of the regions in the collection
   918   // set in the event of an evacuation failure.
   919   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
   920         { return _into_cset_dirty_card_queue_set; }
   922   // Create a G1CollectedHeap with the specified policy.
   923   // Must call the initialize method afterwards.
   924   // May not return if something goes wrong.
   925   G1CollectedHeap(G1CollectorPolicy* policy);
   927   // Initialize the G1CollectedHeap to have the initial and
   928   // maximum sizes, permanent generation, and remembered and barrier sets
   929   // specified by the policy object.
   930   jint initialize();
   932   virtual void ref_processing_init();
   934   void set_par_threads(int t) {
   935     SharedHeap::set_par_threads(t);
   936     _process_strong_tasks->set_n_threads(t);
   937   }
   939   virtual CollectedHeap::Name kind() const {
   940     return CollectedHeap::G1CollectedHeap;
   941   }
   943   // The current policy object for the collector.
   944   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
   946   // Adaptive size policy.  No such thing for g1.
   947   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
   949   // The rem set and barrier set.
   950   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
   951   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
   953   // The rem set iterator.
   954   HeapRegionRemSetIterator* rem_set_iterator(int i) {
   955     return _rem_set_iterator[i];
   956   }
   958   HeapRegionRemSetIterator* rem_set_iterator() {
   959     return _rem_set_iterator[0];
   960   }
   962   unsigned get_gc_time_stamp() {
   963     return _gc_time_stamp;
   964   }
   966   void reset_gc_time_stamp() {
   967     _gc_time_stamp = 0;
   968     OrderAccess::fence();
   969   }
   971   void increment_gc_time_stamp() {
   972     ++_gc_time_stamp;
   973     OrderAccess::fence();
   974   }
   976   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
   977                                   DirtyCardQueue* into_cset_dcq,
   978                                   bool concurrent, int worker_i);
   980   // The shared block offset table array.
   981   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
   983   // Reference Processing accessor
   984   ReferenceProcessor* ref_processor() { return _ref_processor; }
   986   virtual size_t capacity() const;
   987   virtual size_t used() const;
   988   // This should be called when we're not holding the heap lock. The
   989   // result might be a bit inaccurate.
   990   size_t used_unlocked() const;
   991   size_t recalculate_used() const;
   992 #ifndef PRODUCT
   993   size_t recalculate_used_regions() const;
   994 #endif // PRODUCT
   996   // These virtual functions do the actual allocation.
   997   // Some heaps may offer a contiguous region for shared non-blocking
   998   // allocation, via inlined code (by exporting the address of the top and
   999   // end fields defining the extent of the contiguous allocation region.)
  1000   // But G1CollectedHeap doesn't yet support this.
  1002   // Return an estimate of the maximum allocation that could be performed
  1003   // without triggering any collection or expansion activity.  In a
  1004   // generational collector, for example, this is probably the largest
  1005   // allocation that could be supported (without expansion) in the youngest
  1006   // generation.  It is "unsafe" because no locks are taken; the result
  1007   // should be treated as an approximation, not a guarantee, for use in
  1008   // heuristic resizing decisions.
  1009   virtual size_t unsafe_max_alloc();
  1011   virtual bool is_maximal_no_gc() const {
  1012     return _g1_storage.uncommitted_size() == 0;
  1015   // The total number of regions in the heap.
  1016   size_t n_regions();
  1018   // The number of regions that are completely free.
  1019   size_t max_regions();
  1021   // The number of regions that are completely free.
  1022   size_t free_regions() {
  1023     return _free_list.length();
  1026   // The number of regions that are not completely free.
  1027   size_t used_regions() { return n_regions() - free_regions(); }
  1029   // The number of regions available for "regular" expansion.
  1030   size_t expansion_regions() { return _expansion_regions; }
  1032   // verify_region_sets() performs verification over the region
  1033   // lists. It will be compiled in the product code to be used when
  1034   // necessary (i.e., during heap verification).
  1035   void verify_region_sets();
  1037   // verify_region_sets_optional() is planted in the code for
  1038   // list verification in non-product builds (and it can be enabled in
  1039   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1040 #if HEAP_REGION_SET_FORCE_VERIFY
  1041   void verify_region_sets_optional() {
  1042     verify_region_sets();
  1044 #else // HEAP_REGION_SET_FORCE_VERIFY
  1045   void verify_region_sets_optional() { }
  1046 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1048 #ifdef ASSERT
  1049   bool is_on_free_list(HeapRegion* hr) {
  1050     return hr->containing_set() == &_free_list;
  1053   bool is_on_humongous_set(HeapRegion* hr) {
  1054     return hr->containing_set() == &_humongous_set;
  1056 #endif // ASSERT
  1058   // Wrapper for the region list operations that can be called from
  1059   // methods outside this class.
