src/cpu/x86/vm/templateTable_x86_32.cpp

Thu, 31 Mar 2011 00:27:08 -0700

author
twisti
date
Thu, 31 Mar 2011 00:27:08 -0700
changeset 2697
09f96c3ff1ad
parent 2639
8033953d67ff
child 2698
38fea01eb669
permissions
-rw-r--r--

7032388: guarantee(VM_Version::supports_cmov()) failed: illegal instruction on i586 after 6919934
Summary: 6919934 added some unguarded cmov instructions which hit a guarantee on older hardware.
Reviewed-by: never, iveresov, kvn, phh

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "interpreter/templateTable.hpp"
    30 #include "memory/universe.inline.hpp"
    31 #include "oops/methodDataOop.hpp"
    32 #include "oops/objArrayKlass.hpp"
    33 #include "oops/oop.inline.hpp"
    34 #include "prims/methodHandles.hpp"
    35 #include "runtime/sharedRuntime.hpp"
    36 #include "runtime/stubRoutines.hpp"
    37 #include "runtime/synchronizer.hpp"
    39 #ifndef CC_INTERP
    40 #define __ _masm->
    42 //----------------------------------------------------------------------------------------------------
    43 // Platform-dependent initialization
    45 void TemplateTable::pd_initialize() {
    46   // No i486 specific initialization
    47 }
    49 //----------------------------------------------------------------------------------------------------
    50 // Address computation
    52 // local variables
    53 static inline Address iaddress(int n)            {
    54   return Address(rdi, Interpreter::local_offset_in_bytes(n));
    55 }
    57 static inline Address laddress(int n)            { return iaddress(n + 1); }
    58 static inline Address haddress(int n)            { return iaddress(n + 0); }
    59 static inline Address faddress(int n)            { return iaddress(n); }
    60 static inline Address daddress(int n)            { return laddress(n); }
    61 static inline Address aaddress(int n)            { return iaddress(n); }
    63 static inline Address iaddress(Register r)       {
    64   return Address(rdi, r, Interpreter::stackElementScale());
    65 }
    66 static inline Address laddress(Register r)       {
    67   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
    68 }
    69 static inline Address haddress(Register r)       {
    70   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
    71 }
    73 static inline Address faddress(Register r)       { return iaddress(r); }
    74 static inline Address daddress(Register r)       { return laddress(r); }
    75 static inline Address aaddress(Register r)       { return iaddress(r); }
    77 // expression stack
    78 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
    79 // data beyond the rsp which is potentially unsafe in an MT environment;
    80 // an interrupt may overwrite that data.)
    81 static inline Address at_rsp   () {
    82   return Address(rsp, 0);
    83 }
    85 // At top of Java expression stack which may be different than rsp().  It
    86 // isn't for category 1 objects.
    87 static inline Address at_tos   () {
    88   Address tos = Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    89   return tos;
    90 }
    92 static inline Address at_tos_p1() {
    93   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
    94 }
    96 static inline Address at_tos_p2() {
    97   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
    98 }
   100 // Condition conversion
   101 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   102   switch (cc) {
   103     case TemplateTable::equal        : return Assembler::notEqual;
   104     case TemplateTable::not_equal    : return Assembler::equal;
   105     case TemplateTable::less         : return Assembler::greaterEqual;
   106     case TemplateTable::less_equal   : return Assembler::greater;
   107     case TemplateTable::greater      : return Assembler::lessEqual;
   108     case TemplateTable::greater_equal: return Assembler::less;
   109   }
   110   ShouldNotReachHere();
   111   return Assembler::zero;
   112 }
   115 //----------------------------------------------------------------------------------------------------
   116 // Miscelaneous helper routines
   118 // Store an oop (or NULL) at the address described by obj.
   119 // If val == noreg this means store a NULL
   121 static void do_oop_store(InterpreterMacroAssembler* _masm,
   122                          Address obj,
   123                          Register val,
   124                          BarrierSet::Name barrier,
   125                          bool precise) {
   126   assert(val == noreg || val == rax, "parameter is just for looks");
   127   switch (barrier) {
   128 #ifndef SERIALGC
   129     case BarrierSet::G1SATBCT:
   130     case BarrierSet::G1SATBCTLogging:
   131       {
   132         // flatten object address if needed
   133         // We do it regardless of precise because we need the registers
   134         if (obj.index() == noreg && obj.disp() == 0) {
   135           if (obj.base() != rdx) {
   136             __ movl(rdx, obj.base());
   137           }
   138         } else {
   139           __ leal(rdx, obj);
   140         }
   141         __ get_thread(rcx);
   142         __ save_bcp();
   143         __ g1_write_barrier_pre(rdx, rcx, rsi, rbx, val != noreg);
   145         // Do the actual store
   146         // noreg means NULL
   147         if (val == noreg) {
   148           __ movptr(Address(rdx, 0), NULL_WORD);
   149           // No post barrier for NULL
   150         } else {
   151           __ movl(Address(rdx, 0), val);
   152           __ g1_write_barrier_post(rdx, rax, rcx, rbx, rsi);
   153         }
   154         __ restore_bcp();
   156       }
   157       break;
   158 #endif // SERIALGC
   159     case BarrierSet::CardTableModRef:
   160     case BarrierSet::CardTableExtension:
   161       {
   162         if (val == noreg) {
   163           __ movptr(obj, NULL_WORD);
   164         } else {
   165           __ movl(obj, val);
   166           // flatten object address if needed
   167           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   168             __ store_check(obj.base());
   169           } else {
   170             __ leal(rdx, obj);
   171             __ store_check(rdx);
   172           }
   173         }
   174       }
   175       break;
   176     case BarrierSet::ModRef:
   177     case BarrierSet::Other:
   178       if (val == noreg) {
   179         __ movptr(obj, NULL_WORD);
   180       } else {
   181         __ movl(obj, val);
   182       }
   183       break;
   184     default      :
   185       ShouldNotReachHere();
   187   }
   188 }
   190 Address TemplateTable::at_bcp(int offset) {
   191   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   192   return Address(rsi, offset);
   193 }
   196 void TemplateTable::patch_bytecode(Bytecodes::Code bytecode, Register bc,
   197                                    Register scratch,
   198                                    bool load_bc_into_scratch/*=true*/) {
   200   if (!RewriteBytecodes) return;
   201   // the pair bytecodes have already done the load.
   202   if (load_bc_into_scratch) {
   203     __ movl(bc, bytecode);
   204   }
   205   Label patch_done;
   206   if (JvmtiExport::can_post_breakpoint()) {
   207     Label fast_patch;
   208     // if a breakpoint is present we can't rewrite the stream directly
   209     __ movzbl(scratch, at_bcp(0));
   210     __ cmpl(scratch, Bytecodes::_breakpoint);
   211     __ jcc(Assembler::notEqual, fast_patch);
   212     __ get_method(scratch);
   213     // Let breakpoint table handling rewrite to quicker bytecode
   214     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), scratch, rsi, bc);
   215 #ifndef ASSERT
   216     __ jmpb(patch_done);
   217 #else
   218     __ jmp(patch_done);
   219 #endif
   220     __ bind(fast_patch);
   221   }
   222 #ifdef ASSERT
   223   Label okay;
   224   __ load_unsigned_byte(scratch, at_bcp(0));
   225   __ cmpl(scratch, (int)Bytecodes::java_code(bytecode));
   226   __ jccb(Assembler::equal, okay);
   227   __ cmpl(scratch, bc);
   228   __ jcc(Assembler::equal, okay);
   229   __ stop("patching the wrong bytecode");
   230   __ bind(okay);
   231 #endif
   232   // patch bytecode
   233   __ movb(at_bcp(0), bc);
   234   __ bind(patch_done);
   235 }
   237 //----------------------------------------------------------------------------------------------------
   238 // Individual instructions
   240 void TemplateTable::nop() {
   241   transition(vtos, vtos);
   242   // nothing to do
   243 }
   245 void TemplateTable::shouldnotreachhere() {
   246   transition(vtos, vtos);
   247   __ stop("shouldnotreachhere bytecode");
   248 }
   252 void TemplateTable::aconst_null() {
   253   transition(vtos, atos);
   254   __ xorptr(rax, rax);
   255 }
   258 void TemplateTable::iconst(int value) {
   259   transition(vtos, itos);
   260   if (value == 0) {
   261     __ xorptr(rax, rax);
   262   } else {
   263     __ movptr(rax, value);
   264   }
   265 }
   268 void TemplateTable::lconst(int value) {
   269   transition(vtos, ltos);
   270   if (value == 0) {
   271     __ xorptr(rax, rax);
   272   } else {
   273     __ movptr(rax, value);
   274   }
   275   assert(value >= 0, "check this code");
   276   __ xorptr(rdx, rdx);
   277 }
   280 void TemplateTable::fconst(int value) {
   281   transition(vtos, ftos);
   282          if (value == 0) { __ fldz();
   283   } else if (value == 1) { __ fld1();
   284   } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
   285   } else                 { ShouldNotReachHere();
   286   }
   287 }
   290 void TemplateTable::dconst(int value) {
   291   transition(vtos, dtos);
   292          if (value == 0) { __ fldz();
   293   } else if (value == 1) { __ fld1();
   294   } else                 { ShouldNotReachHere();
   295   }
   296 }
   299 void TemplateTable::bipush() {
   300   transition(vtos, itos);
   301   __ load_signed_byte(rax, at_bcp(1));
   302 }
   305 void TemplateTable::sipush() {
   306   transition(vtos, itos);
   307   __ load_unsigned_short(rax, at_bcp(1));
   308   __ bswapl(rax);
   309   __ sarl(rax, 16);
   310 }
   312 void TemplateTable::ldc(bool wide) {
   313   transition(vtos, vtos);
   314   Label call_ldc, notFloat, notClass, Done;
   316   if (wide) {
   317     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   318   } else {
   319     __ load_unsigned_byte(rbx, at_bcp(1));
   320   }
   321   __ get_cpool_and_tags(rcx, rax);
   322   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   323   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   325   // get type
   326   __ xorptr(rdx, rdx);
   327   __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   329   // unresolved string - get the resolved string
   330   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   331   __ jccb(Assembler::equal, call_ldc);
   333   // unresolved class - get the resolved class
   334   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   335   __ jccb(Assembler::equal, call_ldc);
   337   // unresolved class in error (resolution failed) - call into runtime
   338   // so that the same error from first resolution attempt is thrown.
   339   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   340   __ jccb(Assembler::equal, call_ldc);
   342   // resolved class - need to call vm to get java mirror of the class
   343   __ cmpl(rdx, JVM_CONSTANT_Class);
   344   __ jcc(Assembler::notEqual, notClass);
   346   __ bind(call_ldc);
   347   __ movl(rcx, wide);
   348   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
   349   __ push(atos);
   350   __ jmp(Done);
   352   __ bind(notClass);
   353   __ cmpl(rdx, JVM_CONSTANT_Float);
   354   __ jccb(Assembler::notEqual, notFloat);
   355   // ftos
   356   __ fld_s(    Address(rcx, rbx, Address::times_ptr, base_offset));
   357   __ push(ftos);
   358   __ jmp(Done);
   360   __ bind(notFloat);
   361 #ifdef ASSERT
   362   { Label L;
   363     __ cmpl(rdx, JVM_CONSTANT_Integer);
   364     __ jcc(Assembler::equal, L);
   365     __ cmpl(rdx, JVM_CONSTANT_String);
   366     __ jcc(Assembler::equal, L);
   367     __ stop("unexpected tag type in ldc");
   368     __ bind(L);
   369   }
   370 #endif
   371   Label isOop;
   372   // atos and itos
   373   // String is only oop type we will see here
   374   __ cmpl(rdx, JVM_CONSTANT_String);
   375   __ jccb(Assembler::equal, isOop);
   376   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
   377   __ push(itos);
   378   __ jmp(Done);
   379   __ bind(isOop);
   380   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
   381   __ push(atos);
   383   if (VerifyOops) {
   384     __ verify_oop(rax);
   385   }
   386   __ bind(Done);
   387 }
   389 // Fast path for caching oop constants.
   390 // %%% We should use this to handle Class and String constants also.
   391 // %%% It will simplify the ldc/primitive path considerably.
   392 void TemplateTable::fast_aldc(bool wide) {
   393   transition(vtos, atos);
   395   if (!EnableMethodHandles) {
   396     // We should not encounter this bytecode if !EnableMethodHandles.
   397     // The verifier will stop it.  However, if we get past the verifier,
   398     // this will stop the thread in a reasonable way, without crashing the JVM.
   399     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
   400                      InterpreterRuntime::throw_IncompatibleClassChangeError));
   401     // the call_VM checks for exception, so we should never return here.
   402     __ should_not_reach_here();
   403     return;
   404   }
   406   const Register cache = rcx;
   407   const Register index = rdx;
   409   resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
   410   if (VerifyOops) {
   411     __ verify_oop(rax);
   412   }
   414   Label L_done, L_throw_exception;
   415   const Register con_klass_temp = rcx;  // same as Rcache
   416   __ movptr(con_klass_temp, Address(rax, oopDesc::klass_offset_in_bytes()));
   417   __ cmpptr(con_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr()));
   418   __ jcc(Assembler::notEqual, L_done);
   419   __ cmpl(Address(rax, arrayOopDesc::length_offset_in_bytes()), 0);
   420   __ jcc(Assembler::notEqual, L_throw_exception);
   421   __ xorptr(rax, rax);
   422   __ jmp(L_done);
   424   // Load the exception from the system-array which wraps it:
   425   __ bind(L_throw_exception);
   426   __ movptr(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   427   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   429   __ bind(L_done);
   430 }
   432 void TemplateTable::ldc2_w() {
   433   transition(vtos, vtos);
   434   Label Long, Done;
   435   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   437   __ get_cpool_and_tags(rcx, rax);
   438   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   439   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   441   // get type
   442   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
   443   __ jccb(Assembler::notEqual, Long);
   444   // dtos
   445   __ fld_d(    Address(rcx, rbx, Address::times_ptr, base_offset));
   446   __ push(dtos);
   447   __ jmpb(Done);
   449   __ bind(Long);
   450   // ltos
   451   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
   452   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
   454   __ push(ltos);
   456   __ bind(Done);
   457 }
   460 void TemplateTable::locals_index(Register reg, int offset) {
   461   __ load_unsigned_byte(reg, at_bcp(offset));
   462   __ negptr(reg);
   463 }
   466 void TemplateTable::iload() {
   467   transition(vtos, itos);
   468   if (RewriteFrequentPairs) {
   469     Label rewrite, done;
   471     // get next byte
   472     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   473     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   474     // last two iloads in a pair.  Comparing against fast_iload means that
   475     // the next bytecode is neither an iload or a caload, and therefore
   476     // an iload pair.
