src/share/vm/gc_implementation/g1/g1CollectedHeap.cpp

Tue, 01 Mar 2011 14:56:48 -0800

author
iveresov
date
Tue, 01 Mar 2011 14:56:48 -0800
changeset 2606
0ac769a57c64
parent 2504
c33825b68624
child 2593
4e0069ff33df
permissions
-rw-r--r--

6627983: G1: Bad oop deference during marking
Summary: Bulk zeroing reduction didn't work with G1, because arraycopy would call pre-barriers on uninitialized oops. The solution is to have version of arraycopy stubs that don't have pre-barriers. Also refactored arraycopy stubs generation on SPARC to be more readable and reduced the number of stubs necessary in some cases.
Reviewed-by: jrose, kvn, never

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "code/icBuffer.hpp"
    27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
    28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
    29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
    30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
    31 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    32 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
    33 #include "gc_implementation/g1/g1MarkSweep.hpp"
    34 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
    35 #include "gc_implementation/g1/g1RemSet.inline.hpp"
    36 #include "gc_implementation/g1/heapRegionRemSet.hpp"
    37 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
    38 #include "gc_implementation/g1/vm_operations_g1.hpp"
    39 #include "gc_implementation/shared/isGCActiveMark.hpp"
    40 #include "memory/gcLocker.inline.hpp"
    41 #include "memory/genOopClosures.inline.hpp"
    42 #include "memory/generationSpec.hpp"
    43 #include "oops/oop.inline.hpp"
    44 #include "oops/oop.pcgc.inline.hpp"
    45 #include "runtime/aprofiler.hpp"
    46 #include "runtime/vmThread.hpp"
    48 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
    50 // turn it on so that the contents of the young list (scan-only /
    51 // to-be-collected) are printed at "strategic" points before / during
    52 // / after the collection --- this is useful for debugging
    53 #define YOUNG_LIST_VERBOSE 0
    54 // CURRENT STATUS
    55 // This file is under construction.  Search for "FIXME".
    57 // INVARIANTS/NOTES
    58 //
    59 // All allocation activity covered by the G1CollectedHeap interface is
    60 // serialized by acquiring the HeapLock.  This happens in mem_allocate
    61 // and allocate_new_tlab, which are the "entry" points to the
    62 // allocation code from the rest of the JVM.  (Note that this does not
    63 // apply to TLAB allocation, which is not part of this interface: it
    64 // is done by clients of this interface.)
    66 // Local to this file.
    68 class RefineCardTableEntryClosure: public CardTableEntryClosure {
    69   SuspendibleThreadSet* _sts;
    70   G1RemSet* _g1rs;
    71   ConcurrentG1Refine* _cg1r;
    72   bool _concurrent;
    73 public:
    74   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
    75                               G1RemSet* g1rs,
    76                               ConcurrentG1Refine* cg1r) :
    77     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
    78   {}
    79   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
    80     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
    81     // This path is executed by the concurrent refine or mutator threads,
    82     // concurrently, and so we do not care if card_ptr contains references
    83     // that point into the collection set.
    84     assert(!oops_into_cset, "should be");
    86     if (_concurrent && _sts->should_yield()) {
    87       // Caller will actually yield.
    88       return false;
    89     }
    90     // Otherwise, we finished successfully; return true.
    91     return true;
    92   }
    93   void set_concurrent(bool b) { _concurrent = b; }
    94 };
    97 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
    98   int _calls;
    99   G1CollectedHeap* _g1h;
   100   CardTableModRefBS* _ctbs;
   101   int _histo[256];
   102 public:
   103   ClearLoggedCardTableEntryClosure() :
   104     _calls(0)
   105   {
   106     _g1h = G1CollectedHeap::heap();
   107     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   108     for (int i = 0; i < 256; i++) _histo[i] = 0;
   109   }
   110   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   111     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   112       _calls++;
   113       unsigned char* ujb = (unsigned char*)card_ptr;
   114       int ind = (int)(*ujb);
   115       _histo[ind]++;
   116       *card_ptr = -1;
   117     }
   118     return true;
   119   }
   120   int calls() { return _calls; }
   121   void print_histo() {
   122     gclog_or_tty->print_cr("Card table value histogram:");
   123     for (int i = 0; i < 256; i++) {
   124       if (_histo[i] != 0) {
   125         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
   126       }
   127     }
   128   }
   129 };
   131 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
   132   int _calls;
   133   G1CollectedHeap* _g1h;
   134   CardTableModRefBS* _ctbs;
   135 public:
   136   RedirtyLoggedCardTableEntryClosure() :
   137     _calls(0)
   138   {
   139     _g1h = G1CollectedHeap::heap();
   140     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
   141   }
   142   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   143     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
   144       _calls++;
   145       *card_ptr = 0;
   146     }
   147     return true;
   148   }
   149   int calls() { return _calls; }
   150 };
   152 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
   153 public:
   154   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
   155     *card_ptr = CardTableModRefBS::dirty_card_val();
   156     return true;
   157   }
   158 };
   160 YoungList::YoungList(G1CollectedHeap* g1h)
   161   : _g1h(g1h), _head(NULL),
   162     _length(0),
   163     _last_sampled_rs_lengths(0),
   164     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
   165 {
   166   guarantee( check_list_empty(false), "just making sure..." );
   167 }
   169 void YoungList::push_region(HeapRegion *hr) {
   170   assert(!hr->is_young(), "should not already be young");
   171   assert(hr->get_next_young_region() == NULL, "cause it should!");
   173   hr->set_next_young_region(_head);
   174   _head = hr;
   176   hr->set_young();
   177   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
   178   ++_length;
   179 }
   181 void YoungList::add_survivor_region(HeapRegion* hr) {
   182   assert(hr->is_survivor(), "should be flagged as survivor region");
   183   assert(hr->get_next_young_region() == NULL, "cause it should!");
   185   hr->set_next_young_region(_survivor_head);
   186   if (_survivor_head == NULL) {
   187     _survivor_tail = hr;
   188   }
   189   _survivor_head = hr;
   191   ++_survivor_length;
   192 }
   194 void YoungList::empty_list(HeapRegion* list) {
   195   while (list != NULL) {
   196     HeapRegion* next = list->get_next_young_region();
   197     list->set_next_young_region(NULL);
   198     list->uninstall_surv_rate_group();
   199     list->set_not_young();
   200     list = next;
   201   }
   202 }
   204 void YoungList::empty_list() {
   205   assert(check_list_well_formed(), "young list should be well formed");
   207   empty_list(_head);
   208   _head = NULL;
   209   _length = 0;
   211   empty_list(_survivor_head);
   212   _survivor_head = NULL;
   213   _survivor_tail = NULL;
   214   _survivor_length = 0;
   216   _last_sampled_rs_lengths = 0;
   218   assert(check_list_empty(false), "just making sure...");
   219 }
   221 bool YoungList::check_list_well_formed() {
   222   bool ret = true;
   224   size_t length = 0;
   225   HeapRegion* curr = _head;
   226   HeapRegion* last = NULL;
   227   while (curr != NULL) {
   228     if (!curr->is_young()) {
   229       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
   230                              "incorrectly tagged (y: %d, surv: %d)",
   231                              curr->bottom(), curr->end(),
   232                              curr->is_young(), curr->is_survivor());
   233       ret = false;
   234     }
   235     ++length;
   236     last = curr;
   237     curr = curr->get_next_young_region();
   238   }
   239   ret = ret && (length == _length);
   241   if (!ret) {
   242     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
   243     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
   244                            length, _length);
   245   }
   247   return ret;
   248 }
   250 bool YoungList::check_list_empty(bool check_sample) {
   251   bool ret = true;
   253   if (_length != 0) {
   254     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
   255                   _length);
   256     ret = false;
   257   }
   258   if (check_sample && _last_sampled_rs_lengths != 0) {
   259     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
   260     ret = false;
   261   }
   262   if (_head != NULL) {
   263     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
   264     ret = false;
   265   }
   266   if (!ret) {
   267     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
   268   }
   270   return ret;
   271 }
   273 void
   274 YoungList::rs_length_sampling_init() {
   275   _sampled_rs_lengths = 0;
   276   _curr               = _head;
   277 }
   279 bool
   280 YoungList::rs_length_sampling_more() {
   281   return _curr != NULL;
   282 }
   284 void
   285 YoungList::rs_length_sampling_next() {
   286   assert( _curr != NULL, "invariant" );
   287   size_t rs_length = _curr->rem_set()->occupied();
   289   _sampled_rs_lengths += rs_length;
   291   // The current region may not yet have been added to the
   292   // incremental collection set (it gets added when it is
   293   // retired as the current allocation region).
   294   if (_curr->in_collection_set()) {
   295     // Update the collection set policy information for this region
   296     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
   297   }
   299   _curr = _curr->get_next_young_region();
   300   if (_curr == NULL) {
   301     _last_sampled_rs_lengths = _sampled_rs_lengths;
   302     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
   303   }
   304 }
   306 void
   307 YoungList::reset_auxilary_lists() {
   308   guarantee( is_empty(), "young list should be empty" );
   309   assert(check_list_well_formed(), "young list should be well formed");
   311   // Add survivor regions to SurvRateGroup.
   312   _g1h->g1_policy()->note_start_adding_survivor_regions();
   313   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
   315   for (HeapRegion* curr = _survivor_head;
   316        curr != NULL;
   317        curr = curr->get_next_young_region()) {
   318     _g1h->g1_policy()->set_region_survivors(curr);
   320     // The region is a non-empty survivor so let's add it to
   321     // the incremental collection set for the next evacuation
   322     // pause.
   323     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
   324   }
   325   _g1h->g1_policy()->note_stop_adding_survivor_regions();
   327   _head   = _survivor_head;
   328   _length = _survivor_length;
   329   if (_survivor_head != NULL) {
   330     assert(_survivor_tail != NULL, "cause it shouldn't be");
   331     assert(_survivor_length > 0, "invariant");
   332     _survivor_tail->set_next_young_region(NULL);
   333   }
   335   // Don't clear the survivor list handles until the start of
   336   // the next evacuation pause - we need it in order to re-tag
   337   // the survivor regions from this evacuation pause as 'young'
   338   // at the start of the next.
   340   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
   342   assert(check_list_well_formed(), "young list should be well formed");
   343 }
   345 void YoungList::print() {
   346   HeapRegion* lists[] = {_head,   _survivor_head};
   347   const char* names[] = {"YOUNG", "SURVIVOR"};
   349   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
   350     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
   351     HeapRegion *curr = lists[list];
   352     if (curr == NULL)
   353       gclog_or_tty->print_cr("  empty");
   354     while (curr != NULL) {
   355       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
   356                              "age: %4d, y: %d, surv: %d",
   357                              curr->bottom(), curr->end(),
   358                              curr->top(),
   359                              curr->prev_top_at_mark_start(),
   360                              curr->next_top_at_mark_start(),
   361                              curr->top_at_conc_mark_count(),
   362                              curr->age_in_surv_rate_group_cond(),
   363                              curr->is_young(),
   364                              curr->is_survivor());
   365       curr = curr->get_next_young_region();
   366     }
   367   }
   369   gclog_or_tty->print_cr("");
   370 }
   372 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
   373 {
   374   // Claim the right to put the region on the dirty cards region list
   375   // by installing a self pointer.
   376   HeapRegion* next = hr->get_next_dirty_cards_region();
   377   if (next == NULL) {
   378     HeapRegion* res = (HeapRegion*)
   379       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
   380                           NULL);
   381     if (res == NULL) {
   382       HeapRegion* head;
   383       do {
   384         // Put the region to the dirty cards region list.
   385         head = _dirty_cards_region_list;
   386         next = (HeapRegion*)
   387           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
   388         if (next == head) {
   389           assert(hr->get_next_dirty_cards_region() == hr,
   390                  "hr->get_next_dirty_cards_region() != hr");
   391           if (next == NULL) {
   392             // The last region in the list points to itself.
   393             hr->set_next_dirty_cards_region(hr);
   394           } else {
   395             hr->set_next_dirty_cards_region(next);
   396           }
   397         }
   398       } while (next != head);
   399     }
   400   }
   401 }
   403 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
   404 {
   405   HeapRegion* head;
   406   HeapRegion* hr;
   407   do {
   408     head = _dirty_cards_region_list;
   409     if (head == NULL) {
   410       return NULL;
   411     }
   412     HeapRegion* new_head = head->get_next_dirty_cards_region();
   413     if (head == new_head) {
   414       // The last region.
   415       new_head = NULL;
   416     }
   417     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
   418                                           head);
   419   } while (hr != head);
   420   assert(hr != NULL, "invariant");
   421   hr->set_next_dirty_cards_region(NULL);
   422   return hr;
   423 }
   425 void G1CollectedHeap::stop_conc_gc_threads() {
   426   _cg1r->stop();
   427   _cmThread->stop();
   428 }
   430 void G1CollectedHeap::check_ct_logs_at_safepoint() {
   431   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
   432   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
   434   // Count the dirty cards at the start.
   435   CountNonCleanMemRegionClosure count1(this);
   436   ct_bs->mod_card_iterate(&count1);
   437   int orig_count = count1.n();
   439   // First clear the logged cards.
   440   ClearLoggedCardTableEntryClosure clear;
   441   dcqs.set_closure(&clear);
   442   dcqs.apply_closure_to_all_completed_buffers();
   443   dcqs.iterate_closure_all_threads(false);
   444   clear.print_histo();
   446   // Now ensure that there's no dirty cards.
   447   CountNonCleanMemRegionClosure count2(this);
   448   ct_bs->mod_card_iterate(&count2);
   449   if (count2.n() != 0) {
   450     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
   451                            count2.n(), orig_count);
   452   }
   453   guarantee(count2.n() == 0, "Card table should be clean.");
   455   RedirtyLoggedCardTableEntryClosure redirty;
   456   JavaThread::dirty_card_queue_set().set_closure(&redirty);
   457   dcqs.apply_closure_to_all_completed_buffers();
   458   dcqs.iterate_closure_all_threads(false);
   459   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
   460                          clear.calls(), orig_count);
   461   guarantee(redirty.calls() == clear.calls(),
   462             "Or else mechanism is broken.");
   464   CountNonCleanMemRegionClosure count3(this);
   465   ct_bs->mod_card_iterate(&count3);
   466   if (count3.n() != orig_count) {
   467     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
   468                            orig_count, count3.n());
   469     guarantee(count3.n() >= orig_count, "Should have restored them all.");
   470   }
   472   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
   473 }
   475 // Private class members.
   477 G1CollectedHeap* G1CollectedHeap::_g1h;
   479 // Private methods.
   481 HeapRegion*
   482 G1CollectedHeap::new_region_try_secondary_free_list(size_t word_size) {
   483   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
   484   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
   485     if (!_secondary_free_list.is_empty()) {
   486       if (G1ConcRegionFreeingVerbose) {
   487         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   488                                "secondary_free_list has "SIZE_FORMAT" entries",
   489                                _secondary_free_list.length());
   490       }
   491       // It looks as if there are free regions available on the
   492       // secondary_free_list. Let's move them to the free_list and try
   493       // again to allocate from it.
   494       append_secondary_free_list();
   496       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
   497              "empty we should have moved at least one entry to the free_list");
   498       HeapRegion* res = _free_list.remove_head();
   499       if (G1ConcRegionFreeingVerbose) {
   500         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   501                                "allocated "HR_FORMAT" from secondary_free_list",
   502                                HR_FORMAT_PARAMS(res));
   503       }
   504       return res;
   505     }
   507     // Wait here until we get notifed either when (a) there are no
   508     // more free regions coming or (b) some regions have been moved on
   509     // the secondary_free_list.
   510     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
   511   }
   513   if (G1ConcRegionFreeingVerbose) {
   514     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   515                            "could not allocate from secondary_free_list");
   516   }
   517   return NULL;
   518 }
   520 HeapRegion* G1CollectedHeap::new_region_work(size_t word_size,
   521                                              bool do_expand) {
   522   assert(!isHumongous(word_size) ||
   523                                   word_size <= (size_t) HeapRegion::GrainWords,
   524          "the only time we use this to allocate a humongous region is "
   525          "when we are allocating a single humongous region");
   527   HeapRegion* res;
   528   if (G1StressConcRegionFreeing) {
   529     if (!_secondary_free_list.is_empty()) {
   530       if (G1ConcRegionFreeingVerbose) {
   531         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   532                                "forced to look at the secondary_free_list");
   533       }
   534       res = new_region_try_secondary_free_list(word_size);
   535       if (res != NULL) {
   536         return res;
   537       }
   538     }
   539   }
   540   res = _free_list.remove_head_or_null();
   541   if (res == NULL) {
   542     if (G1ConcRegionFreeingVerbose) {
   543       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
   544                              "res == NULL, trying the secondary_free_list");
   545     }
   546     res = new_region_try_secondary_free_list(word_size);
   547   }
   548   if (res == NULL && do_expand) {
   549     if (expand(word_size * HeapWordSize)) {
   550       // The expansion succeeded and so we should have at least one
   551       // region on the free list.
   552       res = _free_list.remove_head();
   553     }
   554   }
   555   if (res != NULL) {
   556     if (G1PrintHeapRegions) {
   557       gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT","PTR_FORMAT"], "
   558                              "top "PTR_FORMAT, res->hrs_index(),
   559                              res->bottom(), res->end(), res->top());
   560     }
   561   }
   562   return res;
   563 }
   565 HeapRegion* G1CollectedHeap::new_gc_alloc_region(int purpose,
   566                                                  size_t word_size) {
   567   HeapRegion* alloc_region = NULL;
   568   if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
   569     alloc_region = new_region_work(word_size, true /* do_expand */);
   570     if (purpose == GCAllocForSurvived && alloc_region != NULL) {
   571       alloc_region->set_survivor();
   572     }
   573     ++_gc_alloc_region_counts[purpose];
   574   } else {
   575     g1_policy()->note_alloc_region_limit_reached(purpose);
   576   }
   577   return alloc_region;
   578 }
   580 int G1CollectedHeap::humongous_obj_allocate_find_first(size_t num_regions,
   581                                                        size_t word_size) {
   582   int first = -1;
   583   if (num_regions == 1) {
   584     // Only one region to allocate, no need to go through the slower
   585     // path. The caller will attempt the expasion if this fails, so
   586     // let's not try to expand here too.
   587     HeapRegion* hr = new_region_work(word_size, false /* do_expand */);
   588     if (hr != NULL) {
   589       first = hr->hrs_index();
   590     } else {
   591       first = -1;
   592     }
   593   } else {
   594     // We can't allocate humongous regions while cleanupComplete() is
   595     // running, since some of the regions we find to be empty might not
   596     // yet be added to the free list and it is not straightforward to
   597     // know which list they are on so that we can remove them. Note
   598     // that we only need to do this if we need to allocate more than
   599     // one region to satisfy the current humongous allocation
   600     // request. If we are only allocating one region we use the common
   601     // region allocation code (see above).
   602     wait_while_free_regions_coming();
   603     append_secondary_free_list_if_not_empty();
   605     if (free_regions() >= num_regions) {
   606       first = _hrs->find_contiguous(num_regions);
   607       if (first != -1) {
   608         for (int i = first; i < first + (int) num_regions; ++i) {
   609           HeapRegion* hr = _hrs->at(i);
   610           assert(hr->is_empty(), "sanity");
   611           assert(is_on_free_list(hr), "sanity");
   612           hr->set_pending_removal(true);
   613         }
   614         _free_list.remove_all_pending(num_regions);
   615       }
   616     }
   617   }
   618   return first;
   619 }
   621 // If could fit into free regions w/o expansion, try.
   622 // Otherwise, if can expand, do so.
   623 // Otherwise, if using ex regions might help, try with ex given back.
   624 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
   625   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   627   verify_region_sets_optional();
   629   size_t num_regions =
   630          round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
   631   size_t x_size = expansion_regions();
   632   size_t fs = _hrs->free_suffix();
   633   int first = humongous_obj_allocate_find_first(num_regions, word_size);
   634   if (first == -1) {
   635     // The only thing we can do now is attempt expansion.
   636     if (fs + x_size >= num_regions) {
   637       // If the number of regions we're trying to allocate for this
   638       // object is at most the number of regions in the free suffix,
   639       // then the call to humongous_obj_allocate_find_first() above
   640       // should have succeeded and we wouldn't be here.
   641       //
   642       // We should only be trying to expand when the free suffix is
   643       // not sufficient for the object _and_ we have some expansion
   644       // room available.
   645       assert(num_regions > fs, "earlier allocation should have succeeded");
   647       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
   648         first = humongous_obj_allocate_find_first(num_regions, word_size);
   649         // If the expansion was successful then the allocation
   650         // should have been successful.
   651         assert(first != -1, "this should have worked");
   652       }
   653     }
   654   }
   656   if (first != -1) {
   657     // Index of last region in the series + 1.
   658     int last = first + (int) num_regions;
   660     // We need to initialize the region(s) we just discovered. This is
   661     // a bit tricky given that it can happen concurrently with
   662     // refinement threads refining cards on these regions and
   663     // potentially wanting to refine the BOT as they are scanning
   664     // those cards (this can happen shortly after a cleanup; see CR
   665     // 6991377). So we have to set up the region(s) carefully and in
   666     // a specific order.
   668     // The word size sum of all the regions we will allocate.
   669     size_t word_size_sum = num_regions * HeapRegion::GrainWords;
   670     assert(word_size <= word_size_sum, "sanity");
   672     // This will be the "starts humongous" region.
   673     HeapRegion* first_hr = _hrs->at(first);
   674     // The header of the new object will be placed at the bottom of
   675     // the first region.
   676     HeapWord* new_obj = first_hr->bottom();
   677     // This will be the new end of the first region in the series that
   678     // should also match the end of the last region in the seriers.
   679     HeapWord* new_end = new_obj + word_size_sum;
   680     // This will be the new top of the first region that will reflect
   681     // this allocation.
   682     HeapWord* new_top = new_obj + word_size;
   684     // First, we need to zero the header of the space that we will be
   685     // allocating. When we update top further down, some refinement
   686     // threads might try to scan the region. By zeroing the header we
   687     // ensure that any thread that will try to scan the region will
   688     // come across the zero klass word and bail out.
   689     //
   690     // NOTE: It would not have been correct to have used
   691     // CollectedHeap::fill_with_object() and make the space look like
   692     // an int array. The thread that is doing the allocation will
   693     // later update the object header to a potentially different array
   694     // type and, for a very short period of time, the klass and length
   695     // fields will be inconsistent. This could cause a refinement
   696     // thread to calculate the object size incorrectly.
   697     Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
   699     // We will set up the first region as "starts humongous". This
   700     // will also update the BOT covering all the regions to reflect
   701     // that there is a single object that starts at the bottom of the
   702     // first region.
   703     first_hr->set_startsHumongous(new_top, new_end);
   705     // Then, if there are any, we will set up the "continues
   706     // humongous" regions.
   707     HeapRegion* hr = NULL;
   708     for (int i = first + 1; i < last; ++i) {
   709       hr = _hrs->at(i);
   710       hr->set_continuesHumongous(first_hr);
   711     }
   712     // If we have "continues humongous" regions (hr != NULL), then the
   713     // end of the last one should match new_end.
   714     assert(hr == NULL || hr->end() == new_end, "sanity");
   716     // Up to this point no concurrent thread would have been able to
   717     // do any scanning on any region in this series. All the top
   718     // fields still point to bottom, so the intersection between
   719     // [bottom,top] and [card_start,card_end] will be empty. Before we
   720     // update the top fields, we'll do a storestore to make sure that
   721     // no thread sees the update to top before the zeroing of the
   722     // object header and the BOT initialization.
   723     OrderAccess::storestore();
   725     // Now that the BOT and the object header have been initialized,
   726     // we can update top of the "starts humongous" region.