  1061   void secondary_free_list_add_as_tail(FreeRegionList* list) {
  1062     _secondary_free_list.add_as_tail(list);
  1065   void append_secondary_free_list() {
  1066     _free_list.add_as_tail(&_secondary_free_list);
  1069   void append_secondary_free_list_if_not_empty() {
  1070     if (!_secondary_free_list.is_empty()) {
  1071       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1072       append_secondary_free_list();
  1076   void set_free_regions_coming();
  1077   void reset_free_regions_coming();
  1078   bool free_regions_coming() { return _free_regions_coming; }
  1079   void wait_while_free_regions_coming();
  1081   // Perform a collection of the heap; intended for use in implementing
  1082   // "System.gc".  This probably implies as full a collection as the
  1083   // "CollectedHeap" supports.
  1084   virtual void collect(GCCause::Cause cause);
  1086   // The same as above but assume that the caller holds the Heap_lock.
  1087   void collect_locked(GCCause::Cause cause);
  1089   // This interface assumes that it's being called by the
  1090   // vm thread. It collects the heap assuming that the
  1091   // heap lock is already held and that we are executing in
  1092   // the context of the vm thread.
  1093   virtual void collect_as_vm_thread(GCCause::Cause cause);
  1095   // True iff a evacuation has failed in the most-recent collection.
  1096   bool evacuation_failed() { return _evacuation_failed; }
  1098   // It will free a region if it has allocated objects in it that are
  1099   // all dead. It calls either free_region() or
  1100   // free_humongous_region() depending on the type of the region that
  1101   // is passed to it.
  1102   void free_region_if_empty(HeapRegion* hr,
  1103                             size_t* pre_used,
  1104                             FreeRegionList* free_list,
  1105                             HumongousRegionSet* humongous_proxy_set,
  1106                             HRRSCleanupTask* hrrs_cleanup_task,
  1107                             bool par);
  1109   // It appends the free list to the master free list and updates the
  1110   // master humongous list according to the contents of the proxy
  1111   // list. It also adjusts the total used bytes according to pre_used
  1112   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
  1113   void update_sets_after_freeing_regions(size_t pre_used,
  1114                                        FreeRegionList* free_list,
  1115                                        HumongousRegionSet* humongous_proxy_set,
  1116                                        bool par);
  1118   // Returns "TRUE" iff "p" points into the allocated area of the heap.
  1119   virtual bool is_in(const void* p) const;
  1121   // Return "TRUE" iff the given object address is within the collection
  1122   // set.
  1123   inline bool obj_in_cs(oop obj);
  1125   // Return "TRUE" iff the given object address is in the reserved
  1126   // region of g1 (excluding the permanent generation).
  1127   bool is_in_g1_reserved(const void* p) const {
  1128     return _g1_reserved.contains(p);
  1131   // Returns a MemRegion that corresponds to the space that  has been
  1132   // committed in the heap
  1133   MemRegion g1_committed() {
  1134     return _g1_committed;
  1137   NOT_PRODUCT(bool is_in_closed_subset(const void* p) const;)
  1139   // Dirty card table entries covering a list of young regions.
  1140   void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
  1142   // This resets the card table to all zeros.  It is used after
  1143   // a collection pause which used the card table to claim cards.
  1144   void cleanUpCardTable();
  1146   // Iteration functions.
  1148   // Iterate over all the ref-containing fields of all objects, calling
  1149   // "cl.do_oop" on each.
  1150   virtual void oop_iterate(OopClosure* cl) {
  1151     oop_iterate(cl, true);
  1153   void oop_iterate(OopClosure* cl, bool do_perm);
  1155   // Same as above, restricted to a memory region.
  1156   virtual void oop_iterate(MemRegion mr, OopClosure* cl) {
  1157     oop_iterate(mr, cl, true);
  1159   void oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm);
  1161   // Iterate over all objects, calling "cl.do_object" on each.
  1162   virtual void object_iterate(ObjectClosure* cl) {
  1163     object_iterate(cl, true);
  1165   virtual void safe_object_iterate(ObjectClosure* cl) {
  1166     object_iterate(cl, true);
  1168   void object_iterate(ObjectClosure* cl, bool do_perm);
  1170   // Iterate over all objects allocated since the last collection, calling
  1171   // "cl.do_object" on each.  The heap must have been initialized properly
  1172   // to support this function, or else this call will fail.
  1173   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
  1175   // Iterate over all spaces in use in the heap, in ascending address order.
  1176   virtual void space_iterate(SpaceClosure* cl);
  1178   // Iterate over heap regions, in address order, terminating the
  1179   // iteration early if the "doHeapRegion" method returns "true".
  1180   void heap_region_iterate(HeapRegionClosure* blk);
  1182   // Iterate over heap regions starting with r (or the first region if "r"
  1183   // is NULL), in address order, terminating early if the "doHeapRegion"
  1184   // method returns "true".