   477     __ cmpl(rbx, Bytecodes::_iload);
   478     __ jcc(Assembler::equal, done);
   480     __ cmpl(rbx, Bytecodes::_fast_iload);
   481     __ movl(rcx, Bytecodes::_fast_iload2);
   482     __ jccb(Assembler::equal, rewrite);
   484     // if _caload, rewrite to fast_icaload
   485     __ cmpl(rbx, Bytecodes::_caload);
   486     __ movl(rcx, Bytecodes::_fast_icaload);
   487     __ jccb(Assembler::equal, rewrite);
   489     // rewrite so iload doesn't check again.
   490     __ movl(rcx, Bytecodes::_fast_iload);
   492     // rewrite
   493     // rcx: fast bytecode
   494     __ bind(rewrite);
   495     patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
   496     __ bind(done);
   497   }
   499   // Get the local value into tos
   500   locals_index(rbx);
   501   __ movl(rax, iaddress(rbx));
   502 }
   505 void TemplateTable::fast_iload2() {
   506   transition(vtos, itos);
   507   locals_index(rbx);
   508   __ movl(rax, iaddress(rbx));
   509   __ push(itos);
   510   locals_index(rbx, 3);
   511   __ movl(rax, iaddress(rbx));
   512 }
   514 void TemplateTable::fast_iload() {
   515   transition(vtos, itos);
   516   locals_index(rbx);
   517   __ movl(rax, iaddress(rbx));
   518 }
   521 void TemplateTable::lload() {
   522   transition(vtos, ltos);
   523   locals_index(rbx);
   524   __ movptr(rax, laddress(rbx));
   525   NOT_LP64(__ movl(rdx, haddress(rbx)));
   526 }
   529 void TemplateTable::fload() {
   530   transition(vtos, ftos);
   531   locals_index(rbx);
   532   __ fld_s(faddress(rbx));
   533 }
   536 void TemplateTable::dload() {
   537   transition(vtos, dtos);
   538   locals_index(rbx);
   539   __ fld_d(daddress(rbx));
   540 }
   543 void TemplateTable::aload() {
   544   transition(vtos, atos);
   545   locals_index(rbx);
   546   __ movptr(rax, aaddress(rbx));
   547 }
   550 void TemplateTable::locals_index_wide(Register reg) {
   551   __ movl(reg, at_bcp(2));
   552   __ bswapl(reg);
   553   __ shrl(reg, 16);
   554   __ negptr(reg);
   555 }
   558 void TemplateTable::wide_iload() {
   559   transition(vtos, itos);
   560   locals_index_wide(rbx);
   561   __ movl(rax, iaddress(rbx));
   562 }
   565 void TemplateTable::wide_lload() {
   566   transition(vtos, ltos);
   567   locals_index_wide(rbx);
   568   __ movptr(rax, laddress(rbx));
   569   NOT_LP64(__ movl(rdx, haddress(rbx)));
   570 }
   573 void TemplateTable::wide_fload() {
   574   transition(vtos, ftos);
   575   locals_index_wide(rbx);
   576   __ fld_s(faddress(rbx));
   577 }
   580 void TemplateTable::wide_dload() {
   581   transition(vtos, dtos);
   582   locals_index_wide(rbx);
   583   __ fld_d(daddress(rbx));
   584 }
   587 void TemplateTable::wide_aload() {
   588   transition(vtos, atos);
   589   locals_index_wide(rbx);
   590   __ movptr(rax, aaddress(rbx));
   591 }
   593 void TemplateTable::index_check(Register array, Register index) {
   594   // Pop ptr into array
   595   __ pop_ptr(array);
   596   index_check_without_pop(array, index);
   597 }
   599 void TemplateTable::index_check_without_pop(Register array, Register index) {
   600   // destroys rbx,
   601   // check array
   602   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   603   LP64_ONLY(__ movslq(index, index));
   604   // check index
   605   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   606   if (index != rbx) {
   607     // ??? convention: move aberrant index into rbx, for exception message
   608     assert(rbx != array, "different registers");
   609     __ mov(rbx, index);
   610   }
   611   __ jump_cc(Assembler::aboveEqual,
   612              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   613 }
   616 void TemplateTable::iaload() {
   617   transition(itos, itos);
   618   // rdx: array
   619   index_check(rdx, rax);  // kills rbx,
   620   // rax,: index
   621   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
   622 }
   625 void TemplateTable::laload() {
   626   transition(itos, ltos);
   627   // rax,: index
   628   // rdx: array
   629   index_check(rdx, rax);
   630   __ mov(rbx, rax);
   631   // rbx,: index
   632   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
   633   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
   634 }
   637 void TemplateTable::faload() {
   638   transition(itos, ftos);
   639   // rdx: array
   640   index_check(rdx, rax);  // kills rbx,
   641   // rax,: index
   642   __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   643 }
   646 void TemplateTable::daload() {
   647   transition(itos, dtos);
   648   // rdx: array
   649   index_check(rdx, rax);  // kills rbx,
   650   // rax,: index
   651   __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   652 }
   655 void TemplateTable::aaload() {
   656   transition(itos, atos);
   657   // rdx: array
   658   index_check(rdx, rax);  // kills rbx,
   659   // rax,: index
   660   __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   661 }
   664 void TemplateTable::baload() {
   665   transition(itos, itos);
   666   // rdx: array
   667   index_check(rdx, rax);  // kills rbx,
   668   // rax,: index
   669   // can do better code for P5 - fix this at some point
   670   __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   671   __ mov(rax, rbx);
   672 }
   675 void TemplateTable::caload() {
   676   transition(itos, itos);
   677   // rdx: array
   678   index_check(rdx, rax);  // kills rbx,
   679   // rax,: index
   680   // can do better code for P5 - may want to improve this at some point
   681   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   682   __ mov(rax, rbx);
   683 }
   685 // iload followed by caload frequent pair
   686 void TemplateTable::fast_icaload() {
   687   transition(vtos, itos);
   688   // load index out of locals
   689   locals_index(rbx);
   690   __ movl(rax, iaddress(rbx));
   692   // rdx: array
   693   index_check(rdx, rax);
   694   // rax,: index
   695   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   696   __ mov(rax, rbx);
   697 }
   699 void TemplateTable::saload() {
   700   transition(itos, itos);
   701   // rdx: array
   702   index_check(rdx, rax);  // kills rbx,
   703   // rax,: index
   704   // can do better code for P5 - may want to improve this at some point
   705   __ load_signed_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   706   __ mov(rax, rbx);
   707 }
   710 void TemplateTable::iload(int n) {
   711   transition(vtos, itos);
   712   __ movl(rax, iaddress(n));
   713 }
   716 void TemplateTable::lload(int n) {
   717   transition(vtos, ltos);
   718   __ movptr(rax, laddress(n));
   719   NOT_LP64(__ movptr(rdx, haddress(n)));
   720 }
   723 void TemplateTable::fload(int n) {
   724   transition(vtos, ftos);
   725   __ fld_s(faddress(n));
   726 }
   729 void TemplateTable::dload(int n) {
   730   transition(vtos, dtos);
   731   __ fld_d(daddress(n));
   732 }
   735 void TemplateTable::aload(int n) {
   736   transition(vtos, atos);
   737   __ movptr(rax, aaddress(n));
   738 }
   741 void TemplateTable::aload_0() {
   742   transition(vtos, atos);
   743   // According to bytecode histograms, the pairs:
   744   //
   745   // _aload_0, _fast_igetfield
   746   // _aload_0, _fast_agetfield
   747   // _aload_0, _fast_fgetfield
   748   //
   749   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
   750   // bytecode checks if the next bytecode is either _fast_igetfield,
   751   // _fast_agetfield or _fast_fgetfield and then rewrites the
   752   // current bytecode into a pair bytecode; otherwise it rewrites the current
   753   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
   754   //
   755   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
   756   //       otherwise we may miss an opportunity for a pair.
   757   //
   758   // Also rewrite frequent pairs
   759   //   aload_0, aload_1
   760   //   aload_0, iload_1
   761   // These bytecodes with a small amount of code are most profitable to rewrite
   762   if (RewriteFrequentPairs) {
   763     Label rewrite, done;
   764     // get next byte
   765     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   767     // do actual aload_0
   768     aload(0);
   770     // if _getfield then wait with rewrite
   771     __ cmpl(rbx, Bytecodes::_getfield);
   772     __ jcc(Assembler::equal, done);
   774     // if _igetfield then reqrite to _fast_iaccess_0
   775     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   776     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   777     __ movl(rcx, Bytecodes::_fast_iaccess_0);
   778     __ jccb(Assembler::equal, rewrite);
   780     // if _agetfield then reqrite to _fast_aaccess_0
   781     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   782     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   783     __ movl(rcx, Bytecodes::_fast_aaccess_0);
   784     __ jccb(Assembler::equal, rewrite);
   786     // if _fgetfield then reqrite to _fast_faccess_0
   787     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
   788     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   789     __ movl(rcx, Bytecodes::_fast_faccess_0);
   790     __ jccb(Assembler::equal, rewrite);
   792     // else rewrite to _fast_aload0
   793     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
   794     __ movl(rcx, Bytecodes::_fast_aload_0);
   796     // rewrite
   797     // rcx: fast bytecode
   798     __ bind(rewrite);
   799     patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
   801     __ bind(done);
   802   } else {
   803     aload(0);
   804   }
   805 }
   807 void TemplateTable::istore() {
   808   transition(itos, vtos);
   809   locals_index(rbx);
   810   __ movl(iaddress(rbx), rax);
   811 }
   814 void TemplateTable::lstore() {
   815   transition(ltos, vtos);
   816   locals_index(rbx);
   817   __ movptr(laddress(rbx), rax);
   818   NOT_LP64(__ movptr(haddress(rbx), rdx));
   819 }
   822 void TemplateTable::fstore() {
   823   transition(ftos, vtos);
   824   locals_index(rbx);
   825   __ fstp_s(faddress(rbx));
   826 }
   829 void TemplateTable::dstore() {
   830   transition(dtos, vtos);
   831   locals_index(rbx);
   832   __ fstp_d(daddress(rbx));
   833 }
   836 void TemplateTable::astore() {
   837   transition(vtos, vtos);
   838   __ pop_ptr(rax);
   839   locals_index(rbx);
   840   __ movptr(aaddress(rbx), rax);
   841 }
   844 void TemplateTable::wide_istore() {
   845   transition(vtos, vtos);
   846   __ pop_i(rax);
   847   locals_index_wide(rbx);
   848   __ movl(iaddress(rbx), rax);
   849 }
   852 void TemplateTable::wide_lstore() {
   853   transition(vtos, vtos);
   854   __ pop_l(rax, rdx);
   855   locals_index_wide(rbx);
   856   __ movptr(laddress(rbx), rax);
   857   NOT_LP64(__ movl(haddress(rbx), rdx));
   858 }
   861 void TemplateTable::wide_fstore() {
   862   wide_istore();
   863 }
   866 void TemplateTable::wide_dstore() {
   867   wide_lstore();
   868 }
   871 void TemplateTable::wide_astore() {
   872   transition(vtos, vtos);
   873   __ pop_ptr(rax);
   874   locals_index_wide(rbx);
   875   __ movptr(aaddress(rbx), rax);
   876 }
   879 void TemplateTable::iastore() {
   880   transition(itos, vtos);
   881   __ pop_i(rbx);
   882   // rax,: value
   883   // rdx: array
   884   index_check(rdx, rbx);  // prefer index in rbx,
   885   // rbx,: index
   886   __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
   887 }
   890 void TemplateTable::lastore() {
   891   transition(ltos, vtos);
   892   __ pop_i(rbx);
   893   // rax,: low(value)
   894   // rcx: array
   895   // rdx: high(value)
   896   index_check(rcx, rbx);  // prefer index in rbx,
   897   // rbx,: index
   898   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
   899   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
   900 }
   903 void TemplateTable::fastore() {
   904   transition(ftos, vtos);
   905   __ pop_i(rbx);
   906   // rdx: array
   907   // st0: value
   908   index_check(rdx, rbx);  // prefer index in rbx,
   909   // rbx,: index
   910   __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   911 }
   914 void TemplateTable::dastore() {
   915   transition(dtos, vtos);
   916   __ pop_i(rbx);
   917   // rdx: array
   918   // st0: value
   919   index_check(rdx, rbx);  // prefer index in rbx,
   920   // rbx,: index
   921   __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   922 }
   925 void TemplateTable::aastore() {
   926   Label is_null, ok_is_subtype, done;
   927   transition(vtos, vtos);
   928   // stack: ..., array, index, value
   929   __ movptr(rax, at_tos());     // Value
   930   __ movl(rcx, at_tos_p1());  // Index
   931   __ movptr(rdx, at_tos_p2());  // Array
   933   Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   934   index_check_without_pop(rdx, rcx);      // kills rbx,
   935   // do array store check - check for NULL value first
   936   __ testptr(rax, rax);
   937   __ jcc(Assembler::zero, is_null);
   939   // Move subklass into EBX
   940   __ movptr(rbx, Address(rax, oopDesc::klass_offset_in_bytes()));
   941   // Move superklass into EAX
   942   __ movptr(rax, Address(rdx, oopDesc::klass_offset_in_bytes()));
   943   __ movptr(rax, Address(rax, sizeof(oopDesc) + objArrayKlass::element_klass_offset_in_bytes()));
   944   // Compress array+index*wordSize+12 into a single register.  Frees ECX.
   945   __ lea(rdx, element_address);
   947   // Generate subtype check.  Blows ECX.  Resets EDI to locals.
   948   // Superklass in EAX.  Subklass in EBX.