   727     assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
   728            "new_top should be in this region");
   729     first_hr->set_top(new_top);
   731     // Now, we will update the top fields of the "continues humongous"
   732     // regions. The reason we need to do this is that, otherwise,
   733     // these regions would look empty and this will confuse parts of
   734     // G1. For example, the code that looks for a consecutive number
   735     // of empty regions will consider them empty and try to
   736     // re-allocate them. We can extend is_empty() to also include
   737     // !continuesHumongous(), but it is easier to just update the top
   738     // fields here. The way we set top for all regions (i.e., top ==
   739     // end for all regions but the last one, top == new_top for the
   740     // last one) is actually used when we will free up the humongous
   741     // region in free_humongous_region().
   742     hr = NULL;
   743     for (int i = first + 1; i < last; ++i) {
   744       hr = _hrs->at(i);
   745       if ((i + 1) == last) {
   746         // last continues humongous region
   747         assert(hr->bottom() < new_top && new_top <= hr->end(),
   748                "new_top should fall on this region");
   749         hr->set_top(new_top);
   750       } else {
   751         // not last one
   752         assert(new_top > hr->end(), "new_top should be above this region");
   753         hr->set_top(hr->end());
   754       }
   755     }
   756     // If we have continues humongous regions (hr != NULL), then the
   757     // end of the last one should match new_end and its top should
   758     // match new_top.
   759     assert(hr == NULL ||
   760            (hr->end() == new_end && hr->top() == new_top), "sanity");
   762     assert(first_hr->used() == word_size * HeapWordSize, "invariant");
   763     _summary_bytes_used += first_hr->used();
   764     _humongous_set.add(first_hr);
   766     return new_obj;
   767   }
   769   verify_region_sets_optional();
   770   return NULL;
   771 }
   773 void
   774 G1CollectedHeap::retire_cur_alloc_region(HeapRegion* cur_alloc_region) {
   775   // Other threads might still be trying to allocate using CASes out
   776   // of the region we are retiring, as they can do so without holding
   777   // the Heap_lock. So we first have to make sure that noone else can
   778   // allocate in it by doing a maximal allocation. Even if our CAS
   779   // attempt fails a few times, we'll succeed sooner or later given
   780   // that a failed CAS attempt mean that the region is getting closed
   781   // to being full (someone else succeeded in allocating into it).
   782   size_t free_word_size = cur_alloc_region->free() / HeapWordSize;
   784   // This is the minimum free chunk we can turn into a dummy
   785   // object. If the free space falls below this, then noone can
   786   // allocate in this region anyway (all allocation requests will be
   787   // of a size larger than this) so we won't have to perform the dummy
   788   // allocation.
   789   size_t min_word_size_to_fill = CollectedHeap::min_fill_size();
   791   while (free_word_size >= min_word_size_to_fill) {
   792     HeapWord* dummy =
   793       cur_alloc_region->par_allocate_no_bot_updates(free_word_size);
   794     if (dummy != NULL) {
   795       // If the allocation was successful we should fill in the space.
   796       CollectedHeap::fill_with_object(dummy, free_word_size);
   797       break;
   798     }
   800     free_word_size = cur_alloc_region->free() / HeapWordSize;
   801     // It's also possible that someone else beats us to the
   802     // allocation and they fill up the region. In that case, we can
   803     // just get out of the loop
   804   }
   805   assert(cur_alloc_region->free() / HeapWordSize < min_word_size_to_fill,
   806          "sanity");
   808   retire_cur_alloc_region_common(cur_alloc_region);
   809   assert(_cur_alloc_region == NULL, "post-condition");
   810 }
   812 // See the comment in the .hpp file about the locking protocol and
   813 // assumptions of this method (and other related ones).
   814 HeapWord*
   815 G1CollectedHeap::replace_cur_alloc_region_and_allocate(size_t word_size,
   816                                                        bool at_safepoint,
   817                                                        bool do_dirtying,
   818                                                        bool can_expand) {
   819   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   820   assert(_cur_alloc_region == NULL,
   821          "replace_cur_alloc_region_and_allocate() should only be called "
   822          "after retiring the previous current alloc region");
   823   assert(SafepointSynchronize::is_at_safepoint() == at_safepoint,
   824          "at_safepoint and is_at_safepoint() should be a tautology");
   825   assert(!can_expand || g1_policy()->can_expand_young_list(),
   826          "we should not call this method with can_expand == true if "
   827          "we are not allowed to expand the young gen");
   829   if (can_expand || !g1_policy()->is_young_list_full()) {
   830     HeapRegion* new_cur_alloc_region = new_alloc_region(word_size);
   831     if (new_cur_alloc_region != NULL) {
   832       assert(new_cur_alloc_region->is_empty(),
   833              "the newly-allocated region should be empty, "
   834              "as right now we only allocate new regions out of the free list");
   835       g1_policy()->update_region_num(true /* next_is_young */);
   836       set_region_short_lived_locked(new_cur_alloc_region);
   838       assert(!new_cur_alloc_region->isHumongous(),
   839              "Catch a regression of this bug.");
   841       // We need to ensure that the stores to _cur_alloc_region and,
   842       // subsequently, to top do not float above the setting of the
   843       // young type.
   844       OrderAccess::storestore();
   846       // Now, perform the allocation out of the region we just
   847       // allocated. Note that noone else can access that region at
   848       // this point (as _cur_alloc_region has not been updated yet),
   849       // so we can just go ahead and do the allocation without any
   850       // atomics (and we expect this allocation attempt to
   851       // suceeded). Given that other threads can attempt an allocation
   852       // with a CAS and without needing the Heap_lock, if we assigned
   853       // the new region to _cur_alloc_region before first allocating
   854       // into it other threads might have filled up the new region
   855       // before we got a chance to do the allocation ourselves. In
   856       // that case, we would have needed to retire the region, grab a
   857       // new one, and go through all this again. Allocating out of the
   858       // new region before assigning it to _cur_alloc_region avoids
   859       // all this.
   860       HeapWord* result =
   861                      new_cur_alloc_region->allocate_no_bot_updates(word_size);
   862       assert(result != NULL, "we just allocate out of an empty region "
   863              "so allocation should have been successful");
   864       assert(is_in(result), "result should be in the heap");
   866       // Now make sure that the store to _cur_alloc_region does not
   867       // float above the store to top.
   868       OrderAccess::storestore();
   869       _cur_alloc_region = new_cur_alloc_region;
   871       if (!at_safepoint) {
   872         Heap_lock->unlock();
   873       }
   875       // do the dirtying, if necessary, after we release the Heap_lock
   876       if (do_dirtying) {
   877         dirty_young_block(result, word_size);
   878       }
   879       return result;
   880     }
   881   }
   883   assert(_cur_alloc_region == NULL, "we failed to allocate a new current "
   884          "alloc region, it should still be NULL");
   885   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
   886   return NULL;
   887 }
   889 // See the comment in the .hpp file about the locking protocol and
   890 // assumptions of this method (and other related ones).
   891 HeapWord*
   892 G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
   893   assert_heap_locked_and_not_at_safepoint();
   894   assert(!isHumongous(word_size), "attempt_allocation_slow() should not be "
   895          "used for humongous allocations");
   897   // We should only reach here when we were unable to allocate
   898   // otherwise. So, we should have not active current alloc region.
   899   assert(_cur_alloc_region == NULL, "current alloc region should be NULL");
   901   // We will loop while succeeded is false, which means that we tried
   902   // to do a collection, but the VM op did not succeed. So, when we
   903   // exit the loop, either one of the allocation attempts was
   904   // successful, or we succeeded in doing the VM op but which was
   905   // unable to allocate after the collection.
   906   for (int try_count = 1; /* we'll return or break */; try_count += 1) {
   907     bool succeeded = true;
   909     // Every time we go round the loop we should be holding the Heap_lock.
   910     assert_heap_locked();
   912     if (GC_locker::is_active_and_needs_gc()) {
   913       // We are locked out of GC because of the GC locker. We can
   914       // allocate a new region only if we can expand the young gen.
   916       if (g1_policy()->can_expand_young_list()) {
   917         // Yes, we are allowed to expand the young gen. Let's try to
   918         // allocate a new current alloc region.
   919         HeapWord* result =
   920           replace_cur_alloc_region_and_allocate(word_size,
   921                                                 false, /* at_safepoint */
   922                                                 true,  /* do_dirtying */
   923                                                 true   /* can_expand */);
   924         if (result != NULL) {
   925           assert_heap_not_locked();
   926           return result;
   927         }
   928       }
   929       // We could not expand the young gen further (or we could but we
   930       // failed to allocate a new region). We'll stall until the GC
   931       // locker forces a GC.
   933       // If this thread is not in a jni critical section, we stall
   934       // the requestor until the critical section has cleared and
   935       // GC allowed. When the critical section clears, a GC is
   936       // initiated by the last thread exiting the critical section; so
   937       // we retry the allocation sequence from the beginning of the loop,
   938       // rather than causing more, now probably unnecessary, GC attempts.
   939       JavaThread* jthr = JavaThread::current();
   940       assert(jthr != NULL, "sanity");
   941       if (jthr->in_critical()) {
   942         if (CheckJNICalls) {
   943           fatal("Possible deadlock due to allocating while"
   944                 " in jni critical section");
   945         }
   946         // We are returning NULL so the protocol is that we're still
   947         // holding the Heap_lock.
   948         assert_heap_locked();
   949         return NULL;
   950       }
   952       Heap_lock->unlock();
   953       GC_locker::stall_until_clear();
   955       // No need to relock the Heap_lock. We'll fall off to the code
   956       // below the else-statement which assumes that we are not
   957       // holding the Heap_lock.
   958     } else {
   959       // We are not locked out. So, let's try to do a GC. The VM op
   960       // will retry the allocation before it completes.
   962       // Read the GC count while holding the Heap_lock
   963       unsigned int gc_count_before = SharedHeap::heap()->total_collections();
   965       Heap_lock->unlock();
   967       HeapWord* result =
   968         do_collection_pause(word_size, gc_count_before, &succeeded);
   969       assert_heap_not_locked();
   970       if (result != NULL) {
   971         assert(succeeded, "the VM op should have succeeded");
   973         // Allocations that take place on VM operations do not do any
   974         // card dirtying and we have to do it here.
   975         dirty_young_block(result, word_size);
   976         return result;
   977       }
   978     }
   980     // Both paths that get us here from above unlock the Heap_lock.
   981     assert_heap_not_locked();
   983     // We can reach here when we were unsuccessful in doing a GC,
   984     // because another thread beat us to it, or because we were locked
   985     // out of GC due to the GC locker. In either case a new alloc
   986     // region might be available so we will retry the allocation.
   987     HeapWord* result = attempt_allocation(word_size);
   988     if (result != NULL) {
   989       assert_heap_not_locked();
   990       return result;
   991     }
   993     // So far our attempts to allocate failed. The only time we'll go
   994     // around the loop and try again is if we tried to do a GC and the
   995     // VM op that we tried to schedule was not successful because
   996     // another thread beat us to it. If that happened it's possible
   997     // that by the time we grabbed the Heap_lock again and tried to
   998     // allocate other threads filled up the young generation, which
   999     // means that the allocation attempt after the GC also failed. So,
  1000     // it's worth trying to schedule another GC pause.
  1001     if (succeeded) {
  1002       break;
  1005     // Give a warning if we seem to be looping forever.
  1006     if ((QueuedAllocationWarningCount > 0) &&
  1007         (try_count % QueuedAllocationWarningCount == 0)) {
  1008       warning("G1CollectedHeap::attempt_allocation_slow() "
  1009               "retries %d times", try_count);
  1013   assert_heap_locked();
  1014   return NULL;
  1017 // See the comment in the .hpp file about the locking protocol and
  1018 // assumptions of this method (and other related ones).
  1019 HeapWord*
  1020 G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
  1021                                               bool at_safepoint) {
  1022   // This is the method that will allocate a humongous object. All
  1023   // allocation paths that attempt to allocate a humongous object
  1024   // should eventually reach here. Currently, the only paths are from
  1025   // mem_allocate() and attempt_allocation_at_safepoint().
  1026   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  1027   assert(isHumongous(word_size), "attempt_allocation_humongous() "
  1028          "should only be used for humongous allocations");
  1029   assert(SafepointSynchronize::is_at_safepoint() == at_safepoint,
  1030          "at_safepoint and is_at_safepoint() should be a tautology");
  1032   HeapWord* result = NULL;
  1034   // We will loop while succeeded is false, which means that we tried
  1035   // to do a collection, but the VM op did not succeed. So, when we
  1036   // exit the loop, either one of the allocation attempts was
  1037   // successful, or we succeeded in doing the VM op but which was
  1038   // unable to allocate after the collection.
  1039   for (int try_count = 1; /* we'll return or break */; try_count += 1) {
  1040     bool succeeded = true;
  1042     // Given that humongous objects are not allocated in young
  1043     // regions, we'll first try to do the allocation without doing a
  1044     // collection hoping that there's enough space in the heap.
  1045     result = humongous_obj_allocate(word_size);
  1046     assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
  1047            "catch a regression of this bug.");
  1048     if (result != NULL) {
  1049       if (!at_safepoint) {
  1050         // If we're not at a safepoint, unlock the Heap_lock.
  1051         Heap_lock->unlock();
  1053       return result;
  1056     // If we failed to allocate the humongous object, we should try to
  1057     // do a collection pause (if we're allowed) in case it reclaims
  1058     // enough space for the allocation to succeed after the pause.
  1059     if (!at_safepoint) {
  1060       // Read the GC count while holding the Heap_lock
  1061       unsigned int gc_count_before = SharedHeap::heap()->total_collections();
  1063       // If we're allowed to do a collection we're not at a
  1064       // safepoint, so it is safe to unlock the Heap_lock.
  1065       Heap_lock->unlock();
  1067       result = do_collection_pause(word_size, gc_count_before, &succeeded);
  1068       assert_heap_not_locked();
  1069       if (result != NULL) {
  1070         assert(succeeded, "the VM op should have succeeded");
  1071         return result;
  1074       // If we get here, the VM operation either did not succeed
  1075       // (i.e., another thread beat us to it) or it succeeded but
  1076       // failed to allocate the object.
  1078       // If we're allowed to do a collection we're not at a
  1079       // safepoint, so it is safe to lock the Heap_lock.
  1080       Heap_lock->lock();
  1083     assert(result == NULL, "otherwise we should have exited the loop earlier");
  1085     // So far our attempts to allocate failed. The only time we'll go
  1086     // around the loop and try again is if we tried to do a GC and the
  1087     // VM op that we tried to schedule was not successful because
  1088     // another thread beat us to it. That way it's possible that some
  1089     // space was freed up by the thread that successfully scheduled a
  1090     // GC. So it's worth trying to allocate again.
  1091     if (succeeded) {
  1092       break;
  1095     // Give a warning if we seem to be looping forever.
  1096     if ((QueuedAllocationWarningCount > 0) &&
  1097         (try_count % QueuedAllocationWarningCount == 0)) {
  1098       warning("G1CollectedHeap::attempt_allocation_humongous "
  1099               "retries %d times", try_count);
  1103   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  1104   return NULL;
  1107 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
  1108                                            bool expect_null_cur_alloc_region) {
  1109   assert_at_safepoint(true /* should_be_vm_thread */);
  1110   assert(_cur_alloc_region == NULL || !expect_null_cur_alloc_region,
  1111          err_msg("the current alloc region was unexpectedly found "
  1112                  "to be non-NULL, cur alloc region: "PTR_FORMAT" "
  1113                  "expect_null_cur_alloc_region: %d word_size: "SIZE_FORMAT,
  1114                  _cur_alloc_region, expect_null_cur_alloc_region, word_size));
  1116   if (!isHumongous(word_size)) {
  1117     if (!expect_null_cur_alloc_region) {
  1118       HeapRegion* cur_alloc_region = _cur_alloc_region;
  1119       if (cur_alloc_region != NULL) {
  1120         // We are at a safepoint so no reason to use the MT-safe version.
  1121         HeapWord* result = cur_alloc_region->allocate_no_bot_updates(word_size);
  1122         if (result != NULL) {
  1123           assert(is_in(result), "result should be in the heap");
  1125           // We will not do any dirtying here. This is guaranteed to be
  1126           // called during a safepoint and the thread that scheduled the
  1127           // pause will do the dirtying if we return a non-NULL result.
  1128           return result;
  1131         retire_cur_alloc_region_common(cur_alloc_region);
  1135     assert(_cur_alloc_region == NULL,
  1136            "at this point we should have no cur alloc region");
  1137     return replace_cur_alloc_region_and_allocate(word_size,
  1138                                                  true, /* at_safepoint */
  1139                                                  false /* do_dirtying */,
  1140                                                  false /* can_expand */);
  1141   } else {
  1142     return attempt_allocation_humongous(word_size,
  1143                                         true /* at_safepoint */);
  1146   ShouldNotReachHere();
  1149 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
  1150   assert_heap_not_locked_and_not_at_safepoint();
  1151   assert(!isHumongous(word_size), "we do not allow TLABs of humongous size");
  1153   // First attempt: Try allocating out of the current alloc region
  1154   // using a CAS. If that fails, take the Heap_lock and retry the
  1155   // allocation, potentially replacing the current alloc region.
  1156   HeapWord* result = attempt_allocation(word_size);
  1157   if (result != NULL) {
  1158     assert_heap_not_locked();
  1159     return result;
  1162   // Second attempt: Go to the slower path where we might try to
  1163   // schedule a collection.
  1164   result = attempt_allocation_slow(word_size);
  1165   if (result != NULL) {
  1166     assert_heap_not_locked();
  1167     return result;
  1170   assert_heap_locked();
  1171   // Need to unlock the Heap_lock before returning.
  1172   Heap_lock->unlock();
  1173   return NULL;
  1176 HeapWord*
  1177 G1CollectedHeap::mem_allocate(size_t word_size,
  1178                               bool   is_noref,
  1179                               bool   is_tlab,
  1180                               bool*  gc_overhead_limit_was_exceeded) {
  1181   assert_heap_not_locked_and_not_at_safepoint();
  1182   assert(!is_tlab, "mem_allocate() this should not be called directly "
  1183          "to allocate TLABs");
  1185   // Loop until the allocation is satisified,
  1186   // or unsatisfied after GC.
  1187   for (int try_count = 1; /* we'll return */; try_count += 1) {
  1188     unsigned int gc_count_before;
  1190       if (!isHumongous(word_size)) {
  1191         // First attempt: Try allocating out of the current alloc region
  1192         // using a CAS. If that fails, take the Heap_lock and retry the
  1193         // allocation, potentially replacing the current alloc region.
  1194         HeapWord* result = attempt_allocation(word_size);
  1195         if (result != NULL) {
  1196           assert_heap_not_locked();
  1197           return result;
  1200         assert_heap_locked();
  1202         // Second attempt: Go to the slower path where we might try to
  1203         // schedule a collection.
  1204         result = attempt_allocation_slow(word_size);
  1205         if (result != NULL) {
  1206           assert_heap_not_locked();
  1207           return result;
  1209       } else {
  1210         // attempt_allocation_humongous() requires the Heap_lock to be held.
  1211         Heap_lock->lock();
  1213         HeapWord* result = attempt_allocation_humongous(word_size,
  1214                                                      false /* at_safepoint */);
  1215         if (result != NULL) {
  1216           assert_heap_not_locked();
  1217           return result;
  1221       assert_heap_locked();
  1222       // Read the gc count while the heap lock is held.
  1223       gc_count_before = SharedHeap::heap()->total_collections();
  1225       // Release the Heap_lock before attempting the collection.
  1226       Heap_lock->unlock();
  1229     // Create the garbage collection operation...
  1230     VM_G1CollectForAllocation op(gc_count_before, word_size);
  1231     // ...and get the VM thread to execute it.
  1232     VMThread::execute(&op);
  1234     assert_heap_not_locked();
  1235     if (op.prologue_succeeded() && op.pause_succeeded()) {
  1236       // If the operation was successful we'll return the result even
  1237       // if it is NULL. If the allocation attempt failed immediately
  1238       // after a Full GC, it's unlikely we'll be able to allocate now.
  1239       HeapWord* result = op.result();
  1240       if (result != NULL && !isHumongous(word_size)) {
  1241         // Allocations that take place on VM operations do not do any
  1242         // card dirtying and we have to do it here. We only have to do
  1243         // this for non-humongous allocations, though.
  1244         dirty_young_block(result, word_size);
  1246       return result;
  1247     } else {
  1248       assert(op.result() == NULL,
  1249              "the result should be NULL if the VM op did not succeed");
  1252     // Give a warning if we seem to be looping forever.
  1253     if ((QueuedAllocationWarningCount > 0) &&
  1254         (try_count % QueuedAllocationWarningCount == 0)) {
  1255       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
  1259   ShouldNotReachHere();
  1262 void G1CollectedHeap::abandon_cur_alloc_region() {
  1263   assert_at_safepoint(true /* should_be_vm_thread */);
  1265   HeapRegion* cur_alloc_region = _cur_alloc_region;
  1266   if (cur_alloc_region != NULL) {
  1267     assert(!cur_alloc_region->is_empty(),
  1268            "the current alloc region can never be empty");
  1269     assert(cur_alloc_region->is_young(),
  1270            "the current alloc region should be young");
  1272     retire_cur_alloc_region_common(cur_alloc_region);
  1274   assert(_cur_alloc_region == NULL, "post-condition");
  1277 void G1CollectedHeap::abandon_gc_alloc_regions() {
  1278   // first, make sure that the GC alloc region list is empty (it should!)
  1279   assert(_gc_alloc_region_list == NULL, "invariant");
  1280   release_gc_alloc_regions(true /* totally */);
  1283 class PostMCRemSetClearClosure: public HeapRegionClosure {
  1284   ModRefBarrierSet* _mr_bs;
  1285 public:
  1286   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1287   bool doHeapRegion(HeapRegion* r) {
  1288     r->reset_gc_time_stamp();
  1289     if (r->continuesHumongous())
  1290       return false;
  1291     HeapRegionRemSet* hrrs = r->rem_set();
  1292     if (hrrs != NULL) hrrs->clear();
  1293     // You might think here that we could clear just the cards
  1294     // corresponding to the used region.  But no: if we leave a dirty card
  1295     // in a region we might allocate into, then it would prevent that card
  1296     // from being enqueued, and cause it to be missed.
  1297     // Re: the performance cost: we shouldn't be doing full GC anyway!