  1185   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk);
  1187   // As above but starting from the region at index idx.
  1188   void heap_region_iterate_from(int idx, HeapRegionClosure* blk);
  1190   HeapRegion* region_at(size_t idx);
  1192   // Divide the heap region sequence into "chunks" of some size (the number
  1193   // of regions divided by the number of parallel threads times some
  1194   // overpartition factor, currently 4).  Assumes that this will be called
  1195   // in parallel by ParallelGCThreads worker threads with discinct worker
  1196   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1197   // calls will use the same "claim_value", and that that claim value is
  1198   // different from the claim_value of any heap region before the start of
  1199   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1200   // attempting to claim the first region in each chunk, and, if
  1201   // successful, applying the closure to each region in the chunk (and
  1202   // setting the claim value of the second and subsequent regions of the
  1203   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1204   // i.e., that a closure never attempt to abort a traversal.
  1205   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1206                                        int worker,
  1207                                        jint claim_value);
  1209   // It resets all the region claim values to the default.
  1210   void reset_heap_region_claim_values();
  1212 #ifdef ASSERT
  1213   bool check_heap_region_claim_values(jint claim_value);
  1214 #endif // ASSERT
  1216   // Iterate over the regions (if any) in the current collection set.
  1217   void collection_set_iterate(HeapRegionClosure* blk);
  1219   // As above but starting from region r
  1220   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1222   // Returns the first (lowest address) compactible space in the heap.
  1223   virtual CompactibleSpace* first_compactible_space();
  1225   // A CollectedHeap will contain some number of spaces.  This finds the
  1226   // space containing a given address, or else returns NULL.
  1227   virtual Space* space_containing(const void* addr) const;
  1229   // A G1CollectedHeap will contain some number of heap regions.  This
  1230   // finds the region containing a given address, or else returns NULL.
  1231   HeapRegion* heap_region_containing(const void* addr) const;
  1233   // Like the above, but requires "addr" to be in the heap (to avoid a
  1234   // null-check), and unlike the above, may return an continuing humongous
  1235   // region.
  1236   HeapRegion* heap_region_containing_raw(const void* addr) const;
  1238   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1239   // each address in the (reserved) heap is a member of exactly
  1240   // one block.  The defining characteristic of a block is that it is
  1241   // possible to find its size, and thus to progress forward to the next
  1242   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1243   // represent Java objects, or they might be free blocks in a
  1244   // free-list-based heap (or subheap), as long as the two kinds are
  1245   // distinguishable and the size of each is determinable.
  1247   // Returns the address of the start of the "block" that contains the
  1248   // address "addr".  We say "blocks" instead of "object" since some heaps
  1249   // may not pack objects densely; a chunk may either be an object or a
  1250   // non-object.
  1251   virtual HeapWord* block_start(const void* addr) const;
  1253   // Requires "addr" to be the start of a chunk, and returns its size.
  1254   // "addr + size" is required to be the start of a new chunk, or the end
  1255   // of the active area of the heap.
  1256   virtual size_t block_size(const HeapWord* addr) const;
  1258   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1259   // the block is an object.
  1260   virtual bool block_is_obj(const HeapWord* addr) const;
  1262   // Does this heap support heap inspection? (+PrintClassHistogram)
  1263   virtual bool supports_heap_inspection() const { return true; }
  1265   // Section on thread-local allocation buffers (TLABs)
  1266   // See CollectedHeap for semantics.
  1268   virtual bool supports_tlab_allocation() const;
  1269   virtual size_t tlab_capacity(Thread* thr) const;
  1270   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
  1272   // Can a compiler initialize a new object without store barriers?
  1273   // This permission only extends from the creation of a new object
  1274   // via a TLAB up to the first subsequent safepoint. If such permission
  1275   // is granted for this heap type, the compiler promises to call
  1276   // defer_store_barrier() below on any slow path allocation of
  1277   // a new object for which such initializing store barriers will
  1278   // have been elided. G1, like CMS, allows this, but should be
  1279   // ready to provide a compensating write barrier as necessary
  1280   // if that storage came out of a non-young region. The efficiency
  1281   // of this implementation depends crucially on being able to
  1282   // answer very efficiently in constant time whether a piece of
  1283   // storage in the heap comes from a young region or not.
  1284   // See ReduceInitialCardMarks.
  1285   virtual bool can_elide_tlab_store_barriers() const {
  1286     // 6920090: Temporarily disabled, because of lingering
  1287     // instabilities related to RICM with G1. In the
  1288     // interim, the option ReduceInitialCardMarksForG1
  1289     // below is left solely as a debugging device at least
  1290     // until 6920109 fixes the instabilities.