   949   __ gen_subtype_check( rbx, ok_is_subtype );
   951   // Come here on failure
   952   // object is at TOS
   953   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
   955   // Come here on success
   956   __ bind(ok_is_subtype);
   958   // Get the value to store
   959   __ movptr(rax, at_rsp());
   960   // and store it with appropriate barrier
   961   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
   963   __ jmp(done);
   965   // Have a NULL in EAX, EDX=array, ECX=index.  Store NULL at ary[idx]
   966   __ bind(is_null);
   967   __ profile_null_seen(rbx);
   969   // Store NULL, (noreg means NULL to do_oop_store)
   970   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
   972   // Pop stack arguments
   973   __ bind(done);
   974   __ addptr(rsp, 3 * Interpreter::stackElementSize);
   975 }
   978 void TemplateTable::bastore() {
   979   transition(itos, vtos);
   980   __ pop_i(rbx);
   981   // rax,: value
   982   // rdx: array
   983   index_check(rdx, rbx);  // prefer index in rbx,
   984   // rbx,: index
   985   __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
   986 }
   989 void TemplateTable::castore() {
   990   transition(itos, vtos);
   991   __ pop_i(rbx);
   992   // rax,: value
   993   // rdx: array
   994   index_check(rdx, rbx);  // prefer index in rbx,
   995   // rbx,: index
   996   __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
   997 }
  1000 void TemplateTable::sastore() {
  1001   castore();
  1005 void TemplateTable::istore(int n) {
  1006   transition(itos, vtos);
  1007   __ movl(iaddress(n), rax);
  1011 void TemplateTable::lstore(int n) {
  1012   transition(ltos, vtos);
  1013   __ movptr(laddress(n), rax);
  1014   NOT_LP64(__ movptr(haddress(n), rdx));
  1018 void TemplateTable::fstore(int n) {
  1019   transition(ftos, vtos);
  1020   __ fstp_s(faddress(n));
  1024 void TemplateTable::dstore(int n) {
  1025   transition(dtos, vtos);
  1026   __ fstp_d(daddress(n));
  1030 void TemplateTable::astore(int n) {
  1031   transition(vtos, vtos);
  1032   __ pop_ptr(rax);
  1033   __ movptr(aaddress(n), rax);
  1037 void TemplateTable::pop() {
  1038   transition(vtos, vtos);
  1039   __ addptr(rsp, Interpreter::stackElementSize);
  1043 void TemplateTable::pop2() {
  1044   transition(vtos, vtos);
  1045   __ addptr(rsp, 2*Interpreter::stackElementSize);
  1049 void TemplateTable::dup() {
  1050   transition(vtos, vtos);
  1051   // stack: ..., a
  1052   __ load_ptr(0, rax);
  1053   __ push_ptr(rax);
  1054   // stack: ..., a, a
  1058 void TemplateTable::dup_x1() {
  1059   transition(vtos, vtos);
  1060   // stack: ..., a, b
  1061   __ load_ptr( 0, rax);  // load b
  1062   __ load_ptr( 1, rcx);  // load a
  1063   __ store_ptr(1, rax);  // store b
  1064   __ store_ptr(0, rcx);  // store a
  1065   __ push_ptr(rax);      // push b
  1066   // stack: ..., b, a, b
  1070 void TemplateTable::dup_x2() {
  1071   transition(vtos, vtos);
  1072   // stack: ..., a, b, c
  1073   __ load_ptr( 0, rax);  // load c
  1074   __ load_ptr( 2, rcx);  // load a
  1075   __ store_ptr(2, rax);  // store c in a
  1076   __ push_ptr(rax);      // push c
  1077   // stack: ..., c, b, c, c
  1078   __ load_ptr( 2, rax);  // load b
  1079   __ store_ptr(2, rcx);  // store a in b
  1080   // stack: ..., c, a, c, c
  1081   __ store_ptr(1, rax);  // store b in c
  1082   // stack: ..., c, a, b, c
  1086 void TemplateTable::dup2() {
  1087   transition(vtos, vtos);
  1088   // stack: ..., a, b
  1089   __ load_ptr(1, rax);  // load a
  1090   __ push_ptr(rax);     // push a
  1091   __ load_ptr(1, rax);  // load b
  1092   __ push_ptr(rax);     // push b
  1093   // stack: ..., a, b, a, b
  1097 void TemplateTable::dup2_x1() {
  1098   transition(vtos, vtos);
  1099   // stack: ..., a, b, c
  1100   __ load_ptr( 0, rcx);  // load c
  1101   __ load_ptr( 1, rax);  // load b
  1102   __ push_ptr(rax);      // push b
  1103   __ push_ptr(rcx);      // push c
  1104   // stack: ..., a, b, c, b, c
  1105   __ store_ptr(3, rcx);  // store c in b
  1106   // stack: ..., a, c, c, b, c
  1107   __ load_ptr( 4, rcx);  // load a
  1108   __ store_ptr(2, rcx);  // store a in 2nd c
  1109   // stack: ..., a, c, a, b, c
  1110   __ store_ptr(4, rax);  // store b in a
  1111   // stack: ..., b, c, a, b, c
  1112   // stack: ..., b, c, a, b, c
  1116 void TemplateTable::dup2_x2() {
  1117   transition(vtos, vtos);
  1118   // stack: ..., a, b, c, d
  1119   __ load_ptr( 0, rcx);  // load d
  1120   __ load_ptr( 1, rax);  // load c
  1121   __ push_ptr(rax);      // push c
  1122   __ push_ptr(rcx);      // push d
  1123   // stack: ..., a, b, c, d, c, d
  1124   __ load_ptr( 4, rax);  // load b
  1125   __ store_ptr(2, rax);  // store b in d
  1126   __ store_ptr(4, rcx);  // store d in b
  1127   // stack: ..., a, d, c, b, c, d
  1128   __ load_ptr( 5, rcx);  // load a
  1129   __ load_ptr( 3, rax);  // load c
  1130   __ store_ptr(3, rcx);  // store a in c
  1131   __ store_ptr(5, rax);  // store c in a
  1132   // stack: ..., c, d, a, b, c, d
  1133   // stack: ..., c, d, a, b, c, d
  1137 void TemplateTable::swap() {
  1138   transition(vtos, vtos);
  1139   // stack: ..., a, b
  1140   __ load_ptr( 1, rcx);  // load a
  1141   __ load_ptr( 0, rax);  // load b
  1142   __ store_ptr(0, rcx);  // store a in b
  1143   __ store_ptr(1, rax);  // store b in a
  1144   // stack: ..., b, a
  1148 void TemplateTable::iop2(Operation op) {
  1149   transition(itos, itos);
  1150   switch (op) {
  1151     case add  :                   __ pop_i(rdx); __ addl (rax, rdx); break;
  1152     case sub  : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1153     case mul  :                   __ pop_i(rdx); __ imull(rax, rdx); break;
  1154     case _and :                   __ pop_i(rdx); __ andl (rax, rdx); break;
  1155     case _or  :                   __ pop_i(rdx); __ orl  (rax, rdx); break;
  1156     case _xor :                   __ pop_i(rdx); __ xorl (rax, rdx); break;
  1157     case shl  : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1158     case shr  : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1159     case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
  1160     default   : ShouldNotReachHere();
  1165 void TemplateTable::lop2(Operation op) {
  1166   transition(ltos, ltos);
  1167   __ pop_l(rbx, rcx);
  1168   switch (op) {
  1169     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
  1170     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
  1171                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
  1172     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
  1173     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
  1174     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
  1175     default   : ShouldNotReachHere();
  1180 void TemplateTable::idiv() {
  1181   transition(itos, itos);
  1182   __ mov(rcx, rax);
  1183   __ pop_i(rax);
  1184   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1185   //       they are not equal, one could do a normal division (no correction
  1186   //       needed), which may speed up this implementation for the common case.
  1187   //       (see also JVM spec., p.243 & p.271)
  1188   __ corrected_idivl(rcx);
  1192 void TemplateTable::irem() {
  1193   transition(itos, itos);
  1194   __ mov(rcx, rax);
  1195   __ pop_i(rax);
  1196   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
  1197   //       they are not equal, one could do a normal division (no correction
  1198   //       needed), which may speed up this implementation for the common case.
  1199   //       (see also JVM spec., p.243 & p.271)
  1200   __ corrected_idivl(rcx);
  1201   __ mov(rax, rdx);
  1205 void TemplateTable::lmul() {
  1206   transition(ltos, ltos);
  1207   __ pop_l(rbx, rcx);
  1208   __ push(rcx); __ push(rbx);
  1209   __ push(rdx); __ push(rax);
  1210   __ lmul(2 * wordSize, 0);
  1211   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1215 void TemplateTable::ldiv() {
  1216   transition(ltos, ltos);
  1217   __ pop_l(rbx, rcx);
  1218   __ push(rcx); __ push(rbx);
  1219   __ push(rdx); __ push(rax);
  1220   // check if y = 0
  1221   __ orl(rax, rdx);
  1222   __ jump_cc(Assembler::zero,
  1223              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1224   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
  1225   __ addptr(rsp, 4 * wordSize);  // take off temporaries
  1229 void TemplateTable::lrem() {
  1230   transition(ltos, ltos);
  1231   __ pop_l(rbx, rcx);
  1232   __ push(rcx); __ push(rbx);
  1233   __ push(rdx); __ push(rax);
  1234   // check if y = 0
  1235   __ orl(rax, rdx);
  1236   __ jump_cc(Assembler::zero,
  1237              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1238   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
  1239   __ addptr(rsp, 4 * wordSize);
  1243 void TemplateTable::lshl() {
  1244   transition(itos, ltos);
  1245   __ movl(rcx, rax);                             // get shift count
  1246   __ pop_l(rax, rdx);                            // get shift value
  1247   __ lshl(rdx, rax);
  1251 void TemplateTable::lshr() {
  1252   transition(itos, ltos);
  1253   __ mov(rcx, rax);                              // get shift count
  1254   __ pop_l(rax, rdx);                            // get shift value
  1255   __ lshr(rdx, rax, true);
  1259 void TemplateTable::lushr() {
  1260   transition(itos, ltos);
  1261   __ mov(rcx, rax);                              // get shift count
  1262   __ pop_l(rax, rdx);                            // get shift value
  1263   __ lshr(rdx, rax);
  1267 void TemplateTable::fop2(Operation op) {
  1268   transition(ftos, ftos);
  1269   switch (op) {
  1270     case add: __ fadd_s (at_rsp());                break;
  1271     case sub: __ fsubr_s(at_rsp());                break;
  1272     case mul: __ fmul_s (at_rsp());                break;
  1273     case div: __ fdivr_s(at_rsp());                break;
  1274     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
  1275     default : ShouldNotReachHere();
  1277   __ f2ieee();
  1278   __ pop(rax);  // pop float thing off
  1282 void TemplateTable::dop2(Operation op) {
  1283   transition(dtos, dtos);
  1285   switch (op) {
  1286     case add: __ fadd_d (at_rsp());                break;
  1287     case sub: __ fsubr_d(at_rsp());                break;
  1288     case mul: {
  1289       Label L_strict;
  1290       Label L_join;
  1291       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
  1292       __ get_method(rcx);
  1293       __ movl(rcx, access_flags);
  1294       __ testl(rcx, JVM_ACC_STRICT);
  1295       __ jccb(Assembler::notZero, L_strict);
  1296       __ fmul_d (at_rsp());
  1297       __ jmpb(L_join);
  1298       __ bind(L_strict);
  1299       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1300       __ fmulp();
  1301       __ fmul_d (at_rsp());
  1302       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1303       __ fmulp();
  1304       __ bind(L_join);
  1305       break;
  1307     case div: {
  1308       Label L_strict;
  1309       Label L_join;
  1310       const Address access_flags      (rcx, methodOopDesc::access_flags_offset());
  1311       __ get_method(rcx);
  1312       __ movl(rcx, access_flags);
  1313       __ testl(rcx, JVM_ACC_STRICT);
  1314       __ jccb(Assembler::notZero, L_strict);
  1315       __ fdivr_d(at_rsp());
  1316       __ jmp(L_join);
  1317       __ bind(L_strict);
  1318       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  1319       __ fmul_d (at_rsp());
  1320       __ fdivrp();
  1321       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  1322       __ fmulp();
  1323       __ bind(L_join);
  1324       break;
  1326     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
  1327     default : ShouldNotReachHere();
  1329   __ d2ieee();
  1330   // Pop double precision number from rsp.