  1298     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
  1299     return false;
  1301 };
  1304 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
  1305   ModRefBarrierSet* _mr_bs;
  1306 public:
  1307   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
  1308   bool doHeapRegion(HeapRegion* r) {
  1309     if (r->continuesHumongous()) return false;
  1310     if (r->used_region().word_size() != 0) {
  1311       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
  1313     return false;
  1315 };
  1317 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
  1318   G1CollectedHeap*   _g1h;
  1319   UpdateRSOopClosure _cl;
  1320   int                _worker_i;
  1321 public:
  1322   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
  1323     _cl(g1->g1_rem_set(), worker_i),
  1324     _worker_i(worker_i),
  1325     _g1h(g1)
  1326   { }
  1328   bool doHeapRegion(HeapRegion* r) {
  1329     if (!r->continuesHumongous()) {
  1330       _cl.set_from(r);
  1331       r->oop_iterate(&_cl);
  1333     return false;
  1335 };
  1337 class ParRebuildRSTask: public AbstractGangTask {
  1338   G1CollectedHeap* _g1;
  1339 public:
  1340   ParRebuildRSTask(G1CollectedHeap* g1)
  1341     : AbstractGangTask("ParRebuildRSTask"),
  1342       _g1(g1)
  1343   { }
  1345   void work(int i) {
  1346     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
  1347     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
  1348                                          HeapRegion::RebuildRSClaimValue);
  1350 };
  1352 bool G1CollectedHeap::do_collection(bool explicit_gc,
  1353                                     bool clear_all_soft_refs,
  1354                                     size_t word_size) {
  1355   assert_at_safepoint(true /* should_be_vm_thread */);
  1357   if (GC_locker::check_active_before_gc()) {
  1358     return false;
  1361   SvcGCMarker sgcm(SvcGCMarker::FULL);
  1362   ResourceMark rm;
  1364   if (PrintHeapAtGC) {
  1365     Universe::print_heap_before_gc();
  1368   verify_region_sets_optional();
  1370   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
  1371                            collector_policy()->should_clear_all_soft_refs();
  1373   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
  1376     IsGCActiveMark x;
  1378     // Timing
  1379     bool system_gc = (gc_cause() == GCCause::_java_lang_system_gc);
  1380     assert(!system_gc || explicit_gc, "invariant");
  1381     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  1382     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  1383     TraceTime t(system_gc ? "Full GC (System.gc())" : "Full GC",
  1384                 PrintGC, true, gclog_or_tty);
  1386     TraceMemoryManagerStats tms(true /* fullGC */);
  1388     double start = os::elapsedTime();
  1389     g1_policy()->record_full_collection_start();
  1391     wait_while_free_regions_coming();
  1392     append_secondary_free_list_if_not_empty();
  1394     gc_prologue(true);
  1395     increment_total_collections(true /* full gc */);
  1397     size_t g1h_prev_used = used();
  1398     assert(used() == recalculate_used(), "Should be equal");
  1400     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  1401       HandleMark hm;  // Discard invalid handles created during verification
  1402       prepare_for_verify();
  1403       gclog_or_tty->print(" VerifyBeforeGC:");
  1404       Universe::verify(true);
  1407     COMPILER2_PRESENT(DerivedPointerTable::clear());
  1409     // We want to discover references, but not process them yet.
  1410     // This mode is disabled in
  1411     // instanceRefKlass::process_discovered_references if the
  1412     // generation does some collection work, or
  1413     // instanceRefKlass::enqueue_discovered_references if the
  1414     // generation returns without doing any work.
  1415     ref_processor()->disable_discovery();
  1416     ref_processor()->abandon_partial_discovery();
  1417     ref_processor()->verify_no_references_recorded();
  1419     // Abandon current iterations of concurrent marking and concurrent
  1420     // refinement, if any are in progress.
  1421     concurrent_mark()->abort();
  1423     // Make sure we'll choose a new allocation region afterwards.
  1424     abandon_cur_alloc_region();
  1425     abandon_gc_alloc_regions();
  1426     assert(_cur_alloc_region == NULL, "Invariant.");
  1427     g1_rem_set()->cleanupHRRS();
  1428     tear_down_region_lists();
  1430     // We may have added regions to the current incremental collection
  1431     // set between the last GC or pause and now. We need to clear the
  1432     // incremental collection set and then start rebuilding it afresh
  1433     // after this full GC.
  1434     abandon_collection_set(g1_policy()->inc_cset_head());
  1435     g1_policy()->clear_incremental_cset();
  1436     g1_policy()->stop_incremental_cset_building();
  1438     if (g1_policy()->in_young_gc_mode()) {
  1439       empty_young_list();
  1440       g1_policy()->set_full_young_gcs(true);
  1443     // See the comment in G1CollectedHeap::ref_processing_init() about
  1444     // how reference processing currently works in G1.
  1446     // Temporarily make reference _discovery_ single threaded (non-MT).
  1447     ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);
  1449     // Temporarily make refs discovery atomic
  1450     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
  1452     // Temporarily clear _is_alive_non_header
  1453     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
  1455     ref_processor()->enable_discovery();
  1456     ref_processor()->setup_policy(do_clear_all_soft_refs);
  1458     // Do collection work
  1460       HandleMark hm;  // Discard invalid handles created during gc
  1461       G1MarkSweep::invoke_at_safepoint(ref_processor(), do_clear_all_soft_refs);
  1463     assert(free_regions() == 0, "we should not have added any free regions");
  1464     rebuild_region_lists();
  1466     _summary_bytes_used = recalculate_used();
  1468     ref_processor()->enqueue_discovered_references();
  1470     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  1472     MemoryService::track_memory_usage();
  1474     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  1475       HandleMark hm;  // Discard invalid handles created during verification
  1476       gclog_or_tty->print(" VerifyAfterGC:");
  1477       prepare_for_verify();
  1478       Universe::verify(false);
  1480     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
  1482     reset_gc_time_stamp();
  1483     // Since everything potentially moved, we will clear all remembered
  1484     // sets, and clear all cards.  Later we will rebuild remebered
  1485     // sets. We will also reset the GC time stamps of the regions.
  1486     PostMCRemSetClearClosure rs_clear(mr_bs());
  1487     heap_region_iterate(&rs_clear);
  1489     // Resize the heap if necessary.
  1490     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
  1492     if (_cg1r->use_cache()) {
  1493       _cg1r->clear_and_record_card_counts();
  1494       _cg1r->clear_hot_cache();
  1497     // Rebuild remembered sets of all regions.
  1499     if (G1CollectedHeap::use_parallel_gc_threads()) {
  1500       ParRebuildRSTask rebuild_rs_task(this);
  1501       assert(check_heap_region_claim_values(
  1502              HeapRegion::InitialClaimValue), "sanity check");
  1503       set_par_threads(workers()->total_workers());
  1504       workers()->run_task(&rebuild_rs_task);
  1505       set_par_threads(0);
  1506       assert(check_heap_region_claim_values(
  1507              HeapRegion::RebuildRSClaimValue), "sanity check");
  1508       reset_heap_region_claim_values();
  1509     } else {
  1510       RebuildRSOutOfRegionClosure rebuild_rs(this);
  1511       heap_region_iterate(&rebuild_rs);
  1514     if (PrintGC) {
  1515       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
  1518     if (true) { // FIXME
  1519       // Ask the permanent generation to adjust size for full collections
  1520       perm()->compute_new_size();
  1523     // Start a new incremental collection set for the next pause
  1524     assert(g1_policy()->collection_set() == NULL, "must be");
  1525     g1_policy()->start_incremental_cset_building();
  1527     // Clear the _cset_fast_test bitmap in anticipation of adding
  1528     // regions to the incremental collection set for the next
  1529     // evacuation pause.
  1530     clear_cset_fast_test();
  1532     double end = os::elapsedTime();
  1533     g1_policy()->record_full_collection_end();
  1535 #ifdef TRACESPINNING
  1536     ParallelTaskTerminator::print_termination_counts();
  1537 #endif
  1539     gc_epilogue(true);
  1541     // Discard all rset updates
  1542     JavaThread::dirty_card_queue_set().abandon_logs();
  1543     assert(!G1DeferredRSUpdate
  1544            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
  1547   if (g1_policy()->in_young_gc_mode()) {
  1548     _young_list->reset_sampled_info();
  1549     // At this point there should be no regions in the
  1550     // entire heap tagged as young.
  1551     assert( check_young_list_empty(true /* check_heap */),
  1552             "young list should be empty at this point");
  1555   // Update the number of full collections that have been completed.
  1556   increment_full_collections_completed(false /* concurrent */);
  1558   verify_region_sets_optional();
  1560   if (PrintHeapAtGC) {
  1561     Universe::print_heap_after_gc();
  1564   return true;
  1567 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
  1568   // do_collection() will return whether it succeeded in performing
  1569   // the GC. Currently, there is no facility on the
  1570   // do_full_collection() API to notify the caller than the collection
  1571   // did not succeed (e.g., because it was locked out by the GC
  1572   // locker). So, right now, we'll ignore the return value.
  1573   bool dummy = do_collection(true,                /* explicit_gc */
  1574                              clear_all_soft_refs,
  1575                              0                    /* word_size */);
  1578 // This code is mostly copied from TenuredGeneration.
  1579 void
  1580 G1CollectedHeap::
  1581 resize_if_necessary_after_full_collection(size_t word_size) {
  1582   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
  1584   // Include the current allocation, if any, and bytes that will be
  1585   // pre-allocated to support collections, as "used".
  1586   const size_t used_after_gc = used();
  1587   const size_t capacity_after_gc = capacity();
  1588   const size_t free_after_gc = capacity_after_gc - used_after_gc;
  1590   // This is enforced in arguments.cpp.
  1591   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
  1592          "otherwise the code below doesn't make sense");
  1594   // We don't have floating point command-line arguments
  1595   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
  1596   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
  1597   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
  1598   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
  1600   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
  1601   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
  1603   // We have to be careful here as these two calculations can overflow
  1604   // 32-bit size_t's.
  1605   double used_after_gc_d = (double) used_after_gc;
  1606   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
  1607   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
  1609   // Let's make sure that they are both under the max heap size, which
  1610   // by default will make them fit into a size_t.
  1611   double desired_capacity_upper_bound = (double) max_heap_size;
  1612   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
  1613                                     desired_capacity_upper_bound);
  1614   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
  1615                                     desired_capacity_upper_bound);
  1617   // We can now safely turn them into size_t's.
  1618   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
  1619   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
  1621   // This assert only makes sense here, before we adjust them
  1622   // with respect to the min and max heap size.
  1623   assert(minimum_desired_capacity <= maximum_desired_capacity,
  1624          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
  1625                  "maximum_desired_capacity = "SIZE_FORMAT,
  1626                  minimum_desired_capacity, maximum_desired_capacity));
  1628   // Should not be greater than the heap max size. No need to adjust
  1629   // it with respect to the heap min size as it's a lower bound (i.e.,
  1630   // we'll try to make the capacity larger than it, not smaller).
  1631   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
  1632   // Should not be less than the heap min size. No need to adjust it
  1633   // with respect to the heap max size as it's an upper bound (i.e.,
  1634   // we'll try to make the capacity smaller than it, not greater).
  1635   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
  1637   if (PrintGC && Verbose) {
  1638     const double free_percentage =
  1639       (double) free_after_gc / (double) capacity_after_gc;
  1640     gclog_or_tty->print_cr("Computing new size after full GC ");
  1641     gclog_or_tty->print_cr("  "
  1642                            "  minimum_free_percentage: %6.2f",
  1643                            minimum_free_percentage);
  1644     gclog_or_tty->print_cr("  "
  1645                            "  maximum_free_percentage: %6.2f",
  1646                            maximum_free_percentage);
  1647     gclog_or_tty->print_cr("  "
  1648                            "  capacity: %6.1fK"
  1649                            "  minimum_desired_capacity: %6.1fK"
  1650                            "  maximum_desired_capacity: %6.1fK",
  1651                            (double) capacity_after_gc / (double) K,
  1652                            (double) minimum_desired_capacity / (double) K,
  1653                            (double) maximum_desired_capacity / (double) K);
  1654     gclog_or_tty->print_cr("  "
  1655                            "  free_after_gc: %6.1fK"
  1656                            "  used_after_gc: %6.1fK",
  1657                            (double) free_after_gc / (double) K,
  1658                            (double) used_after_gc / (double) K);
  1659     gclog_or_tty->print_cr("  "
  1660                            "   free_percentage: %6.2f",
  1661                            free_percentage);
  1663   if (capacity_after_gc < minimum_desired_capacity) {
  1664     // Don't expand unless it's significant
  1665     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
  1666     if (expand(expand_bytes)) {
  1667       if (PrintGC && Verbose) {
  1668         gclog_or_tty->print_cr("  "
  1669                                "  expanding:"
  1670                                "  max_heap_size: %6.1fK"
  1671                                "  minimum_desired_capacity: %6.1fK"
  1672                                "  expand_bytes: %6.1fK",
  1673                                (double) max_heap_size / (double) K,
  1674                                (double) minimum_desired_capacity / (double) K,
  1675                                (double) expand_bytes / (double) K);
  1679     // No expansion, now see if we want to shrink
  1680   } else if (capacity_after_gc > maximum_desired_capacity) {
  1681     // Capacity too large, compute shrinking size
  1682     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
  1683     shrink(shrink_bytes);
  1684     if (PrintGC && Verbose) {
  1685       gclog_or_tty->print_cr("  "
  1686                              "  shrinking:"
  1687                              "  min_heap_size: %6.1fK"
  1688                              "  maximum_desired_capacity: %6.1fK"
  1689                              "  shrink_bytes: %6.1fK",
  1690                              (double) min_heap_size / (double) K,
  1691                              (double) maximum_desired_capacity / (double) K,
  1692                              (double) shrink_bytes / (double) K);
  1698 HeapWord*
  1699 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
  1700                                            bool* succeeded) {
  1701   assert_at_safepoint(true /* should_be_vm_thread */);
  1703   *succeeded = true;
  1704   // Let's attempt the allocation first.
  1705   HeapWord* result = attempt_allocation_at_safepoint(word_size,
  1706                                      false /* expect_null_cur_alloc_region */);
  1707   if (result != NULL) {
  1708     assert(*succeeded, "sanity");
  1709     return result;
  1712   // In a G1 heap, we're supposed to keep allocation from failing by
  1713   // incremental pauses.  Therefore, at least for now, we'll favor
  1714   // expansion over collection.  (This might change in the future if we can
  1715   // do something smarter than full collection to satisfy a failed alloc.)
  1716   result = expand_and_allocate(word_size);
  1717   if (result != NULL) {
  1718     assert(*succeeded, "sanity");
  1719     return result;
  1722   // Expansion didn't work, we'll try to do a Full GC.
  1723   bool gc_succeeded = do_collection(false, /* explicit_gc */
  1724                                     false, /* clear_all_soft_refs */
  1725                                     word_size);
  1726   if (!gc_succeeded) {
  1727     *succeeded = false;
  1728     return NULL;
  1731   // Retry the allocation
  1732   result = attempt_allocation_at_safepoint(word_size,
  1733                                       true /* expect_null_cur_alloc_region */);
  1734   if (result != NULL) {
  1735     assert(*succeeded, "sanity");
  1736     return result;
  1739   // Then, try a Full GC that will collect all soft references.
  1740   gc_succeeded = do_collection(false, /* explicit_gc */
  1741                                true,  /* clear_all_soft_refs */
  1742                                word_size);
  1743   if (!gc_succeeded) {
  1744     *succeeded = false;
  1745     return NULL;
  1748   // Retry the allocation once more
  1749   result = attempt_allocation_at_safepoint(word_size,
  1750                                       true /* expect_null_cur_alloc_region */);
  1751   if (result != NULL) {
  1752     assert(*succeeded, "sanity");
  1753     return result;
  1756   assert(!collector_policy()->should_clear_all_soft_refs(),
  1757          "Flag should have been handled and cleared prior to this point");
  1759   // What else?  We might try synchronous finalization later.  If the total
  1760   // space available is large enough for the allocation, then a more
  1761   // complete compaction phase than we've tried so far might be
  1762   // appropriate.
  1763   assert(*succeeded, "sanity");
  1764   return NULL;
  1767 // Attempting to expand the heap sufficiently
  1768 // to support an allocation of the given "word_size".  If
  1769 // successful, perform the allocation and return the address of the
  1770 // allocated block, or else "NULL".
  1772 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
  1773   assert_at_safepoint(true /* should_be_vm_thread */);
  1775   verify_region_sets_optional();
  1777   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
  1778   if (expand(expand_bytes)) {
  1779     verify_region_sets_optional();
  1780     return attempt_allocation_at_safepoint(word_size,
  1781                                           false /* expect_null_cur_alloc_region */);
  1783   return NULL;
  1786 bool G1CollectedHeap::expand(size_t expand_bytes) {
  1787   size_t old_mem_size = _g1_storage.committed_size();
  1788   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
  1789   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
  1790                                        HeapRegion::GrainBytes);
  1792   if (Verbose && PrintGC) {
  1793     gclog_or_tty->print("Expanding garbage-first heap from %ldK by %ldK",
  1794                            old_mem_size/K, aligned_expand_bytes/K);
  1797   HeapWord* old_end = (HeapWord*)_g1_storage.high();
  1798   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
  1799   if (successful) {
  1800     HeapWord* new_end = (HeapWord*)_g1_storage.high();
  1802     // Expand the committed region.
  1803     _g1_committed.set_end(new_end);
  1805     // Tell the cardtable about the expansion.
  1806     Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1808     // And the offset table as well.
  1809     _bot_shared->resize(_g1_committed.word_size());
  1811     expand_bytes = aligned_expand_bytes;
  1812     HeapWord* base = old_end;
  1814     // Create the heap regions for [old_end, new_end)
  1815     while (expand_bytes > 0) {
  1816       HeapWord* high = base + HeapRegion::GrainWords;
  1818       // Create a new HeapRegion.
  1819       MemRegion mr(base, high);
  1820       bool is_zeroed = !_g1_max_committed.contains(base);
  1821       HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);
  1823       // Add it to the HeapRegionSeq.
  1824       _hrs->insert(hr);
  1825       _free_list.add_as_tail(hr);
  1827       // And we used up an expansion region to create it.
  1828       _expansion_regions--;
  1830       expand_bytes -= HeapRegion::GrainBytes;
  1831       base += HeapRegion::GrainWords;
  1833     assert(base == new_end, "sanity");
  1835     // Now update max_committed if necessary.
  1836     _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), new_end));
  1838   } else {
  1839     // The expansion of the virtual storage space was unsuccessful.
  1840     // Let's see if it was because we ran out of swap.
  1841     if (G1ExitOnExpansionFailure &&
  1842         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
  1843       // We had head room...
  1844       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
  1848   if (Verbose && PrintGC) {
  1849     size_t new_mem_size = _g1_storage.committed_size();
  1850     gclog_or_tty->print_cr("...%s, expanded to %ldK",
  1851                            (successful ? "Successful" : "Failed"),
  1852                            new_mem_size/K);
  1854   return successful;
  1857 void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
  1859   size_t old_mem_size = _g1_storage.committed_size();
  1860   size_t aligned_shrink_bytes =
  1861     ReservedSpace::page_align_size_down(shrink_bytes);
  1862   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
  1863                                          HeapRegion::GrainBytes);
  1864   size_t num_regions_deleted = 0;
  1865   MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);
  1867   assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1868   if (mr.byte_size() > 0)
  1869     _g1_storage.shrink_by(mr.byte_size());
  1870   assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
  1872   _g1_committed.set_end(mr.start());
  1873   _expansion_regions += num_regions_deleted;
  1875   // Tell the cardtable about it.
  1876   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
  1878   // And the offset table as well.
  1879   _bot_shared->resize(_g1_committed.word_size());
  1881   HeapRegionRemSet::shrink_heap(n_regions());
  1883   if (Verbose && PrintGC) {
  1884     size_t new_mem_size = _g1_storage.committed_size();
  1885     gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
  1886                            old_mem_size/K, aligned_shrink_bytes/K,
  1887                            new_mem_size/K);
  1891 void G1CollectedHeap::shrink(size_t shrink_bytes) {
  1892   verify_region_sets_optional();
  1894   release_gc_alloc_regions(true /* totally */);
  1895   // Instead of tearing down / rebuilding the free lists here, we
  1896   // could instead use the remove_all_pending() method on free_list to
  1897   // remove only the ones that we need to remove.
  1898   tear_down_region_lists();  // We will rebuild them in a moment.
  1899   shrink_helper(shrink_bytes);
  1900   rebuild_region_lists();
  1902   verify_region_sets_optional();
  1905 // Public methods.
  1907 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  1908 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  1909 #endif // _MSC_VER
  1912 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
  1913   SharedHeap(policy_),
  1914   _g1_policy(policy_),
  1915   _dirty_card_queue_set(false),
  1916   _into_cset_dirty_card_queue_set(false),
  1917   _is_alive_closure(this),
  1918   _ref_processor(NULL),
  1919   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
  1920   _bot_shared(NULL),
  1921   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
  1922   _evac_failure_scan_stack(NULL) ,
  1923   _mark_in_progress(false),
  1924   _cg1r(NULL), _summary_bytes_used(0),
  1925   _cur_alloc_region(NULL),
  1926   _refine_cte_cl(NULL),
  1927   _full_collection(false),
  1928   _free_list("Master Free List"),
  1929   _secondary_free_list("Secondary Free List"),
  1930   _humongous_set("Master Humongous Set"),
  1931   _free_regions_coming(false),
  1932   _young_list(new YoungList(this)),
  1933   _gc_time_stamp(0),
  1934   _surviving_young_words(NULL),
  1935   _full_collections_completed(0),
  1936   _in_cset_fast_test(NULL),
  1937   _in_cset_fast_test_base(NULL),
  1938   _dirty_cards_region_list(NULL) {
  1939   _g1h = this; // To catch bugs.
  1940   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
  1941     vm_exit_during_initialization("Failed necessary allocation.");
  1944   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
  1946   int n_queues = MAX2((int)ParallelGCThreads, 1);
  1947   _task_queues = new RefToScanQueueSet(n_queues);
  1949   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
  1950   assert(n_rem_sets > 0, "Invariant.");
  1952   HeapRegionRemSetIterator** iter_arr =
  1953     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
  1954   for (int i = 0; i < n_queues; i++) {
  1955     iter_arr[i] = new HeapRegionRemSetIterator();
  1957   _rem_set_iterator = iter_arr;
  1959   for (int i = 0; i < n_queues; i++) {
  1960     RefToScanQueue* q = new RefToScanQueue();
  1961     q->initialize();
  1962     _task_queues->register_queue(i, q);
  1965   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  1966     _gc_alloc_regions[ap]          = NULL;
  1967     _gc_alloc_region_counts[ap]    = 0;
  1968     _retained_gc_alloc_regions[ap] = NULL;
  1969     // by default, we do not retain a GC alloc region for each ap;
  1970     // we'll override this, when appropriate, below
  1971     _retain_gc_alloc_region[ap]    = false;
  1974   // We will try to remember the last half-full tenured region we
  1975   // allocated to at the end of a collection so that we can re-use it
  1976   // during the next collection.
  1977   _retain_gc_alloc_region[GCAllocForTenured]  = true;
  1979   guarantee(_task_queues != NULL, "task_queues allocation failure.");
  1982 jint G1CollectedHeap::initialize() {
  1983   CollectedHeap::pre_initialize();
  1984   os::enable_vtime();
  1986   // Necessary to satisfy locking discipline assertions.
  1988   MutexLocker x(Heap_lock);
  1990   // While there are no constraints in the GC code that HeapWordSize
  1991   // be any particular value, there are multiple other areas in the
  1992   // system which believe this to be true (e.g. oop->object_size in some
  1993   // cases incorrectly returns the size in wordSize units rather than
  1994   // HeapWordSize).
  1995   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  1997   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
  1998   size_t max_byte_size = collector_policy()->max_heap_byte_size();
  2000   // Ensure that the sizes are properly aligned.
  2001   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
  2002   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
  2004   _cg1r = new ConcurrentG1Refine();
  2006   // Reserve the maximum.
  2007   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
  2008   // Includes the perm-gen.
  2010   const size_t total_reserved = max_byte_size + pgs->max_size();
  2011   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
  2013   ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
  2014                         HeapRegion::GrainBytes,
  2015                         UseLargePages, addr);
  2017   if (UseCompressedOops) {
  2018     if (addr != NULL && !heap_rs.is_reserved()) {
  2019       // Failed to reserve at specified address - the requested memory
  2020       // region is taken already, for example, by 'java' launcher.
  2021       // Try again to reserver heap higher.
  2022       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
  2023       ReservedSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
  2024                              UseLargePages, addr);
  2025       if (addr != NULL && !heap_rs0.is_reserved()) {
  2026         // Failed to reserve at specified address again - give up.