  1291     return ReduceInitialCardMarksForG1;
  1294   virtual bool card_mark_must_follow_store() const {
  1295     return true;
  1298   bool is_in_young(oop obj) {
  1299     HeapRegion* hr = heap_region_containing(obj);
  1300     return hr != NULL && hr->is_young();
  1303   // We don't need barriers for initializing stores to objects
  1304   // in the young gen: for the SATB pre-barrier, there is no
  1305   // pre-value that needs to be remembered; for the remembered-set
  1306   // update logging post-barrier, we don't maintain remembered set
  1307   // information for young gen objects. Note that non-generational
  1308   // G1 does not have any "young" objects, should not elide
  1309   // the rs logging barrier and so should always answer false below.
  1310   // However, non-generational G1 (-XX:-G1Gen) appears to have
  1311   // bit-rotted so was not tested below.
  1312   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
  1313     // Re 6920090, 6920109 above.
  1314     assert(ReduceInitialCardMarksForG1, "Else cannot be here");
  1315     assert(G1Gen || !is_in_young(new_obj),
  1316            "Non-generational G1 should never return true below");
  1317     return is_in_young(new_obj);
  1320   // Can a compiler elide a store barrier when it writes
  1321   // a permanent oop into the heap?  Applies when the compiler
  1322   // is storing x to the heap, where x->is_perm() is true.
  1323   virtual bool can_elide_permanent_oop_store_barriers() const {
  1324     // At least until perm gen collection is also G1-ified, at
  1325     // which point this should return false.
  1326     return true;
  1329   // The boundary between a "large" and "small" array of primitives, in
  1330   // words.
  1331   virtual size_t large_typearray_limit();
  1333   // Returns "true" iff the given word_size is "very large".
  1334   static bool isHumongous(size_t word_size) {
  1335     // Note this has to be strictly greater-than as the TLABs
  1336     // are capped at the humongous thresold and we want to
  1337     // ensure that we don't try to allocate a TLAB as
  1338     // humongous and that we don't allocate a humongous
  1339     // object in a TLAB.
  1340     return word_size > _humongous_object_threshold_in_words;
  1343   // Update mod union table with the set of dirty cards.
  1344   void updateModUnion();
  1346   // Set the mod union bits corresponding to the given memRegion.  Note
  1347   // that this is always a safe operation, since it doesn't clear any
  1348   // bits.
  1349   void markModUnionRange(MemRegion mr);
  1351   // Records the fact that a marking phase is no longer in progress.
  1352   void set_marking_complete() {
  1353     _mark_in_progress = false;
  1355   void set_marking_started() {
  1356     _mark_in_progress = true;
  1358   bool mark_in_progress() {
  1359     return _mark_in_progress;
  1362   // Print the maximum heap capacity.
  1363   virtual size_t max_capacity() const;
  1365   virtual jlong millis_since_last_gc();
  1367   // Perform any cleanup actions necessary before allowing a verification.
  1368   virtual void prepare_for_verify();
  1370   // Perform verification.
  1372   // use_prev_marking == true  -> use "prev" marking information,
  1373   // use_prev_marking == false -> use "next" marking information
  1374   // NOTE: Only the "prev" marking information is guaranteed to be
  1375   // consistent most of the time, so most calls to this should use
  1376   // use_prev_marking == true. Currently, there is only one case where
  1377   // this is called with use_prev_marking == false, which is to verify
  1378   // the "next" marking information at the end of remark.
  1379   void verify(bool allow_dirty, bool silent, bool use_prev_marking);
  1381   // Override; it uses the "prev" marking information
  1382   virtual void verify(bool allow_dirty, bool silent);
  1383   // Default behavior by calling print(tty);
  1384   virtual void print() const;
  1385   // This calls print_on(st, PrintHeapAtGCExtended).
  1386   virtual void print_on(outputStream* st) const;
  1387   // If extended is true, it will print out information for all
  1388   // regions in the heap by calling print_on_extended(st).
  1389   virtual void print_on(outputStream* st, bool extended) const;
  1390   virtual void print_on_extended(outputStream* st) const;
  1392   virtual void print_gc_threads_on(outputStream* st) const;
  1393   virtual void gc_threads_do(ThreadClosure* tc) const;
  1395   // Override
  1396   void print_tracing_info() const;
  1398   // If "addr" is a pointer into the (reserved?) heap, returns a positive
  1399   // number indicating the "arena" within the heap in which "addr" falls.
  1400   // Or else returns 0.
  1401   virtual int addr_to_arena_id(void* addr) const;
  1403   // Convenience function to be used in situations where the heap type can be
  1404   // asserted to be this type.
  1405   static G1CollectedHeap* heap();
  1407   void empty_young_list();
  1409   void set_region_short_lived_locked(HeapRegion* hr);
  1410   // add appropriate methods for any other surv rate groups
  1412   YoungList* young_list() { return _young_list; }
  1414   // debugging
  1415   bool check_young_list_well_formed() {
  1416     return _young_list->check_list_well_formed();
  1419   bool check_young_list_empty(bool check_heap,
  1420                               bool check_sample = true);
  1422   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1423   // many of these need to be public.