  1331   __ pop(rax);
  1332   __ pop(rdx);
  1336 void TemplateTable::ineg() {
  1337   transition(itos, itos);
  1338   __ negl(rax);
  1342 void TemplateTable::lneg() {
  1343   transition(ltos, ltos);
  1344   __ lneg(rdx, rax);
  1348 void TemplateTable::fneg() {
  1349   transition(ftos, ftos);
  1350   __ fchs();
  1354 void TemplateTable::dneg() {
  1355   transition(dtos, dtos);
  1356   __ fchs();
  1360 void TemplateTable::iinc() {
  1361   transition(vtos, vtos);
  1362   __ load_signed_byte(rdx, at_bcp(2));           // get constant
  1363   locals_index(rbx);
  1364   __ addl(iaddress(rbx), rdx);
  1368 void TemplateTable::wide_iinc() {
  1369   transition(vtos, vtos);
  1370   __ movl(rdx, at_bcp(4));                       // get constant
  1371   locals_index_wide(rbx);
  1372   __ bswapl(rdx);                                 // swap bytes & sign-extend constant
  1373   __ sarl(rdx, 16);
  1374   __ addl(iaddress(rbx), rdx);
  1375   // Note: should probably use only one movl to get both
  1376   //       the index and the constant -> fix this
  1380 void TemplateTable::convert() {
  1381   // Checking
  1382 #ifdef ASSERT
  1383   { TosState tos_in  = ilgl;
  1384     TosState tos_out = ilgl;
  1385     switch (bytecode()) {
  1386       case Bytecodes::_i2l: // fall through
  1387       case Bytecodes::_i2f: // fall through
  1388       case Bytecodes::_i2d: // fall through
  1389       case Bytecodes::_i2b: // fall through
  1390       case Bytecodes::_i2c: // fall through
  1391       case Bytecodes::_i2s: tos_in = itos; break;
  1392       case Bytecodes::_l2i: // fall through
  1393       case Bytecodes::_l2f: // fall through
  1394       case Bytecodes::_l2d: tos_in = ltos; break;
  1395       case Bytecodes::_f2i: // fall through
  1396       case Bytecodes::_f2l: // fall through
  1397       case Bytecodes::_f2d: tos_in = ftos; break;
  1398       case Bytecodes::_d2i: // fall through
  1399       case Bytecodes::_d2l: // fall through
  1400       case Bytecodes::_d2f: tos_in = dtos; break;
  1401       default             : ShouldNotReachHere();
  1403     switch (bytecode()) {
  1404       case Bytecodes::_l2i: // fall through
  1405       case Bytecodes::_f2i: // fall through
  1406       case Bytecodes::_d2i: // fall through
  1407       case Bytecodes::_i2b: // fall through
  1408       case Bytecodes::_i2c: // fall through
  1409       case Bytecodes::_i2s: tos_out = itos; break;
  1410       case Bytecodes::_i2l: // fall through
  1411       case Bytecodes::_f2l: // fall through
  1412       case Bytecodes::_d2l: tos_out = ltos; break;
  1413       case Bytecodes::_i2f: // fall through
  1414       case Bytecodes::_l2f: // fall through
  1415       case Bytecodes::_d2f: tos_out = ftos; break;
  1416       case Bytecodes::_i2d: // fall through
  1417       case Bytecodes::_l2d: // fall through
  1418       case Bytecodes::_f2d: tos_out = dtos; break;
  1419       default             : ShouldNotReachHere();
  1421     transition(tos_in, tos_out);
  1423 #endif // ASSERT
  1425   // Conversion
  1426   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
  1427   switch (bytecode()) {
  1428     case Bytecodes::_i2l:
  1429       __ extend_sign(rdx, rax);
  1430       break;
  1431     case Bytecodes::_i2f:
  1432       __ push(rax);          // store int on tos
  1433       __ fild_s(at_rsp());   // load int to ST0
  1434       __ f2ieee();           // truncate to float size
  1435       __ pop(rcx);           // adjust rsp
  1436       break;
  1437     case Bytecodes::_i2d:
  1438       __ push(rax);          // add one slot for d2ieee()
  1439       __ push(rax);          // store int on tos
  1440       __ fild_s(at_rsp());   // load int to ST0
  1441       __ d2ieee();           // truncate to double size
  1442       __ pop(rcx);           // adjust rsp
  1443       __ pop(rcx);
  1444       break;
  1445     case Bytecodes::_i2b:
  1446       __ shll(rax, 24);      // truncate upper 24 bits
  1447       __ sarl(rax, 24);      // and sign-extend byte
  1448       LP64_ONLY(__ movsbl(rax, rax));
  1449       break;
  1450     case Bytecodes::_i2c:
  1451       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
  1452       LP64_ONLY(__ movzwl(rax, rax));
  1453       break;
  1454     case Bytecodes::_i2s:
  1455       __ shll(rax, 16);      // truncate upper 16 bits
  1456       __ sarl(rax, 16);      // and sign-extend short
  1457       LP64_ONLY(__ movswl(rax, rax));
  1458       break;
  1459     case Bytecodes::_l2i:
  1460       /* nothing to do */
  1461       break;
  1462     case Bytecodes::_l2f:
  1463       __ push(rdx);          // store long on tos
  1464       __ push(rax);
  1465       __ fild_d(at_rsp());   // load long to ST0
  1466       __ f2ieee();           // truncate to float size
  1467       __ pop(rcx);           // adjust rsp
  1468       __ pop(rcx);
  1469       break;
  1470     case Bytecodes::_l2d:
  1471       __ push(rdx);          // store long on tos
  1472       __ push(rax);
  1473       __ fild_d(at_rsp());   // load long to ST0
  1474       __ d2ieee();           // truncate to double size
  1475       __ pop(rcx);           // adjust rsp
  1476       __ pop(rcx);
  1477       break;
  1478     case Bytecodes::_f2i:
  1479       __ push(rcx);          // reserve space for argument
  1480       __ fstp_s(at_rsp());   // pass float argument on stack
  1481       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1482       break;
  1483     case Bytecodes::_f2l:
  1484       __ push(rcx);          // reserve space for argument
  1485       __ fstp_s(at_rsp());   // pass float argument on stack
  1486       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1487       break;
  1488     case Bytecodes::_f2d:
  1489       /* nothing to do */
  1490       break;
  1491     case Bytecodes::_d2i:
  1492       __ push(rcx);          // reserve space for argument
  1493       __ push(rcx);
  1494       __ fstp_d(at_rsp());   // pass double argument on stack
  1495       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
  1496       break;
  1497     case Bytecodes::_d2l:
  1498       __ push(rcx);          // reserve space for argument
  1499       __ push(rcx);
  1500       __ fstp_d(at_rsp());   // pass double argument on stack
  1501       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
  1502       break;
  1503     case Bytecodes::_d2f:
  1504       __ push(rcx);          // reserve space for f2ieee()
  1505       __ f2ieee();           // truncate to float size
  1506       __ pop(rcx);           // adjust rsp
  1507       break;
  1508     default             :
  1509       ShouldNotReachHere();
  1514 void TemplateTable::lcmp() {
  1515   transition(ltos, itos);
  1516   // y = rdx:rax
  1517   __ pop_l(rbx, rcx);             // get x = rcx:rbx
  1518   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
  1519   __ mov(rax, rcx);
  1523 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1524   if (is_float) {
  1525     __ fld_s(at_rsp());
  1526   } else {
  1527     __ fld_d(at_rsp());
  1528     __ pop(rdx);
  1530   __ pop(rcx);
  1531   __ fcmp2int(rax, unordered_result < 0);
  1535 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1536   __ get_method(rcx);           // ECX holds method
  1537   __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
  1539   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() + InvocationCounter::counter_offset();
  1540   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() + InvocationCounter::counter_offset();
  1541   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1543   // Load up EDX with the branch displacement
  1544   __ movl(rdx, at_bcp(1));
  1545   __ bswapl(rdx);
  1546   if (!is_wide) __ sarl(rdx, 16);
  1547   LP64_ONLY(__ movslq(rdx, rdx));
  1550   // Handle all the JSR stuff here, then exit.
  1551   // It's much shorter and cleaner than intermingling with the
  1552   // non-JSR normal-branch stuff occurring below.
  1553   if (is_jsr) {
  1554     // Pre-load the next target bytecode into EBX
  1555     __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
  1557     // compute return address as bci in rax,
  1558     __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(constMethodOopDesc::codes_offset())));
  1559     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
  1560     // Adjust the bcp in RSI by the displacement in EDX
  1561     __ addptr(rsi, rdx);
  1562     // Push return address
  1563     __ push_i(rax);
  1564     // jsr returns vtos
  1565     __ dispatch_only_noverify(vtos);
  1566     return;
  1569   // Normal (non-jsr) branch handling
  1571   // Adjust the bcp in RSI by the displacement in EDX
  1572   __ addptr(rsi, rdx);
  1574   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
  1575   Label backedge_counter_overflow;
  1576   Label profile_method;
  1577   Label dispatch;
  1578   if (UseLoopCounter) {
  1579     // increment backedge counter for backward branches
  1580     // rax,: MDO
  1581     // rbx,: MDO bumped taken-count
  1582     // rcx: method
  1583     // rdx: target offset
  1584     // rsi: target bcp
  1585     // rdi: locals pointer
  1586     __ testl(rdx, rdx);             // check if forward or backward branch
  1587     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1589     if (TieredCompilation) {
  1590       Label no_mdo;
  1591       int increment = InvocationCounter::count_increment;
  1592       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1593       if (ProfileInterpreter) {
  1594         // Are we profiling?
  1595         __ movptr(rbx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
  1596         __ testptr(rbx, rbx);
  1597         __ jccb(Assembler::zero, no_mdo);
  1598         // Increment the MDO backedge counter
  1599         const Address mdo_backedge_counter(rbx, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
  1600                                                 in_bytes(InvocationCounter::counter_offset()));
  1601         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
  1602                                    rax, false, Assembler::zero, &backedge_counter_overflow);
  1603         __ jmp(dispatch);
  1605       __ bind(no_mdo);
  1606       // Increment backedge counter in methodOop
  1607       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
  1608                                  rax, false, Assembler::zero, &backedge_counter_overflow);
  1609     } else {
  1610       // increment counter
  1611       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1612       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1613       __ movl(Address(rcx, be_offset), rax);        // store counter
  1615       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1616       __ andl(rax, InvocationCounter::count_mask_value);     // and the status bits
  1617       __ addl(rax, Address(rcx, be_offset));        // add both counters
  1619       if (ProfileInterpreter) {
  1620         // Test to see if we should create a method data oop
  1621         __ cmp32(rax,
  1622                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1623         __ jcc(Assembler::less, dispatch);
  1625         // if no method data exists, go to profile method
  1626         __ test_method_data_pointer(rax, profile_method);
  1628         if (UseOnStackReplacement) {
  1629           // check for overflow against rbx, which is the MDO taken count
  1630           __ cmp32(rbx,
  1631                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1632           __ jcc(Assembler::below, dispatch);
  1634           // When ProfileInterpreter is on, the backedge_count comes from the
  1635           // methodDataOop, which value does not get reset on the call to
  1636           // frequency_counter_overflow().  To avoid excessive calls to the overflow
  1637           // routine while the method is being compiled, add a second test to make
  1638           // sure the overflow function is called only once every overflow_frequency.
  1639           const int overflow_frequency = 1024;
  1640           __ andptr(rbx, overflow_frequency-1);
  1641           __ jcc(Assembler::zero, backedge_counter_overflow);
  1643       } else {
  1644         if (UseOnStackReplacement) {
  1645           // check for overflow against rax, which is the sum of the counters
  1646           __ cmp32(rax,
  1647                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1648           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1653     __ bind(dispatch);
  1656   // Pre-load the next target bytecode into EBX
  1657   __ load_unsigned_byte(rbx, Address(rsi, 0));
  1659   // continue with the bytecode @ target
  1660   // rax,: return bci for jsr's, unused otherwise
  1661   // rbx,: target bytecode
  1662   // rsi: target bcp
  1663   __ dispatch_only(vtos);
  1665   if (UseLoopCounter) {
  1666     if (ProfileInterpreter) {
  1667       // Out-of-line code to allocate method data oop.
  1668       __ bind(profile_method);
  1669       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1670       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1671       __ set_method_data_pointer_for_bcp();
  1672       __ jmp(dispatch);
  1675     if (UseOnStackReplacement) {
  1677       // invocation counter overflow
  1678       __ bind(backedge_counter_overflow);
  1679       __ negptr(rdx);
  1680       __ addptr(rdx, rsi);        // branch bcp
  1681       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
  1682       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
  1684       // rax,: osr nmethod (osr ok) or NULL (osr not possible)
  1685       // rbx,: target bytecode
  1686       // rdx: scratch
  1687       // rdi: locals pointer
  1688       // rsi: bcp
  1689       __ testptr(rax, rax);                      // test result
  1690       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1691       // nmethod may have been invalidated (VM may block upon call_VM return)
  1692       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1693       __ cmpl(rcx, InvalidOSREntryBci);
  1694       __ jcc(Assembler::equal, dispatch);
  1696       // We have the address of an on stack replacement routine in rax,
  1697       // We need to prepare to execute the OSR method. First we must
  1698       // migrate the locals and monitors off of the stack.
  1700       __ mov(rbx, rax);                             // save the nmethod
  1702       const Register thread = rcx;
  1703       __ get_thread(thread);
  1704       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1705       // rax, is OSR buffer, move it to expected parameter location
  1706       __ mov(rcx, rax);
  1708       // pop the interpreter frame
  1709       __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1710       __ leave();                                // remove frame anchor
  1711       __ pop(rdi);                               // get return address
  1712       __ mov(rsp, rdx);                          // set sp to sender sp
  1714       // Align stack pointer for compiled code (note that caller is
  1715       // responsible for undoing this fixup by remembering the old SP
  1716       // in an rbp,-relative location)
  1717       __ andptr(rsp, -(StackAlignmentInBytes));
  1719       // push the (possibly adjusted) return address
  1720       __ push(rdi);
  1722       // and begin the OSR nmethod
  1723       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
  1729 void TemplateTable::if_0cmp(Condition cc) {
  1730   transition(itos, vtos);
  1731   // assume branch is more often taken than not (loops use backward branches)
  1732   Label not_taken;
  1733   __ testl(rax, rax);
  1734   __ jcc(j_not(cc), not_taken);
  1735   branch(false, false);
  1736   __ bind(not_taken);
  1737   __ profile_not_taken_branch(rax);
  1741 void TemplateTable::if_icmp(Condition cc) {
  1742   transition(itos, vtos);
  1743   // assume branch is more often taken than not (loops use backward branches)
  1744   Label not_taken;
  1745   __ pop_i(rdx);
  1746   __ cmpl(rdx, rax);
  1747   __ jcc(j_not(cc), not_taken);
  1748   branch(false, false);
  1749   __ bind(not_taken);
  1750   __ profile_not_taken_branch(rax);
  1754 void TemplateTable::if_nullcmp(Condition cc) {
  1755   transition(atos, vtos);
  1756   // assume branch is more often taken than not (loops use backward branches)
  1757   Label not_taken;
  1758   __ testptr(rax, rax);
  1759   __ jcc(j_not(cc), not_taken);
  1760   branch(false, false);
  1761   __ bind(not_taken);
  1762   __ profile_not_taken_branch(rax);
  1766 void TemplateTable::if_acmp(Condition cc) {
  1767   transition(atos, vtos);
  1768   // assume branch is more often taken than not (loops use backward branches)
  1769   Label not_taken;
  1770   __ pop_ptr(rdx);
  1771   __ cmpptr(rdx, rax);
  1772   __ jcc(j_not(cc), not_taken);
  1773   branch(false, false);
  1774   __ bind(not_taken);
  1775   __ profile_not_taken_branch(rax);
  1779 void TemplateTable::ret() {
  1780   transition(vtos, vtos);
  1781   locals_index(rbx);
  1782   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1783   __ profile_ret(rbx, rcx);
  1784   __ get_method(rax);
  1785   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
  1786   __ lea(rsi, Address(rsi, rbx, Address::times_1,
  1787                       constMethodOopDesc::codes_offset()));
  1788   __ dispatch_next(vtos);
  1792 void TemplateTable::wide_ret() {
  1793   transition(vtos, vtos);
  1794   locals_index_wide(rbx);
  1795   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
  1796   __ profile_ret(rbx, rcx);
  1797   __ get_method(rax);
  1798   __ movptr(rsi, Address(rax, methodOopDesc::const_offset()));
  1799   __ lea(rsi, Address(rsi, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1800   __ dispatch_next(vtos);
  1804 void TemplateTable::tableswitch() {
  1805   Label default_case, continue_execution;
  1806   transition(itos, vtos);
  1807   // align rsi
  1808   __ lea(rbx, at_bcp(wordSize));
  1809   __ andptr(rbx, -wordSize);
  1810   // load lo & hi
  1811   __ movl(rcx, Address(rbx, 1 * wordSize));
  1812   __ movl(rdx, Address(rbx, 2 * wordSize));
  1813   __ bswapl(rcx);
  1814   __ bswapl(rdx);
  1815   // check against lo & hi
  1816   __ cmpl(rax, rcx);
  1817   __ jccb(Assembler::less, default_case);
  1818   __ cmpl(rax, rdx);
  1819   __ jccb(Assembler::greater, default_case);
  1820   // lookup dispatch offset
  1821   __ subl(rax, rcx);
  1822   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1823   __ profile_switch_case(rax, rbx, rcx);
  1824   // continue execution
  1825   __ bind(continue_execution);
  1826   __ bswapl(rdx);
  1827   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1828   __ addptr(rsi, rdx);
  1829   __ dispatch_only(vtos);
  1830   // handle default
  1831   __ bind(default_case);
  1832   __ profile_switch_default(rax);
  1833   __ movl(rdx, Address(rbx, 0));
  1834   __ jmp(continue_execution);
  1838 void TemplateTable::lookupswitch() {
  1839   transition(itos, itos);
  1840   __ stop("lookupswitch bytecode should have been rewritten");
  1844 void TemplateTable::fast_linearswitch() {
  1845   transition(itos, vtos);
  1846   Label loop_entry, loop, found, continue_execution;
  1847   // bswapl rax, so we can avoid bswapping the table entries
  1848   __ bswapl(rax);
  1849   // align rsi
  1850   __ lea(rbx, at_bcp(wordSize));                // btw: should be able to get rid of this instruction (change offsets below)
  1851   __ andptr(rbx, -wordSize);
  1852   // set counter
  1853   __ movl(rcx, Address(rbx, wordSize));
  1854   __ bswapl(rcx);
  1855   __ jmpb(loop_entry);
  1856   // table search
  1857   __ bind(loop);
  1858   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
  1859   __ jccb(Assembler::equal, found);
  1860   __ bind(loop_entry);
  1861   __ decrementl(rcx);
  1862   __ jcc(Assembler::greaterEqual, loop);
  1863   // default case
  1864   __ profile_switch_default(rax);
  1865   __ movl(rdx, Address(rbx, 0));
  1866   __ jmpb(continue_execution);
  1867   // entry found -> get offset
  1868   __ bind(found);
  1869   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
  1870   __ profile_switch_case(rcx, rax, rbx);
  1871   // continue execution
  1872   __ bind(continue_execution);
  1873   __ bswapl(rdx);
  1874   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
  1875   __ addptr(rsi, rdx);
  1876   __ dispatch_only(vtos);
  1880 void TemplateTable::fast_binaryswitch() {
  1881   transition(itos, vtos);
  1882   // Implementation using the following core algorithm:
  1883   //
  1884   // int binary_search(int key, LookupswitchPair* array, int n) {
  1885   //   // Binary search according to "Methodik des Programmierens" by
  1886   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1887   //   int i = 0;
  1888   //   int j = n;
  1889   //   while (i+1 < j) {
  1890   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1891   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1892   //     // where a stands for the array and assuming that the (inexisting)
  1893   //     // element a[n] is infinitely big.