  2027         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
  2028         assert(addr == NULL, "");
  2029         ReservedSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
  2030                                UseLargePages, addr);
  2031         heap_rs = heap_rs1;
  2032       } else {
  2033         heap_rs = heap_rs0;
  2038   if (!heap_rs.is_reserved()) {
  2039     vm_exit_during_initialization("Could not reserve enough space for object heap");
  2040     return JNI_ENOMEM;
  2043   // It is important to do this in a way such that concurrent readers can't
  2044   // temporarily think somethings in the heap.  (I've actually seen this
  2045   // happen in asserts: DLD.)
  2046   _reserved.set_word_size(0);
  2047   _reserved.set_start((HeapWord*)heap_rs.base());
  2048   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
  2050   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
  2052   // Create the gen rem set (and barrier set) for the entire reserved region.
  2053   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
  2054   set_barrier_set(rem_set()->bs());
  2055   if (barrier_set()->is_a(BarrierSet::ModRef)) {
  2056     _mr_bs = (ModRefBarrierSet*)_barrier_set;
  2057   } else {
  2058     vm_exit_during_initialization("G1 requires a mod ref bs.");
  2059     return JNI_ENOMEM;
  2062   // Also create a G1 rem set.
  2063   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
  2064     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
  2065   } else {
  2066     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
  2067     return JNI_ENOMEM;
  2070   // Carve out the G1 part of the heap.
  2072   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
  2073   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
  2074                            g1_rs.size()/HeapWordSize);
  2075   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
  2077   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
  2079   _g1_storage.initialize(g1_rs, 0);
  2080   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
  2081   _g1_max_committed = _g1_committed;
  2082   _hrs = new HeapRegionSeq(_expansion_regions);
  2083   guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
  2084   guarantee(_cur_alloc_region == NULL, "from constructor");
  2086   // 6843694 - ensure that the maximum region index can fit
  2087   // in the remembered set structures.
  2088   const size_t max_region_idx = ((size_t)1 << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
  2089   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
  2091   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
  2092   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
  2093   guarantee((size_t) HeapRegion::CardsPerRegion < max_cards_per_region,
  2094             "too many cards per region");
  2096   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
  2098   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
  2099                                              heap_word_size(init_byte_size));
  2101   _g1h = this;
  2103    _in_cset_fast_test_length = max_regions();
  2104    _in_cset_fast_test_base = NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
  2106    // We're biasing _in_cset_fast_test to avoid subtracting the
  2107    // beginning of the heap every time we want to index; basically
  2108    // it's the same with what we do with the card table.
  2109    _in_cset_fast_test = _in_cset_fast_test_base -
  2110                 ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
  2112    // Clear the _cset_fast_test bitmap in anticipation of adding
  2113    // regions to the incremental collection set for the first
  2114    // evacuation pause.
  2115    clear_cset_fast_test();
  2117   // Create the ConcurrentMark data structure and thread.
  2118   // (Must do this late, so that "max_regions" is defined.)
  2119   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
  2120   _cmThread = _cm->cmThread();
  2122   // Initialize the from_card cache structure of HeapRegionRemSet.
  2123   HeapRegionRemSet::init_heap(max_regions());
  2125   // Now expand into the initial heap size.
  2126   if (!expand(init_byte_size)) {
  2127     vm_exit_during_initialization("Failed to allocate initial heap.");
  2128     return JNI_ENOMEM;
  2131   // Perform any initialization actions delegated to the policy.
  2132   g1_policy()->init();
  2134   g1_policy()->note_start_of_mark_thread();
  2136   _refine_cte_cl =
  2137     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
  2138                                     g1_rem_set(),
  2139                                     concurrent_g1_refine());
  2140   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
  2142   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
  2143                                                SATB_Q_FL_lock,
  2144                                                G1SATBProcessCompletedThreshold,
  2145                                                Shared_SATB_Q_lock);
  2147   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2148                                                 DirtyCardQ_FL_lock,
  2149                                                 concurrent_g1_refine()->yellow_zone(),
  2150                                                 concurrent_g1_refine()->red_zone(),
  2151                                                 Shared_DirtyCardQ_lock);
  2153   if (G1DeferredRSUpdate) {
  2154     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
  2155                                       DirtyCardQ_FL_lock,
  2156                                       -1, // never trigger processing
  2157                                       -1, // no limit on length
  2158                                       Shared_DirtyCardQ_lock,
  2159                                       &JavaThread::dirty_card_queue_set());
  2162   // Initialize the card queue set used to hold cards containing
  2163   // references into the collection set.
  2164   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
  2165                                              DirtyCardQ_FL_lock,
  2166                                              -1, // never trigger processing
  2167                                              -1, // no limit on length
  2168                                              Shared_DirtyCardQ_lock,
  2169                                              &JavaThread::dirty_card_queue_set());
  2171   // In case we're keeping closure specialization stats, initialize those
  2172   // counts and that mechanism.
  2173   SpecializationStats::clear();
  2175   _gc_alloc_region_list = NULL;
  2177   // Do later initialization work for concurrent refinement.
  2178   _cg1r->init();
  2180   return JNI_OK;
  2183 void G1CollectedHeap::ref_processing_init() {
  2184   // Reference processing in G1 currently works as follows:
  2185   //
  2186   // * There is only one reference processor instance that
  2187   //   'spans' the entire heap. It is created by the code
  2188   //   below.
  2189   // * Reference discovery is not enabled during an incremental
  2190   //   pause (see 6484982).
  2191   // * Discoverered refs are not enqueued nor are they processed
  2192   //   during an incremental pause (see 6484982).
  2193   // * Reference discovery is enabled at initial marking.
  2194   // * Reference discovery is disabled and the discovered
  2195   //   references processed etc during remarking.
  2196   // * Reference discovery is MT (see below).
  2197   // * Reference discovery requires a barrier (see below).
  2198   // * Reference processing is currently not MT (see 6608385).
  2199   // * A full GC enables (non-MT) reference discovery and
  2200   //   processes any discovered references.
  2202   SharedHeap::ref_processing_init();
  2203   MemRegion mr = reserved_region();
  2204   _ref_processor = ReferenceProcessor::create_ref_processor(
  2205                                          mr,    // span
  2206                                          false, // Reference discovery is not atomic
  2207                                          true,  // mt_discovery
  2208                                          &_is_alive_closure, // is alive closure
  2209                                                              // for efficiency
  2210                                          ParallelGCThreads,
  2211                                          ParallelRefProcEnabled,
  2212                                          true); // Setting next fields of discovered
  2213                                                 // lists requires a barrier.
  2216 size_t G1CollectedHeap::capacity() const {
  2217   return _g1_committed.byte_size();
  2220 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
  2221                                                  DirtyCardQueue* into_cset_dcq,
  2222                                                  bool concurrent,
  2223                                                  int worker_i) {
  2224   // Clean cards in the hot card cache
  2225   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
  2227   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  2228   int n_completed_buffers = 0;
  2229   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
  2230     n_completed_buffers++;
  2232   g1_policy()->record_update_rs_processed_buffers(worker_i,
  2233                                                   (double) n_completed_buffers);
  2234   dcqs.clear_n_completed_buffers();
  2235   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
  2239 // Computes the sum of the storage used by the various regions.
  2241 size_t G1CollectedHeap::used() const {
  2242   assert(Heap_lock->owner() != NULL,
  2243          "Should be owned on this thread's behalf.");
  2244   size_t result = _summary_bytes_used;
  2245   // Read only once in case it is set to NULL concurrently
  2246   HeapRegion* hr = _cur_alloc_region;
  2247   if (hr != NULL)
  2248     result += hr->used();
  2249   return result;
  2252 size_t G1CollectedHeap::used_unlocked() const {
  2253   size_t result = _summary_bytes_used;
  2254   return result;
  2257 class SumUsedClosure: public HeapRegionClosure {
  2258   size_t _used;
  2259 public:
  2260   SumUsedClosure() : _used(0) {}
  2261   bool doHeapRegion(HeapRegion* r) {
  2262     if (!r->continuesHumongous()) {
  2263       _used += r->used();
  2265     return false;
  2267   size_t result() { return _used; }
  2268 };
  2270 size_t G1CollectedHeap::recalculate_used() const {
  2271   SumUsedClosure blk;
  2272   _hrs->iterate(&blk);
  2273   return blk.result();
  2276 #ifndef PRODUCT
  2277 class SumUsedRegionsClosure: public HeapRegionClosure {
  2278   size_t _num;
  2279 public:
  2280   SumUsedRegionsClosure() : _num(0) {}
  2281   bool doHeapRegion(HeapRegion* r) {
  2282     if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
  2283       _num += 1;
  2285     return false;
  2287   size_t result() { return _num; }
  2288 };
  2290 size_t G1CollectedHeap::recalculate_used_regions() const {
  2291   SumUsedRegionsClosure blk;
  2292   _hrs->iterate(&blk);
  2293   return blk.result();
  2295 #endif // PRODUCT
  2297 size_t G1CollectedHeap::unsafe_max_alloc() {
  2298   if (free_regions() > 0) return HeapRegion::GrainBytes;
  2299   // otherwise, is there space in the current allocation region?
  2301   // We need to store the current allocation region in a local variable
  2302   // here. The problem is that this method doesn't take any locks and
  2303   // there may be other threads which overwrite the current allocation
  2304   // region field. attempt_allocation(), for example, sets it to NULL
  2305   // and this can happen *after* the NULL check here but before the call
  2306   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
  2307   // to be a problem in the optimized build, since the two loads of the
  2308   // current allocation region field are optimized away.
  2309   HeapRegion* car = _cur_alloc_region;
  2311   // FIXME: should iterate over all regions?
  2312   if (car == NULL) {
  2313     return 0;
  2315   return car->free();
  2318 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  2319   return
  2320     ((cause == GCCause::_gc_locker           && GCLockerInvokesConcurrent) ||
  2321      (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
  2324 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
  2325   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  2327   // We assume that if concurrent == true, then the caller is a
  2328   // concurrent thread that was joined the Suspendible Thread
  2329   // Set. If there's ever a cheap way to check this, we should add an
  2330   // assert here.
  2332   // We have already incremented _total_full_collections at the start
  2333   // of the GC, so total_full_collections() represents how many full
  2334   // collections have been started.
  2335   unsigned int full_collections_started = total_full_collections();
  2337   // Given that this method is called at the end of a Full GC or of a
  2338   // concurrent cycle, and those can be nested (i.e., a Full GC can
  2339   // interrupt a concurrent cycle), the number of full collections
  2340   // completed should be either one (in the case where there was no
  2341   // nesting) or two (when a Full GC interrupted a concurrent cycle)
  2342   // behind the number of full collections started.
  2344   // This is the case for the inner caller, i.e. a Full GC.
  2345   assert(concurrent ||
  2346          (full_collections_started == _full_collections_completed + 1) ||
  2347          (full_collections_started == _full_collections_completed + 2),
  2348          err_msg("for inner caller (Full GC): full_collections_started = %u "
  2349                  "is inconsistent with _full_collections_completed = %u",
  2350                  full_collections_started, _full_collections_completed));
  2352   // This is the case for the outer caller, i.e. the concurrent cycle.
  2353   assert(!concurrent ||
  2354          (full_collections_started == _full_collections_completed + 1),
  2355          err_msg("for outer caller (concurrent cycle): "
  2356                  "full_collections_started = %u "
  2357                  "is inconsistent with _full_collections_completed = %u",
  2358                  full_collections_started, _full_collections_completed));
  2360   _full_collections_completed += 1;
  2362   // We need to clear the "in_progress" flag in the CM thread before
  2363   // we wake up any waiters (especially when ExplicitInvokesConcurrent
  2364   // is set) so that if a waiter requests another System.gc() it doesn't
  2365   // incorrectly see that a marking cyle is still in progress.
  2366   if (concurrent) {
  2367     _cmThread->clear_in_progress();
  2370   // This notify_all() will ensure that a thread that called
  2371   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
  2372   // and it's waiting for a full GC to finish will be woken up. It is
  2373   // waiting in VM_G1IncCollectionPause::doit_epilogue().
  2374   FullGCCount_lock->notify_all();
  2377 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
  2378   assert_at_safepoint(true /* should_be_vm_thread */);
  2379   GCCauseSetter gcs(this, cause);
  2380   switch (cause) {
  2381     case GCCause::_heap_inspection:
  2382     case GCCause::_heap_dump: {
  2383       HandleMark hm;
  2384       do_full_collection(false);         // don't clear all soft refs
  2385       break;
  2387     default: // XXX FIX ME
  2388       ShouldNotReachHere(); // Unexpected use of this function
  2392 void G1CollectedHeap::collect(GCCause::Cause cause) {
  2393   // The caller doesn't have the Heap_lock
  2394   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  2396   unsigned int gc_count_before;
  2397   unsigned int full_gc_count_before;
  2399     MutexLocker ml(Heap_lock);
  2401     // Read the GC count while holding the Heap_lock
  2402     gc_count_before = SharedHeap::heap()->total_collections();
  2403     full_gc_count_before = SharedHeap::heap()->total_full_collections();
  2406   if (should_do_concurrent_full_gc(cause)) {
  2407     // Schedule an initial-mark evacuation pause that will start a
  2408     // concurrent cycle. We're setting word_size to 0 which means that
  2409     // we are not requesting a post-GC allocation.
  2410     VM_G1IncCollectionPause op(gc_count_before,
  2411                                0,     /* word_size */
  2412                                true,  /* should_initiate_conc_mark */
  2413                                g1_policy()->max_pause_time_ms(),
  2414                                cause);
  2415     VMThread::execute(&op);
  2416   } else {
  2417     if (cause == GCCause::_gc_locker
  2418         DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
  2420       // Schedule a standard evacuation pause. We're setting word_size
  2421       // to 0 which means that we are not requesting a post-GC allocation.
  2422       VM_G1IncCollectionPause op(gc_count_before,
  2423                                  0,     /* word_size */
  2424                                  false, /* should_initiate_conc_mark */
  2425                                  g1_policy()->max_pause_time_ms(),
  2426                                  cause);
  2427       VMThread::execute(&op);
  2428     } else {
  2429       // Schedule a Full GC.
  2430       VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
  2431       VMThread::execute(&op);
  2436 bool G1CollectedHeap::is_in(const void* p) const {
  2437   if (_g1_committed.contains(p)) {
  2438     HeapRegion* hr = _hrs->addr_to_region(p);
  2439     return hr->is_in(p);
  2440   } else {
  2441     return _perm_gen->as_gen()->is_in(p);
  2445 // Iteration functions.
  2447 // Iterates an OopClosure over all ref-containing fields of objects
  2448 // within a HeapRegion.
  2450 class IterateOopClosureRegionClosure: public HeapRegionClosure {
  2451   MemRegion _mr;
  2452   OopClosure* _cl;
  2453 public:
  2454   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
  2455     : _mr(mr), _cl(cl) {}
  2456   bool doHeapRegion(HeapRegion* r) {
  2457     if (! r->continuesHumongous()) {
  2458       r->oop_iterate(_cl);
  2460     return false;
  2462 };
  2464 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
  2465   IterateOopClosureRegionClosure blk(_g1_committed, cl);
  2466   _hrs->iterate(&blk);
  2467   if (do_perm) {
  2468     perm_gen()->oop_iterate(cl);
  2472 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
  2473   IterateOopClosureRegionClosure blk(mr, cl);
  2474   _hrs->iterate(&blk);
  2475   if (do_perm) {
  2476     perm_gen()->oop_iterate(cl);
  2480 // Iterates an ObjectClosure over all objects within a HeapRegion.
  2482 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
  2483   ObjectClosure* _cl;
  2484 public:
  2485   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
  2486   bool doHeapRegion(HeapRegion* r) {
  2487     if (! r->continuesHumongous()) {
  2488       r->object_iterate(_cl);
  2490     return false;
  2492 };
  2494 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
  2495   IterateObjectClosureRegionClosure blk(cl);
  2496   _hrs->iterate(&blk);
  2497   if (do_perm) {
  2498     perm_gen()->object_iterate(cl);
  2502 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
  2503   // FIXME: is this right?
  2504   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
  2507 // Calls a SpaceClosure on a HeapRegion.
  2509 class SpaceClosureRegionClosure: public HeapRegionClosure {
  2510   SpaceClosure* _cl;
  2511 public:
  2512   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
  2513   bool doHeapRegion(HeapRegion* r) {
  2514     _cl->do_space(r);
  2515     return false;
  2517 };
  2519 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
  2520   SpaceClosureRegionClosure blk(cl);
  2521   _hrs->iterate(&blk);
  2524 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
  2525   _hrs->iterate(cl);
  2528 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
  2529                                                HeapRegionClosure* cl) {
  2530   _hrs->iterate_from(r, cl);
  2533 void
  2534 G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
  2535   _hrs->iterate_from(idx, cl);
  2538 HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }
  2540 void
  2541 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
  2542                                                  int worker,
  2543                                                  jint claim_value) {
  2544   const size_t regions = n_regions();
  2545   const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
  2546   // try to spread out the starting points of the workers
  2547   const size_t start_index = regions / worker_num * (size_t) worker;
  2549   // each worker will actually look at all regions
  2550   for (size_t count = 0; count < regions; ++count) {
  2551     const size_t index = (start_index + count) % regions;
  2552     assert(0 <= index && index < regions, "sanity");
  2553     HeapRegion* r = region_at(index);
  2554     // we'll ignore "continues humongous" regions (we'll process them
  2555     // when we come across their corresponding "start humongous"
  2556     // region) and regions already claimed
  2557     if (r->claim_value() == claim_value || r->continuesHumongous()) {
  2558       continue;
  2560     // OK, try to claim it
  2561     if (r->claimHeapRegion(claim_value)) {
  2562       // success!
  2563       assert(!r->continuesHumongous(), "sanity");
  2564       if (r->startsHumongous()) {
  2565         // If the region is "starts humongous" we'll iterate over its
  2566         // "continues humongous" first; in fact we'll do them
  2567         // first. The order is important. In on case, calling the
  2568         // closure on the "starts humongous" region might de-allocate
  2569         // and clear all its "continues humongous" regions and, as a
  2570         // result, we might end up processing them twice. So, we'll do
  2571         // them first (notice: most closures will ignore them anyway) and
  2572         // then we'll do the "starts humongous" region.
  2573         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
  2574           HeapRegion* chr = region_at(ch_index);
  2576           // if the region has already been claimed or it's not
  2577           // "continues humongous" we're done
  2578           if (chr->claim_value() == claim_value ||
  2579               !chr->continuesHumongous()) {
  2580             break;
  2583           // Noone should have claimed it directly. We can given
  2584           // that we claimed its "starts humongous" region.
  2585           assert(chr->claim_value() != claim_value, "sanity");
  2586           assert(chr->humongous_start_region() == r, "sanity");
  2588           if (chr->claimHeapRegion(claim_value)) {
  2589             // we should always be able to claim it; noone else should
  2590             // be trying to claim this region
  2592             bool res2 = cl->doHeapRegion(chr);
  2593             assert(!res2, "Should not abort");
  2595             // Right now, this holds (i.e., no closure that actually
  2596             // does something with "continues humongous" regions
  2597             // clears them). We might have to weaken it in the future,
  2598             // but let's leave these two asserts here for extra safety.
  2599             assert(chr->continuesHumongous(), "should still be the case");
  2600             assert(chr->humongous_start_region() == r, "sanity");
  2601           } else {
  2602             guarantee(false, "we should not reach here");
  2607       assert(!r->continuesHumongous(), "sanity");
  2608       bool res = cl->doHeapRegion(r);
  2609       assert(!res, "Should not abort");
  2614 class ResetClaimValuesClosure: public HeapRegionClosure {
  2615 public:
  2616   bool doHeapRegion(HeapRegion* r) {
  2617     r->set_claim_value(HeapRegion::InitialClaimValue);
  2618     return false;
  2620 };
  2622 void
  2623 G1CollectedHeap::reset_heap_region_claim_values() {
  2624   ResetClaimValuesClosure blk;
  2625   heap_region_iterate(&blk);
  2628 #ifdef ASSERT
  2629 // This checks whether all regions in the heap have the correct claim
  2630 // value. I also piggy-backed on this a check to ensure that the
  2631 // humongous_start_region() information on "continues humongous"
  2632 // regions is correct.
  2634 class CheckClaimValuesClosure : public HeapRegionClosure {
  2635 private:
  2636   jint _claim_value;
  2637   size_t _failures;
  2638   HeapRegion* _sh_region;
  2639 public:
  2640   CheckClaimValuesClosure(jint claim_value) :
  2641     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
  2642   bool doHeapRegion(HeapRegion* r) {
  2643     if (r->claim_value() != _claim_value) {
  2644       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  2645                              "claim value = %d, should be %d",
  2646                              r->bottom(), r->end(), r->claim_value(),
  2647                              _claim_value);
  2648       ++_failures;
  2650     if (!r->isHumongous()) {
  2651       _sh_region = NULL;
  2652     } else if (r->startsHumongous()) {
  2653       _sh_region = r;
  2654     } else if (r->continuesHumongous()) {
  2655       if (r->humongous_start_region() != _sh_region) {
  2656         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
  2657                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
  2658                                r->bottom(), r->end(),
  2659                                r->humongous_start_region(),
  2660                                _sh_region);
  2661         ++_failures;
  2664     return false;
  2666   size_t failures() {
  2667     return _failures;
  2669 };
  2671 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
  2672   CheckClaimValuesClosure cl(claim_value);
  2673   heap_region_iterate(&cl);
  2674   return cl.failures() == 0;
  2676 #endif // ASSERT
  2678 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
  2679   HeapRegion* r = g1_policy()->collection_set();
  2680   while (r != NULL) {
  2681     HeapRegion* next = r->next_in_collection_set();
  2682     if (cl->doHeapRegion(r)) {
  2683       cl->incomplete();
  2684       return;
  2686     r = next;
  2690 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
  2691                                                   HeapRegionClosure *cl) {
  2692   if (r == NULL) {
  2693     // The CSet is empty so there's nothing to do.
  2694     return;
  2697   assert(r->in_collection_set(),
  2698          "Start region must be a member of the collection set.");
  2699   HeapRegion* cur = r;
  2700   while (cur != NULL) {
  2701     HeapRegion* next = cur->next_in_collection_set();
  2702     if (cl->doHeapRegion(cur) && false) {
  2703       cl->incomplete();
  2704       return;
  2706     cur = next;
  2708   cur = g1_policy()->collection_set();
  2709   while (cur != r) {
  2710     HeapRegion* next = cur->next_in_collection_set();
  2711     if (cl->doHeapRegion(cur) && false) {
  2712       cl->incomplete();
  2713       return;
  2715     cur = next;
  2719 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
  2720   return _hrs->length() > 0 ? _hrs->at(0) : NULL;
  2724 Space* G1CollectedHeap::space_containing(const void* addr) const {
  2725   Space* res = heap_region_containing(addr);
  2726   if (res == NULL)
  2727     res = perm_gen()->space_containing(addr);
  2728   return res;
  2731 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
  2732   Space* sp = space_containing(addr);
  2733   if (sp != NULL) {
  2734     return sp->block_start(addr);
  2736   return NULL;
  2739 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
  2740   Space* sp = space_containing(addr);
  2741   assert(sp != NULL, "block_size of address outside of heap");
  2742   return sp->block_size(addr);
  2745 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
  2746   Space* sp = space_containing(addr);
  2747   return sp->block_is_obj(addr);
  2750 bool G1CollectedHeap::supports_tlab_allocation() const {
  2751   return true;
  2754 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
  2755   return HeapRegion::GrainBytes;
  2758 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
  2759   // Return the remaining space in the cur alloc region, but not less than
  2760   // the min TLAB size.
  2762   // Also, this value can be at most the humongous object threshold,
  2763   // since we can't allow tlabs to grow big enough to accomodate
  2764   // humongous objects.