  1425   // The functions below are helper functions that a subclass of
  1426   // "CollectedHeap" can use in the implementation of its virtual
  1427   // functions.
  1428   // This performs a concurrent marking of the live objects in a
  1429   // bitmap off to the side.
  1430   void doConcurrentMark();
  1432   // This is called from the marksweep collector which then does
  1433   // a concurrent mark and verifies that the results agree with
  1434   // the stop the world marking.
  1435   void checkConcurrentMark();
  1436   void do_sync_mark();
  1438   bool isMarkedPrev(oop obj) const;
  1439   bool isMarkedNext(oop obj) const;
  1441   // use_prev_marking == true  -> use "prev" marking information,
  1442   // use_prev_marking == false -> use "next" marking information
  1443   bool is_obj_dead_cond(const oop obj,
  1444                         const HeapRegion* hr,
  1445                         const bool use_prev_marking) const {
  1446     if (use_prev_marking) {
  1447       return is_obj_dead(obj, hr);
  1448     } else {
  1449       return is_obj_ill(obj, hr);
  1453   // Determine if an object is dead, given the object and also
  1454   // the region to which the object belongs. An object is dead
  1455   // iff a) it was not allocated since the last mark and b) it
  1456   // is not marked.
  1458   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1459     return
  1460       !hr->obj_allocated_since_prev_marking(obj) &&
  1461       !isMarkedPrev(obj);
  1464   // This is used when copying an object to survivor space.
  1465   // If the object is marked live, then we mark the copy live.
  1466   // If the object is allocated since the start of this mark
  1467   // cycle, then we mark the copy live.
  1468   // If the object has been around since the previous mark
  1469   // phase, and hasn't been marked yet during this phase,
  1470   // then we don't mark it, we just wait for the
  1471   // current marking cycle to get to it.
  1473   // This function returns true when an object has been
  1474   // around since the previous marking and hasn't yet
  1475   // been marked during this marking.
  1477   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1478     return
  1479       !hr->obj_allocated_since_next_marking(obj) &&
  1480       !isMarkedNext(obj);
  1483   // Determine if an object is dead, given only the object itself.
  1484   // This will find the region to which the object belongs and
  1485   // then call the region version of the same function.
  1487   // Added if it is in permanent gen it isn't dead.
  1488   // Added if it is NULL it isn't dead.
  1490   // use_prev_marking == true  -> use "prev" marking information,
  1491   // use_prev_marking == false -> use "next" marking information
  1492   bool is_obj_dead_cond(const oop obj,
  1493                         const bool use_prev_marking) {
  1494     if (use_prev_marking) {
  1495       return is_obj_dead(obj);
  1496     } else {
  1497       return is_obj_ill(obj);
  1501   bool is_obj_dead(const oop obj) {
  1502     const HeapRegion* hr = heap_region_containing(obj);
  1503     if (hr == NULL) {
  1504       if (Universe::heap()->is_in_permanent(obj))
  1505         return false;
  1506       else if (obj == NULL) return false;
  1507       else return true;
  1509     else return is_obj_dead(obj, hr);
  1512   bool is_obj_ill(const oop obj) {
  1513     const HeapRegion* hr = heap_region_containing(obj);
  1514     if (hr == NULL) {
  1515       if (Universe::heap()->is_in_permanent(obj))
  1516         return false;
  1517       else if (obj == NULL) return false;
  1518       else return true;
  1520     else return is_obj_ill(obj, hr);
  1523   // The following is just to alert the verification code
  1524   // that a full collection has occurred and that the
  1525   // remembered sets are no longer up to date.
  1526   bool _full_collection;
  1527   void set_full_collection() { _full_collection = true;}
  1528   void clear_full_collection() {_full_collection = false;}
  1529   bool full_collection() {return _full_collection;}
  1531   ConcurrentMark* concurrent_mark() const { return _cm; }
  1532   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1534   // The dirty cards region list is used to record a subset of regions
  1535   // whose cards need clearing. The list if populated during the
  1536   // remembered set scanning and drained during the card table
  1537   // cleanup. Although the methods are reentrant, population/draining
  1538   // phases must not overlap. For synchronization purposes the last
  1539   // element on the list points to itself.