  1894   //     int h = (i + j) >> 1;
  1895   //     // i < h < j
  1896   //     if (key < array[h].fast_match()) {
  1897   //       j = h;
  1898   //     } else {
  1899   //       i = h;
  1900   //     }
  1901   //   }
  1902   //   // R: a[i] <= key < a[i+1] or Q
  1903   //   // (i.e., if key is within array, i is the correct index)
  1904   //   return i;
  1905   // }
  1907   // register allocation
  1908   const Register key   = rax;                    // already set (tosca)
  1909   const Register array = rbx;
  1910   const Register i     = rcx;
  1911   const Register j     = rdx;
  1912   const Register h     = rdi;                    // needs to be restored
  1913   const Register temp  = rsi;
  1914   // setup array
  1915   __ save_bcp();
  1917   __ lea(array, at_bcp(3*wordSize));             // btw: should be able to get rid of this instruction (change offsets below)
  1918   __ andptr(array, -wordSize);
  1919   // initialize i & j
  1920   __ xorl(i, i);                                 // i = 0;
  1921   __ movl(j, Address(array, -wordSize));         // j = length(array);
  1922   // Convert j into native byteordering
  1923   __ bswapl(j);
  1924   // and start
  1925   Label entry;
  1926   __ jmp(entry);
  1928   // binary search loop
  1929   { Label loop;
  1930     __ bind(loop);
  1931     // int h = (i + j) >> 1;
  1932     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  1933     __ sarl(h, 1);                               // h = (i + j) >> 1;
  1934     // if (key < array[h].fast_match()) {
  1935     //   j = h;
  1936     // } else {
  1937     //   i = h;
  1938     // }
  1939     // Convert array[h].match to native byte-ordering before compare
  1940     __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
  1941     __ bswapl(temp);
  1942     __ cmpl(key, temp);
  1943     // j = h if (key <  array[h].fast_match())
  1944     __ cmov32(Assembler::less        , j, h);
  1945     // i = h if (key >= array[h].fast_match())
  1946     __ cmov32(Assembler::greaterEqual, i, h);
  1947     // while (i+1 < j)
  1948     __ bind(entry);
  1949     __ leal(h, Address(i, 1));                   // i+1
  1950     __ cmpl(h, j);                               // i+1 < j
  1951     __ jcc(Assembler::less, loop);
  1954   // end of binary search, result index is i (must check again!)
  1955   Label default_case;
  1956   // Convert array[i].match to native byte-ordering before compare
  1957   __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
  1958   __ bswapl(temp);
  1959   __ cmpl(key, temp);
  1960   __ jcc(Assembler::notEqual, default_case);
  1962   // entry found -> j = offset
  1963   __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
  1964   __ profile_switch_case(i, key, array);
  1965   __ bswapl(j);
  1966   LP64_ONLY(__ movslq(j, j));
  1967   __ restore_bcp();
  1968   __ restore_locals();                           // restore rdi
  1969   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  1971   __ addptr(rsi, j);
  1972   __ dispatch_only(vtos);
  1974   // default case -> j = default offset
  1975   __ bind(default_case);
  1976   __ profile_switch_default(i);
  1977   __ movl(j, Address(array, -2*wordSize));
  1978   __ bswapl(j);
  1979   LP64_ONLY(__ movslq(j, j));
  1980   __ restore_bcp();
  1981   __ restore_locals();                           // restore rdi
  1982   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
  1983   __ addptr(rsi, j);
  1984   __ dispatch_only(vtos);
  1988 void TemplateTable::_return(TosState state) {
  1989   transition(state, state);
  1990   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
  1992   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  1993     assert(state == vtos, "only valid state");
  1994     __ movptr(rax, aaddress(0));
  1995     __ movptr(rdi, Address(rax, oopDesc::klass_offset_in_bytes()));
  1996     __ movl(rdi, Address(rdi, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc)));
  1997     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  1998     Label skip_register_finalizer;
  1999     __ jcc(Assembler::zero, skip_register_finalizer);
  2001     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
  2003     __ bind(skip_register_finalizer);
  2006   __ remove_activation(state, rsi);
  2007   __ jmp(rsi);
  2011 // ----------------------------------------------------------------------------
  2012 // Volatile variables demand their effects be made known to all CPU's in
  2013 // order.  Store buffers on most chips allow reads & writes to reorder; the
  2014 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
  2015 // memory barrier (i.e., it's not sufficient that the interpreter does not
  2016 // reorder volatile references, the hardware also must not reorder them).
  2017 //
  2018 // According to the new Java Memory Model (JMM):
  2019 // (1) All volatiles are serialized wrt to each other.
  2020 // ALSO reads & writes act as aquire & release, so:
  2021 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
  2022 // the read float up to before the read.  It's OK for non-volatile memory refs
  2023 // that happen before the volatile read to float down below it.
  2024 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
  2025 // that happen BEFORE the write float down to after the write.  It's OK for
  2026 // non-volatile memory refs that happen after the volatile write to float up
  2027 // before it.
  2028 //
  2029 // We only put in barriers around volatile refs (they are expensive), not
  2030 // _between_ memory refs (that would require us to track the flavor of the
  2031 // previous memory refs).  Requirements (2) and (3) require some barriers
  2032 // before volatile stores and after volatile loads.  These nearly cover
  2033 // requirement (1) but miss the volatile-store-volatile-load case.  This final
  2034 // case is placed after volatile-stores although it could just as well go
  2035 // before volatile-loads.
  2036 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
  2037   // Helper function to insert a is-volatile test and memory barrier
  2038   if( !os::is_MP() ) return;    // Not needed on single CPU
  2039   __ membar(order_constraint);
  2042 void TemplateTable::resolve_cache_and_index(int byte_no,
  2043                                             Register result,
  2044                                             Register Rcache,
  2045                                             Register index,
  2046                                             size_t index_size) {
  2047   Register temp = rbx;
  2049   assert_different_registers(result, Rcache, index, temp);
  2051   Label resolved;
  2052   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2053   if (byte_no == f1_oop) {
  2054     // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
  2055     // This kind of CP cache entry does not need to match the flags byte, because
  2056     // there is a 1-1 relation between bytecode type and CP entry type.
  2057     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
  2058     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2059     __ testptr(result, result);
  2060     __ jcc(Assembler::notEqual, resolved);
  2061   } else {
  2062     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2063     assert(result == noreg, "");  //else change code for setting result
  2064     const int shift_count = (1 + byte_no)*BitsPerByte;
  2065     __ movl(temp, Address(Rcache, index, Address::times_4, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
  2066     __ shrl(temp, shift_count);
  2067     // have we resolved this bytecode?
  2068     __ andl(temp, 0xFF);
  2069     __ cmpl(temp, (int)bytecode());
  2070     __ jcc(Assembler::equal, resolved);
  2073   // resolve first time through
  2074   address entry;
  2075   switch (bytecode()) {
  2076     case Bytecodes::_getstatic      : // fall through
  2077     case Bytecodes::_putstatic      : // fall through
  2078     case Bytecodes::_getfield       : // fall through
  2079     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
  2080     case Bytecodes::_invokevirtual  : // fall through
  2081     case Bytecodes::_invokespecial  : // fall through
  2082     case Bytecodes::_invokestatic   : // fall through
  2083     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);  break;
  2084     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
  2085     case Bytecodes::_fast_aldc      : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
  2086     case Bytecodes::_fast_aldc_w    : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);     break;
  2087     default                         : ShouldNotReachHere();                                 break;
  2089   __ movl(temp, (int)bytecode());
  2090   __ call_VM(noreg, entry, temp);
  2091   // Update registers with resolved info
  2092   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2093   if (result != noreg)
  2094     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2095   __ bind(resolved);
  2099 // The cache and index registers must be set before call
  2100 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2101                                               Register cache,
  2102                                               Register index,
  2103                                               Register off,
  2104                                               Register flags,
  2105                                               bool is_static = false) {
  2106   assert_different_registers(cache, index, flags, off);
  2108   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2109   // Field offset
  2110   __ movptr(off, Address(cache, index, Address::times_ptr,
  2111                          in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
  2112   // Flags
  2113   __ movl(flags, Address(cache, index, Address::times_ptr,
  2114            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
  2116   // klass     overwrite register
  2117   if (is_static) {
  2118     __ movptr(obj, Address(cache, index, Address::times_ptr,
  2119                            in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
  2123 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2124                                                Register method,
  2125                                                Register itable_index,
  2126                                                Register flags,
  2127                                                bool is_invokevirtual,
  2128                                                bool is_invokevfinal /*unused*/,
  2129                                                bool is_invokedynamic) {
  2130   // setup registers
  2131   const Register cache = rcx;
  2132   const Register index = rdx;
  2133   assert_different_registers(method, flags);
  2134   assert_different_registers(method, cache, index);
  2135   assert_different_registers(itable_index, flags);
  2136   assert_different_registers(itable_index, cache, index);
  2137   // determine constant pool cache field offsets
  2138   const int method_offset = in_bytes(
  2139     constantPoolCacheOopDesc::base_offset() +
  2140       (is_invokevirtual
  2141        ? ConstantPoolCacheEntry::f2_offset()
  2142        : ConstantPoolCacheEntry::f1_offset()
  2144     );
  2145   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2146                                     ConstantPoolCacheEntry::flags_offset());
  2147   // access constant pool cache fields
  2148   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2149                                     ConstantPoolCacheEntry::f2_offset());
  2151   if (byte_no == f1_oop) {
  2152     // Resolved f1_oop goes directly into 'method' register.
  2153     assert(is_invokedynamic, "");
  2154     resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4));
  2155   } else {
  2156     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2157     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2159   if (itable_index != noreg) {
  2160     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2162   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2166 // The registers cache and index expected to be set before call.
  2167 // Correct values of the cache and index registers are preserved.
  2168 void TemplateTable::jvmti_post_field_access(Register cache,
  2169                                             Register index,
  2170                                             bool is_static,
  2171                                             bool has_tos) {
  2172   if (JvmtiExport::can_post_field_access()) {
  2173     // Check to see if a field access watch has been set before we take
  2174     // the time to call into the VM.
  2175     Label L1;
  2176     assert_different_registers(cache, index, rax);
  2177     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2178     __ testl(rax,rax);
  2179     __ jcc(Assembler::zero, L1);
  2181     // cache entry pointer
  2182     __ addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2183     __ shll(index, LogBytesPerWord);
  2184     __ addptr(cache, index);
  2185     if (is_static) {
  2186       __ xorptr(rax, rax);      // NULL object reference
  2187     } else {
  2188       __ pop(atos);         // Get the object
  2189       __ verify_oop(rax);
  2190       __ push(atos);        // Restore stack state
  2192     // rax,:   object pointer or NULL
  2193     // cache: cache entry pointer
  2194     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
  2195                rax, cache);
  2196     __ get_cache_and_index_at_bcp(cache, index, 1);
  2197     __ bind(L1);
  2201 void TemplateTable::pop_and_check_object(Register r) {
  2202   __ pop_ptr(r);
  2203   __ null_check(r);  // for field access must check obj.