  2766   // We need to store the cur alloc region locally, since it might change
  2767   // between when we test for NULL and when we use it later.
  2768   ContiguousSpace* cur_alloc_space = _cur_alloc_region;
  2769   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
  2771   if (cur_alloc_space == NULL) {
  2772     return max_tlab_size;
  2773   } else {
  2774     return MIN2(MAX2(cur_alloc_space->free(), (size_t)MinTLABSize),
  2775                 max_tlab_size);
  2779 size_t G1CollectedHeap::large_typearray_limit() {
  2780   // FIXME
  2781   return HeapRegion::GrainBytes/HeapWordSize;
  2784 size_t G1CollectedHeap::max_capacity() const {
  2785   return _g1_reserved.byte_size();
  2788 jlong G1CollectedHeap::millis_since_last_gc() {
  2789   // assert(false, "NYI");
  2790   return 0;
  2793 void G1CollectedHeap::prepare_for_verify() {
  2794   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2795     ensure_parsability(false);
  2797   g1_rem_set()->prepare_for_verify();
  2800 class VerifyLivenessOopClosure: public OopClosure {
  2801   G1CollectedHeap* g1h;
  2802 public:
  2803   VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
  2804     g1h = _g1h;
  2806   void do_oop(narrowOop *p) { do_oop_work(p); }
  2807   void do_oop(      oop *p) { do_oop_work(p); }
  2809   template <class T> void do_oop_work(T *p) {
  2810     oop obj = oopDesc::load_decode_heap_oop(p);
  2811     guarantee(obj == NULL || !g1h->is_obj_dead(obj),
  2812               "Dead object referenced by a not dead object");
  2814 };
  2816 class VerifyObjsInRegionClosure: public ObjectClosure {
  2817 private:
  2818   G1CollectedHeap* _g1h;
  2819   size_t _live_bytes;
  2820   HeapRegion *_hr;
  2821   bool _use_prev_marking;
  2822 public:
  2823   // use_prev_marking == true  -> use "prev" marking information,
  2824   // use_prev_marking == false -> use "next" marking information
  2825   VerifyObjsInRegionClosure(HeapRegion *hr, bool use_prev_marking)
  2826     : _live_bytes(0), _hr(hr), _use_prev_marking(use_prev_marking) {
  2827     _g1h = G1CollectedHeap::heap();
  2829   void do_object(oop o) {
  2830     VerifyLivenessOopClosure isLive(_g1h);
  2831     assert(o != NULL, "Huh?");
  2832     if (!_g1h->is_obj_dead_cond(o, _use_prev_marking)) {
  2833       o->oop_iterate(&isLive);
  2834       if (!_hr->obj_allocated_since_prev_marking(o)) {
  2835         size_t obj_size = o->size();    // Make sure we don't overflow
  2836         _live_bytes += (obj_size * HeapWordSize);
  2840   size_t live_bytes() { return _live_bytes; }
  2841 };
  2843 class PrintObjsInRegionClosure : public ObjectClosure {
  2844   HeapRegion *_hr;
  2845   G1CollectedHeap *_g1;
  2846 public:
  2847   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
  2848     _g1 = G1CollectedHeap::heap();
  2849   };
  2851   void do_object(oop o) {
  2852     if (o != NULL) {
  2853       HeapWord *start = (HeapWord *) o;
  2854       size_t word_sz = o->size();
  2855       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
  2856                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
  2857                           (void*) o, word_sz,
  2858                           _g1->isMarkedPrev(o),
  2859                           _g1->isMarkedNext(o),
  2860                           _hr->obj_allocated_since_prev_marking(o));
  2861       HeapWord *end = start + word_sz;
  2862       HeapWord *cur;
  2863       int *val;
  2864       for (cur = start; cur < end; cur++) {
  2865         val = (int *) cur;
  2866         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
  2870 };
  2872 class VerifyRegionClosure: public HeapRegionClosure {
  2873 private:
  2874   bool _allow_dirty;
  2875   bool _par;
  2876   bool _use_prev_marking;
  2877   bool _failures;
  2878 public:
  2879   // use_prev_marking == true  -> use "prev" marking information,
  2880   // use_prev_marking == false -> use "next" marking information
  2881   VerifyRegionClosure(bool allow_dirty, bool par, bool use_prev_marking)
  2882     : _allow_dirty(allow_dirty),
  2883       _par(par),
  2884       _use_prev_marking(use_prev_marking),
  2885       _failures(false) {}
  2887   bool failures() {
  2888     return _failures;
  2891   bool doHeapRegion(HeapRegion* r) {
  2892     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
  2893               "Should be unclaimed at verify points.");
  2894     if (!r->continuesHumongous()) {
  2895       bool failures = false;
  2896       r->verify(_allow_dirty, _use_prev_marking, &failures);
  2897       if (failures) {
  2898         _failures = true;
  2899       } else {
  2900         VerifyObjsInRegionClosure not_dead_yet_cl(r, _use_prev_marking);
  2901         r->object_iterate(&not_dead_yet_cl);
  2902         if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
  2903           gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
  2904                                  "max_live_bytes "SIZE_FORMAT" "
  2905                                  "< calculated "SIZE_FORMAT,
  2906                                  r->bottom(), r->end(),
  2907                                  r->max_live_bytes(),
  2908                                  not_dead_yet_cl.live_bytes());
  2909           _failures = true;
  2913     return false; // stop the region iteration if we hit a failure
  2915 };
  2917 class VerifyRootsClosure: public OopsInGenClosure {
  2918 private:
  2919   G1CollectedHeap* _g1h;
  2920   bool             _use_prev_marking;
  2921   bool             _failures;
  2922 public:
  2923   // use_prev_marking == true  -> use "prev" marking information,
  2924   // use_prev_marking == false -> use "next" marking information
  2925   VerifyRootsClosure(bool use_prev_marking) :
  2926     _g1h(G1CollectedHeap::heap()),
  2927     _use_prev_marking(use_prev_marking),
  2928     _failures(false) { }
  2930   bool failures() { return _failures; }
  2932   template <class T> void do_oop_nv(T* p) {
  2933     T heap_oop = oopDesc::load_heap_oop(p);
  2934     if (!oopDesc::is_null(heap_oop)) {
  2935       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
  2936       if (_g1h->is_obj_dead_cond(obj, _use_prev_marking)) {
  2937         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
  2938                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
  2939         obj->print_on(gclog_or_tty);
  2940         _failures = true;
  2945   void do_oop(oop* p)       { do_oop_nv(p); }
  2946   void do_oop(narrowOop* p) { do_oop_nv(p); }
  2947 };
  2949 // This is the task used for parallel heap verification.
  2951 class G1ParVerifyTask: public AbstractGangTask {
  2952 private:
  2953   G1CollectedHeap* _g1h;
  2954   bool _allow_dirty;
  2955   bool _use_prev_marking;
  2956   bool _failures;
  2958 public:
  2959   // use_prev_marking == true  -> use "prev" marking information,
  2960   // use_prev_marking == false -> use "next" marking information
  2961   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty,
  2962                   bool use_prev_marking) :
  2963     AbstractGangTask("Parallel verify task"),
  2964     _g1h(g1h),
  2965     _allow_dirty(allow_dirty),
  2966     _use_prev_marking(use_prev_marking),
  2967     _failures(false) { }
  2969   bool failures() {
  2970     return _failures;
  2973   void work(int worker_i) {
  2974     HandleMark hm;
  2975     VerifyRegionClosure blk(_allow_dirty, true, _use_prev_marking);
  2976     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
  2977                                           HeapRegion::ParVerifyClaimValue);
  2978     if (blk.failures()) {
  2979       _failures = true;
  2982 };
  2984 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
  2985   verify(allow_dirty, silent, /* use_prev_marking */ true);
  2988 void G1CollectedHeap::verify(bool allow_dirty,
  2989                              bool silent,
  2990                              bool use_prev_marking) {
  2991   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
  2992     if (!silent) { gclog_or_tty->print("roots "); }
  2993     VerifyRootsClosure rootsCl(use_prev_marking);
  2994     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
  2995     process_strong_roots(true,  // activate StrongRootsScope
  2996                          false,
  2997                          SharedHeap::SO_AllClasses,
  2998                          &rootsCl,
  2999                          &blobsCl,
  3000                          &rootsCl);
  3001     bool failures = rootsCl.failures();
  3002     rem_set()->invalidate(perm_gen()->used_region(), false);
  3003     if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
  3004     verify_region_sets();
  3005     if (!silent) { gclog_or_tty->print("HeapRegions "); }
  3006     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
  3007       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3008              "sanity check");
  3010       G1ParVerifyTask task(this, allow_dirty, use_prev_marking);
  3011       int n_workers = workers()->total_workers();
  3012       set_par_threads(n_workers);
  3013       workers()->run_task(&task);
  3014       set_par_threads(0);
  3015       if (task.failures()) {
  3016         failures = true;
  3019       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
  3020              "sanity check");
  3022       reset_heap_region_claim_values();
  3024       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
  3025              "sanity check");
  3026     } else {
  3027       VerifyRegionClosure blk(allow_dirty, false, use_prev_marking);
  3028       _hrs->iterate(&blk);
  3029       if (blk.failures()) {
  3030         failures = true;
  3033     if (!silent) gclog_or_tty->print("RemSet ");
  3034     rem_set()->verify();
  3036     if (failures) {
  3037       gclog_or_tty->print_cr("Heap:");
  3038       print_on(gclog_or_tty, true /* extended */);
  3039       gclog_or_tty->print_cr("");
  3040 #ifndef PRODUCT
  3041       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
  3042         concurrent_mark()->print_reachable("at-verification-failure",
  3043                                            use_prev_marking, false /* all */);
  3045 #endif
  3046       gclog_or_tty->flush();
  3048     guarantee(!failures, "there should not have been any failures");
  3049   } else {
  3050     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
  3054 class PrintRegionClosure: public HeapRegionClosure {
  3055   outputStream* _st;
  3056 public:
  3057   PrintRegionClosure(outputStream* st) : _st(st) {}
  3058   bool doHeapRegion(HeapRegion* r) {
  3059     r->print_on(_st);
  3060     return false;
  3062 };
  3064 void G1CollectedHeap::print() const { print_on(tty); }
  3066 void G1CollectedHeap::print_on(outputStream* st) const {
  3067   print_on(st, PrintHeapAtGCExtended);
  3070 void G1CollectedHeap::print_on(outputStream* st, bool extended) const {
  3071   st->print(" %-20s", "garbage-first heap");
  3072   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
  3073             capacity()/K, used_unlocked()/K);
  3074   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
  3075             _g1_storage.low_boundary(),
  3076             _g1_storage.high(),
  3077             _g1_storage.high_boundary());
  3078   st->cr();
  3079   st->print("  region size " SIZE_FORMAT "K, ",
  3080             HeapRegion::GrainBytes/K);
  3081   size_t young_regions = _young_list->length();
  3082   st->print(SIZE_FORMAT " young (" SIZE_FORMAT "K), ",
  3083             young_regions, young_regions * HeapRegion::GrainBytes / K);
  3084   size_t survivor_regions = g1_policy()->recorded_survivor_regions();
  3085   st->print(SIZE_FORMAT " survivors (" SIZE_FORMAT "K)",
  3086             survivor_regions, survivor_regions * HeapRegion::GrainBytes / K);
  3087   st->cr();
  3088   perm()->as_gen()->print_on(st);
  3089   if (extended) {
  3090     st->cr();
  3091     print_on_extended(st);
  3095 void G1CollectedHeap::print_on_extended(outputStream* st) const {
  3096   PrintRegionClosure blk(st);
  3097   _hrs->iterate(&blk);
  3100 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
  3101   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3102     workers()->print_worker_threads_on(st);
  3104   _cmThread->print_on(st);
  3105   st->cr();
  3106   _cm->print_worker_threads_on(st);
  3107   _cg1r->print_worker_threads_on(st);
  3108   st->cr();
  3111 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  3112   if (G1CollectedHeap::use_parallel_gc_threads()) {
  3113     workers()->threads_do(tc);
  3115   tc->do_thread(_cmThread);
  3116   _cg1r->threads_do(tc);
  3119 void G1CollectedHeap::print_tracing_info() const {
  3120   // We'll overload this to mean "trace GC pause statistics."
  3121   if (TraceGen0Time || TraceGen1Time) {
  3122     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
  3123     // to that.
  3124     g1_policy()->print_tracing_info();
  3126   if (G1SummarizeRSetStats) {
  3127     g1_rem_set()->print_summary_info();
  3129   if (G1SummarizeConcMark) {
  3130     concurrent_mark()->print_summary_info();
  3132   g1_policy()->print_yg_surv_rate_info();
  3133   SpecializationStats::print();
  3136 int G1CollectedHeap::addr_to_arena_id(void* addr) const {
  3137   HeapRegion* hr = heap_region_containing(addr);
  3138   if (hr == NULL) {
  3139     return 0;
  3140   } else {
  3141     return 1;
  3145 G1CollectedHeap* G1CollectedHeap::heap() {
  3146   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
  3147          "not a garbage-first heap");
  3148   return _g1h;
  3151 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
  3152   // always_do_update_barrier = false;
  3153   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
  3154   // Call allocation profiler
  3155   AllocationProfiler::iterate_since_last_gc();
  3156   // Fill TLAB's and such
  3157   ensure_parsability(true);
  3160 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
  3161   // FIXME: what is this about?
  3162   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
  3163   // is set.
  3164   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
  3165                         "derived pointer present"));
  3166   // always_do_update_barrier = true;
  3169 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
  3170                                                unsigned int gc_count_before,
  3171                                                bool* succeeded) {
  3172   assert_heap_not_locked_and_not_at_safepoint();
  3173   g1_policy()->record_stop_world_start();
  3174   VM_G1IncCollectionPause op(gc_count_before,
  3175                              word_size,
  3176                              false, /* should_initiate_conc_mark */
  3177                              g1_policy()->max_pause_time_ms(),
  3178                              GCCause::_g1_inc_collection_pause);
  3179   VMThread::execute(&op);
  3181   HeapWord* result = op.result();
  3182   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
  3183   assert(result == NULL || ret_succeeded,
  3184          "the result should be NULL if the VM did not succeed");
  3185   *succeeded = ret_succeeded;
  3187   assert_heap_not_locked();
  3188   return result;
  3191 void
  3192 G1CollectedHeap::doConcurrentMark() {
  3193   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
  3194   if (!_cmThread->in_progress()) {
  3195     _cmThread->set_started();
  3196     CGC_lock->notify();
  3200 class VerifyMarkedObjsClosure: public ObjectClosure {
  3201     G1CollectedHeap* _g1h;
  3202     public:
  3203     VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
  3204     void do_object(oop obj) {
  3205       assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
  3206              "markandsweep mark should agree with concurrent deadness");
  3208 };
  3210 void
  3211 G1CollectedHeap::checkConcurrentMark() {
  3212     VerifyMarkedObjsClosure verifycl(this);
  3213     //    MutexLockerEx x(getMarkBitMapLock(),
  3214     //              Mutex::_no_safepoint_check_flag);
  3215     object_iterate(&verifycl, false);
  3218 void G1CollectedHeap::do_sync_mark() {
  3219   _cm->checkpointRootsInitial();
  3220   _cm->markFromRoots();
  3221   _cm->checkpointRootsFinal(false);
  3224 // <NEW PREDICTION>
  3226 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
  3227                                                        bool young) {
  3228   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
  3231 void G1CollectedHeap::check_if_region_is_too_expensive(double
  3232                                                            predicted_time_ms) {
  3233   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
  3236 size_t G1CollectedHeap::pending_card_num() {
  3237   size_t extra_cards = 0;
  3238   JavaThread *curr = Threads::first();
  3239   while (curr != NULL) {
  3240     DirtyCardQueue& dcq = curr->dirty_card_queue();
  3241     extra_cards += dcq.size();
  3242     curr = curr->next();
  3244   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3245   size_t buffer_size = dcqs.buffer_size();
  3246   size_t buffer_num = dcqs.completed_buffers_num();
  3247   return buffer_size * buffer_num + extra_cards;
  3250 size_t G1CollectedHeap::max_pending_card_num() {
  3251   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  3252   size_t buffer_size = dcqs.buffer_size();
  3253   size_t buffer_num  = dcqs.completed_buffers_num();
  3254   int thread_num  = Threads::number_of_threads();
  3255   return (buffer_num + thread_num) * buffer_size;
  3258 size_t G1CollectedHeap::cards_scanned() {
  3259   return g1_rem_set()->cardsScanned();
  3262 void
  3263 G1CollectedHeap::setup_surviving_young_words() {
  3264   guarantee( _surviving_young_words == NULL, "pre-condition" );
  3265   size_t array_length = g1_policy()->young_cset_length();
  3266   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
  3267   if (_surviving_young_words == NULL) {
  3268     vm_exit_out_of_memory(sizeof(size_t) * array_length,
  3269                           "Not enough space for young surv words summary.");
  3271   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
  3272 #ifdef ASSERT
  3273   for (size_t i = 0;  i < array_length; ++i) {
  3274     assert( _surviving_young_words[i] == 0, "memset above" );
  3276 #endif // !ASSERT
  3279 void
  3280 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
  3281   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3282   size_t array_length = g1_policy()->young_cset_length();
  3283   for (size_t i = 0; i < array_length; ++i)
  3284     _surviving_young_words[i] += surv_young_words[i];
  3287 void
  3288 G1CollectedHeap::cleanup_surviving_young_words() {
  3289   guarantee( _surviving_young_words != NULL, "pre-condition" );
  3290   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
  3291   _surviving_young_words = NULL;
  3294 // </NEW PREDICTION>
  3296 struct PrepareForRSScanningClosure : public HeapRegionClosure {
  3297   bool doHeapRegion(HeapRegion *r) {
  3298     r->rem_set()->set_iter_claimed(0);
  3299     return false;
  3301 };
  3303 #if TASKQUEUE_STATS
  3304 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
  3305   st->print_raw_cr("GC Task Stats");
  3306   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
  3307   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
  3310 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
  3311   print_taskqueue_stats_hdr(st);
  3313   TaskQueueStats totals;
  3314   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3315   for (int i = 0; i < n; ++i) {
  3316     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
  3317     totals += task_queue(i)->stats;
  3319   st->print_raw("tot "); totals.print(st); st->cr();
  3321   DEBUG_ONLY(totals.verify());
  3324 void G1CollectedHeap::reset_taskqueue_stats() {
  3325   const int n = workers() != NULL ? workers()->total_workers() : 1;
  3326   for (int i = 0; i < n; ++i) {
  3327     task_queue(i)->stats.reset();
  3330 #endif // TASKQUEUE_STATS
  3332 bool
  3333 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
  3334   assert_at_safepoint(true /* should_be_vm_thread */);
  3335   guarantee(!is_gc_active(), "collection is not reentrant");
  3337   if (GC_locker::check_active_before_gc()) {
  3338     return false;
  3341   SvcGCMarker sgcm(SvcGCMarker::MINOR);
  3342   ResourceMark rm;
  3344   if (PrintHeapAtGC) {
  3345     Universe::print_heap_before_gc();
  3348   verify_region_sets_optional();
  3351     // This call will decide whether this pause is an initial-mark
  3352     // pause. If it is, during_initial_mark_pause() will return true
  3353     // for the duration of this pause.
  3354     g1_policy()->decide_on_conc_mark_initiation();
  3356     char verbose_str[128];
  3357     sprintf(verbose_str, "GC pause ");
  3358     if (g1_policy()->in_young_gc_mode()) {
  3359       if (g1_policy()->full_young_gcs())
  3360         strcat(verbose_str, "(young)");
  3361       else
  3362         strcat(verbose_str, "(partial)");
  3364     if (g1_policy()->during_initial_mark_pause()) {
  3365       strcat(verbose_str, " (initial-mark)");
  3366       // We are about to start a marking cycle, so we increment the
  3367       // full collection counter.
  3368       increment_total_full_collections();
  3371     // if PrintGCDetails is on, we'll print long statistics information
  3372     // in the collector policy code, so let's not print this as the output
  3373     // is messy if we do.
  3374     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
  3375     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
  3376     TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
  3378     TraceMemoryManagerStats tms(false /* fullGC */);
  3380     // If there are any free regions available on the secondary_free_list
  3381     // make sure we append them to the free_list. However, we don't
  3382     // have to wait for the rest of the cleanup operation to
  3383     // finish. If it's still going on that's OK. If we run out of
  3384     // regions, the region allocation code will check the
  3385     // secondary_free_list and potentially wait if more free regions
  3386     // are coming (see new_region_try_secondary_free_list()).
  3387     if (!G1StressConcRegionFreeing) {
  3388       append_secondary_free_list_if_not_empty();
  3391     increment_gc_time_stamp();
  3393     if (g1_policy()->in_young_gc_mode()) {
  3394       assert(check_young_list_well_formed(),
  3395              "young list should be well formed");
  3398     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
  3399       IsGCActiveMark x;
  3401       gc_prologue(false);
  3402       increment_total_collections(false /* full gc */);
  3404 #if G1_REM_SET_LOGGING
  3405       gclog_or_tty->print_cr("\nJust chose CS, heap:");
  3406       print();
  3407 #endif
  3409       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
  3410         HandleMark hm;  // Discard invalid handles created during verification
  3411         prepare_for_verify();
  3412         gclog_or_tty->print(" VerifyBeforeGC:");
  3413         Universe::verify(false);
  3416       COMPILER2_PRESENT(DerivedPointerTable::clear());
  3418       // Please see comment in G1CollectedHeap::ref_processing_init()
  3419       // to see how reference processing currently works in G1.
  3420       //
  3421       // We want to turn off ref discovery, if necessary, and turn it back on
  3422       // on again later if we do. XXX Dubious: why is discovery disabled?
  3423       bool was_enabled = ref_processor()->discovery_enabled();
  3424       if (was_enabled) ref_processor()->disable_discovery();
  3426       // Forget the current alloc region (we might even choose it to be part
  3427       // of the collection set!).
  3428       abandon_cur_alloc_region();
  3430       // The elapsed time induced by the start time below deliberately elides
  3431       // the possible verification above.
  3432       double start_time_sec = os::elapsedTime();
  3433       size_t start_used_bytes = used();
  3435 #if YOUNG_LIST_VERBOSE
  3436       gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
  3437       _young_list->print();
  3438       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3439 #endif // YOUNG_LIST_VERBOSE
  3441       g1_policy()->record_collection_pause_start(start_time_sec,
  3442                                                  start_used_bytes);
  3444 #if YOUNG_LIST_VERBOSE
  3445       gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
  3446       _young_list->print();
  3447 #endif // YOUNG_LIST_VERBOSE
  3449       if (g1_policy()->during_initial_mark_pause()) {
  3450         concurrent_mark()->checkpointRootsInitialPre();
  3452       save_marks();
  3454       // We must do this before any possible evacuation that should propagate
  3455       // marks.
  3456       if (mark_in_progress()) {
  3457         double start_time_sec = os::elapsedTime();
  3459         _cm->drainAllSATBBuffers();
  3460         double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
  3461         g1_policy()->record_satb_drain_time(finish_mark_ms);
  3463       // Record the number of elements currently on the mark stack, so we
  3464       // only iterate over these.  (Since evacuation may add to the mark
  3465       // stack, doing more exposes race conditions.)  If no mark is in
  3466       // progress, this will be zero.
  3467       _cm->set_oops_do_bound();
  3469       if (mark_in_progress())
  3470         concurrent_mark()->newCSet();
  3472 #if YOUNG_LIST_VERBOSE
  3473       gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
  3474       _young_list->print();
  3475       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3476 #endif // YOUNG_LIST_VERBOSE
  3478       g1_policy()->choose_collection_set(target_pause_time_ms);
  3480       // Nothing to do if we were unable to choose a collection set.