  1540   HeapRegion* _dirty_cards_region_list;
  1541   void push_dirty_cards_region(HeapRegion* hr);
  1542   HeapRegion* pop_dirty_cards_region();
  1544 public:
  1545   void stop_conc_gc_threads();
  1547   // <NEW PREDICTION>
  1549   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
  1550   void check_if_region_is_too_expensive(double predicted_time_ms);
  1551   size_t pending_card_num();
  1552   size_t max_pending_card_num();
  1553   size_t cards_scanned();
  1555   // </NEW PREDICTION>
  1557 protected:
  1558   size_t _max_heap_capacity;
  1559 };
  1561 #define use_local_bitmaps         1
  1562 #define verify_local_bitmaps      0
  1563 #define oop_buffer_length       256
  1565 #ifndef PRODUCT
  1566 class GCLabBitMap;
  1567 class GCLabBitMapClosure: public BitMapClosure {
  1568 private:
  1569   ConcurrentMark* _cm;
  1570   GCLabBitMap*    _bitmap;
  1572 public:
  1573   GCLabBitMapClosure(ConcurrentMark* cm,
  1574                      GCLabBitMap* bitmap) {
  1575     _cm     = cm;
  1576     _bitmap = bitmap;
  1579   virtual bool do_bit(size_t offset);
  1580 };
  1581 #endif // !PRODUCT
  1583 class GCLabBitMap: public BitMap {
  1584 private:
  1585   ConcurrentMark* _cm;
  1587   int       _shifter;
  1588   size_t    _bitmap_word_covers_words;
  1590   // beginning of the heap
  1591   HeapWord* _heap_start;
  1593   // this is the actual start of the GCLab
  1594   HeapWord* _real_start_word;
  1596   // this is the actual end of the GCLab
  1597   HeapWord* _real_end_word;
  1599   // this is the first word, possibly located before the actual start
  1600   // of the GCLab, that corresponds to the first bit of the bitmap
  1601   HeapWord* _start_word;
  1603   // size of a GCLab in words
  1604   size_t _gclab_word_size;
  1606   static int shifter() {
  1607     return MinObjAlignment - 1;
  1610   // how many heap words does a single bitmap word corresponds to?
  1611   static size_t bitmap_word_covers_words() {
  1612     return BitsPerWord << shifter();
  1615   size_t gclab_word_size() const {
  1616     return _gclab_word_size;
  1619   // Calculates actual GCLab size in words
  1620   size_t gclab_real_word_size() const {
  1621     return bitmap_size_in_bits(pointer_delta(_real_end_word, _start_word))
  1622            / BitsPerWord;
  1625   static size_t bitmap_size_in_bits(size_t gclab_word_size) {
  1626     size_t bits_in_bitmap = gclab_word_size >> shifter();
  1627     // We are going to ensure that the beginning of a word in this
  1628     // bitmap also corresponds to the beginning of a word in the
  1629     // global marking bitmap. To handle the case where a GCLab
  1630     // starts from the middle of the bitmap, we need to add enough
  1631     // space (i.e. up to a bitmap word) to ensure that we have
  1632     // enough bits in the bitmap.
  1633     return bits_in_bitmap + BitsPerWord - 1;
  1635 public:
  1636   GCLabBitMap(HeapWord* heap_start, size_t gclab_word_size)
  1637     : BitMap(bitmap_size_in_bits(gclab_word_size)),
  1638       _cm(G1CollectedHeap::heap()->concurrent_mark()),
  1639       _shifter(shifter()),
  1640       _bitmap_word_covers_words(bitmap_word_covers_words()),
  1641       _heap_start(heap_start),
  1642       _gclab_word_size(gclab_word_size),
  1643       _real_start_word(NULL),
  1644       _real_end_word(NULL),
  1645       _start_word(NULL)
  1647     guarantee( size_in_words() >= bitmap_size_in_words(),
  1648                "just making sure");
  1651   inline unsigned heapWordToOffset(HeapWord* addr) {
  1652     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
  1653     assert(offset < size(), "offset should be within bounds");
  1654     return offset;
  1657   inline HeapWord* offsetToHeapWord(size_t offset) {
  1658     HeapWord* addr =  _start_word + (offset << _shifter);
  1659     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
  1660     return addr;
  1663   bool fields_well_formed() {
  1664     bool ret1 = (_real_start_word == NULL) &&
  1665                 (_real_end_word == NULL) &&
  1666                 (_start_word == NULL);
  1667     if (ret1)
  1668       return true;
  1670     bool ret2 = _real_start_word >= _start_word &&
  1671       _start_word < _real_end_word &&
  1672       (_real_start_word + _gclab_word_size) == _real_end_word &&
  1673       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
  1674                                                               > _real_end_word;
  1675     return ret2;
  1678   inline bool mark(HeapWord* addr) {
  1679     guarantee(use_local_bitmaps, "invariant");
  1680     assert(fields_well_formed(), "invariant");
  1682     if (addr >= _real_start_word && addr < _real_end_word) {
  1683       assert(!isMarked(addr), "should not have already been marked");
  1685       // first mark it on the bitmap
  1686       at_put(heapWordToOffset(addr), true);
  1688       return true;
  1689     } else {
  1690       return false;