  2204   __ verify_oop(r);
  2207 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2208   transition(vtos, vtos);
  2210   const Register cache = rcx;
  2211   const Register index = rdx;
  2212   const Register obj   = rcx;
  2213   const Register off   = rbx;
  2214   const Register flags = rax;
  2216   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2217   jvmti_post_field_access(cache, index, is_static, false);
  2218   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2220   if (!is_static) pop_and_check_object(obj);
  2222   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2223   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2225   Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2227   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2228   assert(btos == 0, "change code, btos != 0");
  2229   // btos
  2230   __ andptr(flags, 0x0f);
  2231   __ jcc(Assembler::notZero, notByte);
  2233   __ load_signed_byte(rax, lo );
  2234   __ push(btos);
  2235   // Rewrite bytecode to be faster
  2236   if (!is_static) {
  2237     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
  2239   __ jmp(Done);
  2241   __ bind(notByte);
  2242   // itos
  2243   __ cmpl(flags, itos );
  2244   __ jcc(Assembler::notEqual, notInt);
  2246   __ movl(rax, lo );
  2247   __ push(itos);
  2248   // Rewrite bytecode to be faster
  2249   if (!is_static) {
  2250     patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
  2252   __ jmp(Done);
  2254   __ bind(notInt);
  2255   // atos
  2256   __ cmpl(flags, atos );
  2257   __ jcc(Assembler::notEqual, notObj);
  2259   __ movl(rax, lo );
  2260   __ push(atos);
  2261   if (!is_static) {
  2262     patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
  2264   __ jmp(Done);
  2266   __ bind(notObj);
  2267   // ctos
  2268   __ cmpl(flags, ctos );
  2269   __ jcc(Assembler::notEqual, notChar);
  2271   __ load_unsigned_short(rax, lo );
  2272   __ push(ctos);
  2273   if (!is_static) {
  2274     patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
  2276   __ jmp(Done);
  2278   __ bind(notChar);
  2279   // stos
  2280   __ cmpl(flags, stos );
  2281   __ jcc(Assembler::notEqual, notShort);
  2283   __ load_signed_short(rax, lo );
  2284   __ push(stos);
  2285   if (!is_static) {
  2286     patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
  2288   __ jmp(Done);
  2290   __ bind(notShort);
  2291   // ltos
  2292   __ cmpl(flags, ltos );
  2293   __ jcc(Assembler::notEqual, notLong);
  2295   // Generate code as if volatile.  There just aren't enough registers to
  2296   // save that information and this code is faster than the test.
  2297   __ fild_d(lo);                // Must load atomically
  2298   __ subptr(rsp,2*wordSize);    // Make space for store
  2299   __ fistp_d(Address(rsp,0));
  2300   __ pop(rax);
  2301   __ pop(rdx);
  2303   __ push(ltos);
  2304   // Don't rewrite to _fast_lgetfield for potential volatile case.
  2305   __ jmp(Done);
  2307   __ bind(notLong);
  2308   // ftos
  2309   __ cmpl(flags, ftos );
  2310   __ jcc(Assembler::notEqual, notFloat);
  2312   __ fld_s(lo);
  2313   __ push(ftos);
  2314   if (!is_static) {
  2315     patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
  2317   __ jmp(Done);
  2319   __ bind(notFloat);
  2320   // dtos
  2321   __ cmpl(flags, dtos );
  2322   __ jcc(Assembler::notEqual, notDouble);
  2324   __ fld_d(lo);
  2325   __ push(dtos);
  2326   if (!is_static) {
  2327     patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
  2329   __ jmpb(Done);
  2331   __ bind(notDouble);
  2333   __ stop("Bad state");
  2335   __ bind(Done);
  2336   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2337   // volatile_barrier( );
  2341 void TemplateTable::getfield(int byte_no) {
  2342   getfield_or_static(byte_no, false);
  2346 void TemplateTable::getstatic(int byte_no) {
  2347   getfield_or_static(byte_no, true);
  2350 // The registers cache and index expected to be set before call.
  2351 // The function may destroy various registers, just not the cache and index registers.
  2352 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2354   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2356   if (JvmtiExport::can_post_field_modification()) {
  2357     // Check to see if a field modification watch has been set before we take
  2358     // the time to call into the VM.
  2359     Label L1;
  2360     assert_different_registers(cache, index, rax);
  2361     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2362     __ testl(rax, rax);
  2363     __ jcc(Assembler::zero, L1);
  2365     // The cache and index registers have been already set.
  2366     // This allows to eliminate this call but the cache and index
  2367     // registers have to be correspondingly used after this line.
  2368     __ get_cache_and_index_at_bcp(rax, rdx, 1);
  2370     if (is_static) {
  2371       // Life is simple.  Null out the object pointer.
  2372       __ xorptr(rbx, rbx);
  2373     } else {
  2374       // Life is harder. The stack holds the value on top, followed by the object.
  2375       // We don't know the size of the value, though; it could be one or two words
  2376       // depending on its type. As a result, we must find the type to determine where
  2377       // the object is.
  2378       Label two_word, valsize_known;
  2379       __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset +
  2380                                    ConstantPoolCacheEntry::flags_offset())));
  2381       __ mov(rbx, rsp);
  2382       __ shrl(rcx, ConstantPoolCacheEntry::tosBits);
  2383       // Make sure we don't need to mask rcx for tosBits after the above shift
  2384       ConstantPoolCacheEntry::verify_tosBits();
  2385       __ cmpl(rcx, ltos);
  2386       __ jccb(Assembler::equal, two_word);
  2387       __ cmpl(rcx, dtos);
  2388       __ jccb(Assembler::equal, two_word);
  2389       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
  2390       __ jmpb(valsize_known);
  2392       __ bind(two_word);
  2393       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
  2395       __ bind(valsize_known);
  2396       // setup object pointer
  2397       __ movptr(rbx, Address(rbx, 0));
  2399     // cache entry pointer
  2400     __ addptr(rax, in_bytes(cp_base_offset));
  2401     __ shll(rdx, LogBytesPerWord);
  2402     __ addptr(rax, rdx);
  2403     // object (tos)
  2404     __ mov(rcx, rsp);
  2405     // rbx,: object pointer set up above (NULL if static)
  2406     // rax,: cache entry pointer
  2407     // rcx: jvalue object on the stack
  2408     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
  2409                rbx, rax, rcx);
  2410     __ get_cache_and_index_at_bcp(cache, index, 1);
  2411     __ bind(L1);
  2416 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2417   transition(vtos, vtos);
  2419   const Register cache = rcx;
  2420   const Register index = rdx;
  2421   const Register obj   = rcx;
  2422   const Register off   = rbx;
  2423   const Register flags = rax;
  2425   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2426   jvmti_post_field_mod(cache, index, is_static);
  2427   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2429   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2430   // volatile_barrier( );
  2432   Label notVolatile, Done;
  2433   __ movl(rdx, flags);
  2434   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2435   __ andl(rdx, 0x1);
  2437   // field addresses
  2438   const Address lo(obj, off, Address::times_1, 0*wordSize);
  2439   const Address hi(obj, off, Address::times_1, 1*wordSize);
  2441   Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
  2443   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2444   assert(btos == 0, "change code, btos != 0");
  2445   // btos
  2446   __ andl(flags, 0x0f);
  2447   __ jcc(Assembler::notZero, notByte);
  2449   __ pop(btos);
  2450   if (!is_static) pop_and_check_object(obj);
  2451   __ movb(lo, rax );
  2452   if (!is_static) {
  2453     patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx);
  2455   __ jmp(Done);
  2457   __ bind(notByte);
  2458   // itos
  2459   __ cmpl(flags, itos );
  2460   __ jcc(Assembler::notEqual, notInt);
  2462   __ pop(itos);
  2463   if (!is_static) pop_and_check_object(obj);
  2465   __ movl(lo, rax );
  2466   if (!is_static) {
  2467     patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx);
  2469   __ jmp(Done);
  2471   __ bind(notInt);
  2472   // atos
  2473   __ cmpl(flags, atos );
  2474   __ jcc(Assembler::notEqual, notObj);
  2476   __ pop(atos);
  2477   if (!is_static) pop_and_check_object(obj);
  2479   do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2481   if (!is_static) {
  2482     patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx);
  2485   __ jmp(Done);
  2487   __ bind(notObj);
  2488   // ctos
  2489   __ cmpl(flags, ctos );
  2490   __ jcc(Assembler::notEqual, notChar);
  2492   __ pop(ctos);
  2493   if (!is_static) pop_and_check_object(obj);
  2494   __ movw(lo, rax );
  2495   if (!is_static) {
  2496     patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx);
  2498   __ jmp(Done);
  2500   __ bind(notChar);
  2501   // stos
  2502   __ cmpl(flags, stos );
  2503   __ jcc(Assembler::notEqual, notShort);
  2505   __ pop(stos);
  2506   if (!is_static) pop_and_check_object(obj);
  2507   __ movw(lo, rax );
  2508   if (!is_static) {
  2509     patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx);
  2511   __ jmp(Done);
  2513   __ bind(notShort);
  2514   // ltos
  2515   __ cmpl(flags, ltos );
  2516   __ jcc(Assembler::notEqual, notLong);
  2518   Label notVolatileLong;
  2519   __ testl(rdx, rdx);
  2520   __ jcc(Assembler::zero, notVolatileLong);
  2522   __ pop(ltos);  // overwrites rdx, do this after testing volatile.
  2523   if (!is_static) pop_and_check_object(obj);
  2525   // Replace with real volatile test
  2526   __ push(rdx);
  2527   __ push(rax);                 // Must update atomically with FIST
  2528   __ fild_d(Address(rsp,0));    // So load into FPU register
  2529   __ fistp_d(lo);               // and put into memory atomically
  2530   __ addptr(rsp, 2*wordSize);
  2531   // volatile_barrier();
  2532   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2533                                                Assembler::StoreStore));
  2534   // Don't rewrite volatile version
  2535   __ jmp(notVolatile);
  2537   __ bind(notVolatileLong);
  2539   __ pop(ltos);  // overwrites rdx
  2540   if (!is_static) pop_and_check_object(obj);
  2541   NOT_LP64(__ movptr(hi, rdx));
  2542   __ movptr(lo, rax);
  2543   if (!is_static) {
  2544     patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx);
  2546   __ jmp(notVolatile);
  2548   __ bind(notLong);
  2549   // ftos
  2550   __ cmpl(flags, ftos );
  2551   __ jcc(Assembler::notEqual, notFloat);
  2553   __ pop(ftos);
  2554   if (!is_static) pop_and_check_object(obj);
  2555   __ fstp_s(lo);
  2556   if (!is_static) {
  2557     patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx);
  2559   __ jmp(Done);
  2561   __ bind(notFloat);
  2562   // dtos
  2563   __ cmpl(flags, dtos );
  2564   __ jcc(Assembler::notEqual, notDouble);
  2566   __ pop(dtos);
  2567   if (!is_static) pop_and_check_object(obj);
  2568   __ fstp_d(lo);
  2569   if (!is_static) {
  2570     patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx);
  2572   __ jmp(Done);
  2574   __ bind(notDouble);
  2576   __ stop("Bad state");
  2578   __ bind(Done);
  2580   // Check for volatile store
  2581   __ testl(rdx, rdx);
  2582   __ jcc(Assembler::zero, notVolatile);
  2583   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2584                                                Assembler::StoreStore));
  2585   __ bind(notVolatile);
  2589 void TemplateTable::putfield(int byte_no) {
  2590   putfield_or_static(byte_no, false);
  2594 void TemplateTable::putstatic(int byte_no) {
  2595   putfield_or_static(byte_no, true);
  2598 void TemplateTable::jvmti_post_fast_field_mod() {
  2599   if (JvmtiExport::can_post_field_modification()) {
  2600     // Check to see if a field modification watch has been set before we take
  2601     // the time to call into the VM.
  2602     Label L2;
  2603     __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2604     __ testl(rcx,rcx);
  2605     __ jcc(Assembler::zero, L2);
  2606     __ pop_ptr(rbx);               // copy the object pointer from tos
  2607     __ verify_oop(rbx);
  2608     __ push_ptr(rbx);              // put the object pointer back on tos
  2609     __ subptr(rsp, sizeof(jvalue));  // add space for a jvalue object
  2610     __ mov(rcx, rsp);
  2611     __ push_ptr(rbx);                 // save object pointer so we can steal rbx,
  2612     __ xorptr(rbx, rbx);
  2613     const Address lo_value(rcx, rbx, Address::times_1, 0*wordSize);
  2614     const Address hi_value(rcx, rbx, Address::times_1, 1*wordSize);
  2615     switch (bytecode()) {          // load values into the jvalue object
  2616     case Bytecodes::_fast_bputfield: __ movb(lo_value, rax); break;
  2617     case Bytecodes::_fast_sputfield: __ movw(lo_value, rax); break;
  2618     case Bytecodes::_fast_cputfield: __ movw(lo_value, rax); break;
  2619     case Bytecodes::_fast_iputfield: __ movl(lo_value, rax);                         break;
  2620     case Bytecodes::_fast_lputfield:
  2621       NOT_LP64(__ movptr(hi_value, rdx));
  2622       __ movptr(lo_value, rax);
  2623       break;
  2625     // need to call fld_s() after fstp_s() to restore the value for below
  2626     case Bytecodes::_fast_fputfield: __ fstp_s(lo_value); __ fld_s(lo_value);        break;
  2628     // need to call fld_d() after fstp_d() to restore the value for below
  2629     case Bytecodes::_fast_dputfield: __ fstp_d(lo_value); __ fld_d(lo_value);        break;
  2631     // since rcx is not an object we don't call store_check() here
  2632     case Bytecodes::_fast_aputfield: __ movptr(lo_value, rax);                       break;
  2634     default:  ShouldNotReachHere();
  2636     __ pop_ptr(rbx);  // restore copy of object pointer
  2638     // Save rax, and sometimes rdx because call_VM() will clobber them,
  2639     // then use them for JVM/DI purposes
  2640     __ push(rax);
  2641     if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
  2642     // access constant pool cache entry
  2643     __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
  2644     __ verify_oop(rbx);
  2645     // rbx,: object pointer copied above
  2646     // rax,: cache entry pointer
  2647     // rcx: jvalue object on the stack
  2648     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
  2649     if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);  // restore high value
  2650     __ pop(rax);     // restore lower value
  2651     __ addptr(rsp, sizeof(jvalue));  // release jvalue object space
  2652     __ bind(L2);
  2656 void TemplateTable::fast_storefield(TosState state) {
  2657   transition(state, vtos);
  2659   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2661   jvmti_post_fast_field_mod();
  2663   // access constant pool cache
  2664   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2666   // test for volatile with rdx but rdx is tos register for lputfield.