  3481 #if G1_REM_SET_LOGGING
  3482       gclog_or_tty->print_cr("\nAfter pause, heap:");
  3483       print();
  3484 #endif
  3485       PrepareForRSScanningClosure prepare_for_rs_scan;
  3486       collection_set_iterate(&prepare_for_rs_scan);
  3488       setup_surviving_young_words();
  3490       // Set up the gc allocation regions.
  3491       get_gc_alloc_regions();
  3493       // Actually do the work...
  3494       evacuate_collection_set();
  3496       free_collection_set(g1_policy()->collection_set());
  3497       g1_policy()->clear_collection_set();
  3499       cleanup_surviving_young_words();
  3501       // Start a new incremental collection set for the next pause.
  3502       g1_policy()->start_incremental_cset_building();
  3504       // Clear the _cset_fast_test bitmap in anticipation of adding
  3505       // regions to the incremental collection set for the next
  3506       // evacuation pause.
  3507       clear_cset_fast_test();
  3509       if (g1_policy()->in_young_gc_mode()) {
  3510         _young_list->reset_sampled_info();
  3512         // Don't check the whole heap at this point as the
  3513         // GC alloc regions from this pause have been tagged
  3514         // as survivors and moved on to the survivor list.
  3515         // Survivor regions will fail the !is_young() check.
  3516         assert(check_young_list_empty(false /* check_heap */),
  3517                "young list should be empty");
  3519 #if YOUNG_LIST_VERBOSE
  3520         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
  3521         _young_list->print();
  3522 #endif // YOUNG_LIST_VERBOSE
  3524         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
  3525                                           _young_list->first_survivor_region(),
  3526                                           _young_list->last_survivor_region());
  3528         _young_list->reset_auxilary_lists();
  3531       if (evacuation_failed()) {
  3532         _summary_bytes_used = recalculate_used();
  3533       } else {
  3534         // The "used" of the the collection set have already been subtracted
  3535         // when they were freed.  Add in the bytes evacuated.
  3536         _summary_bytes_used += g1_policy()->bytes_in_to_space();
  3539       if (g1_policy()->in_young_gc_mode() &&
  3540           g1_policy()->during_initial_mark_pause()) {
  3541         concurrent_mark()->checkpointRootsInitialPost();
  3542         set_marking_started();
  3543         // CAUTION: after the doConcurrentMark() call below,
  3544         // the concurrent marking thread(s) could be running
  3545         // concurrently with us. Make sure that anything after
  3546         // this point does not assume that we are the only GC thread
  3547         // running. Note: of course, the actual marking work will
  3548         // not start until the safepoint itself is released in
  3549         // ConcurrentGCThread::safepoint_desynchronize().
  3550         doConcurrentMark();
  3553 #if YOUNG_LIST_VERBOSE
  3554       gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
  3555       _young_list->print();
  3556       g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
  3557 #endif // YOUNG_LIST_VERBOSE
  3559       double end_time_sec = os::elapsedTime();
  3560       double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
  3561       g1_policy()->record_pause_time_ms(pause_time_ms);
  3562       g1_policy()->record_collection_pause_end();
  3564       MemoryService::track_memory_usage();
  3566       if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
  3567         HandleMark hm;  // Discard invalid handles created during verification
  3568         gclog_or_tty->print(" VerifyAfterGC:");
  3569         prepare_for_verify();
  3570         Universe::verify(false);
  3573       if (was_enabled) ref_processor()->enable_discovery();
  3576         size_t expand_bytes = g1_policy()->expansion_amount();
  3577         if (expand_bytes > 0) {
  3578           size_t bytes_before = capacity();
  3579           if (!expand(expand_bytes)) {
  3580             // We failed to expand the heap so let's verify that
  3581             // committed/uncommitted amount match the backing store
  3582             assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
  3583             assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
  3588       if (mark_in_progress()) {
  3589         concurrent_mark()->update_g1_committed();
  3592 #ifdef TRACESPINNING
  3593       ParallelTaskTerminator::print_termination_counts();
  3594 #endif
  3596       gc_epilogue(false);
  3599     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
  3600       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
  3601       print_tracing_info();
  3602       vm_exit(-1);
  3606   verify_region_sets_optional();
  3608   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
  3609   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
  3611   if (PrintHeapAtGC) {
  3612     Universe::print_heap_after_gc();
  3614   if (G1SummarizeRSetStats &&
  3615       (G1SummarizeRSetStatsPeriod > 0) &&
  3616       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
  3617     g1_rem_set()->print_summary_info();
  3620   return true;
  3623 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
  3625   size_t gclab_word_size;
  3626   switch (purpose) {
  3627     case GCAllocForSurvived:
  3628       gclab_word_size = YoungPLABSize;
  3629       break;
  3630     case GCAllocForTenured:
  3631       gclab_word_size = OldPLABSize;
  3632       break;
  3633     default:
  3634       assert(false, "unknown GCAllocPurpose");
  3635       gclab_word_size = OldPLABSize;
  3636       break;
  3638   return gclab_word_size;
  3642 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
  3643   assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
  3644   // make sure we don't call set_gc_alloc_region() multiple times on
  3645   // the same region
  3646   assert(r == NULL || !r->is_gc_alloc_region(),
  3647          "shouldn't already be a GC alloc region");
  3648   assert(r == NULL || !r->isHumongous(),
  3649          "humongous regions shouldn't be used as GC alloc regions");
  3651   HeapWord* original_top = NULL;
  3652   if (r != NULL)
  3653     original_top = r->top();
  3655   // We will want to record the used space in r as being there before gc.
  3656   // One we install it as a GC alloc region it's eligible for allocation.
  3657   // So record it now and use it later.
  3658   size_t r_used = 0;
  3659   if (r != NULL) {
  3660     r_used = r->used();
  3662     if (G1CollectedHeap::use_parallel_gc_threads()) {
  3663       // need to take the lock to guard against two threads calling
  3664       // get_gc_alloc_region concurrently (very unlikely but...)
  3665       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
  3666       r->save_marks();
  3669   HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
  3670   _gc_alloc_regions[purpose] = r;
  3671   if (old_alloc_region != NULL) {
  3672     // Replace aliases too.
  3673     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3674       if (_gc_alloc_regions[ap] == old_alloc_region) {
  3675         _gc_alloc_regions[ap] = r;
  3679   if (r != NULL) {
  3680     push_gc_alloc_region(r);
  3681     if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
  3682       // We are using a region as a GC alloc region after it has been used
  3683       // as a mutator allocation region during the current marking cycle.
  3684       // The mutator-allocated objects are currently implicitly marked, but
  3685       // when we move hr->next_top_at_mark_start() forward at the the end
  3686       // of the GC pause, they won't be.  We therefore mark all objects in
  3687       // the "gap".  We do this object-by-object, since marking densely
  3688       // does not currently work right with marking bitmap iteration.  This
  3689       // means we rely on TLAB filling at the start of pauses, and no
  3690       // "resuscitation" of filled TLAB's.  If we want to do this, we need
  3691       // to fix the marking bitmap iteration.
  3692       HeapWord* curhw = r->next_top_at_mark_start();
  3693       HeapWord* t = original_top;
  3695       while (curhw < t) {
  3696         oop cur = (oop)curhw;
  3697         // We'll assume parallel for generality.  This is rare code.
  3698         concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
  3699         curhw = curhw + cur->size();
  3701       assert(curhw == t, "Should have parsed correctly.");
  3703     if (G1PolicyVerbose > 1) {
  3704       gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
  3705                           "for survivors:", r->bottom(), original_top, r->end());
  3706       r->print();
  3708     g1_policy()->record_before_bytes(r_used);
  3712 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
  3713   assert(Thread::current()->is_VM_thread() ||
  3714          FreeList_lock->owned_by_self(), "Precondition");
  3715   assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
  3716          "Precondition.");
  3717   hr->set_is_gc_alloc_region(true);
  3718   hr->set_next_gc_alloc_region(_gc_alloc_region_list);
  3719   _gc_alloc_region_list = hr;
  3722 #ifdef G1_DEBUG
  3723 class FindGCAllocRegion: public HeapRegionClosure {
  3724 public:
  3725   bool doHeapRegion(HeapRegion* r) {
  3726     if (r->is_gc_alloc_region()) {
  3727       gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
  3728                              r->hrs_index(), r->bottom());
  3730     return false;
  3732 };
  3733 #endif // G1_DEBUG
  3735 void G1CollectedHeap::forget_alloc_region_list() {
  3736   assert_at_safepoint(true /* should_be_vm_thread */);
  3737   while (_gc_alloc_region_list != NULL) {
  3738     HeapRegion* r = _gc_alloc_region_list;
  3739     assert(r->is_gc_alloc_region(), "Invariant.");
  3740     // We need HeapRegion::oops_on_card_seq_iterate_careful() to work on
  3741     // newly allocated data in order to be able to apply deferred updates
  3742     // before the GC is done for verification purposes (i.e to allow
  3743     // G1HRRSFlushLogBuffersOnVerify). It's safe thing to do after the
  3744     // collection.
  3745     r->ContiguousSpace::set_saved_mark();
  3746     _gc_alloc_region_list = r->next_gc_alloc_region();
  3747     r->set_next_gc_alloc_region(NULL);
  3748     r->set_is_gc_alloc_region(false);
  3749     if (r->is_survivor()) {
  3750       if (r->is_empty()) {
  3751         r->set_not_young();
  3752       } else {
  3753         _young_list->add_survivor_region(r);
  3757 #ifdef G1_DEBUG
  3758   FindGCAllocRegion fa;
  3759   heap_region_iterate(&fa);
  3760 #endif // G1_DEBUG
  3764 bool G1CollectedHeap::check_gc_alloc_regions() {
  3765   // TODO: allocation regions check
  3766   return true;
  3769 void G1CollectedHeap::get_gc_alloc_regions() {
  3770   // First, let's check that the GC alloc region list is empty (it should)
  3771   assert(_gc_alloc_region_list == NULL, "invariant");
  3773   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3774     assert(_gc_alloc_regions[ap] == NULL, "invariant");
  3775     assert(_gc_alloc_region_counts[ap] == 0, "invariant");
  3777     // Create new GC alloc regions.
  3778     HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
  3779     _retained_gc_alloc_regions[ap] = NULL;
  3781     if (alloc_region != NULL) {
  3782       assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");
  3784       // let's make sure that the GC alloc region is not tagged as such
  3785       // outside a GC operation
  3786       assert(!alloc_region->is_gc_alloc_region(), "sanity");
  3788       if (alloc_region->in_collection_set() ||
  3789           alloc_region->top() == alloc_region->end() ||
  3790           alloc_region->top() == alloc_region->bottom() ||
  3791           alloc_region->isHumongous()) {
  3792         // we will discard the current GC alloc region if
  3793         // * it's in the collection set (it can happen!),
  3794         // * it's already full (no point in using it),
  3795         // * it's empty (this means that it was emptied during
  3796         // a cleanup and it should be on the free list now), or
  3797         // * it's humongous (this means that it was emptied
  3798         // during a cleanup and was added to the free list, but
  3799         // has been subseqently used to allocate a humongous
  3800         // object that may be less than the region size).
  3802         alloc_region = NULL;
  3806     if (alloc_region == NULL) {
  3807       // we will get a new GC alloc region
  3808       alloc_region = new_gc_alloc_region(ap, HeapRegion::GrainWords);
  3809     } else {
  3810       // the region was retained from the last collection
  3811       ++_gc_alloc_region_counts[ap];
  3812       if (G1PrintHeapRegions) {
  3813         gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
  3814                                "top "PTR_FORMAT,
  3815                                alloc_region->hrs_index(), alloc_region->bottom(), alloc_region->end(), alloc_region->top());
  3819     if (alloc_region != NULL) {
  3820       assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
  3821       set_gc_alloc_region(ap, alloc_region);
  3824     assert(_gc_alloc_regions[ap] == NULL ||
  3825            _gc_alloc_regions[ap]->is_gc_alloc_region(),
  3826            "the GC alloc region should be tagged as such");
  3827     assert(_gc_alloc_regions[ap] == NULL ||
  3828            _gc_alloc_regions[ap] == _gc_alloc_region_list,
  3829            "the GC alloc region should be the same as the GC alloc list head");
  3831   // Set alternative regions for allocation purposes that have reached
  3832   // their limit.
  3833   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3834     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
  3835     if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
  3836       _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
  3839   assert(check_gc_alloc_regions(), "alloc regions messed up");
  3842 void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
  3843   // We keep a separate list of all regions that have been alloc regions in
  3844   // the current collection pause. Forget that now. This method will
  3845   // untag the GC alloc regions and tear down the GC alloc region
  3846   // list. It's desirable that no regions are tagged as GC alloc
  3847   // outside GCs.
  3849   forget_alloc_region_list();
  3851   // The current alloc regions contain objs that have survived
  3852   // collection. Make them no longer GC alloc regions.
  3853   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3854     HeapRegion* r = _gc_alloc_regions[ap];
  3855     _retained_gc_alloc_regions[ap] = NULL;
  3856     _gc_alloc_region_counts[ap] = 0;
  3858     if (r != NULL) {
  3859       // we retain nothing on _gc_alloc_regions between GCs
  3860       set_gc_alloc_region(ap, NULL);
  3862       if (r->is_empty()) {
  3863         // We didn't actually allocate anything in it; let's just put
  3864         // it back on the free list.
  3865         _free_list.add_as_tail(r);
  3866       } else if (_retain_gc_alloc_region[ap] && !totally) {
  3867         // retain it so that we can use it at the beginning of the next GC
  3868         _retained_gc_alloc_regions[ap] = r;
  3874 #ifndef PRODUCT
  3875 // Useful for debugging
  3877 void G1CollectedHeap::print_gc_alloc_regions() {
  3878   gclog_or_tty->print_cr("GC alloc regions");
  3879   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  3880     HeapRegion* r = _gc_alloc_regions[ap];
  3881     if (r == NULL) {
  3882       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
  3883     } else {
  3884       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
  3885                              ap, r->bottom(), r->used());
  3889 #endif // PRODUCT
  3891 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
  3892   _drain_in_progress = false;
  3893   set_evac_failure_closure(cl);
  3894   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  3897 void G1CollectedHeap::finalize_for_evac_failure() {
  3898   assert(_evac_failure_scan_stack != NULL &&
  3899          _evac_failure_scan_stack->length() == 0,
  3900          "Postcondition");
  3901   assert(!_drain_in_progress, "Postcondition");
  3902   delete _evac_failure_scan_stack;
  3903   _evac_failure_scan_stack = NULL;
  3908 // *** Sequential G1 Evacuation
  3910 class G1IsAliveClosure: public BoolObjectClosure {
  3911   G1CollectedHeap* _g1;
  3912 public:
  3913   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3914   void do_object(oop p) { assert(false, "Do not call."); }
  3915   bool do_object_b(oop p) {
  3916     // It is reachable if it is outside the collection set, or is inside
  3917     // and forwarded.
  3919 #ifdef G1_DEBUG
  3920     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
  3921                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
  3922                            !_g1->obj_in_cs(p) || p->is_forwarded());
  3923 #endif // G1_DEBUG
  3925     return !_g1->obj_in_cs(p) || p->is_forwarded();
  3927 };
  3929 class G1KeepAliveClosure: public OopClosure {
  3930   G1CollectedHeap* _g1;
  3931 public:
  3932   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
  3933   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
  3934   void do_oop(      oop* p) {
  3935     oop obj = *p;
  3936 #ifdef G1_DEBUG
  3937     if (PrintGC && Verbose) {
  3938       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
  3939                              p, (void*) obj, (void*) *p);
  3941 #endif // G1_DEBUG
  3943     if (_g1->obj_in_cs(obj)) {
  3944       assert( obj->is_forwarded(), "invariant" );
  3945       *p = obj->forwardee();
  3946 #ifdef G1_DEBUG
  3947       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
  3948                              (void*) obj, (void*) *p);
  3949 #endif // G1_DEBUG
  3952 };
  3954 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
  3955 private:
  3956   G1CollectedHeap* _g1;
  3957   DirtyCardQueue *_dcq;
  3958   CardTableModRefBS* _ct_bs;
  3960 public:
  3961   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
  3962     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
  3964   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
  3965   virtual void do_oop(      oop* p) { do_oop_work(p); }
  3966   template <class T> void do_oop_work(T* p) {
  3967     assert(_from->is_in_reserved(p), "paranoia");
  3968     if (!_from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) &&
  3969         !_from->is_survivor()) {
  3970       size_t card_index = _ct_bs->index_for(p);
  3971       if (_ct_bs->mark_card_deferred(card_index)) {
  3972         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
  3976 };
  3978 class RemoveSelfPointerClosure: public ObjectClosure {
  3979 private:
  3980   G1CollectedHeap* _g1;
  3981   ConcurrentMark* _cm;
  3982   HeapRegion* _hr;
  3983   size_t _prev_marked_bytes;
  3984   size_t _next_marked_bytes;
  3985   OopsInHeapRegionClosure *_cl;
  3986 public:
  3987   RemoveSelfPointerClosure(G1CollectedHeap* g1, HeapRegion* hr,
  3988                            OopsInHeapRegionClosure* cl) :
  3989     _g1(g1), _hr(hr), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
  3990     _next_marked_bytes(0), _cl(cl) {}
  3992   size_t prev_marked_bytes() { return _prev_marked_bytes; }
  3993   size_t next_marked_bytes() { return _next_marked_bytes; }
  3995   // <original comment>
  3996   // The original idea here was to coalesce evacuated and dead objects.
  3997   // However that caused complications with the block offset table (BOT).
  3998   // In particular if there were two TLABs, one of them partially refined.
  3999   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
  4000   // The BOT entries of the unrefined part of TLAB_2 point to the start
  4001   // of TLAB_2. If the last object of the TLAB_1 and the first object
  4002   // of TLAB_2 are coalesced, then the cards of the unrefined part
  4003   // would point into middle of the filler object.
  4004   // The current approach is to not coalesce and leave the BOT contents intact.
  4005   // </original comment>
  4006   //
  4007   // We now reset the BOT when we start the object iteration over the
  4008   // region and refine its entries for every object we come across. So
  4009   // the above comment is not really relevant and we should be able
  4010   // to coalesce dead objects if we want to.
  4011   void do_object(oop obj) {
  4012     HeapWord* obj_addr = (HeapWord*) obj;
  4013     assert(_hr->is_in(obj_addr), "sanity");
  4014     size_t obj_size = obj->size();
  4015     _hr->update_bot_for_object(obj_addr, obj_size);
  4016     if (obj->is_forwarded() && obj->forwardee() == obj) {
  4017       // The object failed to move.
  4018       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
  4019       _cm->markPrev(obj);
  4020       assert(_cm->isPrevMarked(obj), "Should be marked!");
  4021       _prev_marked_bytes += (obj_size * HeapWordSize);
  4022       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
  4023         _cm->markAndGrayObjectIfNecessary(obj);
  4025       obj->set_mark(markOopDesc::prototype());
  4026       // While we were processing RSet buffers during the
  4027       // collection, we actually didn't scan any cards on the
  4028       // collection set, since we didn't want to update remebered
  4029       // sets with entries that point into the collection set, given
  4030       // that live objects fromthe collection set are about to move
  4031       // and such entries will be stale very soon. This change also
  4032       // dealt with a reliability issue which involved scanning a
  4033       // card in the collection set and coming across an array that
  4034       // was being chunked and looking malformed. The problem is
  4035       // that, if evacuation fails, we might have remembered set
  4036       // entries missing given that we skipped cards on the
  4037       // collection set. So, we'll recreate such entries now.
  4038       obj->oop_iterate(_cl);
  4039       assert(_cm->isPrevMarked(obj), "Should be marked!");
  4040     } else {
  4041       // The object has been either evacuated or is dead. Fill it with a
  4042       // dummy object.
  4043       MemRegion mr((HeapWord*)obj, obj_size);
  4044       CollectedHeap::fill_with_object(mr);
  4045       _cm->clearRangeBothMaps(mr);
  4048 };
  4050 void G1CollectedHeap::remove_self_forwarding_pointers() {
  4051   UpdateRSetImmediate immediate_update(_g1h->g1_rem_set());
  4052   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
  4053   UpdateRSetDeferred deferred_update(_g1h, &dcq);
  4054   OopsInHeapRegionClosure *cl;
  4055   if (G1DeferredRSUpdate) {
  4056     cl = &deferred_update;
  4057   } else {
  4058     cl = &immediate_update;
  4060   HeapRegion* cur = g1_policy()->collection_set();
  4061   while (cur != NULL) {
  4062     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  4063     assert(!cur->isHumongous(), "sanity");
  4065     if (cur->evacuation_failed()) {
  4066       assert(cur->in_collection_set(), "bad CS");
  4067       RemoveSelfPointerClosure rspc(_g1h, cur, cl);
  4069       cur->reset_bot();
  4070       cl->set_region(cur);
  4071       cur->object_iterate(&rspc);
  4073       // A number of manipulations to make the TAMS be the current top,
  4074       // and the marked bytes be the ones observed in the iteration.
  4075       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
  4076         // The comments below are the postconditions achieved by the
  4077         // calls.  Note especially the last such condition, which says that
  4078         // the count of marked bytes has been properly restored.
  4079         cur->note_start_of_marking(false);
  4080         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  4081         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
  4082         // _next_marked_bytes == prev_marked_bytes.
  4083         cur->note_end_of_marking();
  4084         // _prev_top_at_mark_start == top(),
  4085         // _prev_marked_bytes == prev_marked_bytes
  4087       // If there is no mark in progress, we modified the _next variables
  4088       // above needlessly, but harmlessly.
  4089       if (_g1h->mark_in_progress()) {
  4090         cur->note_start_of_marking(false);
  4091         // _next_top_at_mark_start == top, _next_marked_bytes == 0
  4092         // _next_marked_bytes == next_marked_bytes.
  4095       // Now make sure the region has the right index in the sorted array.
  4096       g1_policy()->note_change_in_marked_bytes(cur);
  4098     cur = cur->next_in_collection_set();
  4100   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
  4102   // Now restore saved marks, if any.
  4103   if (_objs_with_preserved_marks != NULL) {
  4104     assert(_preserved_marks_of_objs != NULL, "Both or none.");
  4105     guarantee(_objs_with_preserved_marks->length() ==
  4106               _preserved_marks_of_objs->length(), "Both or none.");
  4107     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
  4108       oop obj   = _objs_with_preserved_marks->at(i);
  4109       markOop m = _preserved_marks_of_objs->at(i);
  4110       obj->set_mark(m);
  4112     // Delete the preserved marks growable arrays (allocated on the C heap).
  4113     delete _objs_with_preserved_marks;
  4114     delete _preserved_marks_of_objs;
  4115     _objs_with_preserved_marks = NULL;
  4116     _preserved_marks_of_objs = NULL;
  4120 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
  4121   _evac_failure_scan_stack->push(obj);
  4124 void G1CollectedHeap::drain_evac_failure_scan_stack() {
  4125   assert(_evac_failure_scan_stack != NULL, "precondition");
  4127   while (_evac_failure_scan_stack->length() > 0) {
  4128      oop obj = _evac_failure_scan_stack->pop();
  4129      _evac_failure_closure->set_region(heap_region_containing(obj));
  4130      obj->oop_iterate_backwards(_evac_failure_closure);
  4134 oop
  4135 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
  4136                                                oop old) {
  4137   markOop m = old->mark();
  4138   oop forward_ptr = old->forward_to_atomic(old);
  4139   if (forward_ptr == NULL) {
  4140     // Forward-to-self succeeded.