  1694   inline bool isMarked(HeapWord* addr) {
  1695     guarantee(use_local_bitmaps, "invariant");
  1696     assert(fields_well_formed(), "invariant");
  1698     return at(heapWordToOffset(addr));
  1701   void set_buffer(HeapWord* start) {
  1702     guarantee(use_local_bitmaps, "invariant");
  1703     clear();
  1705     assert(start != NULL, "invariant");
  1706     _real_start_word = start;
  1707     _real_end_word   = start + _gclab_word_size;
  1709     size_t diff =
  1710       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
  1711     _start_word = start - diff;
  1713     assert(fields_well_formed(), "invariant");
  1716 #ifndef PRODUCT
  1717   void verify() {
  1718     // verify that the marks have been propagated
  1719     GCLabBitMapClosure cl(_cm, this);
  1720     iterate(&cl);
  1722 #endif // PRODUCT
  1724   void retire() {
  1725     guarantee(use_local_bitmaps, "invariant");
  1726     assert(fields_well_formed(), "invariant");
  1728     if (_start_word != NULL) {
  1729       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
  1731       // this means that the bitmap was set up for the GCLab
  1732       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
  1734       mark_bitmap->mostly_disjoint_range_union(this,
  1735                                 0, // always start from the start of the bitmap
  1736                                 _start_word,
  1737                                 gclab_real_word_size());
  1738       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
  1740 #ifndef PRODUCT
  1741       if (use_local_bitmaps && verify_local_bitmaps)
  1742         verify();
  1743 #endif // PRODUCT
  1744     } else {
  1745       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
  1749   size_t bitmap_size_in_words() const {
  1750     return (bitmap_size_in_bits(gclab_word_size()) + BitsPerWord - 1) / BitsPerWord;
  1753 };
  1755 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1756 private:
  1757   bool        _retired;
  1758   bool        _during_marking;
  1759   GCLabBitMap _bitmap;
  1761 public:
  1762   G1ParGCAllocBuffer(size_t gclab_word_size) :
  1763     ParGCAllocBuffer(gclab_word_size),
  1764     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
  1765     _bitmap(G1CollectedHeap::heap()->reserved_region().start(), gclab_word_size),
  1766     _retired(false)
  1767   { }
  1769   inline bool mark(HeapWord* addr) {
  1770     guarantee(use_local_bitmaps, "invariant");
  1771     assert(_during_marking, "invariant");
  1772     return _bitmap.mark(addr);
  1775   inline void set_buf(HeapWord* buf) {
  1776     if (use_local_bitmaps && _during_marking)
  1777       _bitmap.set_buffer(buf);
  1778     ParGCAllocBuffer::set_buf(buf);
  1779     _retired = false;
  1782   inline void retire(bool end_of_gc, bool retain) {
  1783     if (_retired)
  1784       return;
  1785     if (use_local_bitmaps && _during_marking) {
  1786       _bitmap.retire();
  1788     ParGCAllocBuffer::retire(end_of_gc, retain);
  1789     _retired = true;
  1791 };
  1793 class G1ParScanThreadState : public StackObj {
  1794 protected:
  1795   G1CollectedHeap* _g1h;
  1796   RefToScanQueue*  _refs;
  1797   DirtyCardQueue   _dcq;
  1798   CardTableModRefBS* _ct_bs;
  1799   G1RemSet* _g1_rem;
  1801   G1ParGCAllocBuffer  _surviving_alloc_buffer;
  1802   G1ParGCAllocBuffer  _tenured_alloc_buffer;
  1803   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount];
  1804   ageTable            _age_table;
  1806   size_t           _alloc_buffer_waste;
  1807   size_t           _undo_waste;
  1809   OopsInHeapRegionClosure*      _evac_failure_cl;
  1810   G1ParScanHeapEvacClosure*     _evac_cl;
  1811   G1ParScanPartialArrayClosure* _partial_scan_cl;
  1813   int _hash_seed;
  1814   int _queue_num;
  1816   size_t _term_attempts;
  1818   double _start;
  1819   double _start_strong_roots;
  1820   double _strong_roots_time;
  1821   double _start_term;
  1822   double _term_time;
  1824   // Map from young-age-index (0 == not young, 1 is youngest) to
  1825   // surviving words. base is what we get back from the malloc call
  1826   size_t* _surviving_young_words_base;
  1827   // this points into the array, as we use the first few entries for padding
  1828   size_t* _surviving_young_words;
  1830 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  1832   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  1834   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  1836   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  1837   CardTableModRefBS* ctbs()                      { return _ct_bs; }
  1839   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
  1840     if (!from->is_survivor()) {
  1841       _g1_rem->par_write_ref(from, p, tid);
  1845   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
  1846     // If the new value of the field points to the same region or
  1847     // is the to-space, we don't need to include it in the Rset updates.