  2667   if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
  2668   __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base +
  2669                        ConstantPoolCacheEntry::flags_offset())));
  2671   // replace index with field offset from cache entry
  2672   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2674   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
  2675   // volatile_barrier( );
  2677   Label notVolatile, Done;
  2678   __ shrl(rdx, ConstantPoolCacheEntry::volatileField);
  2679   __ andl(rdx, 0x1);
  2680   // Check for volatile store
  2681   __ testl(rdx, rdx);
  2682   __ jcc(Assembler::zero, notVolatile);
  2684   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2686   // Get object from stack
  2687   pop_and_check_object(rcx);
  2689   // field addresses
  2690   const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
  2691   const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
  2693   // access field
  2694   switch (bytecode()) {
  2695     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2696     case Bytecodes::_fast_sputfield: // fall through
  2697     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2698     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2699     case Bytecodes::_fast_lputfield:
  2700       NOT_LP64(__ movptr(hi, rdx));
  2701       __ movptr(lo, rax);
  2702       break;
  2703     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2704     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2705     case Bytecodes::_fast_aputfield: {
  2706       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2707       break;
  2709     default:
  2710       ShouldNotReachHere();
  2713   Label done;
  2714   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2715                                                Assembler::StoreStore));
  2716   // Barriers are so large that short branch doesn't reach!
  2717   __ jmp(done);
  2719   // Same code as above, but don't need rdx to test for volatile.
  2720   __ bind(notVolatile);
  2722   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
  2724   // Get object from stack
  2725   pop_and_check_object(rcx);
  2727   // access field
  2728   switch (bytecode()) {
  2729     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
  2730     case Bytecodes::_fast_sputfield: // fall through
  2731     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
  2732     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
  2733     case Bytecodes::_fast_lputfield:
  2734       NOT_LP64(__ movptr(hi, rdx));
  2735       __ movptr(lo, rax);
  2736       break;
  2737     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
  2738     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
  2739     case Bytecodes::_fast_aputfield: {
  2740       do_oop_store(_masm, lo, rax, _bs->kind(), false);
  2741       break;
  2743     default:
  2744       ShouldNotReachHere();
  2746   __ bind(done);
  2750 void TemplateTable::fast_accessfield(TosState state) {
  2751   transition(atos, state);
  2753   // do the JVMTI work here to avoid disturbing the register state below
  2754   if (JvmtiExport::can_post_field_access()) {
  2755     // Check to see if a field access watch has been set before we take
  2756     // the time to call into the VM.
  2757     Label L1;
  2758     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2759     __ testl(rcx,rcx);
  2760     __ jcc(Assembler::zero, L1);
  2761     // access constant pool cache entry
  2762     __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
  2763     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2764     __ verify_oop(rax);
  2765     // rax,: object pointer copied above
  2766     // rcx: cache entry pointer
  2767     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
  2768     __ pop_ptr(rax);   // restore object pointer
  2769     __ bind(L1);
  2772   // access constant pool cache
  2773   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2774   // replace index with field offset from cache entry
  2775   __ movptr(rbx, Address(rcx,
  2776                          rbx,
  2777                          Address::times_ptr,
  2778                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2781   // rax,: object
  2782   __ verify_oop(rax);
  2783   __ null_check(rax);
  2784   // field addresses
  2785   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2786   const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
  2788   // access field
  2789   switch (bytecode()) {
  2790     case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo );                 break;
  2791     case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, lo );      break;
  2792     case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, lo );    break;
  2793     case Bytecodes::_fast_igetfield: __ movl(rax, lo);                    break;
  2794     case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten");  break;
  2795     case Bytecodes::_fast_fgetfield: __ fld_s(lo);                        break;
  2796     case Bytecodes::_fast_dgetfield: __ fld_d(lo);                        break;
  2797     case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break;
  2798     default:
  2799       ShouldNotReachHere();
  2802   // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
  2803   // volatile_barrier( );
  2806 void TemplateTable::fast_xaccess(TosState state) {
  2807   transition(vtos, state);
  2808   // get receiver
  2809   __ movptr(rax, aaddress(0));
  2810   // access constant pool cache
  2811   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2812   __ movptr(rbx, Address(rcx,
  2813                          rdx,
  2814                          Address::times_ptr,
  2815                          in_bytes(constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f2_offset())));
  2816   // make sure exception is reported in correct bcp range (getfield is next instruction)
  2817   __ increment(rsi);
  2818   __ null_check(rax);
  2819   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
  2820   if (state == itos) {
  2821     __ movl(rax, lo);
  2822   } else if (state == atos) {
  2823     __ movptr(rax, lo);
  2824     __ verify_oop(rax);
  2825   } else if (state == ftos) {
  2826     __ fld_s(lo);
  2827   } else {
  2828     ShouldNotReachHere();
  2830   __ decrement(rsi);
  2835 //----------------------------------------------------------------------------------------------------
  2836 // Calls
  2838 void TemplateTable::count_calls(Register method, Register temp) {
  2839   // implemented elsewhere
  2840   ShouldNotReachHere();
  2844 void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) {
  2845   // determine flags
  2846   Bytecodes::Code code = bytecode();
  2847   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2848   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2849   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2850   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2851   const bool load_receiver      = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic);
  2852   const bool receiver_null_check = is_invokespecial;
  2853   const bool save_flags = is_invokeinterface || is_invokevirtual;
  2854   // setup registers & access constant pool cache
  2855   const Register recv   = rcx;
  2856   const Register flags  = rdx;
  2857   assert_different_registers(method, index, recv, flags);
  2859   // save 'interpreter return address'
  2860   __ save_bcp();
  2862   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2864   // load receiver if needed (note: no return address pushed yet)
  2865   if (load_receiver) {
  2866     assert(!is_invokedynamic, "");
  2867     __ movl(recv, flags);
  2868     __ andl(recv, 0xFF);
  2869     // recv count is 0 based?
  2870     Address recv_addr(rsp, recv, Interpreter::stackElementScale(), -Interpreter::expr_offset_in_bytes(1));
  2871     __ movptr(recv, recv_addr);
  2872     __ verify_oop(recv);
  2875   // do null check if needed
  2876   if (receiver_null_check) {
  2877     __ null_check(recv);
  2880   if (save_flags) {
  2881     __ mov(rsi, flags);
  2884   // compute return type
  2885   __ shrl(flags, ConstantPoolCacheEntry::tosBits);
  2886   // Make sure we don't need to mask flags for tosBits after the above shift
  2887   ConstantPoolCacheEntry::verify_tosBits();
  2888   // load return address
  2890     address table_addr;
  2891     if (is_invokeinterface || is_invokedynamic)
  2892       table_addr = (address)Interpreter::return_5_addrs_by_index_table();
  2893     else
  2894       table_addr = (address)Interpreter::return_3_addrs_by_index_table();
  2895     ExternalAddress table(table_addr);
  2896     __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
  2899   // push return address
  2900   __ push(flags);
  2902   // Restore flag value from the constant pool cache, and restore rsi
  2903   // for later null checks.  rsi is the bytecode pointer
  2904   if (save_flags) {
  2905     __ mov(flags, rsi);
  2906     __ restore_bcp();
  2911 void TemplateTable::invokevirtual_helper(Register index, Register recv,
  2912                         Register flags) {
  2914   // Uses temporary registers rax, rdx
  2915   assert_different_registers(index, recv, rax, rdx);
  2917   // Test for an invoke of a final method
  2918   Label notFinal;
  2919   __ movl(rax, flags);
  2920   __ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod));
  2921   __ jcc(Assembler::zero, notFinal);
  2923   Register method = index;  // method must be rbx,
  2924   assert(method == rbx, "methodOop must be rbx, for interpreter calling convention");
  2926   // do the call - the index is actually the method to call
  2927   __ verify_oop(method);
  2929   // It's final, need a null check here!
  2930   __ null_check(recv);
  2932   // profile this call
  2933   __ profile_final_call(rax);
  2935   __ jump_from_interpreted(method, rax);
  2937   __ bind(notFinal);
  2939   // get receiver klass
  2940   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  2941   // Keep recv in rcx for callee expects it there
  2942   __ movptr(rax, Address(recv, oopDesc::klass_offset_in_bytes()));
  2943   __ verify_oop(rax);
  2945   // profile this call
  2946   __ profile_virtual_call(rax, rdi, rdx);
  2948   // get target methodOop & entry point
  2949   const int base = instanceKlass::vtable_start_offset() * wordSize;
  2950   assert(vtableEntry::size() * wordSize == 4, "adjust the scaling in the code below");
  2951   __ movptr(method, Address(rax, index, Address::times_ptr, base + vtableEntry::method_offset_in_bytes()));
  2952   __ jump_from_interpreted(method, rdx);
  2956 void TemplateTable::invokevirtual(int byte_no) {
  2957   transition(vtos, vtos);
  2958   assert(byte_no == f2_byte, "use this argument");
  2959   prepare_invoke(rbx, noreg, byte_no);
  2961   // rbx,: index
  2962   // rcx: receiver
  2963   // rdx: flags
  2965   invokevirtual_helper(rbx, rcx, rdx);
  2969 void TemplateTable::invokespecial(int byte_no) {
  2970   transition(vtos, vtos);
  2971   assert(byte_no == f1_byte, "use this argument");
  2972   prepare_invoke(rbx, noreg, byte_no);
  2973   // do the call
  2974   __ verify_oop(rbx);
  2975   __ profile_call(rax);
  2976   __ jump_from_interpreted(rbx, rax);
  2980 void TemplateTable::invokestatic(int byte_no) {
  2981   transition(vtos, vtos);
  2982   assert(byte_no == f1_byte, "use this argument");
  2983   prepare_invoke(rbx, noreg, byte_no);
  2984   // do the call
  2985   __ verify_oop(rbx);
  2986   __ profile_call(rax);
  2987   __ jump_from_interpreted(rbx, rax);
  2991 void TemplateTable::fast_invokevfinal(int byte_no) {
  2992   transition(vtos, vtos);
  2993   assert(byte_no == f2_byte, "use this argument");
  2994   __ stop("fast_invokevfinal not used on x86");
  2998 void TemplateTable::invokeinterface(int byte_no) {
  2999   transition(vtos, vtos);
  3000   assert(byte_no == f1_byte, "use this argument");
  3001   prepare_invoke(rax, rbx, byte_no);
  3003   // rax,: Interface
  3004   // rbx,: index
  3005   // rcx: receiver
  3006   // rdx: flags
  3008   // Special case of invokeinterface called for virtual method of
  3009   // java.lang.Object.  See cpCacheOop.cpp for details.
  3010   // This code isn't produced by javac, but could be produced by
  3011   // another compliant java compiler.
  3012   Label notMethod;
  3013   __ movl(rdi, rdx);
  3014   __ andl(rdi, (1 << ConstantPoolCacheEntry::methodInterface));
  3015   __ jcc(Assembler::zero, notMethod);
  3017   invokevirtual_helper(rbx, rcx, rdx);
  3018   __ bind(notMethod);
  3020   // Get receiver klass into rdx - also a null check
  3021   __ restore_locals();  // restore rdi
  3022   __ movptr(rdx, Address(rcx, oopDesc::klass_offset_in_bytes()));
  3023   __ verify_oop(rdx);
  3025   // profile this call
  3026   __ profile_virtual_call(rdx, rsi, rdi);
  3028   Label no_such_interface, no_such_method;
  3030   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3031                              rdx, rax, rbx,
  3032                              // outputs: method, scan temp. reg
  3033                              rbx, rsi,
  3034                              no_such_interface);
  3036   // rbx,: methodOop to call
  3037   // rcx: receiver
  3038   // Check for abstract method error
  3039   // Note: This should be done more efficiently via a throw_abstract_method_error
  3040   //       interpreter entry point and a conditional jump to it in case of a null
  3041   //       method.
  3042   __ testptr(rbx, rbx);
  3043   __ jcc(Assembler::zero, no_such_method);
  3045   // do the call
  3046   // rcx: receiver
  3047   // rbx,: methodOop
  3048   __ jump_from_interpreted(rbx, rdx);
  3049   __ should_not_reach_here();
  3051   // exception handling code follows...
  3052   // note: must restore interpreter registers to canonical
  3053   //       state for exception handling to work correctly!
  3055   __ bind(no_such_method);
  3056   // throw exception
  3057   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3058   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3059   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3060   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3061   // the call_VM checks for exception, so we should never return here.
  3062   __ should_not_reach_here();
  3064   __ bind(no_such_interface);
  3065   // throw exception
  3066   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3067   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
  3068   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3069   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3070                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3071   // the call_VM checks for exception, so we should never return here.
  3072   __ should_not_reach_here();
  3075 void TemplateTable::invokedynamic(int byte_no) {
  3076   transition(vtos, vtos);
  3078   if (!EnableInvokeDynamic) {
  3079     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3080     // The verifier will stop it.  However, if we get past the verifier,
  3081     // this will stop the thread in a reasonable way, without crashing the JVM.
  3082     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3083                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3084     // the call_VM checks for exception, so we should never return here.
  3085     __ should_not_reach_here();
  3086     return;
  3089   assert(byte_no == f1_oop, "use this argument");
  3090   prepare_invoke(rax, rbx, byte_no);
  3092   // rax: CallSite object (f1)
  3093   // rbx: unused (f2)
  3094   // rcx: receiver address
  3095   // rdx: flags (unused)
  3097   Register rax_callsite      = rax;
  3098   Register rcx_method_handle = rcx;
  3100   if (ProfileInterpreter) {
  3101     // %%% should make a type profile for any invokedynamic that takes a ref argument
  3102     // profile this call
  3103     __ profile_call(rsi);
  3106   __ movptr(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rcx)));
  3107   __ null_check(rcx_method_handle);
  3108   __ prepare_to_jump_from_interpreted();
  3109   __ jump_to_method_handle_entry(rcx_method_handle, rdx);
  3112 //----------------------------------------------------------------------------------------------------
  3113 // Allocation
  3115 void TemplateTable::_new() {
  3116   transition(vtos, atos);
  3117   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3118   Label slow_case;
  3119   Label slow_case_no_pop;
  3120   Label done;
  3121   Label initialize_header;
  3122   Label initialize_object;  // including clearing the fields
  3123   Label allocate_shared;
  3125   __ get_cpool_and_tags(rcx, rax);
  3127   // Make sure the class we're about to instantiate has been resolved.
  3128   // This is done before loading instanceKlass to be consistent with the order
  3129   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
  3130   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3131   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
  3132   __ jcc(Assembler::notEqual, slow_case_no_pop);
  3134   // get instanceKlass
  3135   __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3136   __ push(rcx);  // save the contexts of klass for initializing the header
  3138   // make sure klass is initialized & doesn't have finalizer
  3139   // make sure klass is fully initialized
  3140   __ cmpl(Address(rcx, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)), instanceKlass::fully_initialized);
  3141   __ jcc(Assembler::notEqual, slow_case);
  3143   // get instance_size in instanceKlass (scaled to a count of bytes)
  3144   __ movl(rdx, Address(rcx, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc)));
  3145   // test to see if it has a finalizer or is malformed in some way
  3146   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3147   __ jcc(Assembler::notZero, slow_case);
  3149   //
  3150   // Allocate the instance
  3151   // 1) Try to allocate in the TLAB
  3152   // 2) if fail and the object is large allocate in the shared Eden
  3153   // 3) if the above fails (or is not applicable), go to a slow case
  3154   // (creates a new TLAB, etc.)
  3156   const bool allow_shared_alloc =
  3157     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3159   const Register thread = rcx;
  3160   if (UseTLAB || allow_shared_alloc) {
  3161     __ get_thread(thread);
  3164   if (UseTLAB) {
  3165     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
  3166     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3167     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
  3168     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3169     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3170     if (ZeroTLAB) {
  3171       // the fields have been already cleared
  3172       __ jmp(initialize_header);
  3173     } else {
  3174       // initialize both the header and fields
  3175       __ jmp(initialize_object);
  3179   // Allocation in the shared Eden, if allowed.
  3180   //
  3181   // rdx: instance size in bytes
  3182   if (allow_shared_alloc) {
  3183     __ bind(allocate_shared);
  3185     ExternalAddress heap_top((address)Universe::heap()->top_addr());
  3187     Label retry;
  3188     __ bind(retry);
  3189     __ movptr(rax, heap_top);
  3190     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3191     __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
  3192     __ jcc(Assembler::above, slow_case);
  3194     // Compare rax, with the top addr, and if still equal, store the new
  3195     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
  3196     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3197     //
  3198     // rax,: object begin
  3199     // rbx,: object end
  3200     // rdx: instance size in bytes
  3201     __ locked_cmpxchgptr(rbx, heap_top);
  3203     // if someone beat us on the allocation, try again, otherwise continue
  3204     __ jcc(Assembler::notEqual, retry);
  3206     __ incr_allocated_bytes(thread, rdx, 0);
  3209   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3210     // The object is initialized before the header.  If the object size is
  3211     // zero, go directly to the header initialization.
  3212     __ bind(initialize_object);
  3213     __ decrement(rdx, sizeof(oopDesc));
  3214     __ jcc(Assembler::zero, initialize_header);
  3216     // Initialize topmost object field, divide rdx by 8, check if odd and
  3217     // test if zero.
  3218     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
  3219     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
  3221     // rdx must have been multiple of 8
  3222 #ifdef ASSERT
  3223     // make sure rdx was multiple of 8
  3224     Label L;
  3225     // Ignore partial flag stall after shrl() since it is debug VM
  3226     __ jccb(Assembler::carryClear, L);
  3227     __ stop("object size is not multiple of 2 - adjust this code");
  3228     __ bind(L);
  3229     // rdx must be > 0, no extra check needed here
  3230 #endif
  3232     // initialize remaining object fields: rdx was a multiple of 8
  3233     { Label loop;
  3234     __ bind(loop);
  3235     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
  3236     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
  3237     __ decrement(rdx);
  3238     __ jcc(Assembler::notZero, loop);
  3241     // initialize object header only.
  3242     __ bind(initialize_header);
  3243     if (UseBiasedLocking) {
  3244       __ pop(rcx);   // get saved klass back in the register.
  3245       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  3246       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
  3247     } else {
  3248       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
  3249                 (int32_t)markOopDesc::prototype()); // header
  3250       __ pop(rcx);   // get saved klass back in the register.
  3252     __ movptr(Address(rax, oopDesc::klass_offset_in_bytes()), rcx);  // klass
  3255       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
  3256       // Trigger dtrace event for fastpath
  3257       __ push(atos);
  3258       __ call_VM_leaf(
  3259            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3260       __ pop(atos);
  3263     __ jmp(done);
  3266   // slow case
  3267   __ bind(slow_case);
  3268   __ pop(rcx);   // restore stack pointer to what it was when we came in.
  3269   __ bind(slow_case_no_pop);
  3270   __ get_constant_pool(rax);
  3271   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3272   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
  3274   // continue
  3275   __ bind(done);
  3279 void TemplateTable::newarray() {
  3280   transition(itos, atos);
  3281   __ push_i(rax);                                 // make sure everything is on the stack
  3282   __ load_unsigned_byte(rdx, at_bcp(1));
  3283   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
  3284   __ pop_i(rdx);                                  // discard size
  3288 void TemplateTable::anewarray() {
  3289   transition(itos, atos);
  3290   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3291   __ get_constant_pool(rcx);
  3292   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
  3296 void TemplateTable::arraylength() {
  3297   transition(atos, itos);
  3298   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3299   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3303 void TemplateTable::checkcast() {
  3304   transition(atos, atos);
  3305   Label done, is_null, ok_is_subtype, quicked, resolved;
  3306   __ testptr(rax, rax);   // Object is in EAX
  3307   __ jcc(Assembler::zero, is_null);
  3309   // Get cpool & tags index
  3310   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3311   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3312   // See if bytecode has already been quicked
  3313   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
  3314   __ jcc(Assembler::equal, quicked);
  3316   __ push(atos);
  3317   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3318   __ pop_ptr(rdx);
  3319   __ jmpb(resolved);
  3321   // Get superklass in EAX and subklass in EBX
  3322   __ bind(quicked);
  3323   __ mov(rdx, rax);          // Save object in EDX; EAX needed for subtype check
  3324   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3326   __ bind(resolved);
  3327   __ movptr(rbx, Address(rdx, oopDesc::klass_offset_in_bytes()));
  3329   // Generate subtype check.  Blows ECX.  Resets EDI.  Object in EDX.
  3330   // Superklass in EAX.  Subklass in EBX.
  3331   __ gen_subtype_check( rbx, ok_is_subtype );
  3333   // Come here on failure
  3334   __ push(rdx);
  3335   // object is at TOS
  3336   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3338   // Come here on success
  3339   __ bind(ok_is_subtype);
  3340   __ mov(rax,rdx);           // Restore object in EDX
  3342   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3343   if (ProfileInterpreter) {
  3344     __ jmp(done);
  3345     __ bind(is_null);
  3346     __ profile_null_seen(rcx);
  3347   } else {
  3348     __ bind(is_null);   // same as 'done'
  3350   __ bind(done);
  3354 void TemplateTable::instanceof() {
  3355   transition(atos, itos);
  3356   Label done, is_null, ok_is_subtype, quicked, resolved;
  3357   __ testptr(rax, rax);
  3358   __ jcc(Assembler::zero, is_null);
  3360   // Get cpool & tags index
  3361   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
  3362   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
  3363   // See if bytecode has already been quicked
  3364   __ cmpb(Address(rdx, rbx, Address::times_1, typeArrayOopDesc::header_size(T_BYTE) * wordSize), JVM_CONSTANT_Class);
  3365   __ jcc(Assembler::equal, quicked);
  3367   __ push(atos);
  3368   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
  3369   __ pop_ptr(rdx);
  3370   __ movptr(rdx, Address(rdx, oopDesc::klass_offset_in_bytes()));
  3371   __ jmp(resolved);
  3373   // Get superklass in EAX and subklass in EDX
  3374   __ bind(quicked);
  3375   __ movptr(rdx, Address(rax, oopDesc::klass_offset_in_bytes()));
  3376   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(constantPoolOopDesc)));
  3378   __ bind(resolved);
  3380   // Generate subtype check.  Blows ECX.  Resets EDI.
  3381   // Superklass in EAX.  Subklass in EDX.
  3382   __ gen_subtype_check( rdx, ok_is_subtype );
  3384   // Come here on failure
  3385   __ xorl(rax,rax);
  3386   __ jmpb(done);
  3387   // Come here on success
  3388   __ bind(ok_is_subtype);
  3389   __ movl(rax, 1);
  3391   // Collect counts on whether this test sees NULLs a lot or not.
  3392   if (ProfileInterpreter) {
  3393     __ jmp(done);
  3394     __ bind(is_null);
  3395     __ profile_null_seen(rcx);
  3396   } else {
  3397     __ bind(is_null);   // same as 'done'
  3399   __ bind(done);
  3400   // rax, = 0: obj == NULL or  obj is not an instanceof the specified klass
  3401   // rax, = 1: obj != NULL and obj is     an instanceof the specified klass
  3405 //----------------------------------------------------------------------------------------------------
  3406 // Breakpoints
  3407 void TemplateTable::_breakpoint() {
  3409   // Note: We get here even if we are single stepping..
  3410   // jbug inists on setting breakpoints at every bytecode
  3411   // even if we are in single step mode.
  3413   transition(vtos, vtos);
  3415   // get the unpatched byte code
  3416   __ get_method(rcx);
  3417   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
  3418   __ mov(rbx, rax);
  3420   // post the breakpoint event
  3421   __ get_method(rcx);
  3422   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
  3424   // complete the execution of original bytecode
  3425   __ dispatch_only_normal(vtos);
  3429 //----------------------------------------------------------------------------------------------------
  3430 // Exceptions
  3432 void TemplateTable::athrow() {
  3433   transition(atos, vtos);
  3434   __ null_check(rax);
  3435   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3439 //----------------------------------------------------------------------------------------------------
  3440 // Synchronization
  3441 //
  3442 // Note: monitorenter & exit are symmetric routines; which is reflected
  3443 //       in the assembly code structure as well
  3444 //
  3445 // Stack layout:
  3446 //
  3447 // [expressions  ] <--- rsp               = expression stack top
  3448 // ..
  3449 // [expressions  ]
  3450 // [monitor entry] <--- monitor block top = expression stack bot
  3451 // ..
  3452 // [monitor entry]
  3453 // [frame data   ] <--- monitor block bot
  3454 // ...
  3455 // [saved rbp,    ] <--- rbp,
  3458 void TemplateTable::monitorenter() {
  3459   transition(atos, vtos);
  3461   // check for NULL object
  3462   __ null_check(rax);
  3464   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3465   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3466   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3467   Label allocated;
  3469   // initialize entry pointer
  3470   __ xorl(rdx, rdx);                             // points to free slot or NULL
  3472   // find a free slot in the monitor block (result in rdx)
  3473   { Label entry, loop, exit;
  3474     __ movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
  3476     __ lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
  3477     __ jmpb(entry);
  3479     __ bind(loop);
  3480     __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
  3481     __ cmovptr(Assembler::equal, rdx, rcx);      // if not used then remember entry in rdx
  3482     __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3483     __ jccb(Assembler::equal, exit);             // if same object then stop searching
  3484     __ addptr(rcx, entry_size);                  // otherwise advance to next entry
  3485     __ bind(entry);
  3486     __ cmpptr(rcx, rbx);                         // check if bottom reached
  3487     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3488     __ bind(exit);
  3491   __ testptr(rdx, rdx);                          // check if a slot has been found
  3492   __ jccb(Assembler::notZero, allocated);        // if found, continue with that one
  3494   // allocate one if there's no free slot
  3495   { Label entry, loop;
  3496     // 1. compute new pointers                   // rsp: old expression stack top
  3497     __ movptr(rdx, monitor_block_bot);           // rdx: old expression stack bottom
  3498     __ subptr(rsp, entry_size);                  // move expression stack top
  3499     __ subptr(rdx, entry_size);                  // move expression stack bottom
  3500     __ mov(rcx, rsp);                            // set start value for copy loop
  3501     __ movptr(monitor_block_bot, rdx);           // set new monitor block top
  3502     __ jmp(entry);
  3503     // 2. move expression stack contents
  3504     __ bind(loop);
  3505     __ movptr(rbx, Address(rcx, entry_size));    // load expression stack word from old location
  3506     __ movptr(Address(rcx, 0), rbx);             // and store it at new location
  3507     __ addptr(rcx, wordSize);                    // advance to next word
  3508     __ bind(entry);
  3509     __ cmpptr(rcx, rdx);                         // check if bottom reached
  3510     __ jcc(Assembler::notEqual, loop);           // if not at bottom then copy next word
  3513   // call run-time routine
  3514   // rdx: points to monitor entry
  3515   __ bind(allocated);
  3517   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
  3518   // The object has already been poped from the stack, so the expression stack looks correct.
  3519   __ increment(rsi);
  3521   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax);     // store object
  3522   __ lock_object(rdx);
  3524   // check to make sure this monitor doesn't cause stack overflow after locking
  3525   __ save_bcp();  // in case of exception
  3526   __ generate_stack_overflow_check(0);
  3528   // The bcp has already been incremented. Just need to dispatch to next instruction.
  3529   __ dispatch_next(vtos);
  3533 void TemplateTable::monitorexit() {
  3534   transition(atos, vtos);
  3536   // check for NULL object
  3537   __ null_check(rax);
  3539   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3540   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
  3541   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
  3542   Label found;
  3544   // find matching slot
  3545   { Label entry, loop;
  3546     __ movptr(rdx, monitor_block_top);           // points to current entry, starting with top-most entry
  3547     __ lea(rbx, monitor_block_bot);             // points to word before bottom of monitor block
  3548     __ jmpb(entry);
  3550     __ bind(loop);
  3551     __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
  3552     __ jcc(Assembler::equal, found);             // if same object then stop searching
  3553     __ addptr(rdx, entry_size);                  // otherwise advance to next entry
  3554     __ bind(entry);
  3555     __ cmpptr(rdx, rbx);                         // check if bottom reached
  3556     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
  3559   // error handling. Unlocking was not block-structured
  3560   Label end;
  3561   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  3562   __ should_not_reach_here();
  3564   // call run-time routine
  3565   // rcx: points to monitor entry
  3566   __ bind(found);
  3567   __ push_ptr(rax);                                 // make sure object is on stack (contract with oopMaps)
  3568   __ unlock_object(rdx);
  3569   __ pop_ptr(rax);                                  // discard object
  3570   __ bind(end);
  3574 //----------------------------------------------------------------------------------------------------
  3575 // Wide instructions
  3577 void TemplateTable::wide() {
  3578   transition(vtos, vtos);
  3579   __ load_unsigned_byte(rbx, at_bcp(1));
  3580   ExternalAddress wtable((address)Interpreter::_wentry_point);
  3581   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
  3582   // Note: the rsi increment step is part of the individual wide bytecode implementations
  3586 //----------------------------------------------------------------------------------------------------
  3587 // Multi arrays
  3589 void TemplateTable::multianewarray() {
  3590   transition(vtos, atos);
  3591   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3592   // last dim is on top of stack; we want address of first one:
  3593   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
  3594   // the latter wordSize to point to the beginning of the array.
  3595   __ lea(  rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
  3596   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax);     // pass in rax,
  3597   __ load_unsigned_byte(rbx, at_bcp(3));
  3598   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
  3601 #endif /* !CC_INTERP */

mercurial