  4141     if (_evac_failure_closure != cl) {
  4142       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
  4143       assert(!_drain_in_progress,
  4144              "Should only be true while someone holds the lock.");
  4145       // Set the global evac-failure closure to the current thread's.
  4146       assert(_evac_failure_closure == NULL, "Or locking has failed.");
  4147       set_evac_failure_closure(cl);
  4148       // Now do the common part.
  4149       handle_evacuation_failure_common(old, m);
  4150       // Reset to NULL.
  4151       set_evac_failure_closure(NULL);
  4152     } else {
  4153       // The lock is already held, and this is recursive.
  4154       assert(_drain_in_progress, "This should only be the recursive case.");
  4155       handle_evacuation_failure_common(old, m);
  4157     return old;
  4158   } else {
  4159     // Someone else had a place to copy it.
  4160     return forward_ptr;
  4164 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
  4165   set_evacuation_failed(true);
  4167   preserve_mark_if_necessary(old, m);
  4169   HeapRegion* r = heap_region_containing(old);
  4170   if (!r->evacuation_failed()) {
  4171     r->set_evacuation_failed(true);
  4172     if (G1PrintHeapRegions) {
  4173       gclog_or_tty->print("overflow in heap region "PTR_FORMAT" "
  4174                           "["PTR_FORMAT","PTR_FORMAT")\n",
  4175                           r, r->bottom(), r->end());
  4179   push_on_evac_failure_scan_stack(old);
  4181   if (!_drain_in_progress) {
  4182     // prevent recursion in copy_to_survivor_space()
  4183     _drain_in_progress = true;
  4184     drain_evac_failure_scan_stack();
  4185     _drain_in_progress = false;
  4189 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
  4190   assert(evacuation_failed(), "Oversaving!");
  4191   // We want to call the "for_promotion_failure" version only in the
  4192   // case of a promotion failure.
  4193   if (m->must_be_preserved_for_promotion_failure(obj)) {
  4194     if (_objs_with_preserved_marks == NULL) {
  4195       assert(_preserved_marks_of_objs == NULL, "Both or none.");
  4196       _objs_with_preserved_marks =
  4197         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
  4198       _preserved_marks_of_objs =
  4199         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
  4201     _objs_with_preserved_marks->push(obj);
  4202     _preserved_marks_of_objs->push(m);
  4206 // *** Parallel G1 Evacuation
  4208 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
  4209                                                   size_t word_size) {
  4210   assert(!isHumongous(word_size),
  4211          err_msg("we should not be seeing humongous allocation requests "
  4212                  "during GC, word_size = "SIZE_FORMAT, word_size));
  4214   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
  4215   // let the caller handle alloc failure
  4216   if (alloc_region == NULL) return NULL;
  4218   HeapWord* block = alloc_region->par_allocate(word_size);
  4219   if (block == NULL) {
  4220     block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
  4222   return block;
  4225 void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
  4226                                             bool par) {
  4227   // Another thread might have obtained alloc_region for the given
  4228   // purpose, and might be attempting to allocate in it, and might
  4229   // succeed.  Therefore, we can't do the "finalization" stuff on the
  4230   // region below until we're sure the last allocation has happened.
  4231   // We ensure this by allocating the remaining space with a garbage
  4232   // object.
  4233   if (par) par_allocate_remaining_space(alloc_region);
  4234   // Now we can do the post-GC stuff on the region.
  4235   alloc_region->note_end_of_copying();
  4236   g1_policy()->record_after_bytes(alloc_region->used());
  4239 HeapWord*
  4240 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
  4241                                          HeapRegion*    alloc_region,
  4242                                          bool           par,
  4243                                          size_t         word_size) {
  4244   assert(!isHumongous(word_size),
  4245          err_msg("we should not be seeing humongous allocation requests "
  4246                  "during GC, word_size = "SIZE_FORMAT, word_size));
  4248   // We need to make sure we serialize calls to this method. Given
  4249   // that the FreeList_lock guards accesses to the free_list anyway,
  4250   // and we need to potentially remove a region from it, we'll use it
  4251   // to protect the whole call.
  4252   MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  4254   HeapWord* block = NULL;
  4255   // In the parallel case, a previous thread to obtain the lock may have
  4256   // already assigned a new gc_alloc_region.
  4257   if (alloc_region != _gc_alloc_regions[purpose]) {
  4258     assert(par, "But should only happen in parallel case.");
  4259     alloc_region = _gc_alloc_regions[purpose];
  4260     if (alloc_region == NULL) return NULL;
  4261     block = alloc_region->par_allocate(word_size);
  4262     if (block != NULL) return block;
  4263     // Otherwise, continue; this new region is empty, too.
  4265   assert(alloc_region != NULL, "We better have an allocation region");
  4266   retire_alloc_region(alloc_region, par);
  4268   if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
  4269     // Cannot allocate more regions for the given purpose.
  4270     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
  4271     // Is there an alternative?
  4272     if (purpose != alt_purpose) {
  4273       HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
  4274       // Has not the alternative region been aliased?
  4275       if (alloc_region != alt_region && alt_region != NULL) {
  4276         // Try to allocate in the alternative region.
  4277         if (par) {
  4278           block = alt_region->par_allocate(word_size);
  4279         } else {
  4280           block = alt_region->allocate(word_size);
  4282         // Make an alias.
  4283         _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
  4284         if (block != NULL) {
  4285           return block;
  4287         retire_alloc_region(alt_region, par);
  4289       // Both the allocation region and the alternative one are full
  4290       // and aliased, replace them with a new allocation region.
  4291       purpose = alt_purpose;
  4292     } else {
  4293       set_gc_alloc_region(purpose, NULL);
  4294       return NULL;
  4298   // Now allocate a new region for allocation.
  4299   alloc_region = new_gc_alloc_region(purpose, word_size);
  4301   // let the caller handle alloc failure
  4302   if (alloc_region != NULL) {
  4304     assert(check_gc_alloc_regions(), "alloc regions messed up");
  4305     assert(alloc_region->saved_mark_at_top(),
  4306            "Mark should have been saved already.");
  4307     // This must be done last: once it's installed, other regions may
  4308     // allocate in it (without holding the lock.)
  4309     set_gc_alloc_region(purpose, alloc_region);
  4311     if (par) {
  4312       block = alloc_region->par_allocate(word_size);
  4313     } else {
  4314       block = alloc_region->allocate(word_size);
  4316     // Caller handles alloc failure.
  4317   } else {
  4318     // This sets other apis using the same old alloc region to NULL, also.
  4319     set_gc_alloc_region(purpose, NULL);
  4321   return block;  // May be NULL.
  4324 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
  4325   HeapWord* block = NULL;
  4326   size_t free_words;
  4327   do {
  4328     free_words = r->free()/HeapWordSize;
  4329     // If there's too little space, no one can allocate, so we're done.
  4330     if (free_words < CollectedHeap::min_fill_size()) return;
  4331     // Otherwise, try to claim it.
  4332     block = r->par_allocate(free_words);
  4333   } while (block == NULL);
  4334   fill_with_object(block, free_words);
  4337 #ifndef PRODUCT
  4338 bool GCLabBitMapClosure::do_bit(size_t offset) {
  4339   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
  4340   guarantee(_cm->isMarked(oop(addr)), "it should be!");
  4341   return true;
  4343 #endif // PRODUCT
  4345 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
  4346   : _g1h(g1h),
  4347     _refs(g1h->task_queue(queue_num)),
  4348     _dcq(&g1h->dirty_card_queue_set()),
  4349     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
  4350     _g1_rem(g1h->g1_rem_set()),
  4351     _hash_seed(17), _queue_num(queue_num),
  4352     _term_attempts(0),
  4353     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  4354     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  4355     _age_table(false),
  4356     _strong_roots_time(0), _term_time(0),
  4357     _alloc_buffer_waste(0), _undo_waste(0)
  4359   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  4360   // we "sacrifice" entry 0 to keep track of surviving bytes for
  4361   // non-young regions (where the age is -1)
  4362   // We also add a few elements at the beginning and at the end in
  4363   // an attempt to eliminate cache contention
  4364   size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
  4365   size_t array_length = PADDING_ELEM_NUM +
  4366                         real_length +
  4367                         PADDING_ELEM_NUM;
  4368   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
  4369   if (_surviving_young_words_base == NULL)
  4370     vm_exit_out_of_memory(array_length * sizeof(size_t),
  4371                           "Not enough space for young surv histo.");
  4372   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  4373   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  4375   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  4376   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  4378   _start = os::elapsedTime();
  4381 void
  4382 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  4384   st->print_raw_cr("GC Termination Stats");
  4385   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  4386                    " ------waste (KiB)------");
  4387   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  4388                    "  total   alloc    undo");
  4389   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  4390                    " ------- ------- -------");
  4393 void
  4394 G1ParScanThreadState::print_termination_stats(int i,
  4395                                               outputStream* const st) const
  4397   const double elapsed_ms = elapsed_time() * 1000.0;
  4398   const double s_roots_ms = strong_roots_time() * 1000.0;
  4399   const double term_ms    = term_time() * 1000.0;
  4400   st->print_cr("%3d %9.2f %9.2f %6.2f "
  4401                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  4402                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  4403                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  4404                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  4405                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  4406                alloc_buffer_waste() * HeapWordSize / K,
  4407                undo_waste() * HeapWordSize / K);
  4410 #ifdef ASSERT
  4411 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  4412   assert(ref != NULL, "invariant");
  4413   assert(UseCompressedOops, "sanity");
  4414   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
  4415   oop p = oopDesc::load_decode_heap_oop(ref);
  4416   assert(_g1h->is_in_g1_reserved(p),
  4417          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4418   return true;
  4421 bool G1ParScanThreadState::verify_ref(oop* ref) const {
  4422   assert(ref != NULL, "invariant");
  4423   if (has_partial_array_mask(ref)) {
  4424     // Must be in the collection set--it's already been copied.
  4425     oop p = clear_partial_array_mask(ref);
  4426     assert(_g1h->obj_in_cs(p),
  4427            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4428   } else {
  4429     oop p = oopDesc::load_decode_heap_oop(ref);
  4430     assert(_g1h->is_in_g1_reserved(p),
  4431            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
  4433   return true;
  4436 bool G1ParScanThreadState::verify_task(StarTask ref) const {
  4437   if (ref.is_narrow()) {
  4438     return verify_ref((narrowOop*) ref);
  4439   } else {
  4440     return verify_ref((oop*) ref);
  4443 #endif // ASSERT
  4445 void G1ParScanThreadState::trim_queue() {
  4446   StarTask ref;
  4447   do {
  4448     // Drain the overflow stack first, so other threads can steal.
  4449     while (refs()->pop_overflow(ref)) {
  4450       deal_with_reference(ref);
  4452     while (refs()->pop_local(ref)) {
  4453       deal_with_reference(ref);
  4455   } while (!refs()->is_empty());
  4458 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
  4459   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
  4460   _par_scan_state(par_scan_state) { }
  4462 template <class T> void G1ParCopyHelper::mark_forwardee(T* p) {
  4463   // This is called _after_ do_oop_work has been called, hence after
  4464   // the object has been relocated to its new location and *p points
  4465   // to its new location.
  4467   T heap_oop = oopDesc::load_heap_oop(p);
  4468   if (!oopDesc::is_null(heap_oop)) {
  4469     oop obj = oopDesc::decode_heap_oop(heap_oop);
  4470     assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(obj)),
  4471            "shouldn't still be in the CSet if evacuation didn't fail.");
  4472     HeapWord* addr = (HeapWord*)obj;
  4473     if (_g1->is_in_g1_reserved(addr))
  4474       _cm->grayRoot(oop(addr));
  4478 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
  4479   size_t    word_sz = old->size();
  4480   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
  4481   // +1 to make the -1 indexes valid...
  4482   int       young_index = from_region->young_index_in_cset()+1;
  4483   assert( (from_region->is_young() && young_index > 0) ||
  4484           (!from_region->is_young() && young_index == 0), "invariant" );
  4485   G1CollectorPolicy* g1p = _g1->g1_policy();
  4486   markOop m = old->mark();
  4487   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
  4488                                            : m->age();
  4489   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
  4490                                                              word_sz);
  4491   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
  4492   oop       obj     = oop(obj_ptr);
  4494   if (obj_ptr == NULL) {
  4495     // This will either forward-to-self, or detect that someone else has
  4496     // installed a forwarding pointer.
  4497     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
  4498     return _g1->handle_evacuation_failure_par(cl, old);
  4501   // We're going to allocate linearly, so might as well prefetch ahead.
  4502   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
  4504   oop forward_ptr = old->forward_to_atomic(obj);
  4505   if (forward_ptr == NULL) {
  4506     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
  4507     if (g1p->track_object_age(alloc_purpose)) {
  4508       // We could simply do obj->incr_age(). However, this causes a
  4509       // performance issue. obj->incr_age() will first check whether
  4510       // the object has a displaced mark by checking its mark word;
  4511       // getting the mark word from the new location of the object
  4512       // stalls. So, given that we already have the mark word and we
  4513       // are about to install it anyway, it's better to increase the
  4514       // age on the mark word, when the object does not have a
  4515       // displaced mark word. We're not expecting many objects to have
  4516       // a displaced marked word, so that case is not optimized
  4517       // further (it could be...) and we simply call obj->incr_age().
  4519       if (m->has_displaced_mark_helper()) {
  4520         // in this case, we have to install the mark word first,
  4521         // otherwise obj looks to be forwarded (the old mark word,
  4522         // which contains the forward pointer, was copied)
  4523         obj->set_mark(m);
  4524         obj->incr_age();
  4525       } else {
  4526         m = m->incr_age();
  4527         obj->set_mark(m);
  4529       _par_scan_state->age_table()->add(obj, word_sz);
  4530     } else {
  4531       obj->set_mark(m);
  4534     // preserve "next" mark bit
  4535     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
  4536       if (!use_local_bitmaps ||
  4537           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
  4538         // if we couldn't mark it on the local bitmap (this happens when
  4539         // the object was not allocated in the GCLab), we have to bite
  4540         // the bullet and do the standard parallel mark
  4541         _cm->markAndGrayObjectIfNecessary(obj);
  4543 #if 1
  4544       if (_g1->isMarkedNext(old)) {
  4545         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
  4547 #endif
  4550     size_t* surv_young_words = _par_scan_state->surviving_young_words();
  4551     surv_young_words[young_index] += word_sz;
  4553     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
  4554       arrayOop(old)->set_length(0);
  4555       oop* old_p = set_partial_array_mask(old);
  4556       _par_scan_state->push_on_queue(old_p);
  4557     } else {
  4558       // No point in using the slower heap_region_containing() method,
  4559       // given that we know obj is in the heap.
  4560       _scanner->set_region(_g1->heap_region_containing_raw(obj));
  4561       obj->oop_iterate_backwards(_scanner);
  4563   } else {
  4564     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
  4565     obj = forward_ptr;
  4567   return obj;
  4570 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_forwardee>
  4571 template <class T>
  4572 void G1ParCopyClosure <do_gen_barrier, barrier, do_mark_forwardee>
  4573 ::do_oop_work(T* p) {
  4574   oop obj = oopDesc::load_decode_heap_oop(p);
  4575   assert(barrier != G1BarrierRS || obj != NULL,
  4576          "Precondition: G1BarrierRS implies obj is nonNull");
  4578   // here the null check is implicit in the cset_fast_test() test
  4579   if (_g1->in_cset_fast_test(obj)) {
  4580 #if G1_REM_SET_LOGGING
  4581     gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
  4582                            "into CS.", p, (void*) obj);
  4583 #endif
  4584     if (obj->is_forwarded()) {
  4585       oopDesc::encode_store_heap_oop(p, obj->forwardee());
  4586     } else {
  4587       oop copy_oop = copy_to_survivor_space(obj);
  4588       oopDesc::encode_store_heap_oop(p, copy_oop);
  4590     // When scanning the RS, we only care about objs in CS.
  4591     if (barrier == G1BarrierRS) {
  4592       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4596   if (barrier == G1BarrierEvac && obj != NULL) {
  4597     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
  4600   if (do_gen_barrier && obj != NULL) {
  4601     par_do_barrier(p);
  4605 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
  4606 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
  4608 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
  4609   assert(has_partial_array_mask(p), "invariant");
  4610   oop old = clear_partial_array_mask(p);
  4611   assert(old->is_objArray(), "must be obj array");
  4612   assert(old->is_forwarded(), "must be forwarded");
  4613   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
  4615   objArrayOop obj = objArrayOop(old->forwardee());
  4616   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
  4617   // Process ParGCArrayScanChunk elements now
  4618   // and push the remainder back onto queue
  4619   int start     = arrayOop(old)->length();
  4620   int end       = obj->length();
  4621   int remainder = end - start;
  4622   assert(start <= end, "just checking");
  4623   if (remainder > 2 * ParGCArrayScanChunk) {
  4624     // Test above combines last partial chunk with a full chunk
  4625     end = start + ParGCArrayScanChunk;
  4626     arrayOop(old)->set_length(end);
  4627     // Push remainder.
  4628     oop* old_p = set_partial_array_mask(old);
  4629     assert(arrayOop(old)->length() < obj->length(), "Empty push?");
  4630     _par_scan_state->push_on_queue(old_p);
  4631   } else {
  4632     // Restore length so that the heap remains parsable in
  4633     // case of evacuation failure.
  4634     arrayOop(old)->set_length(end);
  4636   _scanner.set_region(_g1->heap_region_containing_raw(obj));
  4637   // process our set of indices (include header in first chunk)
  4638   obj->oop_iterate_range(&_scanner, start, end);
  4641 class G1ParEvacuateFollowersClosure : public VoidClosure {
  4642 protected:
  4643   G1CollectedHeap*              _g1h;
  4644   G1ParScanThreadState*         _par_scan_state;
  4645   RefToScanQueueSet*            _queues;
  4646   ParallelTaskTerminator*       _terminator;
  4648   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
  4649   RefToScanQueueSet*      queues()         { return _queues; }
  4650   ParallelTaskTerminator* terminator()     { return _terminator; }
  4652 public:
  4653   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
  4654                                 G1ParScanThreadState* par_scan_state,
  4655                                 RefToScanQueueSet* queues,
  4656                                 ParallelTaskTerminator* terminator)
  4657     : _g1h(g1h), _par_scan_state(par_scan_state),
  4658       _queues(queues), _terminator(terminator) {}
  4660   void do_void();
  4662 private:
  4663   inline bool offer_termination();
  4664 };
  4666 bool G1ParEvacuateFollowersClosure::offer_termination() {
  4667   G1ParScanThreadState* const pss = par_scan_state();
  4668   pss->start_term_time();
  4669   const bool res = terminator()->offer_termination();
  4670   pss->end_term_time();
  4671   return res;
  4674 void G1ParEvacuateFollowersClosure::do_void() {
  4675   StarTask stolen_task;
  4676   G1ParScanThreadState* const pss = par_scan_state();
  4677   pss->trim_queue();
  4679   do {
  4680     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
  4681       assert(pss->verify_task(stolen_task), "sanity");
  4682       if (stolen_task.is_narrow()) {
  4683         pss->deal_with_reference((narrowOop*) stolen_task);
  4684       } else {
  4685         pss->deal_with_reference((oop*) stolen_task);
  4688       // We've just processed a reference and we might have made
  4689       // available new entries on the queues. So we have to make sure
  4690       // we drain the queues as necessary.
  4691       pss->trim_queue();
  4693   } while (!offer_termination());
  4695   pss->retire_alloc_buffers();
  4698 class G1ParTask : public AbstractGangTask {
  4699 protected:
  4700   G1CollectedHeap*       _g1h;
  4701   RefToScanQueueSet      *_queues;
  4702   ParallelTaskTerminator _terminator;
  4703   int _n_workers;
  4705   Mutex _stats_lock;
  4706   Mutex* stats_lock() { return &_stats_lock; }
  4708   size_t getNCards() {
  4709     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
  4710       / G1BlockOffsetSharedArray::N_bytes;
  4713 public:
  4714   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
  4715     : AbstractGangTask("G1 collection"),
  4716       _g1h(g1h),
  4717       _queues(task_queues),
  4718       _terminator(workers, _queues),
  4719       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
  4720       _n_workers(workers)
  4721   {}
  4723   RefToScanQueueSet* queues() { return _queues; }
  4725   RefToScanQueue *work_queue(int i) {
  4726     return queues()->queue(i);
  4729   void work(int i) {
  4730     if (i >= _n_workers) return;  // no work needed this round
  4732     double start_time_ms = os::elapsedTime() * 1000.0;
  4733     _g1h->g1_policy()->record_gc_worker_start_time(i, start_time_ms);
  4735     ResourceMark rm;
  4736     HandleMark   hm;
  4738     G1ParScanThreadState            pss(_g1h, i);
  4739     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
  4740     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
  4741     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
  4743     pss.set_evac_closure(&scan_evac_cl);
  4744     pss.set_evac_failure_closure(&evac_failure_cl);
  4745     pss.set_partial_scan_closure(&partial_scan_cl);
  4747     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
  4748     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
  4749     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
  4750     G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
  4752     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
  4753     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
  4754     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
  4756     OopsInHeapRegionClosure        *scan_root_cl;
  4757     OopsInHeapRegionClosure        *scan_perm_cl;
  4759     if (_g1h->g1_policy()->during_initial_mark_pause()) {
  4760       scan_root_cl = &scan_mark_root_cl;
  4761       scan_perm_cl = &scan_mark_perm_cl;
  4762     } else {
  4763       scan_root_cl = &only_scan_root_cl;
  4764       scan_perm_cl = &only_scan_perm_cl;
  4767     pss.start_strong_roots();
  4768     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
  4769                                   SharedHeap::SO_AllClasses,
  4770                                   scan_root_cl,
  4771                                   &push_heap_rs_cl,
  4772                                   scan_perm_cl,
  4773                                   i);
  4774     pss.end_strong_roots();
  4776       double start = os::elapsedTime();
  4777       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
  4778       evac.do_void();
  4779       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
  4780       double term_ms = pss.term_time()*1000.0;
  4781       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
  4782       _g1h->g1_policy()->record_termination(i, term_ms, pss.term_attempts());
  4784     _g1h->g1_policy()->record_thread_age_table(pss.age_table());
  4785     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
  4787     // Clean up any par-expanded rem sets.
  4788     HeapRegionRemSet::par_cleanup();
  4790     if (ParallelGCVerbose) {
  4791       MutexLocker x(stats_lock());
  4792       pss.print_termination_stats(i);
  4795     assert(pss.refs()->is_empty(), "should be empty");
  4796     double end_time_ms = os::elapsedTime() * 1000.0;
  4797     _g1h->g1_policy()->record_gc_worker_end_time(i, end_time_ms);
  4799 };
  4801 // *** Common G1 Evacuation Stuff
  4803 // This method is run in a GC worker.
  4805 void
  4806 G1CollectedHeap::
  4807 g1_process_strong_roots(bool collecting_perm_gen,
  4808                         SharedHeap::ScanningOption so,
  4809                         OopClosure* scan_non_heap_roots,
  4810                         OopsInHeapRegionClosure* scan_rs,
  4811                         OopsInGenClosure* scan_perm,
  4812                         int worker_i) {
  4813   // First scan the strong roots, including the perm gen.
  4814   double ext_roots_start = os::elapsedTime();
  4815   double closure_app_time_sec = 0.0;
  4817   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
  4818   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
  4819   buf_scan_perm.set_generation(perm_gen());
  4821   // Walk the code cache w/o buffering, because StarTask cannot handle
  4822   // unaligned oop locations.
  4823   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, /*do_marking=*/ true);
  4825   process_strong_roots(false, // no scoping; this is parallel code
  4826                        collecting_perm_gen, so,
  4827                        &buf_scan_non_heap_roots,
  4828                        &eager_scan_code_roots,
  4829                        &buf_scan_perm);
  4831   // Finish up any enqueued closure apps.
  4832   buf_scan_non_heap_roots.done();
  4833   buf_scan_perm.done();
  4834   double ext_roots_end = os::elapsedTime();
  4835   g1_policy()->reset_obj_copy_time(worker_i);
  4836   double obj_copy_time_sec =
  4837     buf_scan_non_heap_roots.closure_app_seconds() +
  4838     buf_scan_perm.closure_app_seconds();
  4839   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
  4840   double ext_root_time_ms =
  4841     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
  4842   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
  4844   // Scan strong roots in mark stack.
  4845   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
  4846     concurrent_mark()->oops_do(scan_non_heap_roots);
  4848   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
  4849   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
  4851   // XXX What should this be doing in the parallel case?
  4852   g1_policy()->record_collection_pause_end_CH_strong_roots();
  4853   // Now scan the complement of the collection set.
  4854   if (scan_rs != NULL) {
  4855     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
  4857   // Finish with the ref_processor roots.
  4858   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
  4859     // We need to treat the discovered reference lists as roots and
  4860     // keep entries (which are added by the marking threads) on them
  4861     // live until they can be processed at the end of marking.
  4862     ref_processor()->weak_oops_do(scan_non_heap_roots);
  4863     ref_processor()->oops_do(scan_non_heap_roots);
  4865   g1_policy()->record_collection_pause_end_G1_strong_roots();
  4866   _process_strong_tasks->all_tasks_completed();
  4869 void
  4870 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
  4871                                        OopClosure* non_root_closure) {
  4872   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
  4873   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
  4877 class SaveMarksClosure: public HeapRegionClosure {
  4878 public:
  4879   bool doHeapRegion(HeapRegion* r) {
  4880     r->save_marks();
  4881     return false;
  4883 };
  4885 void G1CollectedHeap::save_marks() {
  4886   if (!CollectedHeap::use_parallel_gc_threads()) {
  4887     SaveMarksClosure sm;
  4888     heap_region_iterate(&sm);
  4890   // We do this even in the parallel case
  4891   perm_gen()->save_marks();
  4894 void G1CollectedHeap::evacuate_collection_set() {
  4895   set_evacuation_failed(false);
  4897   g1_rem_set()->prepare_for_oops_into_collection_set_do();
  4898   concurrent_g1_refine()->set_use_cache(false);
  4899   concurrent_g1_refine()->clear_hot_cache_claimed_index();
  4901   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
  4902   set_par_threads(n_workers);
  4903   G1ParTask g1_par_task(this, n_workers, _task_queues);
  4905   init_for_evac_failure(NULL);
  4907   rem_set()->prepare_for_younger_refs_iterate(true);
  4909   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
  4910   double start_par = os::elapsedTime();
  4911   if (G1CollectedHeap::use_parallel_gc_threads()) {
  4912     // The individual threads will set their evac-failure closures.
  4913     StrongRootsScope srs(this);
  4914     if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
  4915     workers()->run_task(&g1_par_task);
  4916   } else {
  4917     StrongRootsScope srs(this);
  4918     g1_par_task.work(0);
  4921   double par_time = (os::elapsedTime() - start_par) * 1000.0;
  4922   g1_policy()->record_par_time(par_time);
  4923   set_par_threads(0);
  4924   // Is this the right thing to do here?  We don't save marks
  4925   // on individual heap regions when we allocate from
  4926   // them in parallel, so this seems like the correct place for this.
  4927   retire_all_alloc_regions();
  4929   // Weak root processing.
  4930   // Note: when JSR 292 is enabled and code blobs can contain
  4931   // non-perm oops then we will need to process the code blobs
  4932   // here too.
  4934     G1IsAliveClosure is_alive(this);
  4935     G1KeepAliveClosure keep_alive(this);
  4936     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
  4938   release_gc_alloc_regions(false /* totally */);
  4939   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
  4941   concurrent_g1_refine()->clear_hot_cache();
  4942   concurrent_g1_refine()->set_use_cache(true);
  4944   finalize_for_evac_failure();
  4946   // Must do this before removing self-forwarding pointers, which clears
  4947   // the per-region evac-failure flags.
  4948   concurrent_mark()->complete_marking_in_collection_set();
  4950   if (evacuation_failed()) {
  4951     remove_self_forwarding_pointers();
  4952     if (PrintGCDetails) {
  4953       gclog_or_tty->print(" (to-space overflow)");
  4954     } else if (PrintGC) {
  4955       gclog_or_tty->print("--");
  4959   if (G1DeferredRSUpdate) {
  4960     RedirtyLoggedCardTableEntryFastClosure redirty;
  4961     dirty_card_queue_set().set_closure(&redirty);
  4962     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
  4964     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
  4965     dcq.merge_bufferlists(&dirty_card_queue_set());
  4966     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
  4968   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
  4971 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
  4972                                      size_t* pre_used,
  4973                                      FreeRegionList* free_list,
  4974                                      HumongousRegionSet* humongous_proxy_set,
  4975                                      HRRSCleanupTask* hrrs_cleanup_task,
  4976                                      bool par) {
  4977   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
  4978     if (hr->isHumongous()) {
  4979       assert(hr->startsHumongous(), "we should only see starts humongous");
  4980       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
  4981     } else {
  4982       free_region(hr, pre_used, free_list, par);
  4984   } else {
  4985     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
  4989 void G1CollectedHeap::free_region(HeapRegion* hr,
  4990                                   size_t* pre_used,
  4991                                   FreeRegionList* free_list,
  4992                                   bool par) {
  4993   assert(!hr->isHumongous(), "this is only for non-humongous regions");
  4994   assert(!hr->is_empty(), "the region should not be empty");
  4995   assert(free_list != NULL, "pre-condition");
  4997   *pre_used += hr->used();
  4998   hr->hr_clear(par, true /* clear_space */);
  4999   free_list->add_as_tail(hr);
  5002 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
  5003                                      size_t* pre_used,
  5004                                      FreeRegionList* free_list,
  5005                                      HumongousRegionSet* humongous_proxy_set,
  5006                                      bool par) {
  5007   assert(hr->startsHumongous(), "this is only for starts humongous regions");
  5008   assert(free_list != NULL, "pre-condition");
  5009   assert(humongous_proxy_set != NULL, "pre-condition");
  5011   size_t hr_used = hr->used();
  5012   size_t hr_capacity = hr->capacity();
  5013   size_t hr_pre_used = 0;
  5014   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
  5015   hr->set_notHumongous();
  5016   free_region(hr, &hr_pre_used, free_list, par);
  5018   int i = hr->hrs_index() + 1;
  5019   size_t num = 1;
  5020   while ((size_t) i < n_regions()) {
  5021     HeapRegion* curr_hr = _hrs->at(i);
  5022     if (!curr_hr->continuesHumongous()) {
  5023       break;
  5025     curr_hr->set_notHumongous();
  5026     free_region(curr_hr, &hr_pre_used, free_list, par);
  5027     num += 1;
  5028     i += 1;
  5030   assert(hr_pre_used == hr_used,
  5031          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
  5032                  "should be the same", hr_pre_used, hr_used));
  5033   *pre_used += hr_pre_used;
  5036 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
  5037                                        FreeRegionList* free_list,
  5038                                        HumongousRegionSet* humongous_proxy_set,
  5039                                        bool par) {
  5040   if (pre_used > 0) {
  5041     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
  5042     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
  5043     assert(_summary_bytes_used >= pre_used,
  5044            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
  5045                    "should be >= pre_used: "SIZE_FORMAT,
  5046                    _summary_bytes_used, pre_used));
  5047     _summary_bytes_used -= pre_used;
  5049   if (free_list != NULL && !free_list->is_empty()) {
  5050     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
  5051     _free_list.add_as_tail(free_list);
  5053   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
  5054     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
  5055     _humongous_set.update_from_proxy(humongous_proxy_set);
  5059 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
  5060   while (list != NULL) {
  5061     guarantee( list->is_young(), "invariant" );
  5063     HeapWord* bottom = list->bottom();
  5064     HeapWord* end = list->end();
  5065     MemRegion mr(bottom, end);
  5066     ct_bs->dirty(mr);
  5068     list = list->get_next_young_region();
  5073 class G1ParCleanupCTTask : public AbstractGangTask {
  5074   CardTableModRefBS* _ct_bs;
  5075   G1CollectedHeap* _g1h;
  5076   HeapRegion* volatile _su_head;
  5077 public:
  5078   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
  5079                      G1CollectedHeap* g1h,
  5080                      HeapRegion* survivor_list) :
  5081     AbstractGangTask("G1 Par Cleanup CT Task"),
  5082     _ct_bs(ct_bs),
  5083     _g1h(g1h),
  5084     _su_head(survivor_list)
  5085   { }
  5087   void work(int i) {
  5088     HeapRegion* r;
  5089     while (r = _g1h->pop_dirty_cards_region()) {
  5090       clear_cards(r);
  5092     // Redirty the cards of the survivor regions.
  5093     dirty_list(&this->_su_head);
  5096   void clear_cards(HeapRegion* r) {
  5097     // Cards for Survivor regions will be dirtied later.
  5098     if (!r->is_survivor()) {
  5099       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
  5103   void dirty_list(HeapRegion* volatile * head_ptr) {
  5104     HeapRegion* head;
  5105     do {
  5106       // Pop region off the list.
  5107       head = *head_ptr;
  5108       if (head != NULL) {
  5109         HeapRegion* r = (HeapRegion*)
  5110           Atomic::cmpxchg_ptr(head->get_next_young_region(), head_ptr, head);
  5111         if (r == head) {
  5112           assert(!r->isHumongous(), "Humongous regions shouldn't be on survivor list");
  5113           _ct_bs->dirty(MemRegion(r->bottom(), r->end()));
  5116     } while (*head_ptr != NULL);
  5118 };
  5121 #ifndef PRODUCT
  5122 class G1VerifyCardTableCleanup: public HeapRegionClosure {
  5123   CardTableModRefBS* _ct_bs;
  5124 public:
  5125   G1VerifyCardTableCleanup(CardTableModRefBS* ct_bs)
  5126     : _ct_bs(ct_bs)
  5127   { }
  5128   virtual bool doHeapRegion(HeapRegion* r)
  5130     MemRegion mr(r->bottom(), r->end());
  5131     if (r->is_survivor()) {
  5132       _ct_bs->verify_dirty_region(mr);
  5133     } else {
  5134       _ct_bs->verify_clean_region(mr);
  5136     return false;
  5138 };
  5139 #endif
  5141 void G1CollectedHeap::cleanUpCardTable() {
  5142   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
  5143   double start = os::elapsedTime();
  5145   // Iterate over the dirty cards region list.
  5146   G1ParCleanupCTTask cleanup_task(ct_bs, this,
  5147                                   _young_list->first_survivor_region());
  5149   if (ParallelGCThreads > 0) {
  5150     set_par_threads(workers()->total_workers());
  5151     workers()->run_task(&cleanup_task);
  5152     set_par_threads(0);
  5153   } else {
  5154     while (_dirty_cards_region_list) {
  5155       HeapRegion* r = _dirty_cards_region_list;
  5156       cleanup_task.clear_cards(r);
  5157       _dirty_cards_region_list = r->get_next_dirty_cards_region();
  5158       if (_dirty_cards_region_list == r) {
  5159         // The last region.
  5160         _dirty_cards_region_list = NULL;
  5162       r->set_next_dirty_cards_region(NULL);
  5164     // now, redirty the cards of the survivor regions
  5165     // (it seemed faster to do it this way, instead of iterating over
  5166     // all regions and then clearing / dirtying as appropriate)
  5167     dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
  5170   double elapsed = os::elapsedTime() - start;
  5171   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
  5172 #ifndef PRODUCT
  5173   if (G1VerifyCTCleanup || VerifyAfterGC) {
  5174     G1VerifyCardTableCleanup cleanup_verifier(ct_bs);
  5175     heap_region_iterate(&cleanup_verifier);
  5177 #endif
  5180 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
  5181   size_t pre_used = 0;
  5182   FreeRegionList local_free_list("Local List for CSet Freeing");
  5184   double young_time_ms     = 0.0;
  5185   double non_young_time_ms = 0.0;
  5187   // Since the collection set is a superset of the the young list,
  5188   // all we need to do to clear the young list is clear its
  5189   // head and length, and unlink any young regions in the code below
  5190   _young_list->clear();
  5192   G1CollectorPolicy* policy = g1_policy();
  5194   double start_sec = os::elapsedTime();
  5195   bool non_young = true;
  5197   HeapRegion* cur = cs_head;
  5198   int age_bound = -1;
  5199   size_t rs_lengths = 0;
  5201   while (cur != NULL) {
  5202     assert(!is_on_free_list(cur), "sanity");
  5204     if (non_young) {
  5205       if (cur->is_young()) {
  5206         double end_sec = os::elapsedTime();
  5207         double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5208         non_young_time_ms += elapsed_ms;
  5210         start_sec = os::elapsedTime();
  5211         non_young = false;
  5213     } else {
  5214       double end_sec = os::elapsedTime();
  5215       double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5216       young_time_ms += elapsed_ms;
  5218       start_sec = os::elapsedTime();
  5219       non_young = true;
  5222     rs_lengths += cur->rem_set()->occupied();
  5224     HeapRegion* next = cur->next_in_collection_set();
  5225     assert(cur->in_collection_set(), "bad CS");
  5226     cur->set_next_in_collection_set(NULL);
  5227     cur->set_in_collection_set(false);
  5229     if (cur->is_young()) {
  5230       int index = cur->young_index_in_cset();
  5231       guarantee( index != -1, "invariant" );
  5232       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
  5233       size_t words_survived = _surviving_young_words[index];
  5234       cur->record_surv_words_in_group(words_survived);
  5236       // At this point the we have 'popped' cur from the collection set
  5237       // (linked via next_in_collection_set()) but it is still in the
  5238       // young list (linked via next_young_region()). Clear the
  5239       // _next_young_region field.
  5240       cur->set_next_young_region(NULL);
  5241     } else {
  5242       int index = cur->young_index_in_cset();
  5243       guarantee( index == -1, "invariant" );
  5246     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
  5247             (!cur->is_young() && cur->young_index_in_cset() == -1),
  5248             "invariant" );
  5250     if (!cur->evacuation_failed()) {
  5251       // And the region is empty.
  5252       assert(!cur->is_empty(), "Should not have empty regions in a CS.");
  5253       free_region(cur, &pre_used, &local_free_list, false /* par */);
  5254     } else {
  5255       cur->uninstall_surv_rate_group();
  5256       if (cur->is_young())
  5257         cur->set_young_index_in_cset(-1);
  5258       cur->set_not_young();
  5259       cur->set_evacuation_failed(false);
  5261     cur = next;
  5264   policy->record_max_rs_lengths(rs_lengths);
  5265   policy->cset_regions_freed();
  5267   double end_sec = os::elapsedTime();
  5268   double elapsed_ms = (end_sec - start_sec) * 1000.0;
  5269   if (non_young)
  5270     non_young_time_ms += elapsed_ms;
  5271   else
  5272     young_time_ms += elapsed_ms;
  5274   update_sets_after_freeing_regions(pre_used, &local_free_list,
  5275                                     NULL /* humongous_proxy_set */,
  5276                                     false /* par */);
  5277   policy->record_young_free_cset_time_ms(young_time_ms);
  5278   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
  5281 // This routine is similar to the above but does not record
  5282 // any policy statistics or update free lists; we are abandoning
  5283 // the current incremental collection set in preparation of a
  5284 // full collection. After the full GC we will start to build up
  5285 // the incremental collection set again.
  5286 // This is only called when we're doing a full collection
  5287 // and is immediately followed by the tearing down of the young list.
  5289 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
  5290   HeapRegion* cur = cs_head;
  5292   while (cur != NULL) {
  5293     HeapRegion* next = cur->next_in_collection_set();
  5294     assert(cur->in_collection_set(), "bad CS");
  5295     cur->set_next_in_collection_set(NULL);
  5296     cur->set_in_collection_set(false);
  5297     cur->set_young_index_in_cset(-1);
  5298     cur = next;
  5302 void G1CollectedHeap::set_free_regions_coming() {
  5303   if (G1ConcRegionFreeingVerbose) {
  5304     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5305                            "setting free regions coming");
  5308   assert(!free_regions_coming(), "pre-condition");
  5309   _free_regions_coming = true;
  5312 void G1CollectedHeap::reset_free_regions_coming() {
  5314     assert(free_regions_coming(), "pre-condition");
  5315     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5316     _free_regions_coming = false;
  5317     SecondaryFreeList_lock->notify_all();
  5320   if (G1ConcRegionFreeingVerbose) {
  5321     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
  5322                            "reset free regions coming");
  5326 void G1CollectedHeap::wait_while_free_regions_coming() {
  5327   // Most of the time we won't have to wait, so let's do a quick test
  5328   // first before we take the lock.
  5329   if (!free_regions_coming()) {
  5330     return;
  5333   if (G1ConcRegionFreeingVerbose) {
  5334     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5335                            "waiting for free regions");
  5339     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5340     while (free_regions_coming()) {
  5341       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
  5345   if (G1ConcRegionFreeingVerbose) {
  5346     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
  5347                            "done waiting for free regions");
  5351 size_t G1CollectedHeap::n_regions() {
  5352   return _hrs->length();
  5355 size_t G1CollectedHeap::max_regions() {
  5356   return
  5357     (size_t)align_size_up(max_capacity(), HeapRegion::GrainBytes) /
  5358     HeapRegion::GrainBytes;
  5361 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
  5362   assert(heap_lock_held_for_gc(),
  5363               "the heap lock should already be held by or for this thread");
  5364   _young_list->push_region(hr);
  5365   g1_policy()->set_region_short_lived(hr);
  5368 class NoYoungRegionsClosure: public HeapRegionClosure {
  5369 private:
  5370   bool _success;
  5371 public:
  5372   NoYoungRegionsClosure() : _success(true) { }
  5373   bool doHeapRegion(HeapRegion* r) {
  5374     if (r->is_young()) {
  5375       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
  5376                              r->bottom(), r->end());
  5377       _success = false;
  5379     return false;
  5381   bool success() { return _success; }
  5382 };
  5384 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
  5385   bool ret = _young_list->check_list_empty(check_sample);
  5387   if (check_heap) {
  5388     NoYoungRegionsClosure closure;
  5389     heap_region_iterate(&closure);
  5390     ret = ret && closure.success();
  5393   return ret;
  5396 void G1CollectedHeap::empty_young_list() {
  5397   assert(heap_lock_held_for_gc(),
  5398               "the heap lock should already be held by or for this thread");
  5399   assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
  5401   _young_list->empty_list();
  5404 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
  5405   bool no_allocs = true;
  5406   for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
  5407     HeapRegion* r = _gc_alloc_regions[ap];
  5408     no_allocs = r == NULL || r->saved_mark_at_top();
  5410   return no_allocs;
  5413 void G1CollectedHeap::retire_all_alloc_regions() {
  5414   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
  5415     HeapRegion* r = _gc_alloc_regions[ap];
  5416     if (r != NULL) {
  5417       // Check for aliases.
  5418       bool has_processed_alias = false;
  5419       for (int i = 0; i < ap; ++i) {
  5420         if (_gc_alloc_regions[i] == r) {
  5421           has_processed_alias = true;
  5422           break;
  5425       if (!has_processed_alias) {
  5426         retire_alloc_region(r, false /* par */);
  5432 // Done at the start of full GC.
  5433 void G1CollectedHeap::tear_down_region_lists() {
  5434   _free_list.remove_all();
  5437 class RegionResetter: public HeapRegionClosure {
  5438   G1CollectedHeap* _g1h;
  5439   FreeRegionList _local_free_list;
  5441 public:
  5442   RegionResetter() : _g1h(G1CollectedHeap::heap()),
  5443                      _local_free_list("Local Free List for RegionResetter") { }
  5445   bool doHeapRegion(HeapRegion* r) {
  5446     if (r->continuesHumongous()) return false;
  5447     if (r->top() > r->bottom()) {
  5448       if (r->top() < r->end()) {
  5449         Copy::fill_to_words(r->top(),
  5450                           pointer_delta(r->end(), r->top()));
  5452     } else {
  5453       assert(r->is_empty(), "tautology");
  5454       _local_free_list.add_as_tail(r);
  5456     return false;
  5459   void update_free_lists() {
  5460     _g1h->update_sets_after_freeing_regions(0, &_local_free_list, NULL,
  5461                                             false /* par */);
  5463 };
  5465 // Done at the end of full GC.
  5466 void G1CollectedHeap::rebuild_region_lists() {
  5467   // This needs to go at the end of the full GC.
  5468   RegionResetter rs;
  5469   heap_region_iterate(&rs);
  5470   rs.update_free_lists();
  5473 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
  5474   _refine_cte_cl->set_concurrent(concurrent);
  5477 #ifdef ASSERT
  5479 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
  5480   HeapRegion* hr = heap_region_containing(p);
  5481   if (hr == NULL) {
  5482     return is_in_permanent(p);
  5483   } else {
  5484     return hr->is_in(p);
  5487 #endif // ASSERT
  5489 class VerifyRegionListsClosure : public HeapRegionClosure {
  5490 private:
  5491   HumongousRegionSet* _humongous_set;
  5492   FreeRegionList*     _free_list;
  5493   size_t              _region_count;
  5495 public:
  5496   VerifyRegionListsClosure(HumongousRegionSet* humongous_set,
  5497                            FreeRegionList* free_list) :
  5498     _humongous_set(humongous_set), _free_list(free_list),
  5499     _region_count(0) { }
  5501   size_t region_count()      { return _region_count;      }
  5503   bool doHeapRegion(HeapRegion* hr) {
  5504     _region_count += 1;
  5506     if (hr->continuesHumongous()) {
  5507       return false;
  5510     if (hr->is_young()) {
  5511       // TODO
  5512     } else if (hr->startsHumongous()) {
  5513       _humongous_set->verify_next_region(hr);
  5514     } else if (hr->is_empty()) {
  5515       _free_list->verify_next_region(hr);
  5517     return false;
  5519 };
  5521 void G1CollectedHeap::verify_region_sets() {
  5522   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
  5524   // First, check the explicit lists.
  5525   _free_list.verify();
  5527     // Given that a concurrent operation might be adding regions to
  5528     // the secondary free list we have to take the lock before
  5529     // verifying it.
  5530     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5531     _secondary_free_list.verify();
  5533   _humongous_set.verify();
  5535   // If a concurrent region freeing operation is in progress it will
  5536   // be difficult to correctly attributed any free regions we come
  5537   // across to the correct free list given that they might belong to
  5538   // one of several (free_list, secondary_free_list, any local lists,
  5539   // etc.). So, if that's the case we will skip the rest of the
  5540   // verification operation. Alternatively, waiting for the concurrent
  5541   // operation to complete will have a non-trivial effect on the GC's
  5542   // operation (no concurrent operation will last longer than the
  5543   // interval between two calls to verification) and it might hide
  5544   // any issues that we would like to catch during testing.
  5545   if (free_regions_coming()) {
  5546     return;
  5550     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  5551     // Make sure we append the secondary_free_list on the free_list so
  5552     // that all free regions we will come across can be safely
  5553     // attributed to the free_list.
  5554     append_secondary_free_list();
  5557   // Finally, make sure that the region accounting in the lists is
  5558   // consistent with what we see in the heap.
  5559   _humongous_set.verify_start();
  5560   _free_list.verify_start();
  5562   VerifyRegionListsClosure cl(&_humongous_set, &_free_list);
  5563   heap_region_iterate(&cl);
  5565   _humongous_set.verify_end();
  5566   _free_list.verify_end();

mercurial