  1848     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
  1849       size_t card_index = ctbs()->index_for(p);
  1850       // If the card hasn't been added to the buffer, do it.
  1851       if (ctbs()->mark_card_deferred(card_index)) {
  1852         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
  1857 public:
  1858   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num);
  1860   ~G1ParScanThreadState() {
  1861     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  1864   RefToScanQueue*   refs()            { return _refs;             }
  1865   ageTable*         age_table()       { return &_age_table;       }
  1867   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
  1868     return _alloc_buffers[purpose];
  1871   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
  1872   size_t undo_waste() const                      { return _undo_waste; }
  1874 #ifdef ASSERT
  1875   bool verify_ref(narrowOop* ref) const;
  1876   bool verify_ref(oop* ref) const;
  1877   bool verify_task(StarTask ref) const;
  1878 #endif // ASSERT
  1880   template <class T> void push_on_queue(T* ref) {
  1881     assert(verify_ref(ref), "sanity");
  1882     refs()->push(ref);
  1885   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
  1886     if (G1DeferredRSUpdate) {
  1887       deferred_rs_update(from, p, tid);
  1888     } else {
  1889       immediate_rs_update(from, p, tid);
  1893   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
  1895     HeapWord* obj = NULL;
  1896     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
  1897     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
  1898       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
  1899       assert(gclab_word_size == alloc_buf->word_sz(),
  1900              "dynamic resizing is not supported");
  1901       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
  1902       alloc_buf->retire(false, false);
  1904       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
  1905       if (buf == NULL) return NULL; // Let caller handle allocation failure.
  1906       // Otherwise.
  1907       alloc_buf->set_buf(buf);
  1909       obj = alloc_buf->allocate(word_sz);
  1910       assert(obj != NULL, "buffer was definitely big enough...");
  1911     } else {
  1912       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
  1914     return obj;
  1917   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
  1918     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
  1919     if (obj != NULL) return obj;
  1920     return allocate_slow(purpose, word_sz);
  1923   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
  1924     if (alloc_buffer(purpose)->contains(obj)) {
  1925       assert(alloc_buffer(purpose)->contains(obj + word_sz - 1),
  1926              "should contain whole object");
  1927       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
  1928     } else {
  1929       CollectedHeap::fill_with_object(obj, word_sz);
  1930       add_to_undo_waste(word_sz);
  1934   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
  1935     _evac_failure_cl = evac_failure_cl;
  1937   OopsInHeapRegionClosure* evac_failure_closure() {
  1938     return _evac_failure_cl;
  1941   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
  1942     _evac_cl = evac_cl;
  1945   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
  1946     _partial_scan_cl = partial_scan_cl;
  1949   int* hash_seed() { return &_hash_seed; }
  1950   int  queue_num() { return _queue_num; }
  1952   size_t term_attempts() const  { return _term_attempts; }
  1953   void note_term_attempt() { _term_attempts++; }
  1955   void start_strong_roots() {
  1956     _start_strong_roots = os::elapsedTime();
  1958   void end_strong_roots() {
  1959     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
  1961   double strong_roots_time() const { return _strong_roots_time; }
  1963   void start_term_time() {
  1964     note_term_attempt();
  1965     _start_term = os::elapsedTime();
  1967   void end_term_time() {
  1968     _term_time += (os::elapsedTime() - _start_term);
  1970   double term_time() const { return _term_time; }
  1972   double elapsed_time() const {
  1973     return os::elapsedTime() - _start;
  1976   static void
  1977     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
  1978   void
  1979     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
  1981   size_t* surviving_young_words() {
  1982     // We add on to hide entry 0 which accumulates surviving words for
  1983     // age -1 regions (i.e. non-young ones)
  1984     return _surviving_young_words;
  1987   void retire_alloc_buffers() {
  1988     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1989       size_t waste = _alloc_buffers[ap]->words_remaining();
  1990       add_to_alloc_buffer_waste(waste);
  1991       _alloc_buffers[ap]->retire(true, false);
  1995   template <class T> void deal_with_reference(T* ref_to_scan) {
  1996     if (has_partial_array_mask(ref_to_scan)) {
  1997       _partial_scan_cl->do_oop_nv(ref_to_scan);
  1998     } else {
  1999       // Note: we can use "raw" versions of "region_containing" because
  2000       // "obj_to_scan" is definitely in the heap, and is not in a
  2001       // humongous region.
  2002       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
  2003       _evac_cl->set_region(r);
  2004       _evac_cl->do_oop_nv(ref_to_scan);
  2008   void deal_with_reference(StarTask ref) {
  2009     assert(verify_task(ref), "sanity");
  2010     if (ref.is_narrow()) {
  2011       deal_with_reference((narrowOop*)ref);
  2012     } else {
  2013       deal_with_reference((oop*)ref);
  2017 public:
  2018   void trim_queue();
  2019 };
  2021 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial