src/cpu/x86/vm/assembler_x86.cpp

Thu, 31 Mar 2011 00:27:08 -0700

author
twisti
date
Thu, 31 Mar 2011 00:27:08 -0700
changeset 2697
09f96c3ff1ad
parent 2686
b40d4fa697bf
child 2746
d86923d96dca
child 2784
92add02409c9
permissions
-rw-r--r--

7032388: guarantee(VM_Version::supports_cmov()) failed: illegal instruction on i586 after 6919934
Summary: 6919934 added some unguarded cmov instructions which hit a guarantee on older hardware.
Reviewed-by: never, iveresov, kvn, phh

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "assembler_x86.inline.hpp"
    27 #include "gc_interface/collectedHeap.inline.hpp"
    28 #include "interpreter/interpreter.hpp"
    29 #include "memory/cardTableModRefBS.hpp"
    30 #include "memory/resourceArea.hpp"
    31 #include "prims/methodHandles.hpp"
    32 #include "runtime/biasedLocking.hpp"
    33 #include "runtime/interfaceSupport.hpp"
    34 #include "runtime/objectMonitor.hpp"
    35 #include "runtime/os.hpp"
    36 #include "runtime/sharedRuntime.hpp"
    37 #include "runtime/stubRoutines.hpp"
    38 #ifndef SERIALGC
    39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    40 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    41 #include "gc_implementation/g1/heapRegion.hpp"
    42 #endif
    44 // Implementation of AddressLiteral
    46 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
    47   _is_lval = false;
    48   _target = target;
    49   switch (rtype) {
    50   case relocInfo::oop_type:
    51     // Oops are a special case. Normally they would be their own section
    52     // but in cases like icBuffer they are literals in the code stream that
    53     // we don't have a section for. We use none so that we get a literal address
    54     // which is always patchable.
    55     break;
    56   case relocInfo::external_word_type:
    57     _rspec = external_word_Relocation::spec(target);
    58     break;
    59   case relocInfo::internal_word_type:
    60     _rspec = internal_word_Relocation::spec(target);
    61     break;
    62   case relocInfo::opt_virtual_call_type:
    63     _rspec = opt_virtual_call_Relocation::spec();
    64     break;
    65   case relocInfo::static_call_type:
    66     _rspec = static_call_Relocation::spec();
    67     break;
    68   case relocInfo::runtime_call_type:
    69     _rspec = runtime_call_Relocation::spec();
    70     break;
    71   case relocInfo::poll_type:
    72   case relocInfo::poll_return_type:
    73     _rspec = Relocation::spec_simple(rtype);
    74     break;
    75   case relocInfo::none:
    76     break;
    77   default:
    78     ShouldNotReachHere();
    79     break;
    80   }
    81 }
    83 // Implementation of Address
    85 #ifdef _LP64
    87 Address Address::make_array(ArrayAddress adr) {
    88   // Not implementable on 64bit machines
    89   // Should have been handled higher up the call chain.
    90   ShouldNotReachHere();
    91   return Address();
    92 }
    94 // exceedingly dangerous constructor
    95 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
    96   _base  = noreg;
    97   _index = noreg;
    98   _scale = no_scale;
    99   _disp  = disp;
   100   switch (rtype) {
   101     case relocInfo::external_word_type:
   102       _rspec = external_word_Relocation::spec(loc);
   103       break;
   104     case relocInfo::internal_word_type:
   105       _rspec = internal_word_Relocation::spec(loc);
   106       break;
   107     case relocInfo::runtime_call_type:
   108       // HMM
   109       _rspec = runtime_call_Relocation::spec();
   110       break;
   111     case relocInfo::poll_type:
   112     case relocInfo::poll_return_type:
   113       _rspec = Relocation::spec_simple(rtype);
   114       break;
   115     case relocInfo::none:
   116       break;
   117     default:
   118       ShouldNotReachHere();
   119   }
   120 }
   121 #else // LP64
   123 Address Address::make_array(ArrayAddress adr) {
   124   AddressLiteral base = adr.base();
   125   Address index = adr.index();
   126   assert(index._disp == 0, "must not have disp"); // maybe it can?
   127   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
   128   array._rspec = base._rspec;
   129   return array;
   130 }
   132 // exceedingly dangerous constructor
   133 Address::Address(address loc, RelocationHolder spec) {
   134   _base  = noreg;
   135   _index = noreg;
   136   _scale = no_scale;
   137   _disp  = (intptr_t) loc;
   138   _rspec = spec;
   139 }
   141 #endif // _LP64
   145 // Convert the raw encoding form into the form expected by the constructor for
   146 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   147 // that to noreg for the Address constructor.
   148 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
   149   RelocationHolder rspec;
   150   if (disp_is_oop) {
   151     rspec = Relocation::spec_simple(relocInfo::oop_type);
   152   }
   153   bool valid_index = index != rsp->encoding();
   154   if (valid_index) {
   155     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
   156     madr._rspec = rspec;
   157     return madr;
   158   } else {
   159     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
   160     madr._rspec = rspec;
   161     return madr;
   162   }
   163 }
   165 // Implementation of Assembler
   167 int AbstractAssembler::code_fill_byte() {
   168   return (u_char)'\xF4'; // hlt
   169 }
   171 // make this go away someday
   172 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
   173   if (rtype == relocInfo::none)
   174         emit_long(data);
   175   else  emit_data(data, Relocation::spec_simple(rtype), format);
   176 }
   178 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
   179   assert(imm_operand == 0, "default format must be immediate in this file");
   180   assert(inst_mark() != NULL, "must be inside InstructionMark");
   181   if (rspec.type() !=  relocInfo::none) {
   182     #ifdef ASSERT
   183       check_relocation(rspec, format);
   184     #endif
   185     // Do not use AbstractAssembler::relocate, which is not intended for
   186     // embedded words.  Instead, relocate to the enclosing instruction.
   188     // hack. call32 is too wide for mask so use disp32
   189     if (format == call32_operand)
   190       code_section()->relocate(inst_mark(), rspec, disp32_operand);
   191     else
   192       code_section()->relocate(inst_mark(), rspec, format);
   193   }
   194   emit_long(data);
   195 }
   197 static int encode(Register r) {
   198   int enc = r->encoding();
   199   if (enc >= 8) {
   200     enc -= 8;
   201   }
   202   return enc;
   203 }
   205 static int encode(XMMRegister r) {
   206   int enc = r->encoding();
   207   if (enc >= 8) {
   208     enc -= 8;
   209   }
   210   return enc;
   211 }
   213 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
   214   assert(dst->has_byte_register(), "must have byte register");
   215   assert(isByte(op1) && isByte(op2), "wrong opcode");
   216   assert(isByte(imm8), "not a byte");
   217   assert((op1 & 0x01) == 0, "should be 8bit operation");
   218   emit_byte(op1);
   219   emit_byte(op2 | encode(dst));
   220   emit_byte(imm8);
   221 }
   224 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
   225   assert(isByte(op1) && isByte(op2), "wrong opcode");
   226   assert((op1 & 0x01) == 1, "should be 32bit operation");
   227   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   228   if (is8bit(imm32)) {
   229     emit_byte(op1 | 0x02); // set sign bit
   230     emit_byte(op2 | encode(dst));
   231     emit_byte(imm32 & 0xFF);
   232   } else {
   233     emit_byte(op1);
   234     emit_byte(op2 | encode(dst));
   235     emit_long(imm32);
   236   }
   237 }
   239 // immediate-to-memory forms
   240 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
   241   assert((op1 & 0x01) == 1, "should be 32bit operation");
   242   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   243   if (is8bit(imm32)) {
   244     emit_byte(op1 | 0x02); // set sign bit
   245     emit_operand(rm, adr, 1);
   246     emit_byte(imm32 & 0xFF);
   247   } else {
   248     emit_byte(op1);
   249     emit_operand(rm, adr, 4);
   250     emit_long(imm32);
   251   }
   252 }
   254 void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
   255   LP64_ONLY(ShouldNotReachHere());
   256   assert(isByte(op1) && isByte(op2), "wrong opcode");
   257   assert((op1 & 0x01) == 1, "should be 32bit operation");
   258   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
   259   InstructionMark im(this);
   260   emit_byte(op1);
   261   emit_byte(op2 | encode(dst));
   262   emit_data((intptr_t)obj, relocInfo::oop_type, 0);
   263 }
   266 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
   267   assert(isByte(op1) && isByte(op2), "wrong opcode");
   268   emit_byte(op1);
   269   emit_byte(op2 | encode(dst) << 3 | encode(src));
   270 }
   273 void Assembler::emit_operand(Register reg, Register base, Register index,
   274                              Address::ScaleFactor scale, int disp,
   275                              RelocationHolder const& rspec,
   276                              int rip_relative_correction) {
   277   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
   279   // Encode the registers as needed in the fields they are used in
   281   int regenc = encode(reg) << 3;
   282   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
   283   int baseenc = base->is_valid() ? encode(base) : 0;
   285   if (base->is_valid()) {
   286     if (index->is_valid()) {
   287       assert(scale != Address::no_scale, "inconsistent address");
   288       // [base + index*scale + disp]
   289       if (disp == 0 && rtype == relocInfo::none  &&
   290           base != rbp LP64_ONLY(&& base != r13)) {
   291         // [base + index*scale]
   292         // [00 reg 100][ss index base]
   293         assert(index != rsp, "illegal addressing mode");
   294         emit_byte(0x04 | regenc);
   295         emit_byte(scale << 6 | indexenc | baseenc);
   296       } else if (is8bit(disp) && rtype == relocInfo::none) {
   297         // [base + index*scale + imm8]
   298         // [01 reg 100][ss index base] imm8
   299         assert(index != rsp, "illegal addressing mode");
   300         emit_byte(0x44 | regenc);
   301         emit_byte(scale << 6 | indexenc | baseenc);
   302         emit_byte(disp & 0xFF);
   303       } else {
   304         // [base + index*scale + disp32]
   305         // [10 reg 100][ss index base] disp32
   306         assert(index != rsp, "illegal addressing mode");
   307         emit_byte(0x84 | regenc);
   308         emit_byte(scale << 6 | indexenc | baseenc);
   309         emit_data(disp, rspec, disp32_operand);
   310       }
   311     } else if (base == rsp LP64_ONLY(|| base == r12)) {
   312       // [rsp + disp]
   313       if (disp == 0 && rtype == relocInfo::none) {
   314         // [rsp]
   315         // [00 reg 100][00 100 100]
   316         emit_byte(0x04 | regenc);
   317         emit_byte(0x24);
   318       } else if (is8bit(disp) && rtype == relocInfo::none) {
   319         // [rsp + imm8]
   320         // [01 reg 100][00 100 100] disp8
   321         emit_byte(0x44 | regenc);
   322         emit_byte(0x24);
   323         emit_byte(disp & 0xFF);
   324       } else {
   325         // [rsp + imm32]
   326         // [10 reg 100][00 100 100] disp32
   327         emit_byte(0x84 | regenc);
   328         emit_byte(0x24);
   329         emit_data(disp, rspec, disp32_operand);
   330       }
   331     } else {
   332       // [base + disp]
   333       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
   334       if (disp == 0 && rtype == relocInfo::none &&
   335           base != rbp LP64_ONLY(&& base != r13)) {
   336         // [base]
   337         // [00 reg base]
   338         emit_byte(0x00 | regenc | baseenc);
   339       } else if (is8bit(disp) && rtype == relocInfo::none) {
   340         // [base + disp8]
   341         // [01 reg base] disp8
   342         emit_byte(0x40 | regenc | baseenc);
   343         emit_byte(disp & 0xFF);
   344       } else {
   345         // [base + disp32]
   346         // [10 reg base] disp32
   347         emit_byte(0x80 | regenc | baseenc);
   348         emit_data(disp, rspec, disp32_operand);
   349       }
   350     }
   351   } else {
   352     if (index->is_valid()) {
   353       assert(scale != Address::no_scale, "inconsistent address");
   354       // [index*scale + disp]
   355       // [00 reg 100][ss index 101] disp32
   356       assert(index != rsp, "illegal addressing mode");
   357       emit_byte(0x04 | regenc);
   358       emit_byte(scale << 6 | indexenc | 0x05);
   359       emit_data(disp, rspec, disp32_operand);
   360     } else if (rtype != relocInfo::none ) {
   361       // [disp] (64bit) RIP-RELATIVE (32bit) abs
   362       // [00 000 101] disp32
   364       emit_byte(0x05 | regenc);
   365       // Note that the RIP-rel. correction applies to the generated
   366       // disp field, but _not_ to the target address in the rspec.
   368       // disp was created by converting the target address minus the pc
   369       // at the start of the instruction. That needs more correction here.
   370       // intptr_t disp = target - next_ip;
   371       assert(inst_mark() != NULL, "must be inside InstructionMark");
   372       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
   373       int64_t adjusted = disp;
   374       // Do rip-rel adjustment for 64bit
   375       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
   376       assert(is_simm32(adjusted),
   377              "must be 32bit offset (RIP relative address)");
   378       emit_data((int32_t) adjusted, rspec, disp32_operand);
   380     } else {
   381       // 32bit never did this, did everything as the rip-rel/disp code above
   382       // [disp] ABSOLUTE
   383       // [00 reg 100][00 100 101] disp32
   384       emit_byte(0x04 | regenc);
   385       emit_byte(0x25);
   386       emit_data(disp, rspec, disp32_operand);
   387     }
   388   }
   389 }
   391 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
   392                              Address::ScaleFactor scale, int disp,
   393                              RelocationHolder const& rspec) {
   394   emit_operand((Register)reg, base, index, scale, disp, rspec);
   395 }
   397 // Secret local extension to Assembler::WhichOperand:
   398 #define end_pc_operand (_WhichOperand_limit)
   400 address Assembler::locate_operand(address inst, WhichOperand which) {
   401   // Decode the given instruction, and return the address of
   402   // an embedded 32-bit operand word.
   404   // If "which" is disp32_operand, selects the displacement portion
   405   // of an effective address specifier.
   406   // If "which" is imm64_operand, selects the trailing immediate constant.
   407   // If "which" is call32_operand, selects the displacement of a call or jump.
   408   // Caller is responsible for ensuring that there is such an operand,
   409   // and that it is 32/64 bits wide.
   411   // If "which" is end_pc_operand, find the end of the instruction.
   413   address ip = inst;
   414   bool is_64bit = false;
   416   debug_only(bool has_disp32 = false);
   417   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
   419   again_after_prefix:
   420   switch (0xFF & *ip++) {
   422   // These convenience macros generate groups of "case" labels for the switch.
   423 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
   424 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
   425              case (x)+4: case (x)+5: case (x)+6: case (x)+7
   426 #define REP16(x) REP8((x)+0): \
   427               case REP8((x)+8)
   429   case CS_segment:
   430   case SS_segment:
   431   case DS_segment:
   432   case ES_segment:
   433   case FS_segment:
   434   case GS_segment:
   435     // Seems dubious
   436     LP64_ONLY(assert(false, "shouldn't have that prefix"));
   437     assert(ip == inst+1, "only one prefix allowed");
   438     goto again_after_prefix;
   440   case 0x67:
   441   case REX:
   442   case REX_B:
   443   case REX_X:
   444   case REX_XB:
   445   case REX_R:
   446   case REX_RB:
   447   case REX_RX:
   448   case REX_RXB:
   449     NOT_LP64(assert(false, "64bit prefixes"));
   450     goto again_after_prefix;
   452   case REX_W:
   453   case REX_WB:
   454   case REX_WX:
   455   case REX_WXB:
   456   case REX_WR:
   457   case REX_WRB:
   458   case REX_WRX:
   459   case REX_WRXB:
   460     NOT_LP64(assert(false, "64bit prefixes"));
   461     is_64bit = true;
   462     goto again_after_prefix;
   464   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
   465   case 0x88: // movb a, r
   466   case 0x89: // movl a, r
   467   case 0x8A: // movb r, a
   468   case 0x8B: // movl r, a
   469   case 0x8F: // popl a
   470     debug_only(has_disp32 = true);
   471     break;
   473   case 0x68: // pushq #32
   474     if (which == end_pc_operand) {
   475       return ip + 4;
   476     }
   477     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
   478     return ip;                  // not produced by emit_operand
   480   case 0x66: // movw ... (size prefix)
   481     again_after_size_prefix2:
   482     switch (0xFF & *ip++) {
   483     case REX:
   484     case REX_B:
   485     case REX_X:
   486     case REX_XB:
   487     case REX_R:
   488     case REX_RB:
   489     case REX_RX:
   490     case REX_RXB:
   491     case REX_W:
   492     case REX_WB:
   493     case REX_WX:
   494     case REX_WXB:
   495     case REX_WR:
   496     case REX_WRB:
   497     case REX_WRX:
   498     case REX_WRXB:
   499       NOT_LP64(assert(false, "64bit prefix found"));
   500       goto again_after_size_prefix2;
   501     case 0x8B: // movw r, a
   502     case 0x89: // movw a, r
   503       debug_only(has_disp32 = true);
   504       break;
   505     case 0xC7: // movw a, #16
   506       debug_only(has_disp32 = true);
   507       tail_size = 2;  // the imm16
   508       break;
   509     case 0x0F: // several SSE/SSE2 variants
   510       ip--;    // reparse the 0x0F
   511       goto again_after_prefix;
   512     default:
   513       ShouldNotReachHere();
   514     }
   515     break;
   517   case REP8(0xB8): // movl/q r, #32/#64(oop?)
   518     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
   519     // these asserts are somewhat nonsensical
   520 #ifndef _LP64
   521     assert(which == imm_operand || which == disp32_operand, "");
   522 #else
   523     assert((which == call32_operand || which == imm_operand) && is_64bit ||
   524            which == narrow_oop_operand && !is_64bit, "");
   525 #endif // _LP64
   526     return ip;
   528   case 0x69: // imul r, a, #32
   529   case 0xC7: // movl a, #32(oop?)
   530     tail_size = 4;
   531     debug_only(has_disp32 = true); // has both kinds of operands!
   532     break;
   534   case 0x0F: // movx..., etc.
   535     switch (0xFF & *ip++) {
   536     case 0x12: // movlps
   537     case 0x28: // movaps
   538     case 0x2E: // ucomiss
   539     case 0x2F: // comiss
   540     case 0x54: // andps
   541     case 0x55: // andnps
   542     case 0x56: // orps
   543     case 0x57: // xorps
   544     case 0x6E: // movd
   545     case 0x7E: // movd
   546     case 0xAE: // ldmxcsr   a
   547       // 64bit side says it these have both operands but that doesn't
   548       // appear to be true
   549       debug_only(has_disp32 = true);
   550       break;
   552     case 0xAD: // shrd r, a, %cl
   553     case 0xAF: // imul r, a
   554     case 0xBE: // movsbl r, a (movsxb)
   555     case 0xBF: // movswl r, a (movsxw)
   556     case 0xB6: // movzbl r, a (movzxb)
   557     case 0xB7: // movzwl r, a (movzxw)
   558     case REP16(0x40): // cmovl cc, r, a
   559     case 0xB0: // cmpxchgb
   560     case 0xB1: // cmpxchg
   561     case 0xC1: // xaddl
   562     case 0xC7: // cmpxchg8
   563     case REP16(0x90): // setcc a
   564       debug_only(has_disp32 = true);
   565       // fall out of the switch to decode the address
   566       break;
   568     case 0xAC: // shrd r, a, #8
   569       debug_only(has_disp32 = true);
   570       tail_size = 1;  // the imm8
   571       break;
   573     case REP16(0x80): // jcc rdisp32
   574       if (which == end_pc_operand)  return ip + 4;
   575       assert(which == call32_operand, "jcc has no disp32 or imm");
   576       return ip;
   577     default:
   578       ShouldNotReachHere();
   579     }
   580     break;
   582   case 0x81: // addl a, #32; addl r, #32
   583     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   584     // on 32bit in the case of cmpl, the imm might be an oop
   585     tail_size = 4;
   586     debug_only(has_disp32 = true); // has both kinds of operands!
   587     break;
   589   case 0x83: // addl a, #8; addl r, #8
   590     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
   591     debug_only(has_disp32 = true); // has both kinds of operands!
   592     tail_size = 1;
   593     break;
   595   case 0x9B:
   596     switch (0xFF & *ip++) {
   597     case 0xD9: // fnstcw a
   598       debug_only(has_disp32 = true);
   599       break;
   600     default:
   601       ShouldNotReachHere();
   602     }
   603     break;
   605   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
   606   case REP4(0x10): // adc...
   607   case REP4(0x20): // and...
   608   case REP4(0x30): // xor...
   609   case REP4(0x08): // or...
   610   case REP4(0x18): // sbb...
   611   case REP4(0x28): // sub...
   612   case 0xF7: // mull a
   613   case 0x8D: // lea r, a
   614   case 0x87: // xchg r, a
   615   case REP4(0x38): // cmp...
   616   case 0x85: // test r, a
   617     debug_only(has_disp32 = true); // has both kinds of operands!
   618     break;
   620   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
   621   case 0xC6: // movb a, #8
   622   case 0x80: // cmpb a, #8
   623   case 0x6B: // imul r, a, #8
   624     debug_only(has_disp32 = true); // has both kinds of operands!
   625     tail_size = 1; // the imm8
   626     break;
   628   case 0xE8: // call rdisp32
   629   case 0xE9: // jmp  rdisp32
   630     if (which == end_pc_operand)  return ip + 4;
   631     assert(which == call32_operand, "call has no disp32 or imm");
   632     return ip;
   634   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
   635   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
   636   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
   637   case 0xDD: // fld_d a; fst_d a; fstp_d a
   638   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
   639   case 0xDF: // fild_d a; fistp_d a
   640   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
   641   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
   642   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
   643     debug_only(has_disp32 = true);
   644     break;
   646   case 0xF0:                    // Lock
   647     assert(os::is_MP(), "only on MP");
   648     goto again_after_prefix;
   650   case 0xF3:                    // For SSE
   651   case 0xF2:                    // For SSE2
   652     switch (0xFF & *ip++) {
   653     case REX:
   654     case REX_B:
   655     case REX_X:
   656     case REX_XB:
   657     case REX_R:
   658     case REX_RB:
   659     case REX_RX:
   660     case REX_RXB:
   661     case REX_W:
   662     case REX_WB:
   663     case REX_WX:
   664     case REX_WXB:
   665     case REX_WR:
   666     case REX_WRB:
   667     case REX_WRX:
   668     case REX_WRXB:
   669       NOT_LP64(assert(false, "found 64bit prefix"));
   670       ip++;
   671     default:
   672       ip++;
   673     }
   674     debug_only(has_disp32 = true); // has both kinds of operands!
   675     break;
   677   default:
   678     ShouldNotReachHere();
   680 #undef REP8
   681 #undef REP16
   682   }
   684   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
   685 #ifdef _LP64
   686   assert(which != imm_operand, "instruction is not a movq reg, imm64");
   687 #else
   688   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
   689   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
   690 #endif // LP64
   691   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
   693   // parse the output of emit_operand
   694   int op2 = 0xFF & *ip++;
   695   int base = op2 & 0x07;
   696   int op3 = -1;
   697   const int b100 = 4;
   698   const int b101 = 5;
   699   if (base == b100 && (op2 >> 6) != 3) {
   700     op3 = 0xFF & *ip++;
   701     base = op3 & 0x07;   // refetch the base
   702   }
   703   // now ip points at the disp (if any)
   705   switch (op2 >> 6) {
   706   case 0:
   707     // [00 reg  100][ss index base]
   708     // [00 reg  100][00   100  esp]
   709     // [00 reg base]
   710     // [00 reg  100][ss index  101][disp32]
   711     // [00 reg  101]               [disp32]
   713     if (base == b101) {
   714       if (which == disp32_operand)
   715         return ip;              // caller wants the disp32
   716       ip += 4;                  // skip the disp32
   717     }
   718     break;
   720   case 1:
   721     // [01 reg  100][ss index base][disp8]
   722     // [01 reg  100][00   100  esp][disp8]
   723     // [01 reg base]               [disp8]
   724     ip += 1;                    // skip the disp8
   725     break;
   727   case 2:
   728     // [10 reg  100][ss index base][disp32]
   729     // [10 reg  100][00   100  esp][disp32]
   730     // [10 reg base]               [disp32]
   731     if (which == disp32_operand)
   732       return ip;                // caller wants the disp32
   733     ip += 4;                    // skip the disp32
   734     break;
   736   case 3:
   737     // [11 reg base]  (not a memory addressing mode)
   738     break;
   739   }
   741   if (which == end_pc_operand) {
   742     return ip + tail_size;
   743   }
   745 #ifdef _LP64
   746   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
   747 #else
   748   assert(which == imm_operand, "instruction has only an imm field");
   749 #endif // LP64
   750   return ip;
   751 }
   753 address Assembler::locate_next_instruction(address inst) {
   754   // Secretly share code with locate_operand:
   755   return locate_operand(inst, end_pc_operand);
   756 }
   759 #ifdef ASSERT
   760 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
   761   address inst = inst_mark();
   762   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
   763   address opnd;
   765   Relocation* r = rspec.reloc();
   766   if (r->type() == relocInfo::none) {
   767     return;
   768   } else if (r->is_call() || format == call32_operand) {
   769     // assert(format == imm32_operand, "cannot specify a nonzero format");
   770     opnd = locate_operand(inst, call32_operand);
   771   } else if (r->is_data()) {
   772     assert(format == imm_operand || format == disp32_operand
   773            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
   774     opnd = locate_operand(inst, (WhichOperand)format);
   775   } else {
   776     assert(format == imm_operand, "cannot specify a format");
   777     return;
   778   }
   779   assert(opnd == pc(), "must put operand where relocs can find it");
   780 }
   781 #endif // ASSERT
   783 void Assembler::emit_operand32(Register reg, Address adr) {
   784   assert(reg->encoding() < 8, "no extended registers");
   785   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   786   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   787                adr._rspec);
   788 }
   790 void Assembler::emit_operand(Register reg, Address adr,
   791                              int rip_relative_correction) {
   792   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   793                adr._rspec,
   794                rip_relative_correction);
   795 }
   797 void Assembler::emit_operand(XMMRegister reg, Address adr) {
   798   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
   799                adr._rspec);
   800 }
   802 // MMX operations
   803 void Assembler::emit_operand(MMXRegister reg, Address adr) {
   804   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   805   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   806 }
   808 // work around gcc (3.2.1-7a) bug
   809 void Assembler::emit_operand(Address adr, MMXRegister reg) {
   810   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
   811   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
   812 }
   815 void Assembler::emit_farith(int b1, int b2, int i) {
   816   assert(isByte(b1) && isByte(b2), "wrong opcode");
   817   assert(0 <= i &&  i < 8, "illegal stack offset");
   818   emit_byte(b1);
   819   emit_byte(b2 + i);
   820 }
   823 // Now the Assembler instructions (identical for 32/64 bits)
   825 void Assembler::adcl(Address dst, int32_t imm32) {
   826   InstructionMark im(this);
   827   prefix(dst);
   828   emit_arith_operand(0x81, rdx, dst, imm32);
   829 }
   831 void Assembler::adcl(Address dst, Register src) {
   832   InstructionMark im(this);
   833   prefix(dst, src);
   834   emit_byte(0x11);
   835   emit_operand(src, dst);
   836 }
   838 void Assembler::adcl(Register dst, int32_t imm32) {
   839   prefix(dst);
   840   emit_arith(0x81, 0xD0, dst, imm32);
   841 }
   843 void Assembler::adcl(Register dst, Address src) {
   844   InstructionMark im(this);
   845   prefix(src, dst);
   846   emit_byte(0x13);
   847   emit_operand(dst, src);
   848 }
   850 void Assembler::adcl(Register dst, Register src) {
   851   (void) prefix_and_encode(dst->encoding(), src->encoding());
   852   emit_arith(0x13, 0xC0, dst, src);
   853 }
   855 void Assembler::addl(Address dst, int32_t imm32) {
   856   InstructionMark im(this);
   857   prefix(dst);
   858   emit_arith_operand(0x81, rax, dst, imm32);
   859 }
   861 void Assembler::addl(Address dst, Register src) {
   862   InstructionMark im(this);
   863   prefix(dst, src);
   864   emit_byte(0x01);
   865   emit_operand(src, dst);
   866 }
   868 void Assembler::addl(Register dst, int32_t imm32) {
   869   prefix(dst);
   870   emit_arith(0x81, 0xC0, dst, imm32);
   871 }
   873 void Assembler::addl(Register dst, Address src) {
   874   InstructionMark im(this);
   875   prefix(src, dst);
   876   emit_byte(0x03);
   877   emit_operand(dst, src);
   878 }
   880 void Assembler::addl(Register dst, Register src) {
   881   (void) prefix_and_encode(dst->encoding(), src->encoding());
   882   emit_arith(0x03, 0xC0, dst, src);
   883 }
   885 void Assembler::addr_nop_4() {
   886   // 4 bytes: NOP DWORD PTR [EAX+0]
   887   emit_byte(0x0F);
   888   emit_byte(0x1F);
   889   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
   890   emit_byte(0);    // 8-bits offset (1 byte)
   891 }
   893 void Assembler::addr_nop_5() {
   894   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
   895   emit_byte(0x0F);
   896   emit_byte(0x1F);
   897   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
   898   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   899   emit_byte(0);    // 8-bits offset (1 byte)
   900 }
   902 void Assembler::addr_nop_7() {
   903   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
   904   emit_byte(0x0F);
   905   emit_byte(0x1F);
   906   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
   907   emit_long(0);    // 32-bits offset (4 bytes)
   908 }
   910 void Assembler::addr_nop_8() {
   911   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
   912   emit_byte(0x0F);
   913   emit_byte(0x1F);
   914   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
   915   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
   916   emit_long(0);    // 32-bits offset (4 bytes)
   917 }
   919 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
   920   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   921   emit_byte(0xF2);
   922   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   923   emit_byte(0x0F);
   924   emit_byte(0x58);
   925   emit_byte(0xC0 | encode);
   926 }
   928 void Assembler::addsd(XMMRegister dst, Address src) {
   929   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   930   InstructionMark im(this);
   931   emit_byte(0xF2);
   932   prefix(src, dst);
   933   emit_byte(0x0F);
   934   emit_byte(0x58);
   935   emit_operand(dst, src);
   936 }
   938 void Assembler::addss(XMMRegister dst, XMMRegister src) {
   939   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   940   emit_byte(0xF3);
   941   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   942   emit_byte(0x0F);
   943   emit_byte(0x58);
   944   emit_byte(0xC0 | encode);
   945 }
   947 void Assembler::addss(XMMRegister dst, Address src) {
   948   NOT_LP64(assert(VM_Version::supports_sse(), ""));
   949   InstructionMark im(this);
   950   emit_byte(0xF3);
   951   prefix(src, dst);
   952   emit_byte(0x0F);
   953   emit_byte(0x58);
   954   emit_operand(dst, src);
   955 }
   957 void Assembler::andl(Register dst, int32_t imm32) {
   958   prefix(dst);
   959   emit_arith(0x81, 0xE0, dst, imm32);
   960 }
   962 void Assembler::andl(Register dst, Address src) {
   963   InstructionMark im(this);
   964   prefix(src, dst);
   965   emit_byte(0x23);
   966   emit_operand(dst, src);
   967 }
   969 void Assembler::andl(Register dst, Register src) {
   970   (void) prefix_and_encode(dst->encoding(), src->encoding());
   971   emit_arith(0x23, 0xC0, dst, src);
   972 }
   974 void Assembler::andpd(XMMRegister dst, Address src) {
   975   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
   976   InstructionMark im(this);
   977   emit_byte(0x66);
   978   prefix(src, dst);
   979   emit_byte(0x0F);
   980   emit_byte(0x54);
   981   emit_operand(dst, src);
   982 }
   984 void Assembler::bsfl(Register dst, Register src) {
   985   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   986   emit_byte(0x0F);
   987   emit_byte(0xBC);
   988   emit_byte(0xC0 | encode);
   989 }
   991 void Assembler::bsrl(Register dst, Register src) {
   992   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
   993   int encode = prefix_and_encode(dst->encoding(), src->encoding());
   994   emit_byte(0x0F);
   995   emit_byte(0xBD);
   996   emit_byte(0xC0 | encode);
   997 }
   999 void Assembler::bswapl(Register reg) { // bswap
  1000   int encode = prefix_and_encode(reg->encoding());
  1001   emit_byte(0x0F);
  1002   emit_byte(0xC8 | encode);
  1005 void Assembler::call(Label& L, relocInfo::relocType rtype) {
  1006   // suspect disp32 is always good
  1007   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
  1009   if (L.is_bound()) {
  1010     const int long_size = 5;
  1011     int offs = (int)( target(L) - pc() );
  1012     assert(offs <= 0, "assembler error");
  1013     InstructionMark im(this);
  1014     // 1110 1000 #32-bit disp
  1015     emit_byte(0xE8);
  1016     emit_data(offs - long_size, rtype, operand);
  1017   } else {
  1018     InstructionMark im(this);
  1019     // 1110 1000 #32-bit disp
  1020     L.add_patch_at(code(), locator());
  1022     emit_byte(0xE8);
  1023     emit_data(int(0), rtype, operand);
  1027 void Assembler::call(Register dst) {
  1028   // This was originally using a 32bit register encoding
  1029   // and surely we want 64bit!
  1030   // this is a 32bit encoding but in 64bit mode the default
  1031   // operand size is 64bit so there is no need for the
  1032   // wide prefix. So prefix only happens if we use the
  1033   // new registers. Much like push/pop.
  1034   int x = offset();
  1035   // this may be true but dbx disassembles it as if it
  1036   // were 32bits...
  1037   // int encode = prefix_and_encode(dst->encoding());
  1038   // if (offset() != x) assert(dst->encoding() >= 8, "what?");
  1039   int encode = prefixq_and_encode(dst->encoding());
  1041   emit_byte(0xFF);
  1042   emit_byte(0xD0 | encode);
  1046 void Assembler::call(Address adr) {
  1047   InstructionMark im(this);
  1048   prefix(adr);
  1049   emit_byte(0xFF);
  1050   emit_operand(rdx, adr);
  1053 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
  1054   assert(entry != NULL, "call most probably wrong");
  1055   InstructionMark im(this);
  1056   emit_byte(0xE8);
  1057   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
  1058   assert(is_simm32(disp), "must be 32bit offset (call2)");
  1059   // Technically, should use call32_operand, but this format is
  1060   // implied by the fact that we're emitting a call instruction.
  1062   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
  1063   emit_data((int) disp, rspec, operand);
  1066 void Assembler::cdql() {
  1067   emit_byte(0x99);
  1070 void Assembler::cmovl(Condition cc, Register dst, Register src) {
  1071   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1072   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1073   emit_byte(0x0F);
  1074   emit_byte(0x40 | cc);
  1075   emit_byte(0xC0 | encode);
  1079 void Assembler::cmovl(Condition cc, Register dst, Address src) {
  1080   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
  1081   prefix(src, dst);
  1082   emit_byte(0x0F);
  1083   emit_byte(0x40 | cc);
  1084   emit_operand(dst, src);
  1087 void Assembler::cmpb(Address dst, int imm8) {
  1088   InstructionMark im(this);
  1089   prefix(dst);
  1090   emit_byte(0x80);
  1091   emit_operand(rdi, dst, 1);
  1092   emit_byte(imm8);
  1095 void Assembler::cmpl(Address dst, int32_t imm32) {
  1096   InstructionMark im(this);
  1097   prefix(dst);
  1098   emit_byte(0x81);
  1099   emit_operand(rdi, dst, 4);
  1100   emit_long(imm32);
  1103 void Assembler::cmpl(Register dst, int32_t imm32) {
  1104   prefix(dst);
  1105   emit_arith(0x81, 0xF8, dst, imm32);
  1108 void Assembler::cmpl(Register dst, Register src) {
  1109   (void) prefix_and_encode(dst->encoding(), src->encoding());
  1110   emit_arith(0x3B, 0xC0, dst, src);
  1114 void Assembler::cmpl(Register dst, Address  src) {
  1115   InstructionMark im(this);
  1116   prefix(src, dst);
  1117   emit_byte(0x3B);
  1118   emit_operand(dst, src);
  1121 void Assembler::cmpw(Address dst, int imm16) {
  1122   InstructionMark im(this);
  1123   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
  1124   emit_byte(0x66);
  1125   emit_byte(0x81);
  1126   emit_operand(rdi, dst, 2);
  1127   emit_word(imm16);
  1130 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
  1131 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
  1132 // The ZF is set if the compared values were equal, and cleared otherwise.
  1133 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
  1134   if (Atomics & 2) {
  1135      // caveat: no instructionmark, so this isn't relocatable.
  1136      // Emit a synthetic, non-atomic, CAS equivalent.
  1137      // Beware.  The synthetic form sets all ICCs, not just ZF.
  1138      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
  1139      cmpl(rax, adr);
  1140      movl(rax, adr);
  1141      if (reg != rax) {
  1142         Label L ;
  1143         jcc(Assembler::notEqual, L);
  1144         movl(adr, reg);
  1145         bind(L);
  1147   } else {
  1148      InstructionMark im(this);
  1149      prefix(adr, reg);
  1150      emit_byte(0x0F);
  1151      emit_byte(0xB1);
  1152      emit_operand(reg, adr);
  1156 void Assembler::comisd(XMMRegister dst, Address src) {
  1157   // NOTE: dbx seems to decode this as comiss even though the
  1158   // 0x66 is there. Strangly ucomisd comes out correct
  1159   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1160   emit_byte(0x66);
  1161   comiss(dst, src);
  1164 void Assembler::comiss(XMMRegister dst, Address src) {
  1165   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1167   InstructionMark im(this);
  1168   prefix(src, dst);
  1169   emit_byte(0x0F);
  1170   emit_byte(0x2F);
  1171   emit_operand(dst, src);
  1174 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
  1175   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1176   emit_byte(0xF3);
  1177   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1178   emit_byte(0x0F);
  1179   emit_byte(0xE6);
  1180   emit_byte(0xC0 | encode);
  1183 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
  1184   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1185   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1186   emit_byte(0x0F);
  1187   emit_byte(0x5B);
  1188   emit_byte(0xC0 | encode);
  1191 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
  1192   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1193   emit_byte(0xF2);
  1194   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1195   emit_byte(0x0F);
  1196   emit_byte(0x5A);
  1197   emit_byte(0xC0 | encode);
  1200 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
  1201   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1202   emit_byte(0xF2);
  1203   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1204   emit_byte(0x0F);
  1205   emit_byte(0x2A);
  1206   emit_byte(0xC0 | encode);
  1209 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
  1210   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1211   emit_byte(0xF3);
  1212   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1213   emit_byte(0x0F);
  1214   emit_byte(0x2A);
  1215   emit_byte(0xC0 | encode);
  1218 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
  1219   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1220   emit_byte(0xF3);
  1221   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1222   emit_byte(0x0F);
  1223   emit_byte(0x5A);
  1224   emit_byte(0xC0 | encode);
  1227 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
  1228   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1229   emit_byte(0xF2);
  1230   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1231   emit_byte(0x0F);
  1232   emit_byte(0x2C);
  1233   emit_byte(0xC0 | encode);
  1236 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
  1237   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1238   emit_byte(0xF3);
  1239   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1240   emit_byte(0x0F);
  1241   emit_byte(0x2C);
  1242   emit_byte(0xC0 | encode);
  1245 void Assembler::decl(Address dst) {
  1246   // Don't use it directly. Use MacroAssembler::decrement() instead.
  1247   InstructionMark im(this);
  1248   prefix(dst);
  1249   emit_byte(0xFF);
  1250   emit_operand(rcx, dst);
  1253 void Assembler::divsd(XMMRegister dst, Address src) {
  1254   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1255   InstructionMark im(this);
  1256   emit_byte(0xF2);
  1257   prefix(src, dst);
  1258   emit_byte(0x0F);
  1259   emit_byte(0x5E);
  1260   emit_operand(dst, src);
  1263 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
  1264   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1265   emit_byte(0xF2);
  1266   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1267   emit_byte(0x0F);
  1268   emit_byte(0x5E);
  1269   emit_byte(0xC0 | encode);
  1272 void Assembler::divss(XMMRegister dst, Address src) {
  1273   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1274   InstructionMark im(this);
  1275   emit_byte(0xF3);
  1276   prefix(src, dst);
  1277   emit_byte(0x0F);
  1278   emit_byte(0x5E);
  1279   emit_operand(dst, src);
  1282 void Assembler::divss(XMMRegister dst, XMMRegister src) {
  1283   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1284   emit_byte(0xF3);
  1285   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1286   emit_byte(0x0F);
  1287   emit_byte(0x5E);
  1288   emit_byte(0xC0 | encode);
  1291 void Assembler::emms() {
  1292   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
  1293   emit_byte(0x0F);
  1294   emit_byte(0x77);
  1297 void Assembler::hlt() {
  1298   emit_byte(0xF4);
  1301 void Assembler::idivl(Register src) {
  1302   int encode = prefix_and_encode(src->encoding());
  1303   emit_byte(0xF7);
  1304   emit_byte(0xF8 | encode);
  1307 void Assembler::divl(Register src) { // Unsigned
  1308   int encode = prefix_and_encode(src->encoding());
  1309   emit_byte(0xF7);
  1310   emit_byte(0xF0 | encode);
  1313 void Assembler::imull(Register dst, Register src) {
  1314   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1315   emit_byte(0x0F);
  1316   emit_byte(0xAF);
  1317   emit_byte(0xC0 | encode);
  1321 void Assembler::imull(Register dst, Register src, int value) {
  1322   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1323   if (is8bit(value)) {
  1324     emit_byte(0x6B);
  1325     emit_byte(0xC0 | encode);
  1326     emit_byte(value & 0xFF);
  1327   } else {
  1328     emit_byte(0x69);
  1329     emit_byte(0xC0 | encode);
  1330     emit_long(value);
  1334 void Assembler::incl(Address dst) {
  1335   // Don't use it directly. Use MacroAssembler::increment() instead.
  1336   InstructionMark im(this);
  1337   prefix(dst);
  1338   emit_byte(0xFF);
  1339   emit_operand(rax, dst);
  1342 void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
  1343   InstructionMark im(this);
  1344   relocate(rtype);
  1345   assert((0 <= cc) && (cc < 16), "illegal cc");
  1346   if (L.is_bound()) {
  1347     address dst = target(L);
  1348     assert(dst != NULL, "jcc most probably wrong");
  1350     const int short_size = 2;
  1351     const int long_size = 6;
  1352     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
  1353     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
  1354       // 0111 tttn #8-bit disp
  1355       emit_byte(0x70 | cc);
  1356       emit_byte((offs - short_size) & 0xFF);
  1357     } else {
  1358       // 0000 1111 1000 tttn #32-bit disp
  1359       assert(is_simm32(offs - long_size),
  1360              "must be 32bit offset (call4)");
  1361       emit_byte(0x0F);
  1362       emit_byte(0x80 | cc);
  1363       emit_long(offs - long_size);
  1365   } else {
  1366     // Note: could eliminate cond. jumps to this jump if condition
  1367     //       is the same however, seems to be rather unlikely case.
  1368     // Note: use jccb() if label to be bound is very close to get
  1369     //       an 8-bit displacement
  1370     L.add_patch_at(code(), locator());
  1371     emit_byte(0x0F);
  1372     emit_byte(0x80 | cc);
  1373     emit_long(0);
  1377 void Assembler::jccb(Condition cc, Label& L) {
  1378   if (L.is_bound()) {
  1379     const int short_size = 2;
  1380     address entry = target(L);
  1381     assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
  1382            "Dispacement too large for a short jmp");
  1383     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
  1384     // 0111 tttn #8-bit disp
  1385     emit_byte(0x70 | cc);
  1386     emit_byte((offs - short_size) & 0xFF);
  1387   } else {
  1388     InstructionMark im(this);
  1389     L.add_patch_at(code(), locator());
  1390     emit_byte(0x70 | cc);
  1391     emit_byte(0);
  1395 void Assembler::jmp(Address adr) {
  1396   InstructionMark im(this);
  1397   prefix(adr);
  1398   emit_byte(0xFF);
  1399   emit_operand(rsp, adr);
  1402 void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
  1403   if (L.is_bound()) {
  1404     address entry = target(L);
  1405     assert(entry != NULL, "jmp most probably wrong");
  1406     InstructionMark im(this);
  1407     const int short_size = 2;
  1408     const int long_size = 5;
  1409     intptr_t offs = entry - _code_pos;
  1410     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
  1411       emit_byte(0xEB);
  1412       emit_byte((offs - short_size) & 0xFF);
  1413     } else {
  1414       emit_byte(0xE9);
  1415       emit_long(offs - long_size);
  1417   } else {
  1418     // By default, forward jumps are always 32-bit displacements, since
  1419     // we can't yet know where the label will be bound.  If you're sure that
  1420     // the forward jump will not run beyond 256 bytes, use jmpb to
  1421     // force an 8-bit displacement.
  1422     InstructionMark im(this);
  1423     relocate(rtype);
  1424     L.add_patch_at(code(), locator());
  1425     emit_byte(0xE9);
  1426     emit_long(0);
  1430 void Assembler::jmp(Register entry) {
  1431   int encode = prefix_and_encode(entry->encoding());
  1432   emit_byte(0xFF);
  1433   emit_byte(0xE0 | encode);
  1436 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
  1437   InstructionMark im(this);
  1438   emit_byte(0xE9);
  1439   assert(dest != NULL, "must have a target");
  1440   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
  1441   assert(is_simm32(disp), "must be 32bit offset (jmp)");
  1442   emit_data(disp, rspec.reloc(), call32_operand);
  1445 void Assembler::jmpb(Label& L) {
  1446   if (L.is_bound()) {
  1447     const int short_size = 2;
  1448     address entry = target(L);
  1449     assert(is8bit((entry - _code_pos) + short_size),
  1450            "Dispacement too large for a short jmp");
  1451     assert(entry != NULL, "jmp most probably wrong");
  1452     intptr_t offs = entry - _code_pos;
  1453     emit_byte(0xEB);
  1454     emit_byte((offs - short_size) & 0xFF);
  1455   } else {
  1456     InstructionMark im(this);
  1457     L.add_patch_at(code(), locator());
  1458     emit_byte(0xEB);
  1459     emit_byte(0);
  1463 void Assembler::ldmxcsr( Address src) {
  1464   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1465   InstructionMark im(this);
  1466   prefix(src);
  1467   emit_byte(0x0F);
  1468   emit_byte(0xAE);
  1469   emit_operand(as_Register(2), src);
  1472 void Assembler::leal(Register dst, Address src) {
  1473   InstructionMark im(this);
  1474 #ifdef _LP64
  1475   emit_byte(0x67); // addr32
  1476   prefix(src, dst);
  1477 #endif // LP64
  1478   emit_byte(0x8D);
  1479   emit_operand(dst, src);
  1482 void Assembler::lock() {
  1483   if (Atomics & 1) {
  1484      // Emit either nothing, a NOP, or a NOP: prefix
  1485      emit_byte(0x90) ;
  1486   } else {
  1487      emit_byte(0xF0);
  1491 void Assembler::lzcntl(Register dst, Register src) {
  1492   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  1493   emit_byte(0xF3);
  1494   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1495   emit_byte(0x0F);
  1496   emit_byte(0xBD);
  1497   emit_byte(0xC0 | encode);
  1500 // Emit mfence instruction
  1501 void Assembler::mfence() {
  1502   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
  1503   emit_byte( 0x0F );
  1504   emit_byte( 0xAE );
  1505   emit_byte( 0xF0 );
  1508 void Assembler::mov(Register dst, Register src) {
  1509   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  1512 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
  1513   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1514   int dstenc = dst->encoding();
  1515   int srcenc = src->encoding();
  1516   emit_byte(0x66);
  1517   if (dstenc < 8) {
  1518     if (srcenc >= 8) {
  1519       prefix(REX_B);
  1520       srcenc -= 8;
  1522   } else {
  1523     if (srcenc < 8) {
  1524       prefix(REX_R);
  1525     } else {
  1526       prefix(REX_RB);
  1527       srcenc -= 8;
  1529     dstenc -= 8;
  1531   emit_byte(0x0F);
  1532   emit_byte(0x28);
  1533   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1536 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
  1537   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1538   int dstenc = dst->encoding();
  1539   int srcenc = src->encoding();
  1540   if (dstenc < 8) {
  1541     if (srcenc >= 8) {
  1542       prefix(REX_B);
  1543       srcenc -= 8;
  1545   } else {
  1546     if (srcenc < 8) {
  1547       prefix(REX_R);
  1548     } else {
  1549       prefix(REX_RB);
  1550       srcenc -= 8;
  1552     dstenc -= 8;
  1554   emit_byte(0x0F);
  1555   emit_byte(0x28);
  1556   emit_byte(0xC0 | dstenc << 3 | srcenc);
  1559 void Assembler::movb(Register dst, Address src) {
  1560   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  1561   InstructionMark im(this);
  1562   prefix(src, dst, true);
  1563   emit_byte(0x8A);
  1564   emit_operand(dst, src);
  1568 void Assembler::movb(Address dst, int imm8) {
  1569   InstructionMark im(this);
  1570    prefix(dst);
  1571   emit_byte(0xC6);
  1572   emit_operand(rax, dst, 1);
  1573   emit_byte(imm8);
  1577 void Assembler::movb(Address dst, Register src) {
  1578   assert(src->has_byte_register(), "must have byte register");
  1579   InstructionMark im(this);
  1580   prefix(dst, src, true);
  1581   emit_byte(0x88);
  1582   emit_operand(src, dst);
  1585 void Assembler::movdl(XMMRegister dst, Register src) {
  1586   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1587   emit_byte(0x66);
  1588   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1589   emit_byte(0x0F);
  1590   emit_byte(0x6E);
  1591   emit_byte(0xC0 | encode);
  1594 void Assembler::movdl(Register dst, XMMRegister src) {
  1595   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1596   emit_byte(0x66);
  1597   // swap src/dst to get correct prefix
  1598   int encode = prefix_and_encode(src->encoding(), dst->encoding());
  1599   emit_byte(0x0F);
  1600   emit_byte(0x7E);
  1601   emit_byte(0xC0 | encode);
  1604 void Assembler::movdl(XMMRegister dst, Address src) {
  1605   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1606   InstructionMark im(this);
  1607   emit_byte(0x66);
  1608   prefix(src, dst);
  1609   emit_byte(0x0F);
  1610   emit_byte(0x6E);
  1611   emit_operand(dst, src);
  1615 void Assembler::movdqa(XMMRegister dst, Address src) {
  1616   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1617   InstructionMark im(this);
  1618   emit_byte(0x66);
  1619   prefix(src, dst);
  1620   emit_byte(0x0F);
  1621   emit_byte(0x6F);
  1622   emit_operand(dst, src);
  1625 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
  1626   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1627   emit_byte(0x66);
  1628   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1629   emit_byte(0x0F);
  1630   emit_byte(0x6F);
  1631   emit_byte(0xC0 | encode);
  1634 void Assembler::movdqa(Address dst, XMMRegister src) {
  1635   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1636   InstructionMark im(this);
  1637   emit_byte(0x66);
  1638   prefix(dst, src);
  1639   emit_byte(0x0F);
  1640   emit_byte(0x7F);
  1641   emit_operand(src, dst);
  1644 void Assembler::movdqu(XMMRegister dst, Address src) {
  1645   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1646   InstructionMark im(this);
  1647   emit_byte(0xF3);
  1648   prefix(src, dst);
  1649   emit_byte(0x0F);
  1650   emit_byte(0x6F);
  1651   emit_operand(dst, src);
  1654 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
  1655   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1656   emit_byte(0xF3);
  1657   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  1658   emit_byte(0x0F);
  1659   emit_byte(0x6F);
  1660   emit_byte(0xC0 | encode);
  1663 void Assembler::movdqu(Address dst, XMMRegister src) {
  1664   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1665   InstructionMark im(this);
  1666   emit_byte(0xF3);
  1667   prefix(dst, src);
  1668   emit_byte(0x0F);
  1669   emit_byte(0x7F);
  1670   emit_operand(src, dst);
  1673 // Uses zero extension on 64bit
  1675 void Assembler::movl(Register dst, int32_t imm32) {
  1676   int encode = prefix_and_encode(dst->encoding());
  1677   emit_byte(0xB8 | encode);
  1678   emit_long(imm32);
  1681 void Assembler::movl(Register dst, Register src) {
  1682   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1683   emit_byte(0x8B);
  1684   emit_byte(0xC0 | encode);
  1687 void Assembler::movl(Register dst, Address src) {
  1688   InstructionMark im(this);
  1689   prefix(src, dst);
  1690   emit_byte(0x8B);
  1691   emit_operand(dst, src);
  1694 void Assembler::movl(Address dst, int32_t imm32) {
  1695   InstructionMark im(this);
  1696   prefix(dst);
  1697   emit_byte(0xC7);
  1698   emit_operand(rax, dst, 4);
  1699   emit_long(imm32);
  1702 void Assembler::movl(Address dst, Register src) {
  1703   InstructionMark im(this);
  1704   prefix(dst, src);
  1705   emit_byte(0x89);
  1706   emit_operand(src, dst);
  1709 // New cpus require to use movsd and movss to avoid partial register stall
  1710 // when loading from memory. But for old Opteron use movlpd instead of movsd.
  1711 // The selection is done in MacroAssembler::movdbl() and movflt().
  1712 void Assembler::movlpd(XMMRegister dst, Address src) {
  1713   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1714   InstructionMark im(this);
  1715   emit_byte(0x66);
  1716   prefix(src, dst);
  1717   emit_byte(0x0F);
  1718   emit_byte(0x12);
  1719   emit_operand(dst, src);
  1722 void Assembler::movq( MMXRegister dst, Address src ) {
  1723   assert( VM_Version::supports_mmx(), "" );
  1724   emit_byte(0x0F);
  1725   emit_byte(0x6F);
  1726   emit_operand(dst, src);
  1729 void Assembler::movq( Address dst, MMXRegister src ) {
  1730   assert( VM_Version::supports_mmx(), "" );
  1731   emit_byte(0x0F);
  1732   emit_byte(0x7F);
  1733   // workaround gcc (3.2.1-7a) bug
  1734   // In that version of gcc with only an emit_operand(MMX, Address)
  1735   // gcc will tail jump and try and reverse the parameters completely
  1736   // obliterating dst in the process. By having a version available
  1737   // that doesn't need to swap the args at the tail jump the bug is
  1738   // avoided.
  1739   emit_operand(dst, src);
  1742 void Assembler::movq(XMMRegister dst, Address src) {
  1743   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1744   InstructionMark im(this);
  1745   emit_byte(0xF3);
  1746   prefix(src, dst);
  1747   emit_byte(0x0F);
  1748   emit_byte(0x7E);
  1749   emit_operand(dst, src);
  1752 void Assembler::movq(Address dst, XMMRegister src) {
  1753   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1754   InstructionMark im(this);
  1755   emit_byte(0x66);
  1756   prefix(dst, src);
  1757   emit_byte(0x0F);
  1758   emit_byte(0xD6);
  1759   emit_operand(src, dst);
  1762 void Assembler::movsbl(Register dst, Address src) { // movsxb
  1763   InstructionMark im(this);
  1764   prefix(src, dst);
  1765   emit_byte(0x0F);
  1766   emit_byte(0xBE);
  1767   emit_operand(dst, src);
  1770 void Assembler::movsbl(Register dst, Register src) { // movsxb
  1771   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1772   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1773   emit_byte(0x0F);
  1774   emit_byte(0xBE);
  1775   emit_byte(0xC0 | encode);
  1778 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
  1779   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1780   emit_byte(0xF2);
  1781   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1782   emit_byte(0x0F);
  1783   emit_byte(0x10);
  1784   emit_byte(0xC0 | encode);
  1787 void Assembler::movsd(XMMRegister dst, Address src) {
  1788   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1789   InstructionMark im(this);
  1790   emit_byte(0xF2);
  1791   prefix(src, dst);
  1792   emit_byte(0x0F);
  1793   emit_byte(0x10);
  1794   emit_operand(dst, src);
  1797 void Assembler::movsd(Address dst, XMMRegister src) {
  1798   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1799   InstructionMark im(this);
  1800   emit_byte(0xF2);
  1801   prefix(dst, src);
  1802   emit_byte(0x0F);
  1803   emit_byte(0x11);
  1804   emit_operand(src, dst);
  1807 void Assembler::movss(XMMRegister dst, XMMRegister src) {
  1808   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1809   emit_byte(0xF3);
  1810   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1811   emit_byte(0x0F);
  1812   emit_byte(0x10);
  1813   emit_byte(0xC0 | encode);
  1816 void Assembler::movss(XMMRegister dst, Address src) {
  1817   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1818   InstructionMark im(this);
  1819   emit_byte(0xF3);
  1820   prefix(src, dst);
  1821   emit_byte(0x0F);
  1822   emit_byte(0x10);
  1823   emit_operand(dst, src);
  1826 void Assembler::movss(Address dst, XMMRegister src) {
  1827   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1828   InstructionMark im(this);
  1829   emit_byte(0xF3);
  1830   prefix(dst, src);
  1831   emit_byte(0x0F);
  1832   emit_byte(0x11);
  1833   emit_operand(src, dst);
  1836 void Assembler::movswl(Register dst, Address src) { // movsxw
  1837   InstructionMark im(this);
  1838   prefix(src, dst);
  1839   emit_byte(0x0F);
  1840   emit_byte(0xBF);
  1841   emit_operand(dst, src);
  1844 void Assembler::movswl(Register dst, Register src) { // movsxw
  1845   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1846   emit_byte(0x0F);
  1847   emit_byte(0xBF);
  1848   emit_byte(0xC0 | encode);
  1851 void Assembler::movw(Address dst, int imm16) {
  1852   InstructionMark im(this);
  1854   emit_byte(0x66); // switch to 16-bit mode
  1855   prefix(dst);
  1856   emit_byte(0xC7);
  1857   emit_operand(rax, dst, 2);
  1858   emit_word(imm16);
  1861 void Assembler::movw(Register dst, Address src) {
  1862   InstructionMark im(this);
  1863   emit_byte(0x66);
  1864   prefix(src, dst);
  1865   emit_byte(0x8B);
  1866   emit_operand(dst, src);
  1869 void Assembler::movw(Address dst, Register src) {
  1870   InstructionMark im(this);
  1871   emit_byte(0x66);
  1872   prefix(dst, src);
  1873   emit_byte(0x89);
  1874   emit_operand(src, dst);
  1877 void Assembler::movzbl(Register dst, Address src) { // movzxb
  1878   InstructionMark im(this);
  1879   prefix(src, dst);
  1880   emit_byte(0x0F);
  1881   emit_byte(0xB6);
  1882   emit_operand(dst, src);
  1885 void Assembler::movzbl(Register dst, Register src) { // movzxb
  1886   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
  1887   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
  1888   emit_byte(0x0F);
  1889   emit_byte(0xB6);
  1890   emit_byte(0xC0 | encode);
  1893 void Assembler::movzwl(Register dst, Address src) { // movzxw
  1894   InstructionMark im(this);
  1895   prefix(src, dst);
  1896   emit_byte(0x0F);
  1897   emit_byte(0xB7);
  1898   emit_operand(dst, src);
  1901 void Assembler::movzwl(Register dst, Register src) { // movzxw
  1902   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1903   emit_byte(0x0F);
  1904   emit_byte(0xB7);
  1905   emit_byte(0xC0 | encode);
  1908 void Assembler::mull(Address src) {
  1909   InstructionMark im(this);
  1910   prefix(src);
  1911   emit_byte(0xF7);
  1912   emit_operand(rsp, src);
  1915 void Assembler::mull(Register src) {
  1916   int encode = prefix_and_encode(src->encoding());
  1917   emit_byte(0xF7);
  1918   emit_byte(0xE0 | encode);
  1921 void Assembler::mulsd(XMMRegister dst, Address src) {
  1922   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1923   InstructionMark im(this);
  1924   emit_byte(0xF2);
  1925   prefix(src, dst);
  1926   emit_byte(0x0F);
  1927   emit_byte(0x59);
  1928   emit_operand(dst, src);
  1931 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
  1932   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  1933   emit_byte(0xF2);
  1934   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1935   emit_byte(0x0F);
  1936   emit_byte(0x59);
  1937   emit_byte(0xC0 | encode);
  1940 void Assembler::mulss(XMMRegister dst, Address src) {
  1941   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1942   InstructionMark im(this);
  1943   emit_byte(0xF3);
  1944   prefix(src, dst);
  1945   emit_byte(0x0F);
  1946   emit_byte(0x59);
  1947   emit_operand(dst, src);
  1950 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
  1951   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  1952   emit_byte(0xF3);
  1953   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  1954   emit_byte(0x0F);
  1955   emit_byte(0x59);
  1956   emit_byte(0xC0 | encode);
  1959 void Assembler::negl(Register dst) {
  1960   int encode = prefix_and_encode(dst->encoding());
  1961   emit_byte(0xF7);
  1962   emit_byte(0xD8 | encode);
  1965 void Assembler::nop(int i) {
  1966 #ifdef ASSERT
  1967   assert(i > 0, " ");
  1968   // The fancy nops aren't currently recognized by debuggers making it a
  1969   // pain to disassemble code while debugging. If asserts are on clearly
  1970   // speed is not an issue so simply use the single byte traditional nop
  1971   // to do alignment.
  1973   for (; i > 0 ; i--) emit_byte(0x90);
  1974   return;
  1976 #endif // ASSERT
  1978   if (UseAddressNop && VM_Version::is_intel()) {
  1979     //
  1980     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
  1981     //  1: 0x90
  1982     //  2: 0x66 0x90
  1983     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  1984     //  4: 0x0F 0x1F 0x40 0x00
  1985     //  5: 0x0F 0x1F 0x44 0x00 0x00
  1986     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  1987     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  1988     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1989     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1990     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1991     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  1993     // The rest coding is Intel specific - don't use consecutive address nops
  1995     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1996     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1997     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  1998     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
  2000     while(i >= 15) {
  2001       // For Intel don't generate consecutive addess nops (mix with regular nops)
  2002       i -= 15;
  2003       emit_byte(0x66);   // size prefix
  2004       emit_byte(0x66);   // size prefix
  2005       emit_byte(0x66);   // size prefix
  2006       addr_nop_8();
  2007       emit_byte(0x66);   // size prefix
  2008       emit_byte(0x66);   // size prefix
  2009       emit_byte(0x66);   // size prefix
  2010       emit_byte(0x90);   // nop
  2012     switch (i) {
  2013       case 14:
  2014         emit_byte(0x66); // size prefix
  2015       case 13:
  2016         emit_byte(0x66); // size prefix
  2017       case 12:
  2018         addr_nop_8();
  2019         emit_byte(0x66); // size prefix
  2020         emit_byte(0x66); // size prefix
  2021         emit_byte(0x66); // size prefix
  2022         emit_byte(0x90); // nop
  2023         break;
  2024       case 11:
  2025         emit_byte(0x66); // size prefix
  2026       case 10:
  2027         emit_byte(0x66); // size prefix
  2028       case 9:
  2029         emit_byte(0x66); // size prefix
  2030       case 8:
  2031         addr_nop_8();
  2032         break;
  2033       case 7:
  2034         addr_nop_7();
  2035         break;
  2036       case 6:
  2037         emit_byte(0x66); // size prefix
  2038       case 5:
  2039         addr_nop_5();
  2040         break;
  2041       case 4:
  2042         addr_nop_4();
  2043         break;
  2044       case 3:
  2045         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2046         emit_byte(0x66); // size prefix
  2047       case 2:
  2048         emit_byte(0x66); // size prefix
  2049       case 1:
  2050         emit_byte(0x90); // nop
  2051         break;
  2052       default:
  2053         assert(i == 0, " ");
  2055     return;
  2057   if (UseAddressNop && VM_Version::is_amd()) {
  2058     //
  2059     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
  2060     //  1: 0x90
  2061     //  2: 0x66 0x90
  2062     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
  2063     //  4: 0x0F 0x1F 0x40 0x00
  2064     //  5: 0x0F 0x1F 0x44 0x00 0x00
  2065     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
  2066     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2067     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2068     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2069     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2070     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2072     // The rest coding is AMD specific - use consecutive address nops
  2074     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2075     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
  2076     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2077     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
  2078     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
  2079     //     Size prefixes (0x66) are added for larger sizes
  2081     while(i >= 22) {
  2082       i -= 11;
  2083       emit_byte(0x66); // size prefix
  2084       emit_byte(0x66); // size prefix
  2085       emit_byte(0x66); // size prefix
  2086       addr_nop_8();
  2088     // Generate first nop for size between 21-12
  2089     switch (i) {
  2090       case 21:
  2091         i -= 1;
  2092         emit_byte(0x66); // size prefix
  2093       case 20:
  2094       case 19:
  2095         i -= 1;
  2096         emit_byte(0x66); // size prefix
  2097       case 18:
  2098       case 17:
  2099         i -= 1;
  2100         emit_byte(0x66); // size prefix
  2101       case 16:
  2102       case 15:
  2103         i -= 8;
  2104         addr_nop_8();
  2105         break;
  2106       case 14:
  2107       case 13:
  2108         i -= 7;
  2109         addr_nop_7();
  2110         break;
  2111       case 12:
  2112         i -= 6;
  2113         emit_byte(0x66); // size prefix
  2114         addr_nop_5();
  2115         break;
  2116       default:
  2117         assert(i < 12, " ");
  2120     // Generate second nop for size between 11-1
  2121     switch (i) {
  2122       case 11:
  2123         emit_byte(0x66); // size prefix
  2124       case 10:
  2125         emit_byte(0x66); // size prefix
  2126       case 9:
  2127         emit_byte(0x66); // size prefix
  2128       case 8:
  2129         addr_nop_8();
  2130         break;
  2131       case 7:
  2132         addr_nop_7();
  2133         break;
  2134       case 6:
  2135         emit_byte(0x66); // size prefix
  2136       case 5:
  2137         addr_nop_5();
  2138         break;
  2139       case 4:
  2140         addr_nop_4();
  2141         break;
  2142       case 3:
  2143         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
  2144         emit_byte(0x66); // size prefix
  2145       case 2:
  2146         emit_byte(0x66); // size prefix
  2147       case 1:
  2148         emit_byte(0x90); // nop
  2149         break;
  2150       default:
  2151         assert(i == 0, " ");
  2153     return;
  2156   // Using nops with size prefixes "0x66 0x90".
  2157   // From AMD Optimization Guide:
  2158   //  1: 0x90
  2159   //  2: 0x66 0x90
  2160   //  3: 0x66 0x66 0x90
  2161   //  4: 0x66 0x66 0x66 0x90
  2162   //  5: 0x66 0x66 0x90 0x66 0x90
  2163   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
  2164   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
  2165   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
  2166   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2167   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
  2168   //
  2169   while(i > 12) {
  2170     i -= 4;
  2171     emit_byte(0x66); // size prefix
  2172     emit_byte(0x66);
  2173     emit_byte(0x66);
  2174     emit_byte(0x90); // nop
  2176   // 1 - 12 nops
  2177   if(i > 8) {
  2178     if(i > 9) {
  2179       i -= 1;
  2180       emit_byte(0x66);
  2182     i -= 3;
  2183     emit_byte(0x66);
  2184     emit_byte(0x66);
  2185     emit_byte(0x90);
  2187   // 1 - 8 nops
  2188   if(i > 4) {
  2189     if(i > 6) {
  2190       i -= 1;
  2191       emit_byte(0x66);
  2193     i -= 3;
  2194     emit_byte(0x66);
  2195     emit_byte(0x66);
  2196     emit_byte(0x90);
  2198   switch (i) {
  2199     case 4:
  2200       emit_byte(0x66);
  2201     case 3:
  2202       emit_byte(0x66);
  2203     case 2:
  2204       emit_byte(0x66);
  2205     case 1:
  2206       emit_byte(0x90);
  2207       break;
  2208     default:
  2209       assert(i == 0, " ");
  2213 void Assembler::notl(Register dst) {
  2214   int encode = prefix_and_encode(dst->encoding());
  2215   emit_byte(0xF7);
  2216   emit_byte(0xD0 | encode );
  2219 void Assembler::orl(Address dst, int32_t imm32) {
  2220   InstructionMark im(this);
  2221   prefix(dst);
  2222   emit_arith_operand(0x81, rcx, dst, imm32);
  2225 void Assembler::orl(Register dst, int32_t imm32) {
  2226   prefix(dst);
  2227   emit_arith(0x81, 0xC8, dst, imm32);
  2230 void Assembler::orl(Register dst, Address src) {
  2231   InstructionMark im(this);
  2232   prefix(src, dst);
  2233   emit_byte(0x0B);
  2234   emit_operand(dst, src);
  2237 void Assembler::orl(Register dst, Register src) {
  2238   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2239   emit_arith(0x0B, 0xC0, dst, src);
  2242 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
  2243   assert(VM_Version::supports_sse4_2(), "");
  2245   InstructionMark im(this);
  2246   emit_byte(0x66);
  2247   prefix(src, dst);
  2248   emit_byte(0x0F);
  2249   emit_byte(0x3A);
  2250   emit_byte(0x61);
  2251   emit_operand(dst, src);
  2252   emit_byte(imm8);
  2255 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
  2256   assert(VM_Version::supports_sse4_2(), "");
  2258   emit_byte(0x66);
  2259   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2260   emit_byte(0x0F);
  2261   emit_byte(0x3A);
  2262   emit_byte(0x61);
  2263   emit_byte(0xC0 | encode);
  2264   emit_byte(imm8);
  2267 // generic
  2268 void Assembler::pop(Register dst) {
  2269   int encode = prefix_and_encode(dst->encoding());
  2270   emit_byte(0x58 | encode);
  2273 void Assembler::popcntl(Register dst, Address src) {
  2274   assert(VM_Version::supports_popcnt(), "must support");
  2275   InstructionMark im(this);
  2276   emit_byte(0xF3);
  2277   prefix(src, dst);
  2278   emit_byte(0x0F);
  2279   emit_byte(0xB8);
  2280   emit_operand(dst, src);
  2283 void Assembler::popcntl(Register dst, Register src) {
  2284   assert(VM_Version::supports_popcnt(), "must support");
  2285   emit_byte(0xF3);
  2286   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2287   emit_byte(0x0F);
  2288   emit_byte(0xB8);
  2289   emit_byte(0xC0 | encode);
  2292 void Assembler::popf() {
  2293   emit_byte(0x9D);
  2296 #ifndef _LP64 // no 32bit push/pop on amd64
  2297 void Assembler::popl(Address dst) {
  2298   // NOTE: this will adjust stack by 8byte on 64bits
  2299   InstructionMark im(this);
  2300   prefix(dst);
  2301   emit_byte(0x8F);
  2302   emit_operand(rax, dst);
  2304 #endif
  2306 void Assembler::prefetch_prefix(Address src) {
  2307   prefix(src);
  2308   emit_byte(0x0F);
  2311 void Assembler::prefetchnta(Address src) {
  2312   NOT_LP64(assert(VM_Version::supports_sse2(), "must support"));
  2313   InstructionMark im(this);
  2314   prefetch_prefix(src);
  2315   emit_byte(0x18);
  2316   emit_operand(rax, src); // 0, src
  2319 void Assembler::prefetchr(Address src) {
  2320   NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
  2321   InstructionMark im(this);
  2322   prefetch_prefix(src);
  2323   emit_byte(0x0D);
  2324   emit_operand(rax, src); // 0, src
  2327 void Assembler::prefetcht0(Address src) {
  2328   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2329   InstructionMark im(this);
  2330   prefetch_prefix(src);
  2331   emit_byte(0x18);
  2332   emit_operand(rcx, src); // 1, src
  2335 void Assembler::prefetcht1(Address src) {
  2336   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2337   InstructionMark im(this);
  2338   prefetch_prefix(src);
  2339   emit_byte(0x18);
  2340   emit_operand(rdx, src); // 2, src
  2343 void Assembler::prefetcht2(Address src) {
  2344   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
  2345   InstructionMark im(this);
  2346   prefetch_prefix(src);
  2347   emit_byte(0x18);
  2348   emit_operand(rbx, src); // 3, src
  2351 void Assembler::prefetchw(Address src) {
  2352   NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
  2353   InstructionMark im(this);
  2354   prefetch_prefix(src);
  2355   emit_byte(0x0D);
  2356   emit_operand(rcx, src); // 1, src
  2359 void Assembler::prefix(Prefix p) {
  2360   a_byte(p);
  2363 void Assembler::por(XMMRegister dst, XMMRegister src) {
  2364   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2366   emit_byte(0x66);
  2367   int  encode = prefix_and_encode(dst->encoding(), src->encoding());
  2368   emit_byte(0x0F);
  2370   emit_byte(0xEB);
  2371   emit_byte(0xC0 | encode);
  2374 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
  2375   assert(isByte(mode), "invalid value");
  2376   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2378   emit_byte(0x66);
  2379   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2380   emit_byte(0x0F);
  2381   emit_byte(0x70);
  2382   emit_byte(0xC0 | encode);
  2383   emit_byte(mode & 0xFF);
  2387 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
  2388   assert(isByte(mode), "invalid value");
  2389   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2391   InstructionMark im(this);
  2392   emit_byte(0x66);
  2393   prefix(src, dst);
  2394   emit_byte(0x0F);
  2395   emit_byte(0x70);
  2396   emit_operand(dst, src);
  2397   emit_byte(mode & 0xFF);
  2400 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
  2401   assert(isByte(mode), "invalid value");
  2402   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2404   emit_byte(0xF2);
  2405   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2406   emit_byte(0x0F);
  2407   emit_byte(0x70);
  2408   emit_byte(0xC0 | encode);
  2409   emit_byte(mode & 0xFF);
  2412 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
  2413   assert(isByte(mode), "invalid value");
  2414   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2416   InstructionMark im(this);
  2417   emit_byte(0xF2);
  2418   prefix(src, dst); // QQ new
  2419   emit_byte(0x0F);
  2420   emit_byte(0x70);
  2421   emit_operand(dst, src);
  2422   emit_byte(mode & 0xFF);
  2425 void Assembler::psrlq(XMMRegister dst, int shift) {
  2426   // Shift 64 bit value logically right by specified number of bits.
  2427   // HMM Table D-1 says sse2 or mmx.
  2428   // Do not confuse it with psrldq SSE2 instruction which
  2429   // shifts 128 bit value in xmm register by number of bytes.
  2430   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2432   int encode = prefixq_and_encode(xmm2->encoding(), dst->encoding());
  2433   emit_byte(0x66);
  2434   emit_byte(0x0F);
  2435   emit_byte(0x73);
  2436   emit_byte(0xC0 | encode);
  2437   emit_byte(shift);
  2440 void Assembler::psrldq(XMMRegister dst, int shift) {
  2441   // Shift 128 bit value in xmm register by number of bytes.
  2442   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2444   int encode = prefixq_and_encode(xmm3->encoding(), dst->encoding());
  2445   emit_byte(0x66);
  2446   emit_byte(0x0F);
  2447   emit_byte(0x73);
  2448   emit_byte(0xC0 | encode);
  2449   emit_byte(shift);
  2452 void Assembler::ptest(XMMRegister dst, Address src) {
  2453   assert(VM_Version::supports_sse4_1(), "");
  2455   InstructionMark im(this);
  2456   emit_byte(0x66);
  2457   prefix(src, dst);
  2458   emit_byte(0x0F);
  2459   emit_byte(0x38);
  2460   emit_byte(0x17);
  2461   emit_operand(dst, src);
  2464 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
  2465   assert(VM_Version::supports_sse4_1(), "");
  2467   emit_byte(0x66);
  2468   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  2469   emit_byte(0x0F);
  2470   emit_byte(0x38);
  2471   emit_byte(0x17);
  2472   emit_byte(0xC0 | encode);
  2475 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
  2476   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2477   emit_byte(0x66);
  2478   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2479   emit_byte(0x0F);
  2480   emit_byte(0x60);
  2481   emit_byte(0xC0 | encode);
  2484 void Assembler::push(int32_t imm32) {
  2485   // in 64bits we push 64bits onto the stack but only
  2486   // take a 32bit immediate
  2487   emit_byte(0x68);
  2488   emit_long(imm32);
  2491 void Assembler::push(Register src) {
  2492   int encode = prefix_and_encode(src->encoding());
  2494   emit_byte(0x50 | encode);
  2497 void Assembler::pushf() {
  2498   emit_byte(0x9C);
  2501 #ifndef _LP64 // no 32bit push/pop on amd64
  2502 void Assembler::pushl(Address src) {
  2503   // Note this will push 64bit on 64bit
  2504   InstructionMark im(this);
  2505   prefix(src);
  2506   emit_byte(0xFF);
  2507   emit_operand(rsi, src);
  2509 #endif
  2511 void Assembler::pxor(XMMRegister dst, Address src) {
  2512   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2513   InstructionMark im(this);
  2514   emit_byte(0x66);
  2515   prefix(src, dst);
  2516   emit_byte(0x0F);
  2517   emit_byte(0xEF);
  2518   emit_operand(dst, src);
  2521 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
  2522   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2523   InstructionMark im(this);
  2524   emit_byte(0x66);
  2525   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2526   emit_byte(0x0F);
  2527   emit_byte(0xEF);
  2528   emit_byte(0xC0 | encode);
  2531 void Assembler::rcll(Register dst, int imm8) {
  2532   assert(isShiftCount(imm8), "illegal shift count");
  2533   int encode = prefix_and_encode(dst->encoding());
  2534   if (imm8 == 1) {
  2535     emit_byte(0xD1);
  2536     emit_byte(0xD0 | encode);
  2537   } else {
  2538     emit_byte(0xC1);
  2539     emit_byte(0xD0 | encode);
  2540     emit_byte(imm8);
  2544 // copies data from [esi] to [edi] using rcx pointer sized words
  2545 // generic
  2546 void Assembler::rep_mov() {
  2547   emit_byte(0xF3);
  2548   // MOVSQ
  2549   LP64_ONLY(prefix(REX_W));
  2550   emit_byte(0xA5);
  2553 // sets rcx pointer sized words with rax, value at [edi]
  2554 // generic
  2555 void Assembler::rep_set() { // rep_set
  2556   emit_byte(0xF3);
  2557   // STOSQ
  2558   LP64_ONLY(prefix(REX_W));
  2559   emit_byte(0xAB);
  2562 // scans rcx pointer sized words at [edi] for occurance of rax,
  2563 // generic
  2564 void Assembler::repne_scan() { // repne_scan
  2565   emit_byte(0xF2);
  2566   // SCASQ
  2567   LP64_ONLY(prefix(REX_W));
  2568   emit_byte(0xAF);
  2571 #ifdef _LP64
  2572 // scans rcx 4 byte words at [edi] for occurance of rax,
  2573 // generic
  2574 void Assembler::repne_scanl() { // repne_scan
  2575   emit_byte(0xF2);
  2576   // SCASL
  2577   emit_byte(0xAF);
  2579 #endif
  2581 void Assembler::ret(int imm16) {
  2582   if (imm16 == 0) {
  2583     emit_byte(0xC3);
  2584   } else {
  2585     emit_byte(0xC2);
  2586     emit_word(imm16);
  2590 void Assembler::sahf() {
  2591 #ifdef _LP64
  2592   // Not supported in 64bit mode
  2593   ShouldNotReachHere();
  2594 #endif
  2595   emit_byte(0x9E);
  2598 void Assembler::sarl(Register dst, int imm8) {
  2599   int encode = prefix_and_encode(dst->encoding());
  2600   assert(isShiftCount(imm8), "illegal shift count");
  2601   if (imm8 == 1) {
  2602     emit_byte(0xD1);
  2603     emit_byte(0xF8 | encode);
  2604   } else {
  2605     emit_byte(0xC1);
  2606     emit_byte(0xF8 | encode);
  2607     emit_byte(imm8);
  2611 void Assembler::sarl(Register dst) {
  2612   int encode = prefix_and_encode(dst->encoding());
  2613   emit_byte(0xD3);
  2614   emit_byte(0xF8 | encode);
  2617 void Assembler::sbbl(Address dst, int32_t imm32) {
  2618   InstructionMark im(this);
  2619   prefix(dst);
  2620   emit_arith_operand(0x81, rbx, dst, imm32);
  2623 void Assembler::sbbl(Register dst, int32_t imm32) {
  2624   prefix(dst);
  2625   emit_arith(0x81, 0xD8, dst, imm32);
  2629 void Assembler::sbbl(Register dst, Address src) {
  2630   InstructionMark im(this);
  2631   prefix(src, dst);
  2632   emit_byte(0x1B);
  2633   emit_operand(dst, src);
  2636 void Assembler::sbbl(Register dst, Register src) {
  2637   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2638   emit_arith(0x1B, 0xC0, dst, src);
  2641 void Assembler::setb(Condition cc, Register dst) {
  2642   assert(0 <= cc && cc < 16, "illegal cc");
  2643   int encode = prefix_and_encode(dst->encoding(), true);
  2644   emit_byte(0x0F);
  2645   emit_byte(0x90 | cc);
  2646   emit_byte(0xC0 | encode);
  2649 void Assembler::shll(Register dst, int imm8) {
  2650   assert(isShiftCount(imm8), "illegal shift count");
  2651   int encode = prefix_and_encode(dst->encoding());
  2652   if (imm8 == 1 ) {
  2653     emit_byte(0xD1);
  2654     emit_byte(0xE0 | encode);
  2655   } else {
  2656     emit_byte(0xC1);
  2657     emit_byte(0xE0 | encode);
  2658     emit_byte(imm8);
  2662 void Assembler::shll(Register dst) {
  2663   int encode = prefix_and_encode(dst->encoding());
  2664   emit_byte(0xD3);
  2665   emit_byte(0xE0 | encode);
  2668 void Assembler::shrl(Register dst, int imm8) {
  2669   assert(isShiftCount(imm8), "illegal shift count");
  2670   int encode = prefix_and_encode(dst->encoding());
  2671   emit_byte(0xC1);
  2672   emit_byte(0xE8 | encode);
  2673   emit_byte(imm8);
  2676 void Assembler::shrl(Register dst) {
  2677   int encode = prefix_and_encode(dst->encoding());
  2678   emit_byte(0xD3);
  2679   emit_byte(0xE8 | encode);
  2682 // copies a single word from [esi] to [edi]
  2683 void Assembler::smovl() {
  2684   emit_byte(0xA5);
  2687 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
  2688   // HMM Table D-1 says sse2
  2689   // NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2690   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2691   emit_byte(0xF2);
  2692   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2693   emit_byte(0x0F);
  2694   emit_byte(0x51);
  2695   emit_byte(0xC0 | encode);
  2698 void Assembler::sqrtsd(XMMRegister dst, Address src) {
  2699   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2700   InstructionMark im(this);
  2701   emit_byte(0xF2);
  2702   prefix(src, dst);
  2703   emit_byte(0x0F);
  2704   emit_byte(0x51);
  2705   emit_operand(dst, src);
  2708 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
  2709   // HMM Table D-1 says sse2
  2710   // NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2711   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2712   emit_byte(0xF3);
  2713   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2714   emit_byte(0x0F);
  2715   emit_byte(0x51);
  2716   emit_byte(0xC0 | encode);
  2719 void Assembler::sqrtss(XMMRegister dst, Address src) {
  2720   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2721   InstructionMark im(this);
  2722   emit_byte(0xF3);
  2723   prefix(src, dst);
  2724   emit_byte(0x0F);
  2725   emit_byte(0x51);
  2726   emit_operand(dst, src);
  2729 void Assembler::stmxcsr( Address dst) {
  2730   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2731   InstructionMark im(this);
  2732   prefix(dst);
  2733   emit_byte(0x0F);
  2734   emit_byte(0xAE);
  2735   emit_operand(as_Register(3), dst);
  2738 void Assembler::subl(Address dst, int32_t imm32) {
  2739   InstructionMark im(this);
  2740   prefix(dst);
  2741   emit_arith_operand(0x81, rbp, dst, imm32);
  2744 void Assembler::subl(Address dst, Register src) {
  2745   InstructionMark im(this);
  2746   prefix(dst, src);
  2747   emit_byte(0x29);
  2748   emit_operand(src, dst);
  2751 void Assembler::subl(Register dst, int32_t imm32) {
  2752   prefix(dst);
  2753   emit_arith(0x81, 0xE8, dst, imm32);
  2756 void Assembler::subl(Register dst, Address src) {
  2757   InstructionMark im(this);
  2758   prefix(src, dst);
  2759   emit_byte(0x2B);
  2760   emit_operand(dst, src);
  2763 void Assembler::subl(Register dst, Register src) {
  2764   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2765   emit_arith(0x2B, 0xC0, dst, src);
  2768 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
  2769   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2770   emit_byte(0xF2);
  2771   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2772   emit_byte(0x0F);
  2773   emit_byte(0x5C);
  2774   emit_byte(0xC0 | encode);
  2777 void Assembler::subsd(XMMRegister dst, Address src) {
  2778   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2779   InstructionMark im(this);
  2780   emit_byte(0xF2);
  2781   prefix(src, dst);
  2782   emit_byte(0x0F);
  2783   emit_byte(0x5C);
  2784   emit_operand(dst, src);
  2787 void Assembler::subss(XMMRegister dst, XMMRegister src) {
  2788   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2789   emit_byte(0xF3);
  2790   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2791   emit_byte(0x0F);
  2792   emit_byte(0x5C);
  2793   emit_byte(0xC0 | encode);
  2796 void Assembler::subss(XMMRegister dst, Address src) {
  2797   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2798   InstructionMark im(this);
  2799   emit_byte(0xF3);
  2800   prefix(src, dst);
  2801   emit_byte(0x0F);
  2802   emit_byte(0x5C);
  2803   emit_operand(dst, src);
  2806 void Assembler::testb(Register dst, int imm8) {
  2807   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
  2808   (void) prefix_and_encode(dst->encoding(), true);
  2809   emit_arith_b(0xF6, 0xC0, dst, imm8);
  2812 void Assembler::testl(Register dst, int32_t imm32) {
  2813   // not using emit_arith because test
  2814   // doesn't support sign-extension of
  2815   // 8bit operands
  2816   int encode = dst->encoding();
  2817   if (encode == 0) {
  2818     emit_byte(0xA9);
  2819   } else {
  2820     encode = prefix_and_encode(encode);
  2821     emit_byte(0xF7);
  2822     emit_byte(0xC0 | encode);
  2824   emit_long(imm32);
  2827 void Assembler::testl(Register dst, Register src) {
  2828   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2829   emit_arith(0x85, 0xC0, dst, src);
  2832 void Assembler::testl(Register dst, Address  src) {
  2833   InstructionMark im(this);
  2834   prefix(src, dst);
  2835   emit_byte(0x85);
  2836   emit_operand(dst, src);
  2839 void Assembler::ucomisd(XMMRegister dst, Address src) {
  2840   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2841   emit_byte(0x66);
  2842   ucomiss(dst, src);
  2845 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
  2846   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2847   emit_byte(0x66);
  2848   ucomiss(dst, src);
  2851 void Assembler::ucomiss(XMMRegister dst, Address src) {
  2852   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2854   InstructionMark im(this);
  2855   prefix(src, dst);
  2856   emit_byte(0x0F);
  2857   emit_byte(0x2E);
  2858   emit_operand(dst, src);
  2861 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
  2862   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2863   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2864   emit_byte(0x0F);
  2865   emit_byte(0x2E);
  2866   emit_byte(0xC0 | encode);
  2870 void Assembler::xaddl(Address dst, Register src) {
  2871   InstructionMark im(this);
  2872   prefix(dst, src);
  2873   emit_byte(0x0F);
  2874   emit_byte(0xC1);
  2875   emit_operand(src, dst);
  2878 void Assembler::xchgl(Register dst, Address src) { // xchg
  2879   InstructionMark im(this);
  2880   prefix(src, dst);
  2881   emit_byte(0x87);
  2882   emit_operand(dst, src);
  2885 void Assembler::xchgl(Register dst, Register src) {
  2886   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2887   emit_byte(0x87);
  2888   emit_byte(0xc0 | encode);
  2891 void Assembler::xorl(Register dst, int32_t imm32) {
  2892   prefix(dst);
  2893   emit_arith(0x81, 0xF0, dst, imm32);
  2896 void Assembler::xorl(Register dst, Address src) {
  2897   InstructionMark im(this);
  2898   prefix(src, dst);
  2899   emit_byte(0x33);
  2900   emit_operand(dst, src);
  2903 void Assembler::xorl(Register dst, Register src) {
  2904   (void) prefix_and_encode(dst->encoding(), src->encoding());
  2905   emit_arith(0x33, 0xC0, dst, src);
  2908 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
  2909   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2910   emit_byte(0x66);
  2911   xorps(dst, src);
  2914 void Assembler::xorpd(XMMRegister dst, Address src) {
  2915   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  2916   InstructionMark im(this);
  2917   emit_byte(0x66);
  2918   prefix(src, dst);
  2919   emit_byte(0x0F);
  2920   emit_byte(0x57);
  2921   emit_operand(dst, src);
  2925 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
  2926   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2927   int encode = prefix_and_encode(dst->encoding(), src->encoding());
  2928   emit_byte(0x0F);
  2929   emit_byte(0x57);
  2930   emit_byte(0xC0 | encode);
  2933 void Assembler::xorps(XMMRegister dst, Address src) {
  2934   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  2935   InstructionMark im(this);
  2936   prefix(src, dst);
  2937   emit_byte(0x0F);
  2938   emit_byte(0x57);
  2939   emit_operand(dst, src);
  2942 #ifndef _LP64
  2943 // 32bit only pieces of the assembler
  2945 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  2946   // NO PREFIX AS NEVER 64BIT
  2947   InstructionMark im(this);
  2948   emit_byte(0x81);
  2949   emit_byte(0xF8 | src1->encoding());
  2950   emit_data(imm32, rspec, 0);
  2953 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  2954   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
  2955   InstructionMark im(this);
  2956   emit_byte(0x81);
  2957   emit_operand(rdi, src1);
  2958   emit_data(imm32, rspec, 0);
  2961 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
  2962 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
  2963 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
  2964 void Assembler::cmpxchg8(Address adr) {
  2965   InstructionMark im(this);
  2966   emit_byte(0x0F);
  2967   emit_byte(0xc7);
  2968   emit_operand(rcx, adr);
  2971 void Assembler::decl(Register dst) {
  2972   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  2973  emit_byte(0x48 | dst->encoding());
  2976 #endif // _LP64
  2978 // 64bit typically doesn't use the x87 but needs to for the trig funcs
  2980 void Assembler::fabs() {
  2981   emit_byte(0xD9);
  2982   emit_byte(0xE1);
  2985 void Assembler::fadd(int i) {
  2986   emit_farith(0xD8, 0xC0, i);
  2989 void Assembler::fadd_d(Address src) {
  2990   InstructionMark im(this);
  2991   emit_byte(0xDC);
  2992   emit_operand32(rax, src);
  2995 void Assembler::fadd_s(Address src) {
  2996   InstructionMark im(this);
  2997   emit_byte(0xD8);
  2998   emit_operand32(rax, src);
  3001 void Assembler::fadda(int i) {
  3002   emit_farith(0xDC, 0xC0, i);
  3005 void Assembler::faddp(int i) {
  3006   emit_farith(0xDE, 0xC0, i);
  3009 void Assembler::fchs() {
  3010   emit_byte(0xD9);
  3011   emit_byte(0xE0);
  3014 void Assembler::fcom(int i) {
  3015   emit_farith(0xD8, 0xD0, i);
  3018 void Assembler::fcomp(int i) {
  3019   emit_farith(0xD8, 0xD8, i);
  3022 void Assembler::fcomp_d(Address src) {
  3023   InstructionMark im(this);
  3024   emit_byte(0xDC);
  3025   emit_operand32(rbx, src);
  3028 void Assembler::fcomp_s(Address src) {
  3029   InstructionMark im(this);
  3030   emit_byte(0xD8);
  3031   emit_operand32(rbx, src);
  3034 void Assembler::fcompp() {
  3035   emit_byte(0xDE);
  3036   emit_byte(0xD9);
  3039 void Assembler::fcos() {
  3040   emit_byte(0xD9);
  3041   emit_byte(0xFF);
  3044 void Assembler::fdecstp() {
  3045   emit_byte(0xD9);
  3046   emit_byte(0xF6);
  3049 void Assembler::fdiv(int i) {
  3050   emit_farith(0xD8, 0xF0, i);
  3053 void Assembler::fdiv_d(Address src) {
  3054   InstructionMark im(this);
  3055   emit_byte(0xDC);
  3056   emit_operand32(rsi, src);
  3059 void Assembler::fdiv_s(Address src) {
  3060   InstructionMark im(this);
  3061   emit_byte(0xD8);
  3062   emit_operand32(rsi, src);
  3065 void Assembler::fdiva(int i) {
  3066   emit_farith(0xDC, 0xF8, i);
  3069 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
  3070 //       is erroneous for some of the floating-point instructions below.
  3072 void Assembler::fdivp(int i) {
  3073   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
  3076 void Assembler::fdivr(int i) {
  3077   emit_farith(0xD8, 0xF8, i);
  3080 void Assembler::fdivr_d(Address src) {
  3081   InstructionMark im(this);
  3082   emit_byte(0xDC);
  3083   emit_operand32(rdi, src);
  3086 void Assembler::fdivr_s(Address src) {
  3087   InstructionMark im(this);
  3088   emit_byte(0xD8);
  3089   emit_operand32(rdi, src);
  3092 void Assembler::fdivra(int i) {
  3093   emit_farith(0xDC, 0xF0, i);
  3096 void Assembler::fdivrp(int i) {
  3097   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
  3100 void Assembler::ffree(int i) {
  3101   emit_farith(0xDD, 0xC0, i);
  3104 void Assembler::fild_d(Address adr) {
  3105   InstructionMark im(this);
  3106   emit_byte(0xDF);
  3107   emit_operand32(rbp, adr);
  3110 void Assembler::fild_s(Address adr) {
  3111   InstructionMark im(this);
  3112   emit_byte(0xDB);
  3113   emit_operand32(rax, adr);
  3116 void Assembler::fincstp() {
  3117   emit_byte(0xD9);
  3118   emit_byte(0xF7);
  3121 void Assembler::finit() {
  3122   emit_byte(0x9B);
  3123   emit_byte(0xDB);
  3124   emit_byte(0xE3);
  3127 void Assembler::fist_s(Address adr) {
  3128   InstructionMark im(this);
  3129   emit_byte(0xDB);
  3130   emit_operand32(rdx, adr);
  3133 void Assembler::fistp_d(Address adr) {
  3134   InstructionMark im(this);
  3135   emit_byte(0xDF);
  3136   emit_operand32(rdi, adr);
  3139 void Assembler::fistp_s(Address adr) {
  3140   InstructionMark im(this);
  3141   emit_byte(0xDB);
  3142   emit_operand32(rbx, adr);
  3145 void Assembler::fld1() {
  3146   emit_byte(0xD9);
  3147   emit_byte(0xE8);
  3150 void Assembler::fld_d(Address adr) {
  3151   InstructionMark im(this);
  3152   emit_byte(0xDD);
  3153   emit_operand32(rax, adr);
  3156 void Assembler::fld_s(Address adr) {
  3157   InstructionMark im(this);
  3158   emit_byte(0xD9);
  3159   emit_operand32(rax, adr);
  3163 void Assembler::fld_s(int index) {
  3164   emit_farith(0xD9, 0xC0, index);
  3167 void Assembler::fld_x(Address adr) {
  3168   InstructionMark im(this);
  3169   emit_byte(0xDB);
  3170   emit_operand32(rbp, adr);
  3173 void Assembler::fldcw(Address src) {
  3174   InstructionMark im(this);
  3175   emit_byte(0xd9);
  3176   emit_operand32(rbp, src);
  3179 void Assembler::fldenv(Address src) {
  3180   InstructionMark im(this);
  3181   emit_byte(0xD9);
  3182   emit_operand32(rsp, src);
  3185 void Assembler::fldlg2() {
  3186   emit_byte(0xD9);
  3187   emit_byte(0xEC);
  3190 void Assembler::fldln2() {
  3191   emit_byte(0xD9);
  3192   emit_byte(0xED);
  3195 void Assembler::fldz() {
  3196   emit_byte(0xD9);
  3197   emit_byte(0xEE);
  3200 void Assembler::flog() {
  3201   fldln2();
  3202   fxch();
  3203   fyl2x();
  3206 void Assembler::flog10() {
  3207   fldlg2();
  3208   fxch();
  3209   fyl2x();
  3212 void Assembler::fmul(int i) {
  3213   emit_farith(0xD8, 0xC8, i);
  3216 void Assembler::fmul_d(Address src) {
  3217   InstructionMark im(this);
  3218   emit_byte(0xDC);
  3219   emit_operand32(rcx, src);
  3222 void Assembler::fmul_s(Address src) {
  3223   InstructionMark im(this);
  3224   emit_byte(0xD8);
  3225   emit_operand32(rcx, src);
  3228 void Assembler::fmula(int i) {
  3229   emit_farith(0xDC, 0xC8, i);
  3232 void Assembler::fmulp(int i) {
  3233   emit_farith(0xDE, 0xC8, i);
  3236 void Assembler::fnsave(Address dst) {
  3237   InstructionMark im(this);
  3238   emit_byte(0xDD);
  3239   emit_operand32(rsi, dst);
  3242 void Assembler::fnstcw(Address src) {
  3243   InstructionMark im(this);
  3244   emit_byte(0x9B);
  3245   emit_byte(0xD9);
  3246   emit_operand32(rdi, src);
  3249 void Assembler::fnstsw_ax() {
  3250   emit_byte(0xdF);
  3251   emit_byte(0xE0);
  3254 void Assembler::fprem() {
  3255   emit_byte(0xD9);
  3256   emit_byte(0xF8);
  3259 void Assembler::fprem1() {
  3260   emit_byte(0xD9);
  3261   emit_byte(0xF5);
  3264 void Assembler::frstor(Address src) {
  3265   InstructionMark im(this);
  3266   emit_byte(0xDD);
  3267   emit_operand32(rsp, src);
  3270 void Assembler::fsin() {
  3271   emit_byte(0xD9);
  3272   emit_byte(0xFE);
  3275 void Assembler::fsqrt() {
  3276   emit_byte(0xD9);
  3277   emit_byte(0xFA);
  3280 void Assembler::fst_d(Address adr) {
  3281   InstructionMark im(this);
  3282   emit_byte(0xDD);
  3283   emit_operand32(rdx, adr);
  3286 void Assembler::fst_s(Address adr) {
  3287   InstructionMark im(this);
  3288   emit_byte(0xD9);
  3289   emit_operand32(rdx, adr);
  3292 void Assembler::fstp_d(Address adr) {
  3293   InstructionMark im(this);
  3294   emit_byte(0xDD);
  3295   emit_operand32(rbx, adr);
  3298 void Assembler::fstp_d(int index) {
  3299   emit_farith(0xDD, 0xD8, index);
  3302 void Assembler::fstp_s(Address adr) {
  3303   InstructionMark im(this);
  3304   emit_byte(0xD9);
  3305   emit_operand32(rbx, adr);
  3308 void Assembler::fstp_x(Address adr) {
  3309   InstructionMark im(this);
  3310   emit_byte(0xDB);
  3311   emit_operand32(rdi, adr);
  3314 void Assembler::fsub(int i) {
  3315   emit_farith(0xD8, 0xE0, i);
  3318 void Assembler::fsub_d(Address src) {
  3319   InstructionMark im(this);
  3320   emit_byte(0xDC);
  3321   emit_operand32(rsp, src);
  3324 void Assembler::fsub_s(Address src) {
  3325   InstructionMark im(this);
  3326   emit_byte(0xD8);
  3327   emit_operand32(rsp, src);
  3330 void Assembler::fsuba(int i) {
  3331   emit_farith(0xDC, 0xE8, i);
  3334 void Assembler::fsubp(int i) {
  3335   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
  3338 void Assembler::fsubr(int i) {
  3339   emit_farith(0xD8, 0xE8, i);
  3342 void Assembler::fsubr_d(Address src) {
  3343   InstructionMark im(this);
  3344   emit_byte(0xDC);
  3345   emit_operand32(rbp, src);
  3348 void Assembler::fsubr_s(Address src) {
  3349   InstructionMark im(this);
  3350   emit_byte(0xD8);
  3351   emit_operand32(rbp, src);
  3354 void Assembler::fsubra(int i) {
  3355   emit_farith(0xDC, 0xE0, i);
  3358 void Assembler::fsubrp(int i) {
  3359   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
  3362 void Assembler::ftan() {
  3363   emit_byte(0xD9);
  3364   emit_byte(0xF2);
  3365   emit_byte(0xDD);
  3366   emit_byte(0xD8);
  3369 void Assembler::ftst() {
  3370   emit_byte(0xD9);
  3371   emit_byte(0xE4);
  3374 void Assembler::fucomi(int i) {
  3375   // make sure the instruction is supported (introduced for P6, together with cmov)
  3376   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3377   emit_farith(0xDB, 0xE8, i);
  3380 void Assembler::fucomip(int i) {
  3381   // make sure the instruction is supported (introduced for P6, together with cmov)
  3382   guarantee(VM_Version::supports_cmov(), "illegal instruction");
  3383   emit_farith(0xDF, 0xE8, i);
  3386 void Assembler::fwait() {
  3387   emit_byte(0x9B);
  3390 void Assembler::fxch(int i) {
  3391   emit_farith(0xD9, 0xC8, i);
  3394 void Assembler::fyl2x() {
  3395   emit_byte(0xD9);
  3396   emit_byte(0xF1);
  3400 #ifndef _LP64
  3402 void Assembler::incl(Register dst) {
  3403   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  3404  emit_byte(0x40 | dst->encoding());
  3407 void Assembler::lea(Register dst, Address src) {
  3408   leal(dst, src);
  3411 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  3412   InstructionMark im(this);
  3413   emit_byte(0xC7);
  3414   emit_operand(rax, dst);
  3415   emit_data((int)imm32, rspec, 0);
  3418 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  3419   InstructionMark im(this);
  3420   int encode = prefix_and_encode(dst->encoding());
  3421   emit_byte(0xB8 | encode);
  3422   emit_data((int)imm32, rspec, 0);
  3425 void Assembler::popa() { // 32bit
  3426   emit_byte(0x61);
  3429 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
  3430   InstructionMark im(this);
  3431   emit_byte(0x68);
  3432   emit_data(imm32, rspec, 0);
  3435 void Assembler::pusha() { // 32bit
  3436   emit_byte(0x60);
  3439 void Assembler::set_byte_if_not_zero(Register dst) {
  3440   emit_byte(0x0F);
  3441   emit_byte(0x95);
  3442   emit_byte(0xE0 | dst->encoding());
  3445 void Assembler::shldl(Register dst, Register src) {
  3446   emit_byte(0x0F);
  3447   emit_byte(0xA5);
  3448   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3451 void Assembler::shrdl(Register dst, Register src) {
  3452   emit_byte(0x0F);
  3453   emit_byte(0xAD);
  3454   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
  3457 #else // LP64
  3459 void Assembler::set_byte_if_not_zero(Register dst) {
  3460   int enc = prefix_and_encode(dst->encoding(), true);
  3461   emit_byte(0x0F);
  3462   emit_byte(0x95);
  3463   emit_byte(0xE0 | enc);
  3466 // 64bit only pieces of the assembler
  3467 // This should only be used by 64bit instructions that can use rip-relative
  3468 // it cannot be used by instructions that want an immediate value.
  3470 bool Assembler::reachable(AddressLiteral adr) {
  3471   int64_t disp;
  3472   // None will force a 64bit literal to the code stream. Likely a placeholder
  3473   // for something that will be patched later and we need to certain it will
  3474   // always be reachable.
  3475   if (adr.reloc() == relocInfo::none) {
  3476     return false;
  3478   if (adr.reloc() == relocInfo::internal_word_type) {
  3479     // This should be rip relative and easily reachable.
  3480     return true;
  3482   if (adr.reloc() == relocInfo::virtual_call_type ||
  3483       adr.reloc() == relocInfo::opt_virtual_call_type ||
  3484       adr.reloc() == relocInfo::static_call_type ||
  3485       adr.reloc() == relocInfo::static_stub_type ) {
  3486     // This should be rip relative within the code cache and easily
  3487     // reachable until we get huge code caches. (At which point
  3488     // ic code is going to have issues).
  3489     return true;
  3491   if (adr.reloc() != relocInfo::external_word_type &&
  3492       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
  3493       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
  3494       adr.reloc() != relocInfo::runtime_call_type ) {
  3495     return false;
  3498   // Stress the correction code
  3499   if (ForceUnreachable) {
  3500     // Must be runtimecall reloc, see if it is in the codecache
  3501     // Flipping stuff in the codecache to be unreachable causes issues
  3502     // with things like inline caches where the additional instructions
  3503     // are not handled.
  3504     if (CodeCache::find_blob(adr._target) == NULL) {
  3505       return false;
  3508   // For external_word_type/runtime_call_type if it is reachable from where we
  3509   // are now (possibly a temp buffer) and where we might end up
  3510   // anywhere in the codeCache then we are always reachable.
  3511   // This would have to change if we ever save/restore shared code
  3512   // to be more pessimistic.
  3513   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
  3514   if (!is_simm32(disp)) return false;
  3515   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
  3516   if (!is_simm32(disp)) return false;
  3518   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
  3520   // Because rip relative is a disp + address_of_next_instruction and we
  3521   // don't know the value of address_of_next_instruction we apply a fudge factor
  3522   // to make sure we will be ok no matter the size of the instruction we get placed into.
  3523   // We don't have to fudge the checks above here because they are already worst case.
  3525   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
  3526   // + 4 because better safe than sorry.
  3527   const int fudge = 12 + 4;
  3528   if (disp < 0) {
  3529     disp -= fudge;
  3530   } else {
  3531     disp += fudge;
  3533   return is_simm32(disp);
  3536 // Check if the polling page is not reachable from the code cache using rip-relative
  3537 // addressing.
  3538 bool Assembler::is_polling_page_far() {
  3539   intptr_t addr = (intptr_t)os::get_polling_page();
  3540   return !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
  3541          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
  3544 void Assembler::emit_data64(jlong data,
  3545                             relocInfo::relocType rtype,
  3546                             int format) {
  3547   if (rtype == relocInfo::none) {
  3548     emit_long64(data);
  3549   } else {
  3550     emit_data64(data, Relocation::spec_simple(rtype), format);
  3554 void Assembler::emit_data64(jlong data,
  3555                             RelocationHolder const& rspec,
  3556                             int format) {
  3557   assert(imm_operand == 0, "default format must be immediate in this file");
  3558   assert(imm_operand == format, "must be immediate");
  3559   assert(inst_mark() != NULL, "must be inside InstructionMark");
  3560   // Do not use AbstractAssembler::relocate, which is not intended for
  3561   // embedded words.  Instead, relocate to the enclosing instruction.
  3562   code_section()->relocate(inst_mark(), rspec, format);
  3563 #ifdef ASSERT
  3564   check_relocation(rspec, format);
  3565 #endif
  3566   emit_long64(data);
  3569 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
  3570   if (reg_enc >= 8) {
  3571     prefix(REX_B);
  3572     reg_enc -= 8;
  3573   } else if (byteinst && reg_enc >= 4) {
  3574     prefix(REX);
  3576   return reg_enc;
  3579 int Assembler::prefixq_and_encode(int reg_enc) {
  3580   if (reg_enc < 8) {
  3581     prefix(REX_W);
  3582   } else {
  3583     prefix(REX_WB);
  3584     reg_enc -= 8;
  3586   return reg_enc;
  3589 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
  3590   if (dst_enc < 8) {
  3591     if (src_enc >= 8) {
  3592       prefix(REX_B);
  3593       src_enc -= 8;
  3594     } else if (byteinst && src_enc >= 4) {
  3595       prefix(REX);
  3597   } else {
  3598     if (src_enc < 8) {
  3599       prefix(REX_R);
  3600     } else {
  3601       prefix(REX_RB);
  3602       src_enc -= 8;
  3604     dst_enc -= 8;
  3606   return dst_enc << 3 | src_enc;
  3609 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
  3610   if (dst_enc < 8) {
  3611     if (src_enc < 8) {
  3612       prefix(REX_W);
  3613     } else {
  3614       prefix(REX_WB);
  3615       src_enc -= 8;
  3617   } else {
  3618     if (src_enc < 8) {
  3619       prefix(REX_WR);
  3620     } else {
  3621       prefix(REX_WRB);
  3622       src_enc -= 8;
  3624     dst_enc -= 8;
  3626   return dst_enc << 3 | src_enc;
  3629 void Assembler::prefix(Register reg) {
  3630   if (reg->encoding() >= 8) {
  3631     prefix(REX_B);
  3635 void Assembler::prefix(Address adr) {
  3636   if (adr.base_needs_rex()) {
  3637     if (adr.index_needs_rex()) {
  3638       prefix(REX_XB);
  3639     } else {
  3640       prefix(REX_B);
  3642   } else {
  3643     if (adr.index_needs_rex()) {
  3644       prefix(REX_X);
  3649 void Assembler::prefixq(Address adr) {
  3650   if (adr.base_needs_rex()) {
  3651     if (adr.index_needs_rex()) {
  3652       prefix(REX_WXB);
  3653     } else {
  3654       prefix(REX_WB);
  3656   } else {
  3657     if (adr.index_needs_rex()) {
  3658       prefix(REX_WX);
  3659     } else {
  3660       prefix(REX_W);
  3666 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
  3667   if (reg->encoding() < 8) {
  3668     if (adr.base_needs_rex()) {
  3669       if (adr.index_needs_rex()) {
  3670         prefix(REX_XB);
  3671       } else {
  3672         prefix(REX_B);
  3674     } else {
  3675       if (adr.index_needs_rex()) {
  3676         prefix(REX_X);
  3677       } else if (reg->encoding() >= 4 ) {
  3678         prefix(REX);
  3681   } else {
  3682     if (adr.base_needs_rex()) {
  3683       if (adr.index_needs_rex()) {
  3684         prefix(REX_RXB);
  3685       } else {
  3686         prefix(REX_RB);
  3688     } else {
  3689       if (adr.index_needs_rex()) {
  3690         prefix(REX_RX);
  3691       } else {
  3692         prefix(REX_R);
  3698 void Assembler::prefixq(Address adr, Register src) {
  3699   if (src->encoding() < 8) {
  3700     if (adr.base_needs_rex()) {
  3701       if (adr.index_needs_rex()) {
  3702         prefix(REX_WXB);
  3703       } else {
  3704         prefix(REX_WB);
  3706     } else {
  3707       if (adr.index_needs_rex()) {
  3708         prefix(REX_WX);
  3709       } else {
  3710         prefix(REX_W);
  3713   } else {
  3714     if (adr.base_needs_rex()) {
  3715       if (adr.index_needs_rex()) {
  3716         prefix(REX_WRXB);
  3717       } else {
  3718         prefix(REX_WRB);
  3720     } else {
  3721       if (adr.index_needs_rex()) {
  3722         prefix(REX_WRX);
  3723       } else {
  3724         prefix(REX_WR);
  3730 void Assembler::prefix(Address adr, XMMRegister reg) {
  3731   if (reg->encoding() < 8) {
  3732     if (adr.base_needs_rex()) {
  3733       if (adr.index_needs_rex()) {
  3734         prefix(REX_XB);
  3735       } else {
  3736         prefix(REX_B);
  3738     } else {
  3739       if (adr.index_needs_rex()) {
  3740         prefix(REX_X);
  3743   } else {
  3744     if (adr.base_needs_rex()) {
  3745       if (adr.index_needs_rex()) {
  3746         prefix(REX_RXB);
  3747       } else {
  3748         prefix(REX_RB);
  3750     } else {
  3751       if (adr.index_needs_rex()) {
  3752         prefix(REX_RX);
  3753       } else {
  3754         prefix(REX_R);
  3760 void Assembler::adcq(Register dst, int32_t imm32) {
  3761   (void) prefixq_and_encode(dst->encoding());
  3762   emit_arith(0x81, 0xD0, dst, imm32);
  3765 void Assembler::adcq(Register dst, Address src) {
  3766   InstructionMark im(this);
  3767   prefixq(src, dst);
  3768   emit_byte(0x13);
  3769   emit_operand(dst, src);
  3772 void Assembler::adcq(Register dst, Register src) {
  3773   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  3774   emit_arith(0x13, 0xC0, dst, src);
  3777 void Assembler::addq(Address dst, int32_t imm32) {
  3778   InstructionMark im(this);
  3779   prefixq(dst);
  3780   emit_arith_operand(0x81, rax, dst,imm32);
  3783 void Assembler::addq(Address dst, Register src) {
  3784   InstructionMark im(this);
  3785   prefixq(dst, src);
  3786   emit_byte(0x01);
  3787   emit_operand(src, dst);
  3790 void Assembler::addq(Register dst, int32_t imm32) {
  3791   (void) prefixq_and_encode(dst->encoding());
  3792   emit_arith(0x81, 0xC0, dst, imm32);
  3795 void Assembler::addq(Register dst, Address src) {
  3796   InstructionMark im(this);
  3797   prefixq(src, dst);
  3798   emit_byte(0x03);
  3799   emit_operand(dst, src);
  3802 void Assembler::addq(Register dst, Register src) {
  3803   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  3804   emit_arith(0x03, 0xC0, dst, src);
  3807 void Assembler::andq(Register dst, int32_t imm32) {
  3808   (void) prefixq_and_encode(dst->encoding());
  3809   emit_arith(0x81, 0xE0, dst, imm32);
  3812 void Assembler::andq(Register dst, Address src) {
  3813   InstructionMark im(this);
  3814   prefixq(src, dst);
  3815   emit_byte(0x23);
  3816   emit_operand(dst, src);
  3819 void Assembler::andq(Register dst, Register src) {
  3820   (int) prefixq_and_encode(dst->encoding(), src->encoding());
  3821   emit_arith(0x23, 0xC0, dst, src);
  3824 void Assembler::bsfq(Register dst, Register src) {
  3825   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3826   emit_byte(0x0F);
  3827   emit_byte(0xBC);
  3828   emit_byte(0xC0 | encode);
  3831 void Assembler::bsrq(Register dst, Register src) {
  3832   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
  3833   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3834   emit_byte(0x0F);
  3835   emit_byte(0xBD);
  3836   emit_byte(0xC0 | encode);
  3839 void Assembler::bswapq(Register reg) {
  3840   int encode = prefixq_and_encode(reg->encoding());
  3841   emit_byte(0x0F);
  3842   emit_byte(0xC8 | encode);
  3845 void Assembler::cdqq() {
  3846   prefix(REX_W);
  3847   emit_byte(0x99);
  3850 void Assembler::clflush(Address adr) {
  3851   prefix(adr);
  3852   emit_byte(0x0F);
  3853   emit_byte(0xAE);
  3854   emit_operand(rdi, adr);
  3857 void Assembler::cmovq(Condition cc, Register dst, Register src) {
  3858   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3859   emit_byte(0x0F);
  3860   emit_byte(0x40 | cc);
  3861   emit_byte(0xC0 | encode);
  3864 void Assembler::cmovq(Condition cc, Register dst, Address src) {
  3865   InstructionMark im(this);
  3866   prefixq(src, dst);
  3867   emit_byte(0x0F);
  3868   emit_byte(0x40 | cc);
  3869   emit_operand(dst, src);
  3872 void Assembler::cmpq(Address dst, int32_t imm32) {
  3873   InstructionMark im(this);
  3874   prefixq(dst);
  3875   emit_byte(0x81);
  3876   emit_operand(rdi, dst, 4);
  3877   emit_long(imm32);
  3880 void Assembler::cmpq(Register dst, int32_t imm32) {
  3881   (void) prefixq_and_encode(dst->encoding());
  3882   emit_arith(0x81, 0xF8, dst, imm32);
  3885 void Assembler::cmpq(Address dst, Register src) {
  3886   InstructionMark im(this);
  3887   prefixq(dst, src);
  3888   emit_byte(0x3B);
  3889   emit_operand(src, dst);
  3892 void Assembler::cmpq(Register dst, Register src) {
  3893   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  3894   emit_arith(0x3B, 0xC0, dst, src);
  3897 void Assembler::cmpq(Register dst, Address  src) {
  3898   InstructionMark im(this);
  3899   prefixq(src, dst);
  3900   emit_byte(0x3B);
  3901   emit_operand(dst, src);
  3904 void Assembler::cmpxchgq(Register reg, Address adr) {
  3905   InstructionMark im(this);
  3906   prefixq(adr, reg);
  3907   emit_byte(0x0F);
  3908   emit_byte(0xB1);
  3909   emit_operand(reg, adr);
  3912 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
  3913   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3914   emit_byte(0xF2);
  3915   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3916   emit_byte(0x0F);
  3917   emit_byte(0x2A);
  3918   emit_byte(0xC0 | encode);
  3921 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
  3922   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3923   emit_byte(0xF3);
  3924   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3925   emit_byte(0x0F);
  3926   emit_byte(0x2A);
  3927   emit_byte(0xC0 | encode);
  3930 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
  3931   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
  3932   emit_byte(0xF2);
  3933   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3934   emit_byte(0x0F);
  3935   emit_byte(0x2C);
  3936   emit_byte(0xC0 | encode);
  3939 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
  3940   NOT_LP64(assert(VM_Version::supports_sse(), ""));
  3941   emit_byte(0xF3);
  3942   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3943   emit_byte(0x0F);
  3944   emit_byte(0x2C);
  3945   emit_byte(0xC0 | encode);
  3948 void Assembler::decl(Register dst) {
  3949   // Don't use it directly. Use MacroAssembler::decrementl() instead.
  3950   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
  3951   int encode = prefix_and_encode(dst->encoding());
  3952   emit_byte(0xFF);
  3953   emit_byte(0xC8 | encode);
  3956 void Assembler::decq(Register dst) {
  3957   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  3958   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  3959   int encode = prefixq_and_encode(dst->encoding());
  3960   emit_byte(0xFF);
  3961   emit_byte(0xC8 | encode);
  3964 void Assembler::decq(Address dst) {
  3965   // Don't use it directly. Use MacroAssembler::decrementq() instead.
  3966   InstructionMark im(this);
  3967   prefixq(dst);
  3968   emit_byte(0xFF);
  3969   emit_operand(rcx, dst);
  3972 void Assembler::fxrstor(Address src) {
  3973   prefixq(src);
  3974   emit_byte(0x0F);
  3975   emit_byte(0xAE);
  3976   emit_operand(as_Register(1), src);
  3979 void Assembler::fxsave(Address dst) {
  3980   prefixq(dst);
  3981   emit_byte(0x0F);
  3982   emit_byte(0xAE);
  3983   emit_operand(as_Register(0), dst);
  3986 void Assembler::idivq(Register src) {
  3987   int encode = prefixq_and_encode(src->encoding());
  3988   emit_byte(0xF7);
  3989   emit_byte(0xF8 | encode);
  3992 void Assembler::imulq(Register dst, Register src) {
  3993   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  3994   emit_byte(0x0F);
  3995   emit_byte(0xAF);
  3996   emit_byte(0xC0 | encode);
  3999 void Assembler::imulq(Register dst, Register src, int value) {
  4000   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4001   if (is8bit(value)) {
  4002     emit_byte(0x6B);
  4003     emit_byte(0xC0 | encode);
  4004     emit_byte(value & 0xFF);
  4005   } else {
  4006     emit_byte(0x69);
  4007     emit_byte(0xC0 | encode);
  4008     emit_long(value);
  4012 void Assembler::incl(Register dst) {
  4013   // Don't use it directly. Use MacroAssembler::incrementl() instead.
  4014   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4015   int encode = prefix_and_encode(dst->encoding());
  4016   emit_byte(0xFF);
  4017   emit_byte(0xC0 | encode);
  4020 void Assembler::incq(Register dst) {
  4021   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4022   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
  4023   int encode = prefixq_and_encode(dst->encoding());
  4024   emit_byte(0xFF);
  4025   emit_byte(0xC0 | encode);
  4028 void Assembler::incq(Address dst) {
  4029   // Don't use it directly. Use MacroAssembler::incrementq() instead.
  4030   InstructionMark im(this);
  4031   prefixq(dst);
  4032   emit_byte(0xFF);
  4033   emit_operand(rax, dst);
  4036 void Assembler::lea(Register dst, Address src) {
  4037   leaq(dst, src);
  4040 void Assembler::leaq(Register dst, Address src) {
  4041   InstructionMark im(this);
  4042   prefixq(src, dst);
  4043   emit_byte(0x8D);
  4044   emit_operand(dst, src);
  4047 void Assembler::mov64(Register dst, int64_t imm64) {
  4048   InstructionMark im(this);
  4049   int encode = prefixq_and_encode(dst->encoding());
  4050   emit_byte(0xB8 | encode);
  4051   emit_long64(imm64);
  4054 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
  4055   InstructionMark im(this);
  4056   int encode = prefixq_and_encode(dst->encoding());
  4057   emit_byte(0xB8 | encode);
  4058   emit_data64(imm64, rspec);
  4061 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
  4062   InstructionMark im(this);
  4063   int encode = prefix_and_encode(dst->encoding());
  4064   emit_byte(0xB8 | encode);
  4065   emit_data((int)imm32, rspec, narrow_oop_operand);
  4068 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
  4069   InstructionMark im(this);
  4070   prefix(dst);
  4071   emit_byte(0xC7);
  4072   emit_operand(rax, dst, 4);
  4073   emit_data((int)imm32, rspec, narrow_oop_operand);
  4076 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
  4077   InstructionMark im(this);
  4078   int encode = prefix_and_encode(src1->encoding());
  4079   emit_byte(0x81);
  4080   emit_byte(0xF8 | encode);
  4081   emit_data((int)imm32, rspec, narrow_oop_operand);
  4084 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
  4085   InstructionMark im(this);
  4086   prefix(src1);
  4087   emit_byte(0x81);
  4088   emit_operand(rax, src1, 4);
  4089   emit_data((int)imm32, rspec, narrow_oop_operand);
  4092 void Assembler::lzcntq(Register dst, Register src) {
  4093   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
  4094   emit_byte(0xF3);
  4095   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4096   emit_byte(0x0F);
  4097   emit_byte(0xBD);
  4098   emit_byte(0xC0 | encode);
  4101 void Assembler::movdq(XMMRegister dst, Register src) {
  4102   // table D-1 says MMX/SSE2
  4103   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  4104   emit_byte(0x66);
  4105   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4106   emit_byte(0x0F);
  4107   emit_byte(0x6E);
  4108   emit_byte(0xC0 | encode);
  4111 void Assembler::movdq(Register dst, XMMRegister src) {
  4112   // table D-1 says MMX/SSE2
  4113   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
  4114   emit_byte(0x66);
  4115   // swap src/dst to get correct prefix
  4116   int encode = prefixq_and_encode(src->encoding(), dst->encoding());
  4117   emit_byte(0x0F);
  4118   emit_byte(0x7E);
  4119   emit_byte(0xC0 | encode);
  4122 void Assembler::movq(Register dst, Register src) {
  4123   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4124   emit_byte(0x8B);
  4125   emit_byte(0xC0 | encode);
  4128 void Assembler::movq(Register dst, Address src) {
  4129   InstructionMark im(this);
  4130   prefixq(src, dst);
  4131   emit_byte(0x8B);
  4132   emit_operand(dst, src);
  4135 void Assembler::movq(Address dst, Register src) {
  4136   InstructionMark im(this);
  4137   prefixq(dst, src);
  4138   emit_byte(0x89);
  4139   emit_operand(src, dst);
  4142 void Assembler::movsbq(Register dst, Address src) {
  4143   InstructionMark im(this);
  4144   prefixq(src, dst);
  4145   emit_byte(0x0F);
  4146   emit_byte(0xBE);
  4147   emit_operand(dst, src);
  4150 void Assembler::movsbq(Register dst, Register src) {
  4151   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4152   emit_byte(0x0F);
  4153   emit_byte(0xBE);
  4154   emit_byte(0xC0 | encode);
  4157 void Assembler::movslq(Register dst, int32_t imm32) {
  4158   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
  4159   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
  4160   // as a result we shouldn't use until tested at runtime...
  4161   ShouldNotReachHere();
  4162   InstructionMark im(this);
  4163   int encode = prefixq_and_encode(dst->encoding());
  4164   emit_byte(0xC7 | encode);
  4165   emit_long(imm32);
  4168 void Assembler::movslq(Address dst, int32_t imm32) {
  4169   assert(is_simm32(imm32), "lost bits");
  4170   InstructionMark im(this);
  4171   prefixq(dst);
  4172   emit_byte(0xC7);
  4173   emit_operand(rax, dst, 4);
  4174   emit_long(imm32);
  4177 void Assembler::movslq(Register dst, Address src) {
  4178   InstructionMark im(this);
  4179   prefixq(src, dst);
  4180   emit_byte(0x63);
  4181   emit_operand(dst, src);
  4184 void Assembler::movslq(Register dst, Register src) {
  4185   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4186   emit_byte(0x63);
  4187   emit_byte(0xC0 | encode);
  4190 void Assembler::movswq(Register dst, Address src) {
  4191   InstructionMark im(this);
  4192   prefixq(src, dst);
  4193   emit_byte(0x0F);
  4194   emit_byte(0xBF);
  4195   emit_operand(dst, src);
  4198 void Assembler::movswq(Register dst, Register src) {
  4199   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4200   emit_byte(0x0F);
  4201   emit_byte(0xBF);
  4202   emit_byte(0xC0 | encode);
  4205 void Assembler::movzbq(Register dst, Address src) {
  4206   InstructionMark im(this);
  4207   prefixq(src, dst);
  4208   emit_byte(0x0F);
  4209   emit_byte(0xB6);
  4210   emit_operand(dst, src);
  4213 void Assembler::movzbq(Register dst, Register src) {
  4214   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4215   emit_byte(0x0F);
  4216   emit_byte(0xB6);
  4217   emit_byte(0xC0 | encode);
  4220 void Assembler::movzwq(Register dst, Address src) {
  4221   InstructionMark im(this);
  4222   prefixq(src, dst);
  4223   emit_byte(0x0F);
  4224   emit_byte(0xB7);
  4225   emit_operand(dst, src);
  4228 void Assembler::movzwq(Register dst, Register src) {
  4229   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4230   emit_byte(0x0F);
  4231   emit_byte(0xB7);
  4232   emit_byte(0xC0 | encode);
  4235 void Assembler::negq(Register dst) {
  4236   int encode = prefixq_and_encode(dst->encoding());
  4237   emit_byte(0xF7);
  4238   emit_byte(0xD8 | encode);
  4241 void Assembler::notq(Register dst) {
  4242   int encode = prefixq_and_encode(dst->encoding());
  4243   emit_byte(0xF7);
  4244   emit_byte(0xD0 | encode);
  4247 void Assembler::orq(Address dst, int32_t imm32) {
  4248   InstructionMark im(this);
  4249   prefixq(dst);
  4250   emit_byte(0x81);
  4251   emit_operand(rcx, dst, 4);
  4252   emit_long(imm32);
  4255 void Assembler::orq(Register dst, int32_t imm32) {
  4256   (void) prefixq_and_encode(dst->encoding());
  4257   emit_arith(0x81, 0xC8, dst, imm32);
  4260 void Assembler::orq(Register dst, Address src) {
  4261   InstructionMark im(this);
  4262   prefixq(src, dst);
  4263   emit_byte(0x0B);
  4264   emit_operand(dst, src);
  4267 void Assembler::orq(Register dst, Register src) {
  4268   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4269   emit_arith(0x0B, 0xC0, dst, src);
  4272 void Assembler::popa() { // 64bit
  4273   movq(r15, Address(rsp, 0));
  4274   movq(r14, Address(rsp, wordSize));
  4275   movq(r13, Address(rsp, 2 * wordSize));
  4276   movq(r12, Address(rsp, 3 * wordSize));
  4277   movq(r11, Address(rsp, 4 * wordSize));
  4278   movq(r10, Address(rsp, 5 * wordSize));
  4279   movq(r9,  Address(rsp, 6 * wordSize));
  4280   movq(r8,  Address(rsp, 7 * wordSize));
  4281   movq(rdi, Address(rsp, 8 * wordSize));
  4282   movq(rsi, Address(rsp, 9 * wordSize));
  4283   movq(rbp, Address(rsp, 10 * wordSize));
  4284   // skip rsp
  4285   movq(rbx, Address(rsp, 12 * wordSize));
  4286   movq(rdx, Address(rsp, 13 * wordSize));
  4287   movq(rcx, Address(rsp, 14 * wordSize));
  4288   movq(rax, Address(rsp, 15 * wordSize));
  4290   addq(rsp, 16 * wordSize);
  4293 void Assembler::popcntq(Register dst, Address src) {
  4294   assert(VM_Version::supports_popcnt(), "must support");
  4295   InstructionMark im(this);
  4296   emit_byte(0xF3);
  4297   prefixq(src, dst);
  4298   emit_byte(0x0F);
  4299   emit_byte(0xB8);
  4300   emit_operand(dst, src);
  4303 void Assembler::popcntq(Register dst, Register src) {
  4304   assert(VM_Version::supports_popcnt(), "must support");
  4305   emit_byte(0xF3);
  4306   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4307   emit_byte(0x0F);
  4308   emit_byte(0xB8);
  4309   emit_byte(0xC0 | encode);
  4312 void Assembler::popq(Address dst) {
  4313   InstructionMark im(this);
  4314   prefixq(dst);
  4315   emit_byte(0x8F);
  4316   emit_operand(rax, dst);
  4319 void Assembler::pusha() { // 64bit
  4320   // we have to store original rsp.  ABI says that 128 bytes
  4321   // below rsp are local scratch.
  4322   movq(Address(rsp, -5 * wordSize), rsp);
  4324   subq(rsp, 16 * wordSize);
  4326   movq(Address(rsp, 15 * wordSize), rax);
  4327   movq(Address(rsp, 14 * wordSize), rcx);
  4328   movq(Address(rsp, 13 * wordSize), rdx);
  4329   movq(Address(rsp, 12 * wordSize), rbx);
  4330   // skip rsp
  4331   movq(Address(rsp, 10 * wordSize), rbp);
  4332   movq(Address(rsp, 9 * wordSize), rsi);
  4333   movq(Address(rsp, 8 * wordSize), rdi);
  4334   movq(Address(rsp, 7 * wordSize), r8);
  4335   movq(Address(rsp, 6 * wordSize), r9);
  4336   movq(Address(rsp, 5 * wordSize), r10);
  4337   movq(Address(rsp, 4 * wordSize), r11);
  4338   movq(Address(rsp, 3 * wordSize), r12);
  4339   movq(Address(rsp, 2 * wordSize), r13);
  4340   movq(Address(rsp, wordSize), r14);
  4341   movq(Address(rsp, 0), r15);
  4344 void Assembler::pushq(Address src) {
  4345   InstructionMark im(this);
  4346   prefixq(src);
  4347   emit_byte(0xFF);
  4348   emit_operand(rsi, src);
  4351 void Assembler::rclq(Register dst, int imm8) {
  4352   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4353   int encode = prefixq_and_encode(dst->encoding());
  4354   if (imm8 == 1) {
  4355     emit_byte(0xD1);
  4356     emit_byte(0xD0 | encode);
  4357   } else {
  4358     emit_byte(0xC1);
  4359     emit_byte(0xD0 | encode);
  4360     emit_byte(imm8);
  4363 void Assembler::sarq(Register dst, int imm8) {
  4364   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4365   int encode = prefixq_and_encode(dst->encoding());
  4366   if (imm8 == 1) {
  4367     emit_byte(0xD1);
  4368     emit_byte(0xF8 | encode);
  4369   } else {
  4370     emit_byte(0xC1);
  4371     emit_byte(0xF8 | encode);
  4372     emit_byte(imm8);
  4376 void Assembler::sarq(Register dst) {
  4377   int encode = prefixq_and_encode(dst->encoding());
  4378   emit_byte(0xD3);
  4379   emit_byte(0xF8 | encode);
  4382 void Assembler::sbbq(Address dst, int32_t imm32) {
  4383   InstructionMark im(this);
  4384   prefixq(dst);
  4385   emit_arith_operand(0x81, rbx, dst, imm32);
  4388 void Assembler::sbbq(Register dst, int32_t imm32) {
  4389   (void) prefixq_and_encode(dst->encoding());
  4390   emit_arith(0x81, 0xD8, dst, imm32);
  4393 void Assembler::sbbq(Register dst, Address src) {
  4394   InstructionMark im(this);
  4395   prefixq(src, dst);
  4396   emit_byte(0x1B);
  4397   emit_operand(dst, src);
  4400 void Assembler::sbbq(Register dst, Register src) {
  4401   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4402   emit_arith(0x1B, 0xC0, dst, src);
  4405 void Assembler::shlq(Register dst, int imm8) {
  4406   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4407   int encode = prefixq_and_encode(dst->encoding());
  4408   if (imm8 == 1) {
  4409     emit_byte(0xD1);
  4410     emit_byte(0xE0 | encode);
  4411   } else {
  4412     emit_byte(0xC1);
  4413     emit_byte(0xE0 | encode);
  4414     emit_byte(imm8);
  4418 void Assembler::shlq(Register dst) {
  4419   int encode = prefixq_and_encode(dst->encoding());
  4420   emit_byte(0xD3);
  4421   emit_byte(0xE0 | encode);
  4424 void Assembler::shrq(Register dst, int imm8) {
  4425   assert(isShiftCount(imm8 >> 1), "illegal shift count");
  4426   int encode = prefixq_and_encode(dst->encoding());
  4427   emit_byte(0xC1);
  4428   emit_byte(0xE8 | encode);
  4429   emit_byte(imm8);
  4432 void Assembler::shrq(Register dst) {
  4433   int encode = prefixq_and_encode(dst->encoding());
  4434   emit_byte(0xD3);
  4435   emit_byte(0xE8 | encode);
  4438 void Assembler::subq(Address dst, int32_t imm32) {
  4439   InstructionMark im(this);
  4440   prefixq(dst);
  4441   emit_arith_operand(0x81, rbp, dst, imm32);
  4444 void Assembler::subq(Address dst, Register src) {
  4445   InstructionMark im(this);
  4446   prefixq(dst, src);
  4447   emit_byte(0x29);
  4448   emit_operand(src, dst);
  4451 void Assembler::subq(Register dst, int32_t imm32) {
  4452   (void) prefixq_and_encode(dst->encoding());
  4453   emit_arith(0x81, 0xE8, dst, imm32);
  4456 void Assembler::subq(Register dst, Address src) {
  4457   InstructionMark im(this);
  4458   prefixq(src, dst);
  4459   emit_byte(0x2B);
  4460   emit_operand(dst, src);
  4463 void Assembler::subq(Register dst, Register src) {
  4464   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4465   emit_arith(0x2B, 0xC0, dst, src);
  4468 void Assembler::testq(Register dst, int32_t imm32) {
  4469   // not using emit_arith because test
  4470   // doesn't support sign-extension of
  4471   // 8bit operands
  4472   int encode = dst->encoding();
  4473   if (encode == 0) {
  4474     prefix(REX_W);
  4475     emit_byte(0xA9);
  4476   } else {
  4477     encode = prefixq_and_encode(encode);
  4478     emit_byte(0xF7);
  4479     emit_byte(0xC0 | encode);
  4481   emit_long(imm32);
  4484 void Assembler::testq(Register dst, Register src) {
  4485   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4486   emit_arith(0x85, 0xC0, dst, src);
  4489 void Assembler::xaddq(Address dst, Register src) {
  4490   InstructionMark im(this);
  4491   prefixq(dst, src);
  4492   emit_byte(0x0F);
  4493   emit_byte(0xC1);
  4494   emit_operand(src, dst);
  4497 void Assembler::xchgq(Register dst, Address src) {
  4498   InstructionMark im(this);
  4499   prefixq(src, dst);
  4500   emit_byte(0x87);
  4501   emit_operand(dst, src);
  4504 void Assembler::xchgq(Register dst, Register src) {
  4505   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
  4506   emit_byte(0x87);
  4507   emit_byte(0xc0 | encode);
  4510 void Assembler::xorq(Register dst, Register src) {
  4511   (void) prefixq_and_encode(dst->encoding(), src->encoding());
  4512   emit_arith(0x33, 0xC0, dst, src);
  4515 void Assembler::xorq(Register dst, Address src) {
  4516   InstructionMark im(this);
  4517   prefixq(src, dst);
  4518   emit_byte(0x33);
  4519   emit_operand(dst, src);
  4522 #endif // !LP64
  4524 static Assembler::Condition reverse[] = {
  4525     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  4526     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  4527     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  4528     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  4529     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  4530     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  4531     Assembler::above          /* belowEqual    = 0x6 */ ,
  4532     Assembler::belowEqual     /* above         = 0x7 */ ,
  4533     Assembler::positive       /* negative      = 0x8 */ ,
  4534     Assembler::negative       /* positive      = 0x9 */ ,
  4535     Assembler::noParity       /* parity        = 0xa */ ,
  4536     Assembler::parity         /* noParity      = 0xb */ ,
  4537     Assembler::greaterEqual   /* less          = 0xc */ ,
  4538     Assembler::less           /* greaterEqual  = 0xd */ ,
  4539     Assembler::greater        /* lessEqual     = 0xe */ ,
  4540     Assembler::lessEqual      /* greater       = 0xf, */
  4542 };
  4545 // Implementation of MacroAssembler
  4547 // First all the versions that have distinct versions depending on 32/64 bit
  4548 // Unless the difference is trivial (1 line or so).
  4550 #ifndef _LP64
  4552 // 32bit versions
  4554 Address MacroAssembler::as_Address(AddressLiteral adr) {
  4555   return Address(adr.target(), adr.rspec());
  4558 Address MacroAssembler::as_Address(ArrayAddress adr) {
  4559   return Address::make_array(adr);
  4562 int MacroAssembler::biased_locking_enter(Register lock_reg,
  4563                                          Register obj_reg,
  4564                                          Register swap_reg,
  4565                                          Register tmp_reg,
  4566                                          bool swap_reg_contains_mark,
  4567                                          Label& done,
  4568                                          Label* slow_case,
  4569                                          BiasedLockingCounters* counters) {
  4570   assert(UseBiasedLocking, "why call this otherwise?");
  4571   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
  4572   assert_different_registers(lock_reg, obj_reg, swap_reg);
  4574   if (PrintBiasedLockingStatistics && counters == NULL)
  4575     counters = BiasedLocking::counters();
  4577   bool need_tmp_reg = false;
  4578   if (tmp_reg == noreg) {
  4579     need_tmp_reg = true;
  4580     tmp_reg = lock_reg;
  4581   } else {
  4582     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  4584   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  4585   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  4586   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
  4587   Address saved_mark_addr(lock_reg, 0);
  4589   // Biased locking
  4590   // See whether the lock is currently biased toward our thread and
  4591   // whether the epoch is still valid
  4592   // Note that the runtime guarantees sufficient alignment of JavaThread
  4593   // pointers to allow age to be placed into low bits
  4594   // First check to see whether biasing is even enabled for this object
  4595   Label cas_label;
  4596   int null_check_offset = -1;
  4597   if (!swap_reg_contains_mark) {
  4598     null_check_offset = offset();
  4599     movl(swap_reg, mark_addr);
  4601   if (need_tmp_reg) {
  4602     push(tmp_reg);
  4604   movl(tmp_reg, swap_reg);
  4605   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  4606   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
  4607   if (need_tmp_reg) {
  4608     pop(tmp_reg);
  4610   jcc(Assembler::notEqual, cas_label);
  4611   // The bias pattern is present in the object's header. Need to check
  4612   // whether the bias owner and the epoch are both still current.
  4613   // Note that because there is no current thread register on x86 we
  4614   // need to store off the mark word we read out of the object to
  4615   // avoid reloading it and needing to recheck invariants below. This
  4616   // store is unfortunate but it makes the overall code shorter and
  4617   // simpler.
  4618   movl(saved_mark_addr, swap_reg);
  4619   if (need_tmp_reg) {
  4620     push(tmp_reg);
  4622   get_thread(tmp_reg);
  4623   xorl(swap_reg, tmp_reg);
  4624   if (swap_reg_contains_mark) {
  4625     null_check_offset = offset();
  4627   movl(tmp_reg, klass_addr);
  4628   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4629   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
  4630   if (need_tmp_reg) {
  4631     pop(tmp_reg);
  4633   if (counters != NULL) {
  4634     cond_inc32(Assembler::zero,
  4635                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
  4637   jcc(Assembler::equal, done);
  4639   Label try_revoke_bias;
  4640   Label try_rebias;
  4642   // At this point we know that the header has the bias pattern and
  4643   // that we are not the bias owner in the current epoch. We need to
  4644   // figure out more details about the state of the header in order to
  4645   // know what operations can be legally performed on the object's
  4646   // header.
  4648   // If the low three bits in the xor result aren't clear, that means
  4649   // the prototype header is no longer biased and we have to revoke
  4650   // the bias on this object.
  4651   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
  4652   jcc(Assembler::notZero, try_revoke_bias);
  4654   // Biasing is still enabled for this data type. See whether the
  4655   // epoch of the current bias is still valid, meaning that the epoch
  4656   // bits of the mark word are equal to the epoch bits of the
  4657   // prototype header. (Note that the prototype header's epoch bits
  4658   // only change at a safepoint.) If not, attempt to rebias the object
  4659   // toward the current thread. Note that we must be absolutely sure
  4660   // that the current epoch is invalid in order to do this because
  4661   // otherwise the manipulations it performs on the mark word are
  4662   // illegal.
  4663   testl(swap_reg, markOopDesc::epoch_mask_in_place);
  4664   jcc(Assembler::notZero, try_rebias);
  4666   // The epoch of the current bias is still valid but we know nothing
  4667   // about the owner; it might be set or it might be clear. Try to
  4668   // acquire the bias of the object using an atomic operation. If this
  4669   // fails we will go in to the runtime to revoke the object's bias.
  4670   // Note that we first construct the presumed unbiased header so we
  4671   // don't accidentally blow away another thread's valid bias.
  4672   movl(swap_reg, saved_mark_addr);
  4673   andl(swap_reg,
  4674        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  4675   if (need_tmp_reg) {
  4676     push(tmp_reg);
  4678   get_thread(tmp_reg);
  4679   orl(tmp_reg, swap_reg);
  4680   if (os::is_MP()) {
  4681     lock();
  4683   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4684   if (need_tmp_reg) {
  4685     pop(tmp_reg);
  4687   // If the biasing toward our thread failed, this means that
  4688   // another thread succeeded in biasing it toward itself and we
  4689   // need to revoke that bias. The revocation will occur in the
  4690   // interpreter runtime in the slow case.
  4691   if (counters != NULL) {
  4692     cond_inc32(Assembler::zero,
  4693                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
  4695   if (slow_case != NULL) {
  4696     jcc(Assembler::notZero, *slow_case);
  4698   jmp(done);
  4700   bind(try_rebias);
  4701   // At this point we know the epoch has expired, meaning that the
  4702   // current "bias owner", if any, is actually invalid. Under these
  4703   // circumstances _only_, we are allowed to use the current header's
  4704   // value as the comparison value when doing the cas to acquire the
  4705   // bias in the current epoch. In other words, we allow transfer of
  4706   // the bias from one thread to another directly in this situation.
  4707   //
  4708   // FIXME: due to a lack of registers we currently blow away the age
  4709   // bits in this situation. Should attempt to preserve them.
  4710   if (need_tmp_reg) {
  4711     push(tmp_reg);
  4713   get_thread(tmp_reg);
  4714   movl(swap_reg, klass_addr);
  4715   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4716   movl(swap_reg, saved_mark_addr);
  4717   if (os::is_MP()) {
  4718     lock();
  4720   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4721   if (need_tmp_reg) {
  4722     pop(tmp_reg);
  4724   // If the biasing toward our thread failed, then another thread
  4725   // succeeded in biasing it toward itself and we need to revoke that
  4726   // bias. The revocation will occur in the runtime in the slow case.
  4727   if (counters != NULL) {
  4728     cond_inc32(Assembler::zero,
  4729                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
  4731   if (slow_case != NULL) {
  4732     jcc(Assembler::notZero, *slow_case);
  4734   jmp(done);
  4736   bind(try_revoke_bias);
  4737   // The prototype mark in the klass doesn't have the bias bit set any
  4738   // more, indicating that objects of this data type are not supposed
  4739   // to be biased any more. We are going to try to reset the mark of
  4740   // this object to the prototype value and fall through to the
  4741   // CAS-based locking scheme. Note that if our CAS fails, it means
  4742   // that another thread raced us for the privilege of revoking the
  4743   // bias of this particular object, so it's okay to continue in the
  4744   // normal locking code.
  4745   //
  4746   // FIXME: due to a lack of registers we currently blow away the age
  4747   // bits in this situation. Should attempt to preserve them.
  4748   movl(swap_reg, saved_mark_addr);
  4749   if (need_tmp_reg) {
  4750     push(tmp_reg);
  4752   movl(tmp_reg, klass_addr);
  4753   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  4754   if (os::is_MP()) {
  4755     lock();
  4757   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
  4758   if (need_tmp_reg) {
  4759     pop(tmp_reg);
  4761   // Fall through to the normal CAS-based lock, because no matter what
  4762   // the result of the above CAS, some thread must have succeeded in
  4763   // removing the bias bit from the object's header.
  4764   if (counters != NULL) {
  4765     cond_inc32(Assembler::zero,
  4766                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
  4769   bind(cas_label);
  4771   return null_check_offset;
  4773 void MacroAssembler::call_VM_leaf_base(address entry_point,
  4774                                        int number_of_arguments) {
  4775   call(RuntimeAddress(entry_point));
  4776   increment(rsp, number_of_arguments * wordSize);
  4779 void MacroAssembler::cmpoop(Address src1, jobject obj) {
  4780   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4783 void MacroAssembler::cmpoop(Register src1, jobject obj) {
  4784   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4787 void MacroAssembler::extend_sign(Register hi, Register lo) {
  4788   // According to Intel Doc. AP-526, "Integer Divide", p.18.
  4789   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
  4790     cdql();
  4791   } else {
  4792     movl(hi, lo);
  4793     sarl(hi, 31);
  4797 void MacroAssembler::fat_nop() {
  4798   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  4799   emit_byte(0x26); // es:
  4800   emit_byte(0x2e); // cs:
  4801   emit_byte(0x64); // fs:
  4802   emit_byte(0x65); // gs:
  4803   emit_byte(0x90);
  4806 void MacroAssembler::jC2(Register tmp, Label& L) {
  4807   // set parity bit if FPU flag C2 is set (via rax)
  4808   save_rax(tmp);
  4809   fwait(); fnstsw_ax();
  4810   sahf();
  4811   restore_rax(tmp);
  4812   // branch
  4813   jcc(Assembler::parity, L);
  4816 void MacroAssembler::jnC2(Register tmp, Label& L) {
  4817   // set parity bit if FPU flag C2 is set (via rax)
  4818   save_rax(tmp);
  4819   fwait(); fnstsw_ax();
  4820   sahf();
  4821   restore_rax(tmp);
  4822   // branch
  4823   jcc(Assembler::noParity, L);
  4826 // 32bit can do a case table jump in one instruction but we no longer allow the base
  4827 // to be installed in the Address class
  4828 void MacroAssembler::jump(ArrayAddress entry) {
  4829   jmp(as_Address(entry));
  4832 // Note: y_lo will be destroyed
  4833 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  4834   // Long compare for Java (semantics as described in JVM spec.)
  4835   Label high, low, done;
  4837   cmpl(x_hi, y_hi);
  4838   jcc(Assembler::less, low);
  4839   jcc(Assembler::greater, high);
  4840   // x_hi is the return register
  4841   xorl(x_hi, x_hi);
  4842   cmpl(x_lo, y_lo);
  4843   jcc(Assembler::below, low);
  4844   jcc(Assembler::equal, done);
  4846   bind(high);
  4847   xorl(x_hi, x_hi);
  4848   increment(x_hi);
  4849   jmp(done);
  4851   bind(low);
  4852   xorl(x_hi, x_hi);
  4853   decrementl(x_hi);
  4855   bind(done);
  4858 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  4859     mov_literal32(dst, (int32_t)src.target(), src.rspec());
  4862 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  4863   // leal(dst, as_Address(adr));
  4864   // see note in movl as to why we must use a move
  4865   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
  4868 void MacroAssembler::leave() {
  4869   mov(rsp, rbp);
  4870   pop(rbp);
  4873 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
  4874   // Multiplication of two Java long values stored on the stack
  4875   // as illustrated below. Result is in rdx:rax.
  4876   //
  4877   // rsp ---> [  ??  ] \               \
  4878   //            ....    | y_rsp_offset  |
  4879   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
  4880   //          [ y_hi ]                  | (in bytes)
  4881   //            ....                    |
  4882   //          [ x_lo ]                 /
  4883   //          [ x_hi ]
  4884   //            ....
  4885   //
  4886   // Basic idea: lo(result) = lo(x_lo * y_lo)
  4887   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
  4888   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
  4889   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
  4890   Label quick;
  4891   // load x_hi, y_hi and check if quick
  4892   // multiplication is possible
  4893   movl(rbx, x_hi);
  4894   movl(rcx, y_hi);
  4895   movl(rax, rbx);
  4896   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
  4897   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
  4898   // do full multiplication
  4899   // 1st step
  4900   mull(y_lo);                                    // x_hi * y_lo
  4901   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
  4902   // 2nd step
  4903   movl(rax, x_lo);
  4904   mull(rcx);                                     // x_lo * y_hi
  4905   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
  4906   // 3rd step
  4907   bind(quick);                                   // note: rbx, = 0 if quick multiply!
  4908   movl(rax, x_lo);
  4909   mull(y_lo);                                    // x_lo * y_lo
  4910   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
  4913 void MacroAssembler::lneg(Register hi, Register lo) {
  4914   negl(lo);
  4915   adcl(hi, 0);
  4916   negl(hi);
  4919 void MacroAssembler::lshl(Register hi, Register lo) {
  4920   // Java shift left long support (semantics as described in JVM spec., p.305)
  4921   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
  4922   // shift value is in rcx !
  4923   assert(hi != rcx, "must not use rcx");
  4924   assert(lo != rcx, "must not use rcx");
  4925   const Register s = rcx;                        // shift count
  4926   const int      n = BitsPerWord;
  4927   Label L;
  4928   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  4929   cmpl(s, n);                                    // if (s < n)
  4930   jcc(Assembler::less, L);                       // else (s >= n)
  4931   movl(hi, lo);                                  // x := x << n
  4932   xorl(lo, lo);
  4933   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  4934   bind(L);                                       // s (mod n) < n
  4935   shldl(hi, lo);                                 // x := x << s
  4936   shll(lo);
  4940 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
  4941   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
  4942   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
  4943   assert(hi != rcx, "must not use rcx");
  4944   assert(lo != rcx, "must not use rcx");
  4945   const Register s = rcx;                        // shift count
  4946   const int      n = BitsPerWord;
  4947   Label L;
  4948   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
  4949   cmpl(s, n);                                    // if (s < n)
  4950   jcc(Assembler::less, L);                       // else (s >= n)
  4951   movl(lo, hi);                                  // x := x >> n
  4952   if (sign_extension) sarl(hi, 31);
  4953   else                xorl(hi, hi);
  4954   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
  4955   bind(L);                                       // s (mod n) < n
  4956   shrdl(lo, hi);                                 // x := x >> s
  4957   if (sign_extension) sarl(hi);
  4958   else                shrl(hi);
  4961 void MacroAssembler::movoop(Register dst, jobject obj) {
  4962   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4965 void MacroAssembler::movoop(Address dst, jobject obj) {
  4966   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
  4969 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  4970   if (src.is_lval()) {
  4971     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
  4972   } else {
  4973     movl(dst, as_Address(src));
  4977 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  4978   movl(as_Address(dst), src);
  4981 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  4982   movl(dst, as_Address(src));
  4985 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  4986 void MacroAssembler::movptr(Address dst, intptr_t src) {
  4987   movl(dst, src);
  4991 void MacroAssembler::pop_callee_saved_registers() {
  4992   pop(rcx);
  4993   pop(rdx);
  4994   pop(rdi);
  4995   pop(rsi);
  4998 void MacroAssembler::pop_fTOS() {
  4999   fld_d(Address(rsp, 0));
  5000   addl(rsp, 2 * wordSize);
  5003 void MacroAssembler::push_callee_saved_registers() {
  5004   push(rsi);
  5005   push(rdi);
  5006   push(rdx);
  5007   push(rcx);
  5010 void MacroAssembler::push_fTOS() {
  5011   subl(rsp, 2 * wordSize);
  5012   fstp_d(Address(rsp, 0));
  5016 void MacroAssembler::pushoop(jobject obj) {
  5017   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
  5021 void MacroAssembler::pushptr(AddressLiteral src) {
  5022   if (src.is_lval()) {
  5023     push_literal32((int32_t)src.target(), src.rspec());
  5024   } else {
  5025     pushl(as_Address(src));
  5029 void MacroAssembler::set_word_if_not_zero(Register dst) {
  5030   xorl(dst, dst);
  5031   set_byte_if_not_zero(dst);
  5034 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5035   masm->push(arg);
  5038 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5039   masm->push(arg);
  5042 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5043   masm->push(arg);
  5046 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5047   masm->push(arg);
  5050 #ifndef PRODUCT
  5051 extern "C" void findpc(intptr_t x);
  5052 #endif
  5054 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
  5055   // In order to get locks to work, we need to fake a in_VM state
  5056   JavaThread* thread = JavaThread::current();
  5057   JavaThreadState saved_state = thread->thread_state();
  5058   thread->set_thread_state(_thread_in_vm);
  5059   if (ShowMessageBoxOnError) {
  5060     JavaThread* thread = JavaThread::current();
  5061     JavaThreadState saved_state = thread->thread_state();
  5062     thread->set_thread_state(_thread_in_vm);
  5063     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5064       ttyLocker ttyl;
  5065       BytecodeCounter::print();
  5067     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5068     // This is the value of eip which points to where verify_oop will return.
  5069     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5070       ttyLocker ttyl;
  5071       tty->print_cr("eip = 0x%08x", eip);
  5072 #ifndef PRODUCT
  5073       if ((WizardMode || Verbose) && PrintMiscellaneous) {
  5074         tty->cr();
  5075         findpc(eip);
  5076         tty->cr();
  5078 #endif
  5079       tty->print_cr("rax = 0x%08x", rax);
  5080       tty->print_cr("rbx = 0x%08x", rbx);
  5081       tty->print_cr("rcx = 0x%08x", rcx);
  5082       tty->print_cr("rdx = 0x%08x", rdx);
  5083       tty->print_cr("rdi = 0x%08x", rdi);
  5084       tty->print_cr("rsi = 0x%08x", rsi);
  5085       tty->print_cr("rbp = 0x%08x", rbp);
  5086       tty->print_cr("rsp = 0x%08x", rsp);
  5087       BREAKPOINT;
  5088       assert(false, "start up GDB");
  5090   } else {
  5091     ttyLocker ttyl;
  5092     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  5093     assert(false, "DEBUG MESSAGE");
  5095   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5098 void MacroAssembler::stop(const char* msg) {
  5099   ExternalAddress message((address)msg);
  5100   // push address of message
  5101   pushptr(message.addr());
  5102   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
  5103   pusha();                                           // push registers
  5104   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
  5105   hlt();
  5108 void MacroAssembler::warn(const char* msg) {
  5109   push_CPU_state();
  5111   ExternalAddress message((address) msg);
  5112   // push address of message
  5113   pushptr(message.addr());
  5115   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
  5116   addl(rsp, wordSize);       // discard argument
  5117   pop_CPU_state();
  5120 #else // _LP64
  5122 // 64 bit versions
  5124 Address MacroAssembler::as_Address(AddressLiteral adr) {
  5125   // amd64 always does this as a pc-rel
  5126   // we can be absolute or disp based on the instruction type
  5127   // jmp/call are displacements others are absolute
  5128   assert(!adr.is_lval(), "must be rval");
  5129   assert(reachable(adr), "must be");
  5130   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
  5134 Address MacroAssembler::as_Address(ArrayAddress adr) {
  5135   AddressLiteral base = adr.base();
  5136   lea(rscratch1, base);
  5137   Address index = adr.index();
  5138   assert(index._disp == 0, "must not have disp"); // maybe it can?
  5139   Address array(rscratch1, index._index, index._scale, index._disp);
  5140   return array;
  5143 int MacroAssembler::biased_locking_enter(Register lock_reg,
  5144                                          Register obj_reg,
  5145                                          Register swap_reg,
  5146                                          Register tmp_reg,
  5147                                          bool swap_reg_contains_mark,
  5148                                          Label& done,
  5149                                          Label* slow_case,
  5150                                          BiasedLockingCounters* counters) {
  5151   assert(UseBiasedLocking, "why call this otherwise?");
  5152   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
  5153   assert(tmp_reg != noreg, "tmp_reg must be supplied");
  5154   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
  5155   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  5156   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
  5157   Address saved_mark_addr(lock_reg, 0);
  5159   if (PrintBiasedLockingStatistics && counters == NULL)
  5160     counters = BiasedLocking::counters();
  5162   // Biased locking
  5163   // See whether the lock is currently biased toward our thread and
  5164   // whether the epoch is still valid
  5165   // Note that the runtime guarantees sufficient alignment of JavaThread
  5166   // pointers to allow age to be placed into low bits
  5167   // First check to see whether biasing is even enabled for this object
  5168   Label cas_label;
  5169   int null_check_offset = -1;
  5170   if (!swap_reg_contains_mark) {
  5171     null_check_offset = offset();
  5172     movq(swap_reg, mark_addr);
  5174   movq(tmp_reg, swap_reg);
  5175   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5176   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
  5177   jcc(Assembler::notEqual, cas_label);
  5178   // The bias pattern is present in the object's header. Need to check
  5179   // whether the bias owner and the epoch are both still current.
  5180   load_prototype_header(tmp_reg, obj_reg);
  5181   orq(tmp_reg, r15_thread);
  5182   xorq(tmp_reg, swap_reg);
  5183   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
  5184   if (counters != NULL) {
  5185     cond_inc32(Assembler::zero,
  5186                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5188   jcc(Assembler::equal, done);
  5190   Label try_revoke_bias;
  5191   Label try_rebias;
  5193   // At this point we know that the header has the bias pattern and
  5194   // that we are not the bias owner in the current epoch. We need to
  5195   // figure out more details about the state of the header in order to
  5196   // know what operations can be legally performed on the object's
  5197   // header.
  5199   // If the low three bits in the xor result aren't clear, that means
  5200   // the prototype header is no longer biased and we have to revoke
  5201   // the bias on this object.
  5202   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
  5203   jcc(Assembler::notZero, try_revoke_bias);
  5205   // Biasing is still enabled for this data type. See whether the
  5206   // epoch of the current bias is still valid, meaning that the epoch
  5207   // bits of the mark word are equal to the epoch bits of the
  5208   // prototype header. (Note that the prototype header's epoch bits
  5209   // only change at a safepoint.) If not, attempt to rebias the object
  5210   // toward the current thread. Note that we must be absolutely sure
  5211   // that the current epoch is invalid in order to do this because
  5212   // otherwise the manipulations it performs on the mark word are
  5213   // illegal.
  5214   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
  5215   jcc(Assembler::notZero, try_rebias);
  5217   // The epoch of the current bias is still valid but we know nothing
  5218   // about the owner; it might be set or it might be clear. Try to
  5219   // acquire the bias of the object using an atomic operation. If this
  5220   // fails we will go in to the runtime to revoke the object's bias.
  5221   // Note that we first construct the presumed unbiased header so we
  5222   // don't accidentally blow away another thread's valid bias.
  5223   andq(swap_reg,
  5224        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
  5225   movq(tmp_reg, swap_reg);
  5226   orq(tmp_reg, r15_thread);
  5227   if (os::is_MP()) {
  5228     lock();
  5230   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5231   // If the biasing toward our thread failed, this means that
  5232   // another thread succeeded in biasing it toward itself and we
  5233   // need to revoke that bias. The revocation will occur in the
  5234   // interpreter runtime in the slow case.
  5235   if (counters != NULL) {
  5236     cond_inc32(Assembler::zero,
  5237                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
  5239   if (slow_case != NULL) {
  5240     jcc(Assembler::notZero, *slow_case);
  5242   jmp(done);
  5244   bind(try_rebias);
  5245   // At this point we know the epoch has expired, meaning that the
  5246   // current "bias owner", if any, is actually invalid. Under these
  5247   // circumstances _only_, we are allowed to use the current header's
  5248   // value as the comparison value when doing the cas to acquire the
  5249   // bias in the current epoch. In other words, we allow transfer of
  5250   // the bias from one thread to another directly in this situation.
  5251   //
  5252   // FIXME: due to a lack of registers we currently blow away the age
  5253   // bits in this situation. Should attempt to preserve them.
  5254   load_prototype_header(tmp_reg, obj_reg);
  5255   orq(tmp_reg, r15_thread);
  5256   if (os::is_MP()) {
  5257     lock();
  5259   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5260   // If the biasing toward our thread failed, then another thread
  5261   // succeeded in biasing it toward itself and we need to revoke that
  5262   // bias. The revocation will occur in the runtime in the slow case.
  5263   if (counters != NULL) {
  5264     cond_inc32(Assembler::zero,
  5265                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
  5267   if (slow_case != NULL) {
  5268     jcc(Assembler::notZero, *slow_case);
  5270   jmp(done);
  5272   bind(try_revoke_bias);
  5273   // The prototype mark in the klass doesn't have the bias bit set any
  5274   // more, indicating that objects of this data type are not supposed
  5275   // to be biased any more. We are going to try to reset the mark of
  5276   // this object to the prototype value and fall through to the
  5277   // CAS-based locking scheme. Note that if our CAS fails, it means
  5278   // that another thread raced us for the privilege of revoking the
  5279   // bias of this particular object, so it's okay to continue in the
  5280   // normal locking code.
  5281   //
  5282   // FIXME: due to a lack of registers we currently blow away the age
  5283   // bits in this situation. Should attempt to preserve them.
  5284   load_prototype_header(tmp_reg, obj_reg);
  5285   if (os::is_MP()) {
  5286     lock();
  5288   cmpxchgq(tmp_reg, Address(obj_reg, 0));
  5289   // Fall through to the normal CAS-based lock, because no matter what
  5290   // the result of the above CAS, some thread must have succeeded in
  5291   // removing the bias bit from the object's header.
  5292   if (counters != NULL) {
  5293     cond_inc32(Assembler::zero,
  5294                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
  5297   bind(cas_label);
  5299   return null_check_offset;
  5302 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
  5303   Label L, E;
  5305 #ifdef _WIN64
  5306   // Windows always allocates space for it's register args
  5307   assert(num_args <= 4, "only register arguments supported");
  5308   subq(rsp,  frame::arg_reg_save_area_bytes);
  5309 #endif
  5311   // Align stack if necessary
  5312   testl(rsp, 15);
  5313   jcc(Assembler::zero, L);
  5315   subq(rsp, 8);
  5317     call(RuntimeAddress(entry_point));
  5319   addq(rsp, 8);
  5320   jmp(E);
  5322   bind(L);
  5324     call(RuntimeAddress(entry_point));
  5327   bind(E);
  5329 #ifdef _WIN64
  5330   // restore stack pointer
  5331   addq(rsp, frame::arg_reg_save_area_bytes);
  5332 #endif
  5336 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
  5337   assert(!src2.is_lval(), "should use cmpptr");
  5339   if (reachable(src2)) {
  5340     cmpq(src1, as_Address(src2));
  5341   } else {
  5342     lea(rscratch1, src2);
  5343     Assembler::cmpq(src1, Address(rscratch1, 0));
  5347 int MacroAssembler::corrected_idivq(Register reg) {
  5348   // Full implementation of Java ldiv and lrem; checks for special
  5349   // case as described in JVM spec., p.243 & p.271.  The function
  5350   // returns the (pc) offset of the idivl instruction - may be needed
  5351   // for implicit exceptions.
  5352   //
  5353   //         normal case                           special case
  5354   //
  5355   // input : rax: dividend                         min_long
  5356   //         reg: divisor   (may not be eax/edx)   -1
  5357   //
  5358   // output: rax: quotient  (= rax idiv reg)       min_long
  5359   //         rdx: remainder (= rax irem reg)       0
  5360   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
  5361   static const int64_t min_long = 0x8000000000000000;
  5362   Label normal_case, special_case;
  5364   // check for special case
  5365   cmp64(rax, ExternalAddress((address) &min_long));
  5366   jcc(Assembler::notEqual, normal_case);
  5367   xorl(rdx, rdx); // prepare rdx for possible special case (where
  5368                   // remainder = 0)
  5369   cmpq(reg, -1);
  5370   jcc(Assembler::equal, special_case);
  5372   // handle normal case
  5373   bind(normal_case);
  5374   cdqq();
  5375   int idivq_offset = offset();
  5376   idivq(reg);
  5378   // normal and special case exit
  5379   bind(special_case);
  5381   return idivq_offset;
  5384 void MacroAssembler::decrementq(Register reg, int value) {
  5385   if (value == min_jint) { subq(reg, value); return; }
  5386   if (value <  0) { incrementq(reg, -value); return; }
  5387   if (value == 0) {                        ; return; }
  5388   if (value == 1 && UseIncDec) { decq(reg) ; return; }
  5389   /* else */      { subq(reg, value)       ; return; }
  5392 void MacroAssembler::decrementq(Address dst, int value) {
  5393   if (value == min_jint) { subq(dst, value); return; }
  5394   if (value <  0) { incrementq(dst, -value); return; }
  5395   if (value == 0) {                        ; return; }
  5396   if (value == 1 && UseIncDec) { decq(dst) ; return; }
  5397   /* else */      { subq(dst, value)       ; return; }
  5400 void MacroAssembler::fat_nop() {
  5401   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  5402   // Recommened sequence from 'Software Optimization Guide for the AMD
  5403   // Hammer Processor'
  5404   emit_byte(0x66);
  5405   emit_byte(0x66);
  5406   emit_byte(0x90);
  5407   emit_byte(0x66);
  5408   emit_byte(0x90);
  5411 void MacroAssembler::incrementq(Register reg, int value) {
  5412   if (value == min_jint) { addq(reg, value); return; }
  5413   if (value <  0) { decrementq(reg, -value); return; }
  5414   if (value == 0) {                        ; return; }
  5415   if (value == 1 && UseIncDec) { incq(reg) ; return; }
  5416   /* else */      { addq(reg, value)       ; return; }
  5419 void MacroAssembler::incrementq(Address dst, int value) {
  5420   if (value == min_jint) { addq(dst, value); return; }
  5421   if (value <  0) { decrementq(dst, -value); return; }
  5422   if (value == 0) {                        ; return; }
  5423   if (value == 1 && UseIncDec) { incq(dst) ; return; }
  5424   /* else */      { addq(dst, value)       ; return; }
  5427 // 32bit can do a case table jump in one instruction but we no longer allow the base
  5428 // to be installed in the Address class
  5429 void MacroAssembler::jump(ArrayAddress entry) {
  5430   lea(rscratch1, entry.base());
  5431   Address dispatch = entry.index();
  5432   assert(dispatch._base == noreg, "must be");
  5433   dispatch._base = rscratch1;
  5434   jmp(dispatch);
  5437 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
  5438   ShouldNotReachHere(); // 64bit doesn't use two regs
  5439   cmpq(x_lo, y_lo);
  5442 void MacroAssembler::lea(Register dst, AddressLiteral src) {
  5443     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5446 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
  5447   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
  5448   movptr(dst, rscratch1);
  5451 void MacroAssembler::leave() {
  5452   // %%% is this really better? Why not on 32bit too?
  5453   emit_byte(0xC9); // LEAVE
  5456 void MacroAssembler::lneg(Register hi, Register lo) {
  5457   ShouldNotReachHere(); // 64bit doesn't use two regs
  5458   negq(lo);
  5461 void MacroAssembler::movoop(Register dst, jobject obj) {
  5462   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5465 void MacroAssembler::movoop(Address dst, jobject obj) {
  5466   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
  5467   movq(dst, rscratch1);
  5470 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
  5471   if (src.is_lval()) {
  5472     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
  5473   } else {
  5474     if (reachable(src)) {
  5475       movq(dst, as_Address(src));
  5476     } else {
  5477       lea(rscratch1, src);
  5478       movq(dst, Address(rscratch1,0));
  5483 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
  5484   movq(as_Address(dst), src);
  5487 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
  5488   movq(dst, as_Address(src));
  5491 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  5492 void MacroAssembler::movptr(Address dst, intptr_t src) {
  5493   mov64(rscratch1, src);
  5494   movq(dst, rscratch1);
  5497 // These are mostly for initializing NULL
  5498 void MacroAssembler::movptr(Address dst, int32_t src) {
  5499   movslq(dst, src);
  5502 void MacroAssembler::movptr(Register dst, int32_t src) {
  5503   mov64(dst, (intptr_t)src);
  5506 void MacroAssembler::pushoop(jobject obj) {
  5507   movoop(rscratch1, obj);
  5508   push(rscratch1);
  5511 void MacroAssembler::pushptr(AddressLiteral src) {
  5512   lea(rscratch1, src);
  5513   if (src.is_lval()) {
  5514     push(rscratch1);
  5515   } else {
  5516     pushq(Address(rscratch1, 0));
  5520 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
  5521                                            bool clear_pc) {
  5522   // we must set sp to zero to clear frame
  5523   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  5524   // must clear fp, so that compiled frames are not confused; it is
  5525   // possible that we need it only for debugging
  5526   if (clear_fp) {
  5527     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  5530   if (clear_pc) {
  5531     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  5535 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
  5536                                          Register last_java_fp,
  5537                                          address  last_java_pc) {
  5538   // determine last_java_sp register
  5539   if (!last_java_sp->is_valid()) {
  5540     last_java_sp = rsp;
  5543   // last_java_fp is optional
  5544   if (last_java_fp->is_valid()) {
  5545     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
  5546            last_java_fp);
  5549   // last_java_pc is optional
  5550   if (last_java_pc != NULL) {
  5551     Address java_pc(r15_thread,
  5552                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  5553     lea(rscratch1, InternalAddress(last_java_pc));
  5554     movptr(java_pc, rscratch1);
  5557   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  5560 static void pass_arg0(MacroAssembler* masm, Register arg) {
  5561   if (c_rarg0 != arg ) {
  5562     masm->mov(c_rarg0, arg);
  5566 static void pass_arg1(MacroAssembler* masm, Register arg) {
  5567   if (c_rarg1 != arg ) {
  5568     masm->mov(c_rarg1, arg);
  5572 static void pass_arg2(MacroAssembler* masm, Register arg) {
  5573   if (c_rarg2 != arg ) {
  5574     masm->mov(c_rarg2, arg);
  5578 static void pass_arg3(MacroAssembler* masm, Register arg) {
  5579   if (c_rarg3 != arg ) {
  5580     masm->mov(c_rarg3, arg);
  5584 void MacroAssembler::stop(const char* msg) {
  5585   address rip = pc();
  5586   pusha(); // get regs on stack
  5587   lea(c_rarg0, ExternalAddress((address) msg));
  5588   lea(c_rarg1, InternalAddress(rip));
  5589   movq(c_rarg2, rsp); // pass pointer to regs array
  5590   andq(rsp, -16); // align stack as required by ABI
  5591   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
  5592   hlt();
  5595 void MacroAssembler::warn(const char* msg) {
  5596   push(rsp);
  5597   andq(rsp, -16);     // align stack as required by push_CPU_state and call
  5599   push_CPU_state();   // keeps alignment at 16 bytes
  5600   lea(c_rarg0, ExternalAddress((address) msg));
  5601   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
  5602   pop_CPU_state();
  5603   pop(rsp);
  5606 #ifndef PRODUCT
  5607 extern "C" void findpc(intptr_t x);
  5608 #endif
  5610 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
  5611   // In order to get locks to work, we need to fake a in_VM state
  5612   if (ShowMessageBoxOnError ) {
  5613     JavaThread* thread = JavaThread::current();
  5614     JavaThreadState saved_state = thread->thread_state();
  5615     thread->set_thread_state(_thread_in_vm);
  5616 #ifndef PRODUCT
  5617     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  5618       ttyLocker ttyl;
  5619       BytecodeCounter::print();
  5621 #endif
  5622     // To see where a verify_oop failed, get $ebx+40/X for this frame.
  5623     // XXX correct this offset for amd64
  5624     // This is the value of eip which points to where verify_oop will return.
  5625     if (os::message_box(msg, "Execution stopped, print registers?")) {
  5626       ttyLocker ttyl;
  5627       tty->print_cr("rip = 0x%016lx", pc);
  5628 #ifndef PRODUCT
  5629       tty->cr();
  5630       findpc(pc);
  5631       tty->cr();
  5632 #endif
  5633       tty->print_cr("rax = 0x%016lx", regs[15]);
  5634       tty->print_cr("rbx = 0x%016lx", regs[12]);
  5635       tty->print_cr("rcx = 0x%016lx", regs[14]);
  5636       tty->print_cr("rdx = 0x%016lx", regs[13]);
  5637       tty->print_cr("rdi = 0x%016lx", regs[8]);
  5638       tty->print_cr("rsi = 0x%016lx", regs[9]);
  5639       tty->print_cr("rbp = 0x%016lx", regs[10]);
  5640       tty->print_cr("rsp = 0x%016lx", regs[11]);
  5641       tty->print_cr("r8  = 0x%016lx", regs[7]);
  5642       tty->print_cr("r9  = 0x%016lx", regs[6]);
  5643       tty->print_cr("r10 = 0x%016lx", regs[5]);
  5644       tty->print_cr("r11 = 0x%016lx", regs[4]);
  5645       tty->print_cr("r12 = 0x%016lx", regs[3]);
  5646       tty->print_cr("r13 = 0x%016lx", regs[2]);
  5647       tty->print_cr("r14 = 0x%016lx", regs[1]);
  5648       tty->print_cr("r15 = 0x%016lx", regs[0]);
  5649       BREAKPOINT;
  5651     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
  5652   } else {
  5653     ttyLocker ttyl;
  5654     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
  5655                     msg);
  5659 #endif // _LP64
  5661 // Now versions that are common to 32/64 bit
  5663 void MacroAssembler::addptr(Register dst, int32_t imm32) {
  5664   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
  5667 void MacroAssembler::addptr(Register dst, Register src) {
  5668   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5671 void MacroAssembler::addptr(Address dst, Register src) {
  5672   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
  5675 void MacroAssembler::align(int modulus) {
  5676   if (offset() % modulus != 0) {
  5677     nop(modulus - (offset() % modulus));
  5681 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
  5682   if (reachable(src)) {
  5683     andpd(dst, as_Address(src));
  5684   } else {
  5685     lea(rscratch1, src);
  5686     andpd(dst, Address(rscratch1, 0));
  5690 void MacroAssembler::andptr(Register dst, int32_t imm32) {
  5691   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
  5694 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
  5695   pushf();
  5696   if (os::is_MP())
  5697     lock();
  5698   incrementl(counter_addr);
  5699   popf();
  5702 // Writes to stack successive pages until offset reached to check for
  5703 // stack overflow + shadow pages.  This clobbers tmp.
  5704 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
  5705   movptr(tmp, rsp);
  5706   // Bang stack for total size given plus shadow page size.
  5707   // Bang one page at a time because large size can bang beyond yellow and
  5708   // red zones.
  5709   Label loop;
  5710   bind(loop);
  5711   movl(Address(tmp, (-os::vm_page_size())), size );
  5712   subptr(tmp, os::vm_page_size());
  5713   subl(size, os::vm_page_size());
  5714   jcc(Assembler::greater, loop);
  5716   // Bang down shadow pages too.
  5717   // The -1 because we already subtracted 1 page.
  5718   for (int i = 0; i< StackShadowPages-1; i++) {
  5719     // this could be any sized move but this is can be a debugging crumb
  5720     // so the bigger the better.
  5721     movptr(Address(tmp, (-i*os::vm_page_size())), size );
  5725 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
  5726   assert(UseBiasedLocking, "why call this otherwise?");
  5728   // Check for biased locking unlock case, which is a no-op
  5729   // Note: we do not have to check the thread ID for two reasons.
  5730   // First, the interpreter checks for IllegalMonitorStateException at
  5731   // a higher level. Second, if the bias was revoked while we held the
  5732   // lock, the object could not be rebiased toward another thread, so
  5733   // the bias bit would be clear.
  5734   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
  5735   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
  5736   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
  5737   jcc(Assembler::equal, done);
  5740 void MacroAssembler::c2bool(Register x) {
  5741   // implements x == 0 ? 0 : 1
  5742   // note: must only look at least-significant byte of x
  5743   //       since C-style booleans are stored in one byte
  5744   //       only! (was bug)
  5745   andl(x, 0xFF);
  5746   setb(Assembler::notZero, x);
  5749 // Wouldn't need if AddressLiteral version had new name
  5750 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
  5751   Assembler::call(L, rtype);
  5754 void MacroAssembler::call(Register entry) {
  5755   Assembler::call(entry);
  5758 void MacroAssembler::call(AddressLiteral entry) {
  5759   if (reachable(entry)) {
  5760     Assembler::call_literal(entry.target(), entry.rspec());
  5761   } else {
  5762     lea(rscratch1, entry);
  5763     Assembler::call(rscratch1);
  5767 // Implementation of call_VM versions
  5769 void MacroAssembler::call_VM(Register oop_result,
  5770                              address entry_point,
  5771                              bool check_exceptions) {
  5772   Label C, E;
  5773   call(C, relocInfo::none);
  5774   jmp(E);
  5776   bind(C);
  5777   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
  5778   ret(0);
  5780   bind(E);
  5783 void MacroAssembler::call_VM(Register oop_result,
  5784                              address entry_point,
  5785                              Register arg_1,
  5786                              bool check_exceptions) {
  5787   Label C, E;
  5788   call(C, relocInfo::none);
  5789   jmp(E);
  5791   bind(C);
  5792   pass_arg1(this, arg_1);
  5793   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
  5794   ret(0);
  5796   bind(E);
  5799 void MacroAssembler::call_VM(Register oop_result,
  5800                              address entry_point,
  5801                              Register arg_1,
  5802                              Register arg_2,
  5803                              bool check_exceptions) {
  5804   Label C, E;
  5805   call(C, relocInfo::none);
  5806   jmp(E);
  5808   bind(C);
  5810   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5812   pass_arg2(this, arg_2);
  5813   pass_arg1(this, arg_1);
  5814   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
  5815   ret(0);
  5817   bind(E);
  5820 void MacroAssembler::call_VM(Register oop_result,
  5821                              address entry_point,
  5822                              Register arg_1,
  5823                              Register arg_2,
  5824                              Register arg_3,
  5825                              bool check_exceptions) {
  5826   Label C, E;
  5827   call(C, relocInfo::none);
  5828   jmp(E);
  5830   bind(C);
  5832   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  5833   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  5834   pass_arg3(this, arg_3);
  5836   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5837   pass_arg2(this, arg_2);
  5839   pass_arg1(this, arg_1);
  5840   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
  5841   ret(0);
  5843   bind(E);
  5846 void MacroAssembler::call_VM(Register oop_result,
  5847                              Register last_java_sp,
  5848                              address entry_point,
  5849                              int number_of_arguments,
  5850                              bool check_exceptions) {
  5851   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
  5852   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  5855 void MacroAssembler::call_VM(Register oop_result,
  5856                              Register last_java_sp,
  5857                              address entry_point,
  5858                              Register arg_1,
  5859                              bool check_exceptions) {
  5860   pass_arg1(this, arg_1);
  5861   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  5864 void MacroAssembler::call_VM(Register oop_result,
  5865                              Register last_java_sp,
  5866                              address entry_point,
  5867                              Register arg_1,
  5868                              Register arg_2,
  5869                              bool check_exceptions) {
  5871   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5872   pass_arg2(this, arg_2);
  5873   pass_arg1(this, arg_1);
  5874   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  5877 void MacroAssembler::call_VM(Register oop_result,
  5878                              Register last_java_sp,
  5879                              address entry_point,
  5880                              Register arg_1,
  5881                              Register arg_2,
  5882                              Register arg_3,
  5883                              bool check_exceptions) {
  5884   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
  5885   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
  5886   pass_arg3(this, arg_3);
  5887   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  5888   pass_arg2(this, arg_2);
  5889   pass_arg1(this, arg_1);
  5890   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  5893 void MacroAssembler::call_VM_base(Register oop_result,
  5894                                   Register java_thread,
  5895                                   Register last_java_sp,
  5896                                   address  entry_point,
  5897                                   int      number_of_arguments,
  5898                                   bool     check_exceptions) {
  5899   // determine java_thread register
  5900   if (!java_thread->is_valid()) {
  5901 #ifdef _LP64
  5902     java_thread = r15_thread;
  5903 #else
  5904     java_thread = rdi;
  5905     get_thread(java_thread);
  5906 #endif // LP64
  5908   // determine last_java_sp register
  5909   if (!last_java_sp->is_valid()) {
  5910     last_java_sp = rsp;
  5912   // debugging support
  5913   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  5914   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
  5915 #ifdef ASSERT
  5916   LP64_ONLY(if (UseCompressedOops) verify_heapbase("call_VM_base");)
  5917 #endif // ASSERT
  5919   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
  5920   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
  5922   // push java thread (becomes first argument of C function)
  5924   NOT_LP64(push(java_thread); number_of_arguments++);
  5925   LP64_ONLY(mov(c_rarg0, r15_thread));
  5927   // set last Java frame before call
  5928   assert(last_java_sp != rbp, "can't use ebp/rbp");
  5930   // Only interpreter should have to set fp
  5931   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
  5933   // do the call, remove parameters
  5934   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  5936   // restore the thread (cannot use the pushed argument since arguments
  5937   // may be overwritten by C code generated by an optimizing compiler);
  5938   // however can use the register value directly if it is callee saved.
  5939   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
  5940     // rdi & rsi (also r15) are callee saved -> nothing to do
  5941 #ifdef ASSERT
  5942     guarantee(java_thread != rax, "change this code");
  5943     push(rax);
  5944     { Label L;
  5945       get_thread(rax);
  5946       cmpptr(java_thread, rax);
  5947       jcc(Assembler::equal, L);
  5948       stop("MacroAssembler::call_VM_base: rdi not callee saved?");
  5949       bind(L);
  5951     pop(rax);
  5952 #endif
  5953   } else {
  5954     get_thread(java_thread);
  5956   // reset last Java frame
  5957   // Only interpreter should have to clear fp
  5958   reset_last_Java_frame(java_thread, true, false);
  5960 #ifndef CC_INTERP
  5961    // C++ interp handles this in the interpreter
  5962   check_and_handle_popframe(java_thread);
  5963   check_and_handle_earlyret(java_thread);
  5964 #endif /* CC_INTERP */
  5966   if (check_exceptions) {
  5967     // check for pending exceptions (java_thread is set upon return)
  5968     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
  5969 #ifndef _LP64
  5970     jump_cc(Assembler::notEqual,
  5971             RuntimeAddress(StubRoutines::forward_exception_entry()));
  5972 #else
  5973     // This used to conditionally jump to forward_exception however it is
  5974     // possible if we relocate that the branch will not reach. So we must jump
  5975     // around so we can always reach
  5977     Label ok;
  5978     jcc(Assembler::equal, ok);
  5979     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
  5980     bind(ok);
  5981 #endif // LP64
  5984   // get oop result if there is one and reset the value in the thread
  5985   if (oop_result->is_valid()) {
  5986     movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
  5987     movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
  5988     verify_oop(oop_result, "broken oop in call_VM_base");
  5992 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  5994   // Calculate the value for last_Java_sp
  5995   // somewhat subtle. call_VM does an intermediate call
  5996   // which places a return address on the stack just under the
  5997   // stack pointer as the user finsihed with it. This allows
  5998   // use to retrieve last_Java_pc from last_Java_sp[-1].
  5999   // On 32bit we then have to push additional args on the stack to accomplish
  6000   // the actual requested call. On 64bit call_VM only can use register args
  6001   // so the only extra space is the return address that call_VM created.
  6002   // This hopefully explains the calculations here.
  6004 #ifdef _LP64
  6005   // We've pushed one address, correct last_Java_sp
  6006   lea(rax, Address(rsp, wordSize));
  6007 #else
  6008   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
  6009 #endif // LP64
  6011   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
  6015 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
  6016   call_VM_leaf_base(entry_point, number_of_arguments);
  6019 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
  6020   pass_arg0(this, arg_0);
  6021   call_VM_leaf(entry_point, 1);
  6024 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
  6026   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6027   pass_arg1(this, arg_1);
  6028   pass_arg0(this, arg_0);
  6029   call_VM_leaf(entry_point, 2);
  6032 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
  6033   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
  6034   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
  6035   pass_arg2(this, arg_2);
  6036   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
  6037   pass_arg1(this, arg_1);
  6038   pass_arg0(this, arg_0);
  6039   call_VM_leaf(entry_point, 3);
  6042 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
  6045 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
  6048 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
  6049   if (reachable(src1)) {
  6050     cmpl(as_Address(src1), imm);
  6051   } else {
  6052     lea(rscratch1, src1);
  6053     cmpl(Address(rscratch1, 0), imm);
  6057 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
  6058   assert(!src2.is_lval(), "use cmpptr");
  6059   if (reachable(src2)) {
  6060     cmpl(src1, as_Address(src2));
  6061   } else {
  6062     lea(rscratch1, src2);
  6063     cmpl(src1, Address(rscratch1, 0));
  6067 void MacroAssembler::cmp32(Register src1, int32_t imm) {
  6068   Assembler::cmpl(src1, imm);
  6071 void MacroAssembler::cmp32(Register src1, Address src2) {
  6072   Assembler::cmpl(src1, src2);
  6075 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6076   ucomisd(opr1, opr2);
  6078   Label L;
  6079   if (unordered_is_less) {
  6080     movl(dst, -1);
  6081     jcc(Assembler::parity, L);
  6082     jcc(Assembler::below , L);
  6083     movl(dst, 0);
  6084     jcc(Assembler::equal , L);
  6085     increment(dst);
  6086   } else { // unordered is greater
  6087     movl(dst, 1);
  6088     jcc(Assembler::parity, L);
  6089     jcc(Assembler::above , L);
  6090     movl(dst, 0);
  6091     jcc(Assembler::equal , L);
  6092     decrementl(dst);
  6094   bind(L);
  6097 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
  6098   ucomiss(opr1, opr2);
  6100   Label L;
  6101   if (unordered_is_less) {
  6102     movl(dst, -1);
  6103     jcc(Assembler::parity, L);
  6104     jcc(Assembler::below , L);
  6105     movl(dst, 0);
  6106     jcc(Assembler::equal , L);
  6107     increment(dst);
  6108   } else { // unordered is greater
  6109     movl(dst, 1);
  6110     jcc(Assembler::parity, L);
  6111     jcc(Assembler::above , L);
  6112     movl(dst, 0);
  6113     jcc(Assembler::equal , L);
  6114     decrementl(dst);
  6116   bind(L);
  6120 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
  6121   if (reachable(src1)) {
  6122     cmpb(as_Address(src1), imm);
  6123   } else {
  6124     lea(rscratch1, src1);
  6125     cmpb(Address(rscratch1, 0), imm);
  6129 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
  6130 #ifdef _LP64
  6131   if (src2.is_lval()) {
  6132     movptr(rscratch1, src2);
  6133     Assembler::cmpq(src1, rscratch1);
  6134   } else if (reachable(src2)) {
  6135     cmpq(src1, as_Address(src2));
  6136   } else {
  6137     lea(rscratch1, src2);
  6138     Assembler::cmpq(src1, Address(rscratch1, 0));
  6140 #else
  6141   if (src2.is_lval()) {
  6142     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6143   } else {
  6144     cmpl(src1, as_Address(src2));
  6146 #endif // _LP64
  6149 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
  6150   assert(src2.is_lval(), "not a mem-mem compare");
  6151 #ifdef _LP64
  6152   // moves src2's literal address
  6153   movptr(rscratch1, src2);
  6154   Assembler::cmpq(src1, rscratch1);
  6155 #else
  6156   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
  6157 #endif // _LP64
  6160 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
  6161   if (reachable(adr)) {
  6162     if (os::is_MP())
  6163       lock();
  6164     cmpxchgptr(reg, as_Address(adr));
  6165   } else {
  6166     lea(rscratch1, adr);
  6167     if (os::is_MP())
  6168       lock();
  6169     cmpxchgptr(reg, Address(rscratch1, 0));
  6173 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
  6174   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
  6177 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
  6178   if (reachable(src)) {
  6179     comisd(dst, as_Address(src));
  6180   } else {
  6181     lea(rscratch1, src);
  6182     comisd(dst, Address(rscratch1, 0));
  6186 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
  6187   if (reachable(src)) {
  6188     comiss(dst, as_Address(src));
  6189   } else {
  6190     lea(rscratch1, src);
  6191     comiss(dst, Address(rscratch1, 0));
  6196 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
  6197   Condition negated_cond = negate_condition(cond);
  6198   Label L;
  6199   jcc(negated_cond, L);
  6200   atomic_incl(counter_addr);
  6201   bind(L);
  6204 int MacroAssembler::corrected_idivl(Register reg) {
  6205   // Full implementation of Java idiv and irem; checks for
  6206   // special case as described in JVM spec., p.243 & p.271.
  6207   // The function returns the (pc) offset of the idivl
  6208   // instruction - may be needed for implicit exceptions.
  6209   //
  6210   //         normal case                           special case
  6211   //
  6212   // input : rax,: dividend                         min_int
  6213   //         reg: divisor   (may not be rax,/rdx)   -1
  6214   //
  6215   // output: rax,: quotient  (= rax, idiv reg)       min_int
  6216   //         rdx: remainder (= rax, irem reg)       0
  6217   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
  6218   const int min_int = 0x80000000;
  6219   Label normal_case, special_case;
  6221   // check for special case
  6222   cmpl(rax, min_int);
  6223   jcc(Assembler::notEqual, normal_case);
  6224   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
  6225   cmpl(reg, -1);
  6226   jcc(Assembler::equal, special_case);
  6228   // handle normal case
  6229   bind(normal_case);
  6230   cdql();
  6231   int idivl_offset = offset();
  6232   idivl(reg);
  6234   // normal and special case exit
  6235   bind(special_case);
  6237   return idivl_offset;
  6242 void MacroAssembler::decrementl(Register reg, int value) {
  6243   if (value == min_jint) {subl(reg, value) ; return; }
  6244   if (value <  0) { incrementl(reg, -value); return; }
  6245   if (value == 0) {                        ; return; }
  6246   if (value == 1 && UseIncDec) { decl(reg) ; return; }
  6247   /* else */      { subl(reg, value)       ; return; }
  6250 void MacroAssembler::decrementl(Address dst, int value) {
  6251   if (value == min_jint) {subl(dst, value) ; return; }
  6252   if (value <  0) { incrementl(dst, -value); return; }
  6253   if (value == 0) {                        ; return; }
  6254   if (value == 1 && UseIncDec) { decl(dst) ; return; }
  6255   /* else */      { subl(dst, value)       ; return; }
  6258 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
  6259   assert (shift_value > 0, "illegal shift value");
  6260   Label _is_positive;
  6261   testl (reg, reg);
  6262   jcc (Assembler::positive, _is_positive);
  6263   int offset = (1 << shift_value) - 1 ;
  6265   if (offset == 1) {
  6266     incrementl(reg);
  6267   } else {
  6268     addl(reg, offset);
  6271   bind (_is_positive);
  6272   sarl(reg, shift_value);
  6275 // !defined(COMPILER2) is because of stupid core builds
  6276 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
  6277 void MacroAssembler::empty_FPU_stack() {
  6278   if (VM_Version::supports_mmx()) {
  6279     emms();
  6280   } else {
  6281     for (int i = 8; i-- > 0; ) ffree(i);
  6284 #endif // !LP64 || C1 || !C2
  6287 // Defines obj, preserves var_size_in_bytes
  6288 void MacroAssembler::eden_allocate(Register obj,
  6289                                    Register var_size_in_bytes,
  6290                                    int con_size_in_bytes,
  6291                                    Register t1,
  6292                                    Label& slow_case) {
  6293   assert(obj == rax, "obj must be in rax, for cmpxchg");
  6294   assert_different_registers(obj, var_size_in_bytes, t1);
  6295   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  6296     jmp(slow_case);
  6297   } else {
  6298     Register end = t1;
  6299     Label retry;
  6300     bind(retry);
  6301     ExternalAddress heap_top((address) Universe::heap()->top_addr());
  6302     movptr(obj, heap_top);
  6303     if (var_size_in_bytes == noreg) {
  6304       lea(end, Address(obj, con_size_in_bytes));
  6305     } else {
  6306       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  6308     // if end < obj then we wrapped around => object too long => slow case
  6309     cmpptr(end, obj);
  6310     jcc(Assembler::below, slow_case);
  6311     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
  6312     jcc(Assembler::above, slow_case);
  6313     // Compare obj with the top addr, and if still equal, store the new top addr in
  6314     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
  6315     // it otherwise. Use lock prefix for atomicity on MPs.
  6316     locked_cmpxchgptr(end, heap_top);
  6317     jcc(Assembler::notEqual, retry);
  6321 void MacroAssembler::enter() {
  6322   push(rbp);
  6323   mov(rbp, rsp);
  6326 void MacroAssembler::fcmp(Register tmp) {
  6327   fcmp(tmp, 1, true, true);
  6330 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
  6331   assert(!pop_right || pop_left, "usage error");
  6332   if (VM_Version::supports_cmov()) {
  6333     assert(tmp == noreg, "unneeded temp");
  6334     if (pop_left) {
  6335       fucomip(index);
  6336     } else {
  6337       fucomi(index);
  6339     if (pop_right) {
  6340       fpop();
  6342   } else {
  6343     assert(tmp != noreg, "need temp");
  6344     if (pop_left) {
  6345       if (pop_right) {
  6346         fcompp();
  6347       } else {
  6348         fcomp(index);
  6350     } else {
  6351       fcom(index);
  6353     // convert FPU condition into eflags condition via rax,
  6354     save_rax(tmp);
  6355     fwait(); fnstsw_ax();
  6356     sahf();
  6357     restore_rax(tmp);
  6359   // condition codes set as follows:
  6360   //
  6361   // CF (corresponds to C0) if x < y
  6362   // PF (corresponds to C2) if unordered
  6363   // ZF (corresponds to C3) if x = y
  6366 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
  6367   fcmp2int(dst, unordered_is_less, 1, true, true);
  6370 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
  6371   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
  6372   Label L;
  6373   if (unordered_is_less) {
  6374     movl(dst, -1);
  6375     jcc(Assembler::parity, L);
  6376     jcc(Assembler::below , L);
  6377     movl(dst, 0);
  6378     jcc(Assembler::equal , L);
  6379     increment(dst);
  6380   } else { // unordered is greater
  6381     movl(dst, 1);
  6382     jcc(Assembler::parity, L);
  6383     jcc(Assembler::above , L);
  6384     movl(dst, 0);
  6385     jcc(Assembler::equal , L);
  6386     decrementl(dst);
  6388   bind(L);
  6391 void MacroAssembler::fld_d(AddressLiteral src) {
  6392   fld_d(as_Address(src));
  6395 void MacroAssembler::fld_s(AddressLiteral src) {
  6396   fld_s(as_Address(src));
  6399 void MacroAssembler::fld_x(AddressLiteral src) {
  6400   Assembler::fld_x(as_Address(src));
  6403 void MacroAssembler::fldcw(AddressLiteral src) {
  6404   Assembler::fldcw(as_Address(src));
  6407 void MacroAssembler::fpop() {
  6408   ffree();
  6409   fincstp();
  6412 void MacroAssembler::fremr(Register tmp) {
  6413   save_rax(tmp);
  6414   { Label L;
  6415     bind(L);
  6416     fprem();
  6417     fwait(); fnstsw_ax();
  6418 #ifdef _LP64
  6419     testl(rax, 0x400);
  6420     jcc(Assembler::notEqual, L);
  6421 #else
  6422     sahf();
  6423     jcc(Assembler::parity, L);
  6424 #endif // _LP64
  6426   restore_rax(tmp);
  6427   // Result is in ST0.
  6428   // Note: fxch & fpop to get rid of ST1
  6429   // (otherwise FPU stack could overflow eventually)
  6430   fxch(1);
  6431   fpop();
  6435 void MacroAssembler::incrementl(AddressLiteral dst) {
  6436   if (reachable(dst)) {
  6437     incrementl(as_Address(dst));
  6438   } else {
  6439     lea(rscratch1, dst);
  6440     incrementl(Address(rscratch1, 0));
  6444 void MacroAssembler::incrementl(ArrayAddress dst) {
  6445   incrementl(as_Address(dst));
  6448 void MacroAssembler::incrementl(Register reg, int value) {
  6449   if (value == min_jint) {addl(reg, value) ; return; }
  6450   if (value <  0) { decrementl(reg, -value); return; }
  6451   if (value == 0) {                        ; return; }
  6452   if (value == 1 && UseIncDec) { incl(reg) ; return; }
  6453   /* else */      { addl(reg, value)       ; return; }
  6456 void MacroAssembler::incrementl(Address dst, int value) {
  6457   if (value == min_jint) {addl(dst, value) ; return; }
  6458   if (value <  0) { decrementl(dst, -value); return; }
  6459   if (value == 0) {                        ; return; }
  6460   if (value == 1 && UseIncDec) { incl(dst) ; return; }
  6461   /* else */      { addl(dst, value)       ; return; }
  6464 void MacroAssembler::jump(AddressLiteral dst) {
  6465   if (reachable(dst)) {
  6466     jmp_literal(dst.target(), dst.rspec());
  6467   } else {
  6468     lea(rscratch1, dst);
  6469     jmp(rscratch1);
  6473 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
  6474   if (reachable(dst)) {
  6475     InstructionMark im(this);
  6476     relocate(dst.reloc());
  6477     const int short_size = 2;
  6478     const int long_size = 6;
  6479     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
  6480     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
  6481       // 0111 tttn #8-bit disp
  6482       emit_byte(0x70 | cc);
  6483       emit_byte((offs - short_size) & 0xFF);
  6484     } else {
  6485       // 0000 1111 1000 tttn #32-bit disp
  6486       emit_byte(0x0F);
  6487       emit_byte(0x80 | cc);
  6488       emit_long(offs - long_size);
  6490   } else {
  6491 #ifdef ASSERT
  6492     warning("reversing conditional branch");
  6493 #endif /* ASSERT */
  6494     Label skip;
  6495     jccb(reverse[cc], skip);
  6496     lea(rscratch1, dst);
  6497     Assembler::jmp(rscratch1);
  6498     bind(skip);
  6502 void MacroAssembler::ldmxcsr(AddressLiteral src) {
  6503   if (reachable(src)) {
  6504     Assembler::ldmxcsr(as_Address(src));
  6505   } else {
  6506     lea(rscratch1, src);
  6507     Assembler::ldmxcsr(Address(rscratch1, 0));
  6511 int MacroAssembler::load_signed_byte(Register dst, Address src) {
  6512   int off;
  6513   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6514     off = offset();
  6515     movsbl(dst, src); // movsxb
  6516   } else {
  6517     off = load_unsigned_byte(dst, src);
  6518     shll(dst, 24);
  6519     sarl(dst, 24);
  6521   return off;
  6524 // Note: load_signed_short used to be called load_signed_word.
  6525 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
  6526 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
  6527 // The term "word" in HotSpot means a 32- or 64-bit machine word.
  6528 int MacroAssembler::load_signed_short(Register dst, Address src) {
  6529   int off;
  6530   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6531     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
  6532     // version but this is what 64bit has always done. This seems to imply
  6533     // that users are only using 32bits worth.
  6534     off = offset();
  6535     movswl(dst, src); // movsxw
  6536   } else {
  6537     off = load_unsigned_short(dst, src);
  6538     shll(dst, 16);
  6539     sarl(dst, 16);
  6541   return off;
  6544 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
  6545   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  6546   // and "3.9 Partial Register Penalties", p. 22).
  6547   int off;
  6548   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
  6549     off = offset();
  6550     movzbl(dst, src); // movzxb
  6551   } else {
  6552     xorl(dst, dst);
  6553     off = offset();
  6554     movb(dst, src);
  6556   return off;
  6559 // Note: load_unsigned_short used to be called load_unsigned_word.
  6560 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
  6561   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
  6562   // and "3.9 Partial Register Penalties", p. 22).
  6563   int off;
  6564   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
  6565     off = offset();
  6566     movzwl(dst, src); // movzxw
  6567   } else {
  6568     xorl(dst, dst);
  6569     off = offset();
  6570     movw(dst, src);
  6572   return off;
  6575 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
  6576   switch (size_in_bytes) {
  6577 #ifndef _LP64
  6578   case  8:
  6579     assert(dst2 != noreg, "second dest register required");
  6580     movl(dst,  src);
  6581     movl(dst2, src.plus_disp(BytesPerInt));
  6582     break;
  6583 #else
  6584   case  8:  movq(dst, src); break;
  6585 #endif
  6586   case  4:  movl(dst, src); break;
  6587   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
  6588   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
  6589   default:  ShouldNotReachHere();
  6593 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
  6594   switch (size_in_bytes) {
  6595 #ifndef _LP64
  6596   case  8:
  6597     assert(src2 != noreg, "second source register required");
  6598     movl(dst,                        src);
  6599     movl(dst.plus_disp(BytesPerInt), src2);
  6600     break;
  6601 #else
  6602   case  8:  movq(dst, src); break;
  6603 #endif
  6604   case  4:  movl(dst, src); break;
  6605   case  2:  movw(dst, src); break;
  6606   case  1:  movb(dst, src); break;
  6607   default:  ShouldNotReachHere();
  6611 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
  6612   if (reachable(dst)) {
  6613     movl(as_Address(dst), src);
  6614   } else {
  6615     lea(rscratch1, dst);
  6616     movl(Address(rscratch1, 0), src);
  6620 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
  6621   if (reachable(src)) {
  6622     movl(dst, as_Address(src));
  6623   } else {
  6624     lea(rscratch1, src);
  6625     movl(dst, Address(rscratch1, 0));
  6629 // C++ bool manipulation
  6631 void MacroAssembler::movbool(Register dst, Address src) {
  6632   if(sizeof(bool) == 1)
  6633     movb(dst, src);
  6634   else if(sizeof(bool) == 2)
  6635     movw(dst, src);
  6636   else if(sizeof(bool) == 4)
  6637     movl(dst, src);
  6638   else
  6639     // unsupported
  6640     ShouldNotReachHere();
  6643 void MacroAssembler::movbool(Address dst, bool boolconst) {
  6644   if(sizeof(bool) == 1)
  6645     movb(dst, (int) boolconst);
  6646   else if(sizeof(bool) == 2)
  6647     movw(dst, (int) boolconst);
  6648   else if(sizeof(bool) == 4)
  6649     movl(dst, (int) boolconst);
  6650   else
  6651     // unsupported
  6652     ShouldNotReachHere();
  6655 void MacroAssembler::movbool(Address dst, Register src) {
  6656   if(sizeof(bool) == 1)
  6657     movb(dst, src);
  6658   else if(sizeof(bool) == 2)
  6659     movw(dst, src);
  6660   else if(sizeof(bool) == 4)
  6661     movl(dst, src);
  6662   else
  6663     // unsupported
  6664     ShouldNotReachHere();
  6667 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
  6668   movb(as_Address(dst), src);
  6671 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
  6672   if (reachable(src)) {
  6673     if (UseXmmLoadAndClearUpper) {
  6674       movsd (dst, as_Address(src));
  6675     } else {
  6676       movlpd(dst, as_Address(src));
  6678   } else {
  6679     lea(rscratch1, src);
  6680     if (UseXmmLoadAndClearUpper) {
  6681       movsd (dst, Address(rscratch1, 0));
  6682     } else {
  6683       movlpd(dst, Address(rscratch1, 0));
  6688 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
  6689   if (reachable(src)) {
  6690     movss(dst, as_Address(src));
  6691   } else {
  6692     lea(rscratch1, src);
  6693     movss(dst, Address(rscratch1, 0));
  6697 void MacroAssembler::movptr(Register dst, Register src) {
  6698   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6701 void MacroAssembler::movptr(Register dst, Address src) {
  6702   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6705 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
  6706 void MacroAssembler::movptr(Register dst, intptr_t src) {
  6707   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
  6710 void MacroAssembler::movptr(Address dst, Register src) {
  6711   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
  6714 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
  6715   if (reachable(src)) {
  6716     movss(dst, as_Address(src));
  6717   } else {
  6718     lea(rscratch1, src);
  6719     movss(dst, Address(rscratch1, 0));
  6723 void MacroAssembler::null_check(Register reg, int offset) {
  6724   if (needs_explicit_null_check(offset)) {
  6725     // provoke OS NULL exception if reg = NULL by
  6726     // accessing M[reg] w/o changing any (non-CC) registers
  6727     // NOTE: cmpl is plenty here to provoke a segv
  6728     cmpptr(rax, Address(reg, 0));
  6729     // Note: should probably use testl(rax, Address(reg, 0));
  6730     //       may be shorter code (however, this version of
  6731     //       testl needs to be implemented first)
  6732   } else {
  6733     // nothing to do, (later) access of M[reg + offset]
  6734     // will provoke OS NULL exception if reg = NULL
  6738 void MacroAssembler::os_breakpoint() {
  6739   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
  6740   // (e.g., MSVC can't call ps() otherwise)
  6741   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
  6744 void MacroAssembler::pop_CPU_state() {
  6745   pop_FPU_state();
  6746   pop_IU_state();
  6749 void MacroAssembler::pop_FPU_state() {
  6750   NOT_LP64(frstor(Address(rsp, 0));)
  6751   LP64_ONLY(fxrstor(Address(rsp, 0));)
  6752   addptr(rsp, FPUStateSizeInWords * wordSize);
  6755 void MacroAssembler::pop_IU_state() {
  6756   popa();
  6757   LP64_ONLY(addq(rsp, 8));
  6758   popf();
  6761 // Save Integer and Float state
  6762 // Warning: Stack must be 16 byte aligned (64bit)
  6763 void MacroAssembler::push_CPU_state() {
  6764   push_IU_state();
  6765   push_FPU_state();
  6768 void MacroAssembler::push_FPU_state() {
  6769   subptr(rsp, FPUStateSizeInWords * wordSize);
  6770 #ifndef _LP64
  6771   fnsave(Address(rsp, 0));
  6772   fwait();
  6773 #else
  6774   fxsave(Address(rsp, 0));
  6775 #endif // LP64
  6778 void MacroAssembler::push_IU_state() {
  6779   // Push flags first because pusha kills them
  6780   pushf();
  6781   // Make sure rsp stays 16-byte aligned
  6782   LP64_ONLY(subq(rsp, 8));
  6783   pusha();
  6786 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
  6787   // determine java_thread register
  6788   if (!java_thread->is_valid()) {
  6789     java_thread = rdi;
  6790     get_thread(java_thread);
  6792   // we must set sp to zero to clear frame
  6793   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
  6794   if (clear_fp) {
  6795     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
  6798   if (clear_pc)
  6799     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
  6803 void MacroAssembler::restore_rax(Register tmp) {
  6804   if (tmp == noreg) pop(rax);
  6805   else if (tmp != rax) mov(rax, tmp);
  6808 void MacroAssembler::round_to(Register reg, int modulus) {
  6809   addptr(reg, modulus - 1);
  6810   andptr(reg, -modulus);
  6813 void MacroAssembler::save_rax(Register tmp) {
  6814   if (tmp == noreg) push(rax);
  6815   else if (tmp != rax) mov(tmp, rax);
  6818 // Write serialization page so VM thread can do a pseudo remote membar.
  6819 // We use the current thread pointer to calculate a thread specific
  6820 // offset to write to within the page. This minimizes bus traffic
  6821 // due to cache line collision.
  6822 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
  6823   movl(tmp, thread);
  6824   shrl(tmp, os::get_serialize_page_shift_count());
  6825   andl(tmp, (os::vm_page_size() - sizeof(int)));
  6827   Address index(noreg, tmp, Address::times_1);
  6828   ExternalAddress page(os::get_memory_serialize_page());
  6830   // Size of store must match masking code above
  6831   movl(as_Address(ArrayAddress(page, index)), tmp);
  6834 // Calls to C land
  6835 //
  6836 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
  6837 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
  6838 // has to be reset to 0. This is required to allow proper stack traversal.
  6839 void MacroAssembler::set_last_Java_frame(Register java_thread,
  6840                                          Register last_java_sp,
  6841                                          Register last_java_fp,
  6842                                          address  last_java_pc) {
  6843   // determine java_thread register
  6844   if (!java_thread->is_valid()) {
  6845     java_thread = rdi;
  6846     get_thread(java_thread);
  6848   // determine last_java_sp register
  6849   if (!last_java_sp->is_valid()) {
  6850     last_java_sp = rsp;
  6853   // last_java_fp is optional
  6855   if (last_java_fp->is_valid()) {
  6856     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
  6859   // last_java_pc is optional
  6861   if (last_java_pc != NULL) {
  6862     lea(Address(java_thread,
  6863                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
  6864         InternalAddress(last_java_pc));
  6867   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
  6870 void MacroAssembler::shlptr(Register dst, int imm8) {
  6871   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
  6874 void MacroAssembler::shrptr(Register dst, int imm8) {
  6875   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
  6878 void MacroAssembler::sign_extend_byte(Register reg) {
  6879   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
  6880     movsbl(reg, reg); // movsxb
  6881   } else {
  6882     shll(reg, 24);
  6883     sarl(reg, 24);
  6887 void MacroAssembler::sign_extend_short(Register reg) {
  6888   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
  6889     movswl(reg, reg); // movsxw
  6890   } else {
  6891     shll(reg, 16);
  6892     sarl(reg, 16);
  6896 void MacroAssembler::testl(Register dst, AddressLiteral src) {
  6897   assert(reachable(src), "Address should be reachable");
  6898   testl(dst, as_Address(src));
  6901 //////////////////////////////////////////////////////////////////////////////////
  6902 #ifndef SERIALGC
  6904 void MacroAssembler::g1_write_barrier_pre(Register obj,
  6905 #ifndef _LP64
  6906                                           Register thread,
  6907 #endif
  6908                                           Register tmp,
  6909                                           Register tmp2,
  6910                                           bool tosca_live) {
  6911   LP64_ONLY(Register thread = r15_thread;)
  6912   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6913                                        PtrQueue::byte_offset_of_active()));
  6915   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6916                                        PtrQueue::byte_offset_of_index()));
  6917   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
  6918                                        PtrQueue::byte_offset_of_buf()));
  6921   Label done;
  6922   Label runtime;
  6924   // if (!marking_in_progress) goto done;
  6925   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  6926     cmpl(in_progress, 0);
  6927   } else {
  6928     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
  6929     cmpb(in_progress, 0);
  6931   jcc(Assembler::equal, done);
  6933   // if (x.f == NULL) goto done;
  6934 #ifdef _LP64
  6935   load_heap_oop(tmp2, Address(obj, 0));
  6936 #else
  6937   movptr(tmp2, Address(obj, 0));
  6938 #endif
  6939   cmpptr(tmp2, (int32_t) NULL_WORD);
  6940   jcc(Assembler::equal, done);
  6942   // Can we store original value in the thread's buffer?
  6944 #ifdef _LP64
  6945   movslq(tmp, index);
  6946   cmpq(tmp, 0);
  6947 #else
  6948   cmpl(index, 0);
  6949 #endif
  6950   jcc(Assembler::equal, runtime);
  6951 #ifdef _LP64
  6952   subq(tmp, wordSize);
  6953   movl(index, tmp);
  6954   addq(tmp, buffer);
  6955 #else
  6956   subl(index, wordSize);
  6957   movl(tmp, buffer);
  6958   addl(tmp, index);
  6959 #endif
  6960   movptr(Address(tmp, 0), tmp2);
  6961   jmp(done);
  6962   bind(runtime);
  6963   // save the live input values
  6964   if(tosca_live) push(rax);
  6965   push(obj);
  6966 #ifdef _LP64
  6967   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), tmp2, r15_thread);
  6968 #else
  6969   push(thread);
  6970   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), tmp2, thread);
  6971   pop(thread);
  6972 #endif
  6973   pop(obj);
  6974   if(tosca_live) pop(rax);
  6975   bind(done);
  6979 void MacroAssembler::g1_write_barrier_post(Register store_addr,
  6980                                            Register new_val,
  6981 #ifndef _LP64
  6982                                            Register thread,
  6983 #endif
  6984                                            Register tmp,
  6985                                            Register tmp2) {
  6987   LP64_ONLY(Register thread = r15_thread;)
  6988   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  6989                                        PtrQueue::byte_offset_of_index()));
  6990   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
  6991                                        PtrQueue::byte_offset_of_buf()));
  6992   BarrierSet* bs = Universe::heap()->barrier_set();
  6993   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  6994   Label done;
  6995   Label runtime;
  6997   // Does store cross heap regions?
  6999   movptr(tmp, store_addr);
  7000   xorptr(tmp, new_val);
  7001   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
  7002   jcc(Assembler::equal, done);
  7004   // crosses regions, storing NULL?
  7006   cmpptr(new_val, (int32_t) NULL_WORD);
  7007   jcc(Assembler::equal, done);
  7009   // storing region crossing non-NULL, is card already dirty?
  7011   ExternalAddress cardtable((address) ct->byte_map_base);
  7012   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  7013 #ifdef _LP64
  7014   const Register card_addr = tmp;
  7016   movq(card_addr, store_addr);
  7017   shrq(card_addr, CardTableModRefBS::card_shift);
  7019   lea(tmp2, cardtable);
  7021   // get the address of the card
  7022   addq(card_addr, tmp2);
  7023 #else
  7024   const Register card_index = tmp;
  7026   movl(card_index, store_addr);
  7027   shrl(card_index, CardTableModRefBS::card_shift);
  7029   Address index(noreg, card_index, Address::times_1);
  7030   const Register card_addr = tmp;
  7031   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
  7032 #endif
  7033   cmpb(Address(card_addr, 0), 0);
  7034   jcc(Assembler::equal, done);
  7036   // storing a region crossing, non-NULL oop, card is clean.
  7037   // dirty card and log.
  7039   movb(Address(card_addr, 0), 0);
  7041   cmpl(queue_index, 0);
  7042   jcc(Assembler::equal, runtime);
  7043   subl(queue_index, wordSize);
  7044   movptr(tmp2, buffer);
  7045 #ifdef _LP64
  7046   movslq(rscratch1, queue_index);
  7047   addq(tmp2, rscratch1);
  7048   movq(Address(tmp2, 0), card_addr);
  7049 #else
  7050   addl(tmp2, queue_index);
  7051   movl(Address(tmp2, 0), card_index);
  7052 #endif
  7053   jmp(done);
  7055   bind(runtime);
  7056   // save the live input values
  7057   push(store_addr);
  7058   push(new_val);
  7059 #ifdef _LP64
  7060   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
  7061 #else
  7062   push(thread);
  7063   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
  7064   pop(thread);
  7065 #endif
  7066   pop(new_val);
  7067   pop(store_addr);
  7069   bind(done);
  7073 #endif // SERIALGC
  7074 //////////////////////////////////////////////////////////////////////////////////
  7077 void MacroAssembler::store_check(Register obj) {
  7078   // Does a store check for the oop in register obj. The content of
  7079   // register obj is destroyed afterwards.
  7080   store_check_part_1(obj);
  7081   store_check_part_2(obj);
  7084 void MacroAssembler::store_check(Register obj, Address dst) {
  7085   store_check(obj);
  7089 // split the store check operation so that other instructions can be scheduled inbetween
  7090 void MacroAssembler::store_check_part_1(Register obj) {
  7091   BarrierSet* bs = Universe::heap()->barrier_set();
  7092   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  7093   shrptr(obj, CardTableModRefBS::card_shift);
  7096 void MacroAssembler::store_check_part_2(Register obj) {
  7097   BarrierSet* bs = Universe::heap()->barrier_set();
  7098   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
  7099   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
  7100   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
  7102   // The calculation for byte_map_base is as follows:
  7103   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
  7104   // So this essentially converts an address to a displacement and
  7105   // it will never need to be relocated. On 64bit however the value may be too
  7106   // large for a 32bit displacement
  7108   intptr_t disp = (intptr_t) ct->byte_map_base;
  7109   if (is_simm32(disp)) {
  7110     Address cardtable(noreg, obj, Address::times_1, disp);
  7111     movb(cardtable, 0);
  7112   } else {
  7113     // By doing it as an ExternalAddress disp could be converted to a rip-relative
  7114     // displacement and done in a single instruction given favorable mapping and
  7115     // a smarter version of as_Address. Worst case it is two instructions which
  7116     // is no worse off then loading disp into a register and doing as a simple
  7117     // Address() as above.
  7118     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
  7119     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
  7120     // in some cases we'll get a single instruction version.
  7122     ExternalAddress cardtable((address)disp);
  7123     Address index(noreg, obj, Address::times_1);
  7124     movb(as_Address(ArrayAddress(cardtable, index)), 0);
  7128 void MacroAssembler::subptr(Register dst, int32_t imm32) {
  7129   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
  7132 void MacroAssembler::subptr(Register dst, Register src) {
  7133   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
  7136 // C++ bool manipulation
  7137 void MacroAssembler::testbool(Register dst) {
  7138   if(sizeof(bool) == 1)
  7139     testb(dst, 0xff);
  7140   else if(sizeof(bool) == 2) {
  7141     // testw implementation needed for two byte bools
  7142     ShouldNotReachHere();
  7143   } else if(sizeof(bool) == 4)
  7144     testl(dst, dst);
  7145   else
  7146     // unsupported
  7147     ShouldNotReachHere();
  7150 void MacroAssembler::testptr(Register dst, Register src) {
  7151   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
  7154 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
  7155 void MacroAssembler::tlab_allocate(Register obj,
  7156                                    Register var_size_in_bytes,
  7157                                    int con_size_in_bytes,
  7158                                    Register t1,
  7159                                    Register t2,
  7160                                    Label& slow_case) {
  7161   assert_different_registers(obj, t1, t2);
  7162   assert_different_registers(obj, var_size_in_bytes, t1);
  7163   Register end = t2;
  7164   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
  7166   verify_tlab();
  7168   NOT_LP64(get_thread(thread));
  7170   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
  7171   if (var_size_in_bytes == noreg) {
  7172     lea(end, Address(obj, con_size_in_bytes));
  7173   } else {
  7174     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
  7176   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
  7177   jcc(Assembler::above, slow_case);
  7179   // update the tlab top pointer
  7180   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
  7182   // recover var_size_in_bytes if necessary
  7183   if (var_size_in_bytes == end) {
  7184     subptr(var_size_in_bytes, obj);
  7186   verify_tlab();
  7189 // Preserves rbx, and rdx.
  7190 Register MacroAssembler::tlab_refill(Label& retry,
  7191                                      Label& try_eden,
  7192                                      Label& slow_case) {
  7193   Register top = rax;
  7194   Register t1  = rcx;
  7195   Register t2  = rsi;
  7196   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
  7197   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
  7198   Label do_refill, discard_tlab;
  7200   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  7201     // No allocation in the shared eden.
  7202     jmp(slow_case);
  7205   NOT_LP64(get_thread(thread_reg));
  7207   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7208   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  7210   // calculate amount of free space
  7211   subptr(t1, top);
  7212   shrptr(t1, LogHeapWordSize);
  7214   // Retain tlab and allocate object in shared space if
  7215   // the amount free in the tlab is too large to discard.
  7216   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
  7217   jcc(Assembler::lessEqual, discard_tlab);
  7219   // Retain
  7220   // %%% yuck as movptr...
  7221   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
  7222   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
  7223   if (TLABStats) {
  7224     // increment number of slow_allocations
  7225     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
  7227   jmp(try_eden);
  7229   bind(discard_tlab);
  7230   if (TLABStats) {
  7231     // increment number of refills
  7232     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
  7233     // accumulate wastage -- t1 is amount free in tlab
  7234     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
  7237   // if tlab is currently allocated (top or end != null) then
  7238   // fill [top, end + alignment_reserve) with array object
  7239   testptr(top, top);
  7240   jcc(Assembler::zero, do_refill);
  7242   // set up the mark word
  7243   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
  7244   // set the length to the remaining space
  7245   subptr(t1, typeArrayOopDesc::header_size(T_INT));
  7246   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
  7247   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
  7248   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
  7249   // set klass to intArrayKlass
  7250   // dubious reloc why not an oop reloc?
  7251   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
  7252   // store klass last.  concurrent gcs assumes klass length is valid if
  7253   // klass field is not null.
  7254   store_klass(top, t1);
  7256   movptr(t1, top);
  7257   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  7258   incr_allocated_bytes(thread_reg, t1, 0);
  7260   // refill the tlab with an eden allocation
  7261   bind(do_refill);
  7262   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  7263   shlptr(t1, LogHeapWordSize);
  7264   // allocate new tlab, address returned in top
  7265   eden_allocate(top, t1, 0, t2, slow_case);
  7267   // Check that t1 was preserved in eden_allocate.
  7268 #ifdef ASSERT
  7269   if (UseTLAB) {
  7270     Label ok;
  7271     Register tsize = rsi;
  7272     assert_different_registers(tsize, thread_reg, t1);
  7273     push(tsize);
  7274     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
  7275     shlptr(tsize, LogHeapWordSize);
  7276     cmpptr(t1, tsize);
  7277     jcc(Assembler::equal, ok);
  7278     stop("assert(t1 != tlab size)");
  7279     should_not_reach_here();
  7281     bind(ok);
  7282     pop(tsize);
  7284 #endif
  7285   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
  7286   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
  7287   addptr(top, t1);
  7288   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
  7289   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
  7290   verify_tlab();
  7291   jmp(retry);
  7293   return thread_reg; // for use by caller
  7296 void MacroAssembler::incr_allocated_bytes(Register thread,
  7297                                           Register var_size_in_bytes,
  7298                                           int con_size_in_bytes,
  7299                                           Register t1) {
  7300 #ifdef _LP64
  7301   if (var_size_in_bytes->is_valid()) {
  7302     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  7303   } else {
  7304     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  7306 #else
  7307   if (!thread->is_valid()) {
  7308     assert(t1->is_valid(), "need temp reg");
  7309     thread = t1;
  7310     get_thread(thread);
  7313   if (var_size_in_bytes->is_valid()) {
  7314     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
  7315   } else {
  7316     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
  7318   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
  7319 #endif
  7322 static const double     pi_4 =  0.7853981633974483;
  7324 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
  7325   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
  7326   // was attempted in this code; unfortunately it appears that the
  7327   // switch to 80-bit precision and back causes this to be
  7328   // unprofitable compared with simply performing a runtime call if
  7329   // the argument is out of the (-pi/4, pi/4) range.
  7331   Register tmp = noreg;
  7332   if (!VM_Version::supports_cmov()) {
  7333     // fcmp needs a temporary so preserve rbx,
  7334     tmp = rbx;
  7335     push(tmp);
  7338   Label slow_case, done;
  7340   ExternalAddress pi4_adr = (address)&pi_4;
  7341   if (reachable(pi4_adr)) {
  7342     // x ?<= pi/4
  7343     fld_d(pi4_adr);
  7344     fld_s(1);                // Stack:  X  PI/4  X
  7345     fabs();                  // Stack: |X| PI/4  X
  7346     fcmp(tmp);
  7347     jcc(Assembler::above, slow_case);
  7349     // fastest case: -pi/4 <= x <= pi/4
  7350     switch(trig) {
  7351     case 's':
  7352       fsin();
  7353       break;
  7354     case 'c':
  7355       fcos();
  7356       break;
  7357     case 't':
  7358       ftan();
  7359       break;
  7360     default:
  7361       assert(false, "bad intrinsic");
  7362       break;
  7364     jmp(done);
  7367   // slow case: runtime call
  7368   bind(slow_case);
  7369   // Preserve registers across runtime call
  7370   pusha();
  7371   int incoming_argument_and_return_value_offset = -1;
  7372   if (num_fpu_regs_in_use > 1) {
  7373     // Must preserve all other FPU regs (could alternatively convert
  7374     // SharedRuntime::dsin and dcos into assembly routines known not to trash
  7375     // FPU state, but can not trust C compiler)
  7376     NEEDS_CLEANUP;
  7377     // NOTE that in this case we also push the incoming argument to
  7378     // the stack and restore it later; we also use this stack slot to
  7379     // hold the return value from dsin or dcos.
  7380     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  7381       subptr(rsp, sizeof(jdouble));
  7382       fstp_d(Address(rsp, 0));
  7384     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
  7385     fld_d(Address(rsp, incoming_argument_and_return_value_offset));
  7387   subptr(rsp, sizeof(jdouble));
  7388   fstp_d(Address(rsp, 0));
  7389 #ifdef _LP64
  7390   movdbl(xmm0, Address(rsp, 0));
  7391 #endif // _LP64
  7393   // NOTE: we must not use call_VM_leaf here because that requires a
  7394   // complete interpreter frame in debug mode -- same bug as 4387334
  7395   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
  7396   // do proper 64bit abi
  7398   NEEDS_CLEANUP;
  7399   // Need to add stack banging before this runtime call if it needs to
  7400   // be taken; however, there is no generic stack banging routine at
  7401   // the MacroAssembler level
  7402   switch(trig) {
  7403   case 's':
  7405       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 0);
  7407     break;
  7408   case 'c':
  7410       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 0);
  7412     break;
  7413   case 't':
  7415       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 0);
  7417     break;
  7418   default:
  7419     assert(false, "bad intrinsic");
  7420     break;
  7422 #ifdef _LP64
  7423     movsd(Address(rsp, 0), xmm0);
  7424     fld_d(Address(rsp, 0));
  7425 #endif // _LP64
  7426   addptr(rsp, sizeof(jdouble));
  7427   if (num_fpu_regs_in_use > 1) {
  7428     // Must save return value to stack and then restore entire FPU stack
  7429     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
  7430     for (int i = 0; i < num_fpu_regs_in_use; i++) {
  7431       fld_d(Address(rsp, 0));
  7432       addptr(rsp, sizeof(jdouble));
  7435   popa();
  7437   // Come here with result in F-TOS
  7438   bind(done);
  7440   if (tmp != noreg) {
  7441     pop(tmp);
  7446 // Look up the method for a megamorphic invokeinterface call.
  7447 // The target method is determined by <intf_klass, itable_index>.
  7448 // The receiver klass is in recv_klass.
  7449 // On success, the result will be in method_result, and execution falls through.
  7450 // On failure, execution transfers to the given label.
  7451 void MacroAssembler::lookup_interface_method(Register recv_klass,
  7452                                              Register intf_klass,
  7453                                              RegisterOrConstant itable_index,
  7454                                              Register method_result,
  7455                                              Register scan_temp,
  7456                                              Label& L_no_such_interface) {
  7457   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  7458   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  7459          "caller must use same register for non-constant itable index as for method");
  7461   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  7462   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  7463   int itentry_off = itableMethodEntry::method_offset_in_bytes();
  7464   int scan_step   = itableOffsetEntry::size() * wordSize;
  7465   int vte_size    = vtableEntry::size() * wordSize;
  7466   Address::ScaleFactor times_vte_scale = Address::times_ptr;
  7467   assert(vte_size == wordSize, "else adjust times_vte_scale");
  7469   movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));
  7471   // %%% Could store the aligned, prescaled offset in the klassoop.
  7472   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
  7473   if (HeapWordsPerLong > 1) {
  7474     // Round up to align_object_offset boundary
  7475     // see code for instanceKlass::start_of_itable!
  7476     round_to(scan_temp, BytesPerLong);
  7479   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  7480   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
  7481   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
  7483   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  7484   //   if (scan->interface() == intf) {
  7485   //     result = (klass + scan->offset() + itable_index);
  7486   //   }
  7487   // }
  7488   Label search, found_method;
  7490   for (int peel = 1; peel >= 0; peel--) {
  7491     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
  7492     cmpptr(intf_klass, method_result);
  7494     if (peel) {
  7495       jccb(Assembler::equal, found_method);
  7496     } else {
  7497       jccb(Assembler::notEqual, search);
  7498       // (invert the test to fall through to found_method...)
  7501     if (!peel)  break;
  7503     bind(search);
  7505     // Check that the previous entry is non-null.  A null entry means that
  7506     // the receiver class doesn't implement the interface, and wasn't the
  7507     // same as when the caller was compiled.
  7508     testptr(method_result, method_result);
  7509     jcc(Assembler::zero, L_no_such_interface);
  7510     addptr(scan_temp, scan_step);
  7513   bind(found_method);
  7515   // Got a hit.
  7516   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
  7517   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
  7521 void MacroAssembler::check_klass_subtype(Register sub_klass,
  7522                            Register super_klass,
  7523                            Register temp_reg,
  7524                            Label& L_success) {
  7525   Label L_failure;
  7526   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
  7527   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
  7528   bind(L_failure);
  7532 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  7533                                                    Register super_klass,
  7534                                                    Register temp_reg,
  7535                                                    Label* L_success,
  7536                                                    Label* L_failure,
  7537                                                    Label* L_slow_path,
  7538                                         RegisterOrConstant super_check_offset) {
  7539   assert_different_registers(sub_klass, super_klass, temp_reg);
  7540   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
  7541   if (super_check_offset.is_register()) {
  7542     assert_different_registers(sub_klass, super_klass,
  7543                                super_check_offset.as_register());
  7544   } else if (must_load_sco) {
  7545     assert(temp_reg != noreg, "supply either a temp or a register offset");
  7548   Label L_fallthrough;
  7549   int label_nulls = 0;
  7550   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  7551   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  7552   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  7553   assert(label_nulls <= 1, "at most one NULL in the batch");
  7555   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  7556                    Klass::secondary_super_cache_offset_in_bytes());
  7557   int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  7558                     Klass::super_check_offset_offset_in_bytes());
  7559   Address super_check_offset_addr(super_klass, sco_offset);
  7561   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
  7562   // range of a jccb.  If this routine grows larger, reconsider at
  7563   // least some of these.
  7564 #define local_jcc(assembler_cond, label)                                \
  7565   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
  7566   else                             jcc( assembler_cond, label) /*omit semi*/
  7568   // Hacked jmp, which may only be used just before L_fallthrough.
  7569 #define final_jmp(label)                                                \
  7570   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
  7571   else                            jmp(label)                /*omit semi*/
  7573   // If the pointers are equal, we are done (e.g., String[] elements).
  7574   // This self-check enables sharing of secondary supertype arrays among
  7575   // non-primary types such as array-of-interface.  Otherwise, each such
  7576   // type would need its own customized SSA.
  7577   // We move this check to the front of the fast path because many
  7578   // type checks are in fact trivially successful in this manner,
  7579   // so we get a nicely predicted branch right at the start of the check.
  7580   cmpptr(sub_klass, super_klass);
  7581   local_jcc(Assembler::equal, *L_success);
  7583   // Check the supertype display:
  7584   if (must_load_sco) {
  7585     // Positive movl does right thing on LP64.
  7586     movl(temp_reg, super_check_offset_addr);
  7587     super_check_offset = RegisterOrConstant(temp_reg);
  7589   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
  7590   cmpptr(super_klass, super_check_addr); // load displayed supertype
  7592   // This check has worked decisively for primary supers.
  7593   // Secondary supers are sought in the super_cache ('super_cache_addr').
  7594   // (Secondary supers are interfaces and very deeply nested subtypes.)
  7595   // This works in the same check above because of a tricky aliasing
  7596   // between the super_cache and the primary super display elements.
  7597   // (The 'super_check_addr' can address either, as the case requires.)
  7598   // Note that the cache is updated below if it does not help us find
  7599   // what we need immediately.
  7600   // So if it was a primary super, we can just fail immediately.
  7601   // Otherwise, it's the slow path for us (no success at this point).
  7603   if (super_check_offset.is_register()) {
  7604     local_jcc(Assembler::equal, *L_success);
  7605     cmpl(super_check_offset.as_register(), sc_offset);
  7606     if (L_failure == &L_fallthrough) {
  7607       local_jcc(Assembler::equal, *L_slow_path);
  7608     } else {
  7609       local_jcc(Assembler::notEqual, *L_failure);
  7610       final_jmp(*L_slow_path);
  7612   } else if (super_check_offset.as_constant() == sc_offset) {
  7613     // Need a slow path; fast failure is impossible.
  7614     if (L_slow_path == &L_fallthrough) {
  7615       local_jcc(Assembler::equal, *L_success);
  7616     } else {
  7617       local_jcc(Assembler::notEqual, *L_slow_path);
  7618       final_jmp(*L_success);
  7620   } else {
  7621     // No slow path; it's a fast decision.
  7622     if (L_failure == &L_fallthrough) {
  7623       local_jcc(Assembler::equal, *L_success);
  7624     } else {
  7625       local_jcc(Assembler::notEqual, *L_failure);
  7626       final_jmp(*L_success);
  7630   bind(L_fallthrough);
  7632 #undef local_jcc
  7633 #undef final_jmp
  7637 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  7638                                                    Register super_klass,
  7639                                                    Register temp_reg,
  7640                                                    Register temp2_reg,
  7641                                                    Label* L_success,
  7642                                                    Label* L_failure,
  7643                                                    bool set_cond_codes) {
  7644   assert_different_registers(sub_klass, super_klass, temp_reg);
  7645   if (temp2_reg != noreg)
  7646     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
  7647 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
  7649   Label L_fallthrough;
  7650   int label_nulls = 0;
  7651   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  7652   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  7653   assert(label_nulls <= 1, "at most one NULL in the batch");
  7655   // a couple of useful fields in sub_klass:
  7656   int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
  7657                    Klass::secondary_supers_offset_in_bytes());
  7658   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  7659                    Klass::secondary_super_cache_offset_in_bytes());
  7660   Address secondary_supers_addr(sub_klass, ss_offset);
  7661   Address super_cache_addr(     sub_klass, sc_offset);
  7663   // Do a linear scan of the secondary super-klass chain.
  7664   // This code is rarely used, so simplicity is a virtue here.
  7665   // The repne_scan instruction uses fixed registers, which we must spill.
  7666   // Don't worry too much about pre-existing connections with the input regs.
  7668   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
  7669   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
  7671   // Get super_klass value into rax (even if it was in rdi or rcx).
  7672   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
  7673   if (super_klass != rax || UseCompressedOops) {
  7674     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
  7675     mov(rax, super_klass);
  7677   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
  7678   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
  7680 #ifndef PRODUCT
  7681   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  7682   ExternalAddress pst_counter_addr((address) pst_counter);
  7683   NOT_LP64(  incrementl(pst_counter_addr) );
  7684   LP64_ONLY( lea(rcx, pst_counter_addr) );
  7685   LP64_ONLY( incrementl(Address(rcx, 0)) );
  7686 #endif //PRODUCT
  7688   // We will consult the secondary-super array.
  7689   movptr(rdi, secondary_supers_addr);
  7690   // Load the array length.  (Positive movl does right thing on LP64.)
  7691   movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
  7692   // Skip to start of data.
  7693   addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
  7695   // Scan RCX words at [RDI] for an occurrence of RAX.
  7696   // Set NZ/Z based on last compare.
  7697   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
  7698   // not change flags (only scas instruction which is repeated sets flags).
  7699   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
  7700 #ifdef _LP64
  7701   // This part is tricky, as values in supers array could be 32 or 64 bit wide
  7702   // and we store values in objArrays always encoded, thus we need to encode
  7703   // the value of rax before repne.  Note that rax is dead after the repne.
  7704   if (UseCompressedOops) {
  7705     encode_heap_oop_not_null(rax); // Changes flags.
  7706     // The superclass is never null; it would be a basic system error if a null
  7707     // pointer were to sneak in here.  Note that we have already loaded the
  7708     // Klass::super_check_offset from the super_klass in the fast path,
  7709     // so if there is a null in that register, we are already in the afterlife.
  7710     testl(rax,rax); // Set Z = 0
  7711     repne_scanl();
  7712   } else
  7713 #endif // _LP64
  7715     testptr(rax,rax); // Set Z = 0
  7716     repne_scan();
  7718   // Unspill the temp. registers:
  7719   if (pushed_rdi)  pop(rdi);
  7720   if (pushed_rcx)  pop(rcx);
  7721   if (pushed_rax)  pop(rax);
  7723   if (set_cond_codes) {
  7724     // Special hack for the AD files:  rdi is guaranteed non-zero.
  7725     assert(!pushed_rdi, "rdi must be left non-NULL");
  7726     // Also, the condition codes are properly set Z/NZ on succeed/failure.
  7729   if (L_failure == &L_fallthrough)
  7730         jccb(Assembler::notEqual, *L_failure);
  7731   else  jcc(Assembler::notEqual, *L_failure);
  7733   // Success.  Cache the super we found and proceed in triumph.
  7734   movptr(super_cache_addr, super_klass);
  7736   if (L_success != &L_fallthrough) {
  7737     jmp(*L_success);
  7740 #undef IS_A_TEMP
  7742   bind(L_fallthrough);
  7746 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
  7747   ucomisd(dst, as_Address(src));
  7750 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
  7751   ucomiss(dst, as_Address(src));
  7754 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
  7755   if (reachable(src)) {
  7756     xorpd(dst, as_Address(src));
  7757   } else {
  7758     lea(rscratch1, src);
  7759     xorpd(dst, Address(rscratch1, 0));
  7763 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
  7764   if (reachable(src)) {
  7765     xorps(dst, as_Address(src));
  7766   } else {
  7767     lea(rscratch1, src);
  7768     xorps(dst, Address(rscratch1, 0));
  7772 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
  7773   if (VM_Version::supports_cmov()) {
  7774     cmovl(cc, dst, src);
  7775   } else {
  7776     Label L;
  7777     jccb(negate_condition(cc), L);
  7778     movl(dst, src);
  7779     bind(L);
  7783 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
  7784   if (VM_Version::supports_cmov()) {
  7785     cmovl(cc, dst, src);
  7786   } else {
  7787     Label L;
  7788     jccb(negate_condition(cc), L);
  7789     movl(dst, src);
  7790     bind(L);
  7794 void MacroAssembler::verify_oop(Register reg, const char* s) {
  7795   if (!VerifyOops) return;
  7797   // Pass register number to verify_oop_subroutine
  7798   char* b = new char[strlen(s) + 50];
  7799   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
  7800 #ifdef _LP64
  7801   push(rscratch1);                    // save r10, trashed by movptr()
  7802 #endif
  7803   push(rax);                          // save rax,
  7804   push(reg);                          // pass register argument
  7805   ExternalAddress buffer((address) b);
  7806   // avoid using pushptr, as it modifies scratch registers
  7807   // and our contract is not to modify anything
  7808   movptr(rax, buffer.addr());
  7809   push(rax);
  7810   // call indirectly to solve generation ordering problem
  7811   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  7812   call(rax);
  7813   // Caller pops the arguments (oop, message) and restores rax, r10
  7817 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  7818                                                       Register tmp,
  7819                                                       int offset) {
  7820   intptr_t value = *delayed_value_addr;
  7821   if (value != 0)
  7822     return RegisterOrConstant(value + offset);
  7824   // load indirectly to solve generation ordering problem
  7825   movptr(tmp, ExternalAddress((address) delayed_value_addr));
  7827 #ifdef ASSERT
  7828   { Label L;
  7829     testptr(tmp, tmp);
  7830     if (WizardMode) {
  7831       jcc(Assembler::notZero, L);
  7832       char* buf = new char[40];
  7833       sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
  7834       stop(buf);
  7835     } else {
  7836       jccb(Assembler::notZero, L);
  7837       hlt();
  7839     bind(L);
  7841 #endif
  7843   if (offset != 0)
  7844     addptr(tmp, offset);
  7846   return RegisterOrConstant(tmp);
  7850 // registers on entry:
  7851 //  - rax ('check' register): required MethodType
  7852 //  - rcx: method handle
  7853 //  - rdx, rsi, or ?: killable temp
  7854 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
  7855                                               Register temp_reg,
  7856                                               Label& wrong_method_type) {
  7857   Address type_addr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg));
  7858   // compare method type against that of the receiver
  7859   if (UseCompressedOops) {
  7860     load_heap_oop(temp_reg, type_addr);
  7861     cmpptr(mtype_reg, temp_reg);
  7862   } else {
  7863     cmpptr(mtype_reg, type_addr);
  7865   jcc(Assembler::notEqual, wrong_method_type);
  7869 // A method handle has a "vmslots" field which gives the size of its
  7870 // argument list in JVM stack slots.  This field is either located directly
  7871 // in every method handle, or else is indirectly accessed through the
  7872 // method handle's MethodType.  This macro hides the distinction.
  7873 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
  7874                                                 Register temp_reg) {
  7875   assert_different_registers(vmslots_reg, mh_reg, temp_reg);
  7876   // load mh.type.form.vmslots
  7877   if (java_lang_invoke_MethodHandle::vmslots_offset_in_bytes() != 0) {
  7878     // hoist vmslots into every mh to avoid dependent load chain
  7879     movl(vmslots_reg, Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmslots_offset_in_bytes, temp_reg)));
  7880   } else {
  7881     Register temp2_reg = vmslots_reg;
  7882     load_heap_oop(temp2_reg, Address(mh_reg,    delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)));
  7883     load_heap_oop(temp2_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg)));
  7884     movl(vmslots_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)));
  7889 // registers on entry:
  7890 //  - rcx: method handle
  7891 //  - rdx: killable temp (interpreted only)
  7892 //  - rax: killable temp (compiled only)
  7893 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
  7894   assert(mh_reg == rcx, "caller must put MH object in rcx");
  7895   assert_different_registers(mh_reg, temp_reg);
  7897   // pick out the interpreted side of the handler
  7898   // NOTE: vmentry is not an oop!
  7899   movptr(temp_reg, Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg)));
  7901   // off we go...
  7902   jmp(Address(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));
  7904   // for the various stubs which take control at this point,
  7905   // see MethodHandles::generate_method_handle_stub
  7909 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  7910                                          int extra_slot_offset) {
  7911   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  7912   int stackElementSize = Interpreter::stackElementSize;
  7913   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
  7914 #ifdef ASSERT
  7915   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
  7916   assert(offset1 - offset == stackElementSize, "correct arithmetic");
  7917 #endif
  7918   Register             scale_reg    = noreg;
  7919   Address::ScaleFactor scale_factor = Address::no_scale;
  7920   if (arg_slot.is_constant()) {
  7921     offset += arg_slot.as_constant() * stackElementSize;
  7922   } else {
  7923     scale_reg    = arg_slot.as_register();
  7924     scale_factor = Address::times(stackElementSize);
  7926   offset += wordSize;           // return PC is on stack
  7927   return Address(rsp, scale_reg, scale_factor, offset);
  7931 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
  7932   if (!VerifyOops) return;
  7934   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
  7935   // Pass register number to verify_oop_subroutine
  7936   char* b = new char[strlen(s) + 50];
  7937   sprintf(b, "verify_oop_addr: %s", s);
  7939 #ifdef _LP64
  7940   push(rscratch1);                    // save r10, trashed by movptr()
  7941 #endif
  7942   push(rax);                          // save rax,
  7943   // addr may contain rsp so we will have to adjust it based on the push
  7944   // we just did
  7945   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
  7946   // stores rax into addr which is backwards of what was intended.
  7947   if (addr.uses(rsp)) {
  7948     lea(rax, addr);
  7949     pushptr(Address(rax, BytesPerWord));
  7950   } else {
  7951     pushptr(addr);
  7954   ExternalAddress buffer((address) b);
  7955   // pass msg argument
  7956   // avoid using pushptr, as it modifies scratch registers
  7957   // and our contract is not to modify anything
  7958   movptr(rax, buffer.addr());
  7959   push(rax);
  7961   // call indirectly to solve generation ordering problem
  7962   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
  7963   call(rax);
  7964   // Caller pops the arguments (addr, message) and restores rax, r10.
  7967 void MacroAssembler::verify_tlab() {
  7968 #ifdef ASSERT
  7969   if (UseTLAB && VerifyOops) {
  7970     Label next, ok;
  7971     Register t1 = rsi;
  7972     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
  7974     push(t1);
  7975     NOT_LP64(push(thread_reg));
  7976     NOT_LP64(get_thread(thread_reg));
  7978     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7979     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
  7980     jcc(Assembler::aboveEqual, next);
  7981     stop("assert(top >= start)");
  7982     should_not_reach_here();
  7984     bind(next);
  7985     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
  7986     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
  7987     jcc(Assembler::aboveEqual, ok);
  7988     stop("assert(top <= end)");
  7989     should_not_reach_here();
  7991     bind(ok);
  7992     NOT_LP64(pop(thread_reg));
  7993     pop(t1);
  7995 #endif
  7998 class ControlWord {
  7999  public:
  8000   int32_t _value;
  8002   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
  8003   int  precision_control() const       { return  (_value >>  8) & 3      ; }
  8004   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  8005   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  8006   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  8007   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  8008   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  8009   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  8011   void print() const {
  8012     // rounding control
  8013     const char* rc;
  8014     switch (rounding_control()) {
  8015       case 0: rc = "round near"; break;
  8016       case 1: rc = "round down"; break;
  8017       case 2: rc = "round up  "; break;
  8018       case 3: rc = "chop      "; break;
  8019     };
  8020     // precision control
  8021     const char* pc;
  8022     switch (precision_control()) {
  8023       case 0: pc = "24 bits "; break;
  8024       case 1: pc = "reserved"; break;
  8025       case 2: pc = "53 bits "; break;
  8026       case 3: pc = "64 bits "; break;
  8027     };
  8028     // flags
  8029     char f[9];
  8030     f[0] = ' ';
  8031     f[1] = ' ';
  8032     f[2] = (precision   ()) ? 'P' : 'p';
  8033     f[3] = (underflow   ()) ? 'U' : 'u';
  8034     f[4] = (overflow    ()) ? 'O' : 'o';
  8035     f[5] = (zero_divide ()) ? 'Z' : 'z';
  8036     f[6] = (denormalized()) ? 'D' : 'd';
  8037     f[7] = (invalid     ()) ? 'I' : 'i';
  8038     f[8] = '\x0';
  8039     // output
  8040     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
  8043 };
  8045 class StatusWord {
  8046  public:
  8047   int32_t _value;
  8049   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
  8050   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
  8051   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
  8052   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
  8053   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
  8054   int  top() const                     { return  (_value >> 11) & 7      ; }
  8055   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
  8056   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
  8057   bool precision() const               { return ((_value >>  5) & 1) != 0; }
  8058   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
  8059   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
  8060   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
  8061   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
  8062   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
  8064   void print() const {
  8065     // condition codes
  8066     char c[5];
  8067     c[0] = (C3()) ? '3' : '-';
  8068     c[1] = (C2()) ? '2' : '-';
  8069     c[2] = (C1()) ? '1' : '-';
  8070     c[3] = (C0()) ? '0' : '-';
  8071     c[4] = '\x0';
  8072     // flags
  8073     char f[9];
  8074     f[0] = (error_status()) ? 'E' : '-';
  8075     f[1] = (stack_fault ()) ? 'S' : '-';
  8076     f[2] = (precision   ()) ? 'P' : '-';
  8077     f[3] = (underflow   ()) ? 'U' : '-';
  8078     f[4] = (overflow    ()) ? 'O' : '-';
  8079     f[5] = (zero_divide ()) ? 'Z' : '-';
  8080     f[6] = (denormalized()) ? 'D' : '-';
  8081     f[7] = (invalid     ()) ? 'I' : '-';
  8082     f[8] = '\x0';
  8083     // output
  8084     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
  8087 };
  8089 class TagWord {
  8090  public:
  8091   int32_t _value;
  8093   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
  8095   void print() const {
  8096     printf("%04x", _value & 0xFFFF);
  8099 };
  8101 class FPU_Register {
  8102  public:
  8103   int32_t _m0;
  8104   int32_t _m1;
  8105   int16_t _ex;
  8107   bool is_indefinite() const           {
  8108     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
  8111   void print() const {
  8112     char  sign = (_ex < 0) ? '-' : '+';
  8113     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
  8114     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
  8115   };
  8117 };
  8119 class FPU_State {
  8120  public:
  8121   enum {
  8122     register_size       = 10,
  8123     number_of_registers =  8,
  8124     register_mask       =  7
  8125   };
  8127   ControlWord  _control_word;
  8128   StatusWord   _status_word;
  8129   TagWord      _tag_word;
  8130   int32_t      _error_offset;
  8131   int32_t      _error_selector;
  8132   int32_t      _data_offset;
  8133   int32_t      _data_selector;
  8134   int8_t       _register[register_size * number_of_registers];
  8136   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
  8137   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
  8139   const char* tag_as_string(int tag) const {
  8140     switch (tag) {
  8141       case 0: return "valid";
  8142       case 1: return "zero";
  8143       case 2: return "special";
  8144       case 3: return "empty";
  8146     ShouldNotReachHere();
  8147     return NULL;
  8150   void print() const {
  8151     // print computation registers
  8152     { int t = _status_word.top();
  8153       for (int i = 0; i < number_of_registers; i++) {
  8154         int j = (i - t) & register_mask;
  8155         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
  8156         st(j)->print();
  8157         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
  8160     printf("\n");
  8161     // print control registers
  8162     printf("ctrl = "); _control_word.print(); printf("\n");
  8163     printf("stat = "); _status_word .print(); printf("\n");
  8164     printf("tags = "); _tag_word    .print(); printf("\n");
  8167 };
  8169 class Flag_Register {
  8170  public:
  8171   int32_t _value;
  8173   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
  8174   bool direction() const               { return ((_value >> 10) & 1) != 0; }
  8175   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
  8176   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
  8177   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
  8178   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
  8179   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
  8181   void print() const {
  8182     // flags
  8183     char f[8];
  8184     f[0] = (overflow       ()) ? 'O' : '-';
  8185     f[1] = (direction      ()) ? 'D' : '-';
  8186     f[2] = (sign           ()) ? 'S' : '-';
  8187     f[3] = (zero           ()) ? 'Z' : '-';
  8188     f[4] = (auxiliary_carry()) ? 'A' : '-';
  8189     f[5] = (parity         ()) ? 'P' : '-';
  8190     f[6] = (carry          ()) ? 'C' : '-';
  8191     f[7] = '\x0';
  8192     // output
  8193     printf("%08x  flags = %s", _value, f);
  8196 };
  8198 class IU_Register {
  8199  public:
  8200   int32_t _value;
  8202   void print() const {
  8203     printf("%08x  %11d", _value, _value);
  8206 };
  8208 class IU_State {
  8209  public:
  8210   Flag_Register _eflags;
  8211   IU_Register   _rdi;
  8212   IU_Register   _rsi;
  8213   IU_Register   _rbp;
  8214   IU_Register   _rsp;
  8215   IU_Register   _rbx;
  8216   IU_Register   _rdx;
  8217   IU_Register   _rcx;
  8218   IU_Register   _rax;
  8220   void print() const {
  8221     // computation registers
  8222     printf("rax,  = "); _rax.print(); printf("\n");
  8223     printf("rbx,  = "); _rbx.print(); printf("\n");
  8224     printf("rcx  = "); _rcx.print(); printf("\n");
  8225     printf("rdx  = "); _rdx.print(); printf("\n");
  8226     printf("rdi  = "); _rdi.print(); printf("\n");
  8227     printf("rsi  = "); _rsi.print(); printf("\n");
  8228     printf("rbp,  = "); _rbp.print(); printf("\n");
  8229     printf("rsp  = "); _rsp.print(); printf("\n");
  8230     printf("\n");
  8231     // control registers
  8232     printf("flgs = "); _eflags.print(); printf("\n");
  8234 };
  8237 class CPU_State {
  8238  public:
  8239   FPU_State _fpu_state;
  8240   IU_State  _iu_state;
  8242   void print() const {
  8243     printf("--------------------------------------------------\n");
  8244     _iu_state .print();
  8245     printf("\n");
  8246     _fpu_state.print();
  8247     printf("--------------------------------------------------\n");
  8250 };
  8253 static void _print_CPU_state(CPU_State* state) {
  8254   state->print();
  8255 };
  8258 void MacroAssembler::print_CPU_state() {
  8259   push_CPU_state();
  8260   push(rsp);                // pass CPU state
  8261   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
  8262   addptr(rsp, wordSize);       // discard argument
  8263   pop_CPU_state();
  8267 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
  8268   static int counter = 0;
  8269   FPU_State* fs = &state->_fpu_state;
  8270   counter++;
  8271   // For leaf calls, only verify that the top few elements remain empty.
  8272   // We only need 1 empty at the top for C2 code.
  8273   if( stack_depth < 0 ) {
  8274     if( fs->tag_for_st(7) != 3 ) {
  8275       printf("FPR7 not empty\n");
  8276       state->print();
  8277       assert(false, "error");
  8278       return false;
  8280     return true;                // All other stack states do not matter
  8283   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
  8284          "bad FPU control word");
  8286   // compute stack depth
  8287   int i = 0;
  8288   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
  8289   int d = i;
  8290   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
  8291   // verify findings
  8292   if (i != FPU_State::number_of_registers) {
  8293     // stack not contiguous
  8294     printf("%s: stack not contiguous at ST%d\n", s, i);
  8295     state->print();
  8296     assert(false, "error");
  8297     return false;
  8299   // check if computed stack depth corresponds to expected stack depth
  8300   if (stack_depth < 0) {
  8301     // expected stack depth is -stack_depth or less
  8302     if (d > -stack_depth) {
  8303       // too many elements on the stack
  8304       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
  8305       state->print();
  8306       assert(false, "error");
  8307       return false;
  8309   } else {
  8310     // expected stack depth is stack_depth
  8311     if (d != stack_depth) {
  8312       // wrong stack depth
  8313       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
  8314       state->print();
  8315       assert(false, "error");
  8316       return false;
  8319   // everything is cool
  8320   return true;
  8324 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  8325   if (!VerifyFPU) return;
  8326   push_CPU_state();
  8327   push(rsp);                // pass CPU state
  8328   ExternalAddress msg((address) s);
  8329   // pass message string s
  8330   pushptr(msg.addr());
  8331   push(stack_depth);        // pass stack depth
  8332   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
  8333   addptr(rsp, 3 * wordSize);   // discard arguments
  8334   // check for error
  8335   { Label L;
  8336     testl(rax, rax);
  8337     jcc(Assembler::notZero, L);
  8338     int3();                  // break if error condition
  8339     bind(L);
  8341   pop_CPU_state();
  8344 void MacroAssembler::load_klass(Register dst, Register src) {
  8345 #ifdef _LP64
  8346   if (UseCompressedOops) {
  8347     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8348     decode_heap_oop_not_null(dst);
  8349   } else
  8350 #endif
  8351     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8354 void MacroAssembler::load_prototype_header(Register dst, Register src) {
  8355 #ifdef _LP64
  8356   if (UseCompressedOops) {
  8357     assert (Universe::heap() != NULL, "java heap should be initialized");
  8358     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8359     if (Universe::narrow_oop_shift() != 0) {
  8360       assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8361       if (LogMinObjAlignmentInBytes == Address::times_8) {
  8362         movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8363       } else {
  8364         // OK to use shift since we don't need to preserve flags.
  8365         shlq(dst, LogMinObjAlignmentInBytes);
  8366         movq(dst, Address(r12_heapbase, dst, Address::times_1, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8368     } else {
  8369       movq(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8371   } else
  8372 #endif
  8374     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
  8375     movptr(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
  8379 void MacroAssembler::store_klass(Register dst, Register src) {
  8380 #ifdef _LP64
  8381   if (UseCompressedOops) {
  8382     encode_heap_oop_not_null(src);
  8383     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  8384   } else
  8385 #endif
  8386     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
  8389 void MacroAssembler::load_heap_oop(Register dst, Address src) {
  8390 #ifdef _LP64
  8391   if (UseCompressedOops) {
  8392     movl(dst, src);
  8393     decode_heap_oop(dst);
  8394   } else
  8395 #endif
  8396     movptr(dst, src);
  8399 void MacroAssembler::store_heap_oop(Address dst, Register src) {
  8400 #ifdef _LP64
  8401   if (UseCompressedOops) {
  8402     assert(!dst.uses(src), "not enough registers");
  8403     encode_heap_oop(src);
  8404     movl(dst, src);
  8405   } else
  8406 #endif
  8407     movptr(dst, src);
  8410 // Used for storing NULLs.
  8411 void MacroAssembler::store_heap_oop_null(Address dst) {
  8412 #ifdef _LP64
  8413   if (UseCompressedOops) {
  8414     movl(dst, (int32_t)NULL_WORD);
  8415   } else {
  8416     movslq(dst, (int32_t)NULL_WORD);
  8418 #else
  8419   movl(dst, (int32_t)NULL_WORD);
  8420 #endif
  8423 #ifdef _LP64
  8424 void MacroAssembler::store_klass_gap(Register dst, Register src) {
  8425   if (UseCompressedOops) {
  8426     // Store to klass gap in destination
  8427     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
  8431 #ifdef ASSERT
  8432 void MacroAssembler::verify_heapbase(const char* msg) {
  8433   assert (UseCompressedOops, "should be compressed");
  8434   assert (Universe::heap() != NULL, "java heap should be initialized");
  8435   if (CheckCompressedOops) {
  8436     Label ok;
  8437     push(rscratch1); // cmpptr trashes rscratch1
  8438     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  8439     jcc(Assembler::equal, ok);
  8440     stop(msg);
  8441     bind(ok);
  8442     pop(rscratch1);
  8445 #endif
  8447 // Algorithm must match oop.inline.hpp encode_heap_oop.
  8448 void MacroAssembler::encode_heap_oop(Register r) {
  8449 #ifdef ASSERT
  8450   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
  8451 #endif
  8452   verify_oop(r, "broken oop in encode_heap_oop");
  8453   if (Universe::narrow_oop_base() == NULL) {
  8454     if (Universe::narrow_oop_shift() != 0) {
  8455       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8456       shrq(r, LogMinObjAlignmentInBytes);
  8458     return;
  8460   testq(r, r);
  8461   cmovq(Assembler::equal, r, r12_heapbase);
  8462   subq(r, r12_heapbase);
  8463   shrq(r, LogMinObjAlignmentInBytes);
  8466 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  8467 #ifdef ASSERT
  8468   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
  8469   if (CheckCompressedOops) {
  8470     Label ok;
  8471     testq(r, r);
  8472     jcc(Assembler::notEqual, ok);
  8473     stop("null oop passed to encode_heap_oop_not_null");
  8474     bind(ok);
  8476 #endif
  8477   verify_oop(r, "broken oop in encode_heap_oop_not_null");
  8478   if (Universe::narrow_oop_base() != NULL) {
  8479     subq(r, r12_heapbase);
  8481   if (Universe::narrow_oop_shift() != 0) {
  8482     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8483     shrq(r, LogMinObjAlignmentInBytes);
  8487 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
  8488 #ifdef ASSERT
  8489   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
  8490   if (CheckCompressedOops) {
  8491     Label ok;
  8492     testq(src, src);
  8493     jcc(Assembler::notEqual, ok);
  8494     stop("null oop passed to encode_heap_oop_not_null2");
  8495     bind(ok);
  8497 #endif
  8498   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
  8499   if (dst != src) {
  8500     movq(dst, src);
  8502   if (Universe::narrow_oop_base() != NULL) {
  8503     subq(dst, r12_heapbase);
  8505   if (Universe::narrow_oop_shift() != 0) {
  8506     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8507     shrq(dst, LogMinObjAlignmentInBytes);
  8511 void  MacroAssembler::decode_heap_oop(Register r) {
  8512 #ifdef ASSERT
  8513   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
  8514 #endif
  8515   if (Universe::narrow_oop_base() == NULL) {
  8516     if (Universe::narrow_oop_shift() != 0) {
  8517       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8518       shlq(r, LogMinObjAlignmentInBytes);
  8520   } else {
  8521     Label done;
  8522     shlq(r, LogMinObjAlignmentInBytes);
  8523     jccb(Assembler::equal, done);
  8524     addq(r, r12_heapbase);
  8525     bind(done);
  8527   verify_oop(r, "broken oop in decode_heap_oop");
  8530 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  8531   // Note: it will change flags
  8532   assert (UseCompressedOops, "should only be used for compressed headers");
  8533   assert (Universe::heap() != NULL, "java heap should be initialized");
  8534   // Cannot assert, unverified entry point counts instructions (see .ad file)
  8535   // vtableStubs also counts instructions in pd_code_size_limit.
  8536   // Also do not verify_oop as this is called by verify_oop.
  8537   if (Universe::narrow_oop_shift() != 0) {
  8538     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8539     shlq(r, LogMinObjAlignmentInBytes);
  8540     if (Universe::narrow_oop_base() != NULL) {
  8541       addq(r, r12_heapbase);
  8543   } else {
  8544     assert (Universe::narrow_oop_base() == NULL, "sanity");
  8548 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
  8549   // Note: it will change flags
  8550   assert (UseCompressedOops, "should only be used for compressed headers");
  8551   assert (Universe::heap() != NULL, "java heap should be initialized");
  8552   // Cannot assert, unverified entry point counts instructions (see .ad file)
  8553   // vtableStubs also counts instructions in pd_code_size_limit.
  8554   // Also do not verify_oop as this is called by verify_oop.
  8555   if (Universe::narrow_oop_shift() != 0) {
  8556     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  8557     if (LogMinObjAlignmentInBytes == Address::times_8) {
  8558       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
  8559     } else {
  8560       if (dst != src) {
  8561         movq(dst, src);
  8563       shlq(dst, LogMinObjAlignmentInBytes);
  8564       if (Universe::narrow_oop_base() != NULL) {
  8565         addq(dst, r12_heapbase);
  8568   } else {
  8569     assert (Universe::narrow_oop_base() == NULL, "sanity");
  8570     if (dst != src) {
  8571       movq(dst, src);
  8576 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
  8577   assert (UseCompressedOops, "should only be used for compressed headers");
  8578   assert (Universe::heap() != NULL, "java heap should be initialized");
  8579   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8580   int oop_index = oop_recorder()->find_index(obj);
  8581   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8582   mov_narrow_oop(dst, oop_index, rspec);
  8585 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
  8586   assert (UseCompressedOops, "should only be used for compressed headers");
  8587   assert (Universe::heap() != NULL, "java heap should be initialized");
  8588   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8589   int oop_index = oop_recorder()->find_index(obj);
  8590   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8591   mov_narrow_oop(dst, oop_index, rspec);
  8594 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
  8595   assert (UseCompressedOops, "should only be used for compressed headers");
  8596   assert (Universe::heap() != NULL, "java heap should be initialized");
  8597   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8598   int oop_index = oop_recorder()->find_index(obj);
  8599   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8600   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  8603 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
  8604   assert (UseCompressedOops, "should only be used for compressed headers");
  8605   assert (Universe::heap() != NULL, "java heap should be initialized");
  8606   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
  8607   int oop_index = oop_recorder()->find_index(obj);
  8608   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  8609   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
  8612 void MacroAssembler::reinit_heapbase() {
  8613   if (UseCompressedOops) {
  8614     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
  8617 #endif // _LP64
  8619 // IndexOf for constant substrings with size >= 8 chars
  8620 // which don't need to be loaded through stack.
  8621 void MacroAssembler::string_indexofC8(Register str1, Register str2,
  8622                                       Register cnt1, Register cnt2,
  8623                                       int int_cnt2,  Register result,
  8624                                       XMMRegister vec, Register tmp) {
  8625   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  8627   // This method uses pcmpestri inxtruction with bound registers
  8628   //   inputs:
  8629   //     xmm - substring
  8630   //     rax - substring length (elements count)
  8631   //     mem - scanned string
  8632   //     rdx - string length (elements count)
  8633   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  8634   //   outputs:
  8635   //     rcx - matched index in string
  8636   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  8638   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
  8639         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
  8640         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
  8642   // Note, inline_string_indexOf() generates checks:
  8643   // if (substr.count > string.count) return -1;
  8644   // if (substr.count == 0) return 0;
  8645   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
  8647   // Load substring.
  8648   movdqu(vec, Address(str2, 0));
  8649   movl(cnt2, int_cnt2);
  8650   movptr(result, str1); // string addr
  8652   if (int_cnt2 > 8) {
  8653     jmpb(SCAN_TO_SUBSTR);
  8655     // Reload substr for rescan, this code
  8656     // is executed only for large substrings (> 8 chars)
  8657     bind(RELOAD_SUBSTR);
  8658     movdqu(vec, Address(str2, 0));
  8659     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
  8661     bind(RELOAD_STR);
  8662     // We came here after the beginning of the substring was
  8663     // matched but the rest of it was not so we need to search
  8664     // again. Start from the next element after the previous match.
  8666     // cnt2 is number of substring reminding elements and
  8667     // cnt1 is number of string reminding elements when cmp failed.
  8668     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
  8669     subl(cnt1, cnt2);
  8670     addl(cnt1, int_cnt2);
  8671     movl(cnt2, int_cnt2); // Now restore cnt2
  8673     decrementl(cnt1);     // Shift to next element
  8674     cmpl(cnt1, cnt2);
  8675     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  8677     addptr(result, 2);
  8679   } // (int_cnt2 > 8)
  8681   // Scan string for start of substr in 16-byte vectors
  8682   bind(SCAN_TO_SUBSTR);
  8683   pcmpestri(vec, Address(result, 0), 0x0d);
  8684   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  8685   subl(cnt1, 8);
  8686   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  8687   cmpl(cnt1, cnt2);
  8688   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  8689   addptr(result, 16);
  8690   jmpb(SCAN_TO_SUBSTR);
  8692   // Found a potential substr
  8693   bind(FOUND_CANDIDATE);
  8694   // Matched whole vector if first element matched (tmp(rcx) == 0).
  8695   if (int_cnt2 == 8) {
  8696     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
  8697   } else { // int_cnt2 > 8
  8698     jccb(Assembler::overflow, FOUND_SUBSTR);
  8700   // After pcmpestri tmp(rcx) contains matched element index
  8701   // Compute start addr of substr
  8702   lea(result, Address(result, tmp, Address::times_2));
  8704   // Make sure string is still long enough
  8705   subl(cnt1, tmp);
  8706   cmpl(cnt1, cnt2);
  8707   if (int_cnt2 == 8) {
  8708     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  8709   } else { // int_cnt2 > 8
  8710     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
  8712   // Left less then substring.
  8714   bind(RET_NOT_FOUND);
  8715   movl(result, -1);
  8716   jmpb(EXIT);
  8718   if (int_cnt2 > 8) {
  8719     // This code is optimized for the case when whole substring
  8720     // is matched if its head is matched.
  8721     bind(MATCH_SUBSTR_HEAD);
  8722     pcmpestri(vec, Address(result, 0), 0x0d);
  8723     // Reload only string if does not match
  8724     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
  8726     Label CONT_SCAN_SUBSTR;
  8727     // Compare the rest of substring (> 8 chars).
  8728     bind(FOUND_SUBSTR);
  8729     // First 8 chars are already matched.
  8730     negptr(cnt2);
  8731     addptr(cnt2, 8);
  8733     bind(SCAN_SUBSTR);
  8734     subl(cnt1, 8);
  8735     cmpl(cnt2, -8); // Do not read beyond substring
  8736     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
  8737     // Back-up strings to avoid reading beyond substring:
  8738     // cnt1 = cnt1 - cnt2 + 8
  8739     addl(cnt1, cnt2); // cnt2 is negative
  8740     addl(cnt1, 8);
  8741     movl(cnt2, 8); negptr(cnt2);
  8742     bind(CONT_SCAN_SUBSTR);
  8743     if (int_cnt2 < (int)G) {
  8744       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
  8745       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
  8746     } else {
  8747       // calculate index in register to avoid integer overflow (int_cnt2*2)
  8748       movl(tmp, int_cnt2);
  8749       addptr(tmp, cnt2);
  8750       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
  8751       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
  8753     // Need to reload strings pointers if not matched whole vector
  8754     jccb(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  8755     addptr(cnt2, 8);
  8756     jccb(Assembler::negative, SCAN_SUBSTR);
  8757     // Fall through if found full substring
  8759   } // (int_cnt2 > 8)
  8761   bind(RET_FOUND);
  8762   // Found result if we matched full small substring.
  8763   // Compute substr offset
  8764   subptr(result, str1);
  8765   shrl(result, 1); // index
  8766   bind(EXIT);
  8768 } // string_indexofC8
  8770 // Small strings are loaded through stack if they cross page boundary.
  8771 void MacroAssembler::string_indexof(Register str1, Register str2,
  8772                                     Register cnt1, Register cnt2,
  8773                                     int int_cnt2,  Register result,
  8774                                     XMMRegister vec, Register tmp) {
  8775   assert(UseSSE42Intrinsics, "SSE4.2 is required");
  8776   //
  8777   // int_cnt2 is length of small (< 8 chars) constant substring
  8778   // or (-1) for non constant substring in which case its length
  8779   // is in cnt2 register.
  8780   //
  8781   // Note, inline_string_indexOf() generates checks:
  8782   // if (substr.count > string.count) return -1;
  8783   // if (substr.count == 0) return 0;
  8784   //
  8785   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
  8787   // This method uses pcmpestri inxtruction with bound registers
  8788   //   inputs:
  8789   //     xmm - substring
  8790   //     rax - substring length (elements count)
  8791   //     mem - scanned string
  8792   //     rdx - string length (elements count)
  8793   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
  8794   //   outputs:
  8795   //     rcx - matched index in string
  8796   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  8798   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
  8799         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
  8800         FOUND_CANDIDATE;
  8802   { //========================================================
  8803     // We don't know where these strings are located
  8804     // and we can't read beyond them. Load them through stack.
  8805     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
  8807     movptr(tmp, rsp); // save old SP
  8809     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
  8810       if (int_cnt2 == 1) {  // One char
  8811         load_unsigned_short(result, Address(str2, 0));
  8812         movdl(vec, result); // move 32 bits
  8813       } else if (int_cnt2 == 2) { // Two chars
  8814         movdl(vec, Address(str2, 0)); // move 32 bits
  8815       } else if (int_cnt2 == 4) { // Four chars
  8816         movq(vec, Address(str2, 0));  // move 64 bits
  8817       } else { // cnt2 = { 3, 5, 6, 7 }
  8818         // Array header size is 12 bytes in 32-bit VM
  8819         // + 6 bytes for 3 chars == 18 bytes,
  8820         // enough space to load vec and shift.
  8821         assert(HeapWordSize*typeArrayKlass::header_size() >= 12,"sanity");
  8822         movdqu(vec, Address(str2, (int_cnt2*2)-16));
  8823         psrldq(vec, 16-(int_cnt2*2));
  8825     } else { // not constant substring
  8826       cmpl(cnt2, 8);
  8827       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
  8829       // We can read beyond string if srt+16 does not cross page boundary
  8830       // since heaps are aligned and mapped by pages.
  8831       assert(os::vm_page_size() < (int)G, "default page should be small");
  8832       movl(result, str2); // We need only low 32 bits
  8833       andl(result, (os::vm_page_size()-1));
  8834       cmpl(result, (os::vm_page_size()-16));
  8835       jccb(Assembler::belowEqual, CHECK_STR);
  8837       // Move small strings to stack to allow load 16 bytes into vec.
  8838       subptr(rsp, 16);
  8839       int stk_offset = wordSize-2;
  8840       push(cnt2);
  8842       bind(COPY_SUBSTR);
  8843       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
  8844       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  8845       decrement(cnt2);
  8846       jccb(Assembler::notZero, COPY_SUBSTR);
  8848       pop(cnt2);
  8849       movptr(str2, rsp);  // New substring address
  8850     } // non constant
  8852     bind(CHECK_STR);
  8853     cmpl(cnt1, 8);
  8854     jccb(Assembler::aboveEqual, BIG_STRINGS);
  8856     // Check cross page boundary.
  8857     movl(result, str1); // We need only low 32 bits
  8858     andl(result, (os::vm_page_size()-1));
  8859     cmpl(result, (os::vm_page_size()-16));
  8860     jccb(Assembler::belowEqual, BIG_STRINGS);
  8862     subptr(rsp, 16);
  8863     int stk_offset = -2;
  8864     if (int_cnt2 < 0) { // not constant
  8865       push(cnt2);
  8866       stk_offset += wordSize;
  8868     movl(cnt2, cnt1);
  8870     bind(COPY_STR);
  8871     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
  8872     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
  8873     decrement(cnt2);
  8874     jccb(Assembler::notZero, COPY_STR);
  8876     if (int_cnt2 < 0) { // not constant
  8877       pop(cnt2);
  8879     movptr(str1, rsp);  // New string address
  8881     bind(BIG_STRINGS);
  8882     // Load substring.
  8883     if (int_cnt2 < 0) { // -1
  8884       movdqu(vec, Address(str2, 0));
  8885       push(cnt2);       // substr count
  8886       push(str2);       // substr addr
  8887       push(str1);       // string addr
  8888     } else {
  8889       // Small (< 8 chars) constant substrings are loaded already.
  8890       movl(cnt2, int_cnt2);
  8892     push(tmp);  // original SP
  8894   } // Finished loading
  8896   //========================================================
  8897   // Start search
  8898   //
  8900   movptr(result, str1); // string addr
  8902   if (int_cnt2  < 0) {  // Only for non constant substring
  8903     jmpb(SCAN_TO_SUBSTR);
  8905     // SP saved at sp+0
  8906     // String saved at sp+1*wordSize
  8907     // Substr saved at sp+2*wordSize
  8908     // Substr count saved at sp+3*wordSize
  8910     // Reload substr for rescan, this code
  8911     // is executed only for large substrings (> 8 chars)
  8912     bind(RELOAD_SUBSTR);
  8913     movptr(str2, Address(rsp, 2*wordSize));
  8914     movl(cnt2, Address(rsp, 3*wordSize));
  8915     movdqu(vec, Address(str2, 0));
  8916     // We came here after the beginning of the substring was
  8917     // matched but the rest of it was not so we need to search
  8918     // again. Start from the next element after the previous match.
  8919     subptr(str1, result); // Restore counter
  8920     shrl(str1, 1);
  8921     addl(cnt1, str1);
  8922     decrementl(cnt1);   // Shift to next element
  8923     cmpl(cnt1, cnt2);
  8924     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  8926     addptr(result, 2);
  8927   } // non constant
  8929   // Scan string for start of substr in 16-byte vectors
  8930   bind(SCAN_TO_SUBSTR);
  8931   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
  8932   pcmpestri(vec, Address(result, 0), 0x0d);
  8933   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
  8934   subl(cnt1, 8);
  8935   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
  8936   cmpl(cnt1, cnt2);
  8937   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
  8938   addptr(result, 16);
  8940   bind(ADJUST_STR);
  8941   cmpl(cnt1, 8); // Do not read beyond string
  8942   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
  8943   // Back-up string to avoid reading beyond string.
  8944   lea(result, Address(result, cnt1, Address::times_2, -16));
  8945   movl(cnt1, 8);
  8946   jmpb(SCAN_TO_SUBSTR);
  8948   // Found a potential substr
  8949   bind(FOUND_CANDIDATE);
  8950   // After pcmpestri tmp(rcx) contains matched element index
  8952   // Make sure string is still long enough
  8953   subl(cnt1, tmp);
  8954   cmpl(cnt1, cnt2);
  8955   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
  8956   // Left less then substring.
  8958   bind(RET_NOT_FOUND);
  8959   movl(result, -1);
  8960   jmpb(CLEANUP);
  8962   bind(FOUND_SUBSTR);
  8963   // Compute start addr of substr
  8964   lea(result, Address(result, tmp, Address::times_2));
  8966   if (int_cnt2 > 0) { // Constant substring
  8967     // Repeat search for small substring (< 8 chars)
  8968     // from new point without reloading substring.
  8969     // Have to check that we don't read beyond string.
  8970     cmpl(tmp, 8-int_cnt2);
  8971     jccb(Assembler::greater, ADJUST_STR);
  8972     // Fall through if matched whole substring.
  8973   } else { // non constant
  8974     assert(int_cnt2 == -1, "should be != 0");
  8976     addl(tmp, cnt2);
  8977     // Found result if we matched whole substring.
  8978     cmpl(tmp, 8);
  8979     jccb(Assembler::lessEqual, RET_FOUND);
  8981     // Repeat search for small substring (<= 8 chars)
  8982     // from new point 'str1' without reloading substring.
  8983     cmpl(cnt2, 8);
  8984     // Have to check that we don't read beyond string.
  8985     jccb(Assembler::lessEqual, ADJUST_STR);
  8987     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
  8988     // Compare the rest of substring (> 8 chars).
  8989     movptr(str1, result);
  8991     cmpl(tmp, cnt2);
  8992     // First 8 chars are already matched.
  8993     jccb(Assembler::equal, CHECK_NEXT);
  8995     bind(SCAN_SUBSTR);
  8996     pcmpestri(vec, Address(str1, 0), 0x0d);
  8997     // Need to reload strings pointers if not matched whole vector
  8998     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
  9000     bind(CHECK_NEXT);
  9001     subl(cnt2, 8);
  9002     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
  9003     addptr(str1, 16);
  9004     addptr(str2, 16);
  9005     subl(cnt1, 8);
  9006     cmpl(cnt2, 8); // Do not read beyond substring
  9007     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
  9008     // Back-up strings to avoid reading beyond substring.
  9009     lea(str2, Address(str2, cnt2, Address::times_2, -16));
  9010     lea(str1, Address(str1, cnt2, Address::times_2, -16));
  9011     subl(cnt1, cnt2);
  9012     movl(cnt2, 8);
  9013     addl(cnt1, 8);
  9014     bind(CONT_SCAN_SUBSTR);
  9015     movdqu(vec, Address(str2, 0));
  9016     jmpb(SCAN_SUBSTR);
  9018     bind(RET_FOUND_LONG);
  9019     movptr(str1, Address(rsp, wordSize));
  9020   } // non constant
  9022   bind(RET_FOUND);
  9023   // Compute substr offset
  9024   subptr(result, str1);
  9025   shrl(result, 1); // index
  9027   bind(CLEANUP);
  9028   pop(rsp); // restore SP
  9030 } // string_indexof
  9032 // Compare strings.
  9033 void MacroAssembler::string_compare(Register str1, Register str2,
  9034                                     Register cnt1, Register cnt2, Register result,
  9035                                     XMMRegister vec1) {
  9036   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
  9038   // Compute the minimum of the string lengths and the
  9039   // difference of the string lengths (stack).
  9040   // Do the conditional move stuff
  9041   movl(result, cnt1);
  9042   subl(cnt1, cnt2);
  9043   push(cnt1);
  9044   cmov32(Assembler::lessEqual, cnt2, result);
  9046   // Is the minimum length zero?
  9047   testl(cnt2, cnt2);
  9048   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  9050   // Load first characters
  9051   load_unsigned_short(result, Address(str1, 0));
  9052   load_unsigned_short(cnt1, Address(str2, 0));
  9054   // Compare first characters
  9055   subl(result, cnt1);
  9056   jcc(Assembler::notZero,  POP_LABEL);
  9057   decrementl(cnt2);
  9058   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
  9061     // Check after comparing first character to see if strings are equivalent
  9062     Label LSkip2;
  9063     // Check if the strings start at same location
  9064     cmpptr(str1, str2);
  9065     jccb(Assembler::notEqual, LSkip2);
  9067     // Check if the length difference is zero (from stack)
  9068     cmpl(Address(rsp, 0), 0x0);
  9069     jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
  9071     // Strings might not be equivalent
  9072     bind(LSkip2);
  9075   Address::ScaleFactor scale = Address::times_2;
  9076   int stride = 8;
  9078   // Advance to next element
  9079   addptr(str1, 16/stride);
  9080   addptr(str2, 16/stride);
  9082   if (UseSSE42Intrinsics) {
  9083     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
  9084     int pcmpmask = 0x19;
  9085     // Setup to compare 16-byte vectors
  9086     movl(result, cnt2);
  9087     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
  9088     jccb(Assembler::zero, COMPARE_TAIL);
  9090     lea(str1, Address(str1, result, scale));
  9091     lea(str2, Address(str2, result, scale));
  9092     negptr(result);
  9094     // pcmpestri
  9095     //   inputs:
  9096     //     vec1- substring
  9097     //     rax - negative string length (elements count)
  9098     //     mem - scaned string
  9099     //     rdx - string length (elements count)
  9100     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
  9101     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
  9102     //   outputs:
  9103     //     rcx - first mismatched element index
  9104     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
  9106     bind(COMPARE_WIDE_VECTORS);
  9107     movdqu(vec1, Address(str1, result, scale));
  9108     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  9109     // After pcmpestri cnt1(rcx) contains mismatched element index
  9111     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
  9112     addptr(result, stride);
  9113     subptr(cnt2, stride);
  9114     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
  9116     // compare wide vectors tail
  9117     testl(result, result);
  9118     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
  9120     movl(cnt2, stride);
  9121     movl(result, stride);
  9122     negptr(result);
  9123     movdqu(vec1, Address(str1, result, scale));
  9124     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
  9125     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
  9127     // Mismatched characters in the vectors
  9128     bind(VECTOR_NOT_EQUAL);
  9129     addptr(result, cnt1);
  9130     movptr(cnt2, result);
  9131     load_unsigned_short(result, Address(str1, cnt2, scale));
  9132     load_unsigned_short(cnt1, Address(str2, cnt2, scale));
  9133     subl(result, cnt1);
  9134     jmpb(POP_LABEL);
  9136     bind(COMPARE_TAIL); // limit is zero
  9137     movl(cnt2, result);
  9138     // Fallthru to tail compare
  9141   // Shift str2 and str1 to the end of the arrays, negate min
  9142   lea(str1, Address(str1, cnt2, scale, 0));
  9143   lea(str2, Address(str2, cnt2, scale, 0));
  9144   negptr(cnt2);
  9146   // Compare the rest of the elements
  9147   bind(WHILE_HEAD_LABEL);
  9148   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
  9149   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
  9150   subl(result, cnt1);
  9151   jccb(Assembler::notZero, POP_LABEL);
  9152   increment(cnt2);
  9153   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
  9155   // Strings are equal up to min length.  Return the length difference.
  9156   bind(LENGTH_DIFF_LABEL);
  9157   pop(result);
  9158   jmpb(DONE_LABEL);
  9160   // Discard the stored length difference
  9161   bind(POP_LABEL);
  9162   pop(cnt1);
  9164   // That's it
  9165   bind(DONE_LABEL);
  9168 // Compare char[] arrays aligned to 4 bytes or substrings.
  9169 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  9170                                         Register limit, Register result, Register chr,
  9171                                         XMMRegister vec1, XMMRegister vec2) {
  9172   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
  9174   int length_offset  = arrayOopDesc::length_offset_in_bytes();
  9175   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
  9177   // Check the input args
  9178   cmpptr(ary1, ary2);
  9179   jcc(Assembler::equal, TRUE_LABEL);
  9181   if (is_array_equ) {
  9182     // Need additional checks for arrays_equals.
  9183     testptr(ary1, ary1);
  9184     jcc(Assembler::zero, FALSE_LABEL);
  9185     testptr(ary2, ary2);
  9186     jcc(Assembler::zero, FALSE_LABEL);
  9188     // Check the lengths
  9189     movl(limit, Address(ary1, length_offset));
  9190     cmpl(limit, Address(ary2, length_offset));
  9191     jcc(Assembler::notEqual, FALSE_LABEL);
  9194   // count == 0
  9195   testl(limit, limit);
  9196   jcc(Assembler::zero, TRUE_LABEL);
  9198   if (is_array_equ) {
  9199     // Load array address
  9200     lea(ary1, Address(ary1, base_offset));
  9201     lea(ary2, Address(ary2, base_offset));
  9204   shll(limit, 1);      // byte count != 0
  9205   movl(result, limit); // copy
  9207   if (UseSSE42Intrinsics) {
  9208     // With SSE4.2, use double quad vector compare
  9209     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
  9211     // Compare 16-byte vectors
  9212     andl(result, 0x0000000e);  //   tail count (in bytes)
  9213     andl(limit, 0xfffffff0);   // vector count (in bytes)
  9214     jccb(Assembler::zero, COMPARE_TAIL);
  9216     lea(ary1, Address(ary1, limit, Address::times_1));
  9217     lea(ary2, Address(ary2, limit, Address::times_1));
  9218     negptr(limit);
  9220     bind(COMPARE_WIDE_VECTORS);
  9221     movdqu(vec1, Address(ary1, limit, Address::times_1));
  9222     movdqu(vec2, Address(ary2, limit, Address::times_1));
  9223     pxor(vec1, vec2);
  9225     ptest(vec1, vec1);
  9226     jccb(Assembler::notZero, FALSE_LABEL);
  9227     addptr(limit, 16);
  9228     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
  9230     testl(result, result);
  9231     jccb(Assembler::zero, TRUE_LABEL);
  9233     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
  9234     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
  9235     pxor(vec1, vec2);
  9237     ptest(vec1, vec1);
  9238     jccb(Assembler::notZero, FALSE_LABEL);
  9239     jmpb(TRUE_LABEL);
  9241     bind(COMPARE_TAIL); // limit is zero
  9242     movl(limit, result);
  9243     // Fallthru to tail compare
  9246   // Compare 4-byte vectors
  9247   andl(limit, 0xfffffffc); // vector count (in bytes)
  9248   jccb(Assembler::zero, COMPARE_CHAR);
  9250   lea(ary1, Address(ary1, limit, Address::times_1));
  9251   lea(ary2, Address(ary2, limit, Address::times_1));
  9252   negptr(limit);
  9254   bind(COMPARE_VECTORS);
  9255   movl(chr, Address(ary1, limit, Address::times_1));
  9256   cmpl(chr, Address(ary2, limit, Address::times_1));
  9257   jccb(Assembler::notEqual, FALSE_LABEL);
  9258   addptr(limit, 4);
  9259   jcc(Assembler::notZero, COMPARE_VECTORS);
  9261   // Compare trailing char (final 2 bytes), if any
  9262   bind(COMPARE_CHAR);
  9263   testl(result, 0x2);   // tail  char
  9264   jccb(Assembler::zero, TRUE_LABEL);
  9265   load_unsigned_short(chr, Address(ary1, 0));
  9266   load_unsigned_short(limit, Address(ary2, 0));
  9267   cmpl(chr, limit);
  9268   jccb(Assembler::notEqual, FALSE_LABEL);
  9270   bind(TRUE_LABEL);
  9271   movl(result, 1);   // return true
  9272   jmpb(DONE);
  9274   bind(FALSE_LABEL);
  9275   xorl(result, result); // return false
  9277   // That's it
  9278   bind(DONE);
  9281 #ifdef PRODUCT
  9282 #define BLOCK_COMMENT(str) /* nothing */
  9283 #else
  9284 #define BLOCK_COMMENT(str) block_comment(str)
  9285 #endif
  9287 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  9288 void MacroAssembler::generate_fill(BasicType t, bool aligned,
  9289                                    Register to, Register value, Register count,
  9290                                    Register rtmp, XMMRegister xtmp) {
  9291   assert_different_registers(to, value, count, rtmp);
  9292   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
  9293   Label L_fill_2_bytes, L_fill_4_bytes;
  9295   int shift = -1;
  9296   switch (t) {
  9297     case T_BYTE:
  9298       shift = 2;
  9299       break;
  9300     case T_SHORT:
  9301       shift = 1;
  9302       break;
  9303     case T_INT:
  9304       shift = 0;
  9305       break;
  9306     default: ShouldNotReachHere();
  9309   if (t == T_BYTE) {
  9310     andl(value, 0xff);
  9311     movl(rtmp, value);
  9312     shll(rtmp, 8);
  9313     orl(value, rtmp);
  9315   if (t == T_SHORT) {
  9316     andl(value, 0xffff);
  9318   if (t == T_BYTE || t == T_SHORT) {
  9319     movl(rtmp, value);
  9320     shll(rtmp, 16);
  9321     orl(value, rtmp);
  9324   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
  9325   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
  9326   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
  9327     // align source address at 4 bytes address boundary
  9328     if (t == T_BYTE) {
  9329       // One byte misalignment happens only for byte arrays
  9330       testptr(to, 1);
  9331       jccb(Assembler::zero, L_skip_align1);
  9332       movb(Address(to, 0), value);
  9333       increment(to);
  9334       decrement(count);
  9335       BIND(L_skip_align1);
  9337     // Two bytes misalignment happens only for byte and short (char) arrays
  9338     testptr(to, 2);
  9339     jccb(Assembler::zero, L_skip_align2);
  9340     movw(Address(to, 0), value);
  9341     addptr(to, 2);
  9342     subl(count, 1<<(shift-1));
  9343     BIND(L_skip_align2);
  9345   if (UseSSE < 2) {
  9346     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  9347     // Fill 32-byte chunks
  9348     subl(count, 8 << shift);
  9349     jcc(Assembler::less, L_check_fill_8_bytes);
  9350     align(16);
  9352     BIND(L_fill_32_bytes_loop);
  9354     for (int i = 0; i < 32; i += 4) {
  9355       movl(Address(to, i), value);
  9358     addptr(to, 32);
  9359     subl(count, 8 << shift);
  9360     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  9361     BIND(L_check_fill_8_bytes);
  9362     addl(count, 8 << shift);
  9363     jccb(Assembler::zero, L_exit);
  9364     jmpb(L_fill_8_bytes);
  9366     //
  9367     // length is too short, just fill qwords
  9368     //
  9369     BIND(L_fill_8_bytes_loop);
  9370     movl(Address(to, 0), value);
  9371     movl(Address(to, 4), value);
  9372     addptr(to, 8);
  9373     BIND(L_fill_8_bytes);
  9374     subl(count, 1 << (shift + 1));
  9375     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  9376     // fall through to fill 4 bytes
  9377   } else {
  9378     Label L_fill_32_bytes;
  9379     if (!UseUnalignedLoadStores) {
  9380       // align to 8 bytes, we know we are 4 byte aligned to start
  9381       testptr(to, 4);
  9382       jccb(Assembler::zero, L_fill_32_bytes);
  9383       movl(Address(to, 0), value);
  9384       addptr(to, 4);
  9385       subl(count, 1<<shift);
  9387     BIND(L_fill_32_bytes);
  9389       assert( UseSSE >= 2, "supported cpu only" );
  9390       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
  9391       // Fill 32-byte chunks
  9392       movdl(xtmp, value);
  9393       pshufd(xtmp, xtmp, 0);
  9395       subl(count, 8 << shift);
  9396       jcc(Assembler::less, L_check_fill_8_bytes);
  9397       align(16);
  9399       BIND(L_fill_32_bytes_loop);
  9401       if (UseUnalignedLoadStores) {
  9402         movdqu(Address(to, 0), xtmp);
  9403         movdqu(Address(to, 16), xtmp);
  9404       } else {
  9405         movq(Address(to, 0), xtmp);
  9406         movq(Address(to, 8), xtmp);
  9407         movq(Address(to, 16), xtmp);
  9408         movq(Address(to, 24), xtmp);
  9411       addptr(to, 32);
  9412       subl(count, 8 << shift);
  9413       jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
  9414       BIND(L_check_fill_8_bytes);
  9415       addl(count, 8 << shift);
  9416       jccb(Assembler::zero, L_exit);
  9417       jmpb(L_fill_8_bytes);
  9419       //
  9420       // length is too short, just fill qwords
  9421       //
  9422       BIND(L_fill_8_bytes_loop);
  9423       movq(Address(to, 0), xtmp);
  9424       addptr(to, 8);
  9425       BIND(L_fill_8_bytes);
  9426       subl(count, 1 << (shift + 1));
  9427       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
  9430   // fill trailing 4 bytes
  9431   BIND(L_fill_4_bytes);
  9432   testl(count, 1<<shift);
  9433   jccb(Assembler::zero, L_fill_2_bytes);
  9434   movl(Address(to, 0), value);
  9435   if (t == T_BYTE || t == T_SHORT) {
  9436     addptr(to, 4);
  9437     BIND(L_fill_2_bytes);
  9438     // fill trailing 2 bytes
  9439     testl(count, 1<<(shift-1));
  9440     jccb(Assembler::zero, L_fill_byte);
  9441     movw(Address(to, 0), value);
  9442     if (t == T_BYTE) {
  9443       addptr(to, 2);
  9444       BIND(L_fill_byte);
  9445       // fill trailing byte
  9446       testl(count, 1);
  9447       jccb(Assembler::zero, L_exit);
  9448       movb(Address(to, 0), value);
  9449     } else {
  9450       BIND(L_fill_byte);
  9452   } else {
  9453     BIND(L_fill_2_bytes);
  9455   BIND(L_exit);
  9457 #undef BIND
  9458 #undef BLOCK_COMMENT
  9461 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  9462   switch (cond) {
  9463     // Note some conditions are synonyms for others
  9464     case Assembler::zero:         return Assembler::notZero;
  9465     case Assembler::notZero:      return Assembler::zero;
  9466     case Assembler::less:         return Assembler::greaterEqual;
  9467     case Assembler::lessEqual:    return Assembler::greater;
  9468     case Assembler::greater:      return Assembler::lessEqual;
  9469     case Assembler::greaterEqual: return Assembler::less;
  9470     case Assembler::below:        return Assembler::aboveEqual;
  9471     case Assembler::belowEqual:   return Assembler::above;
  9472     case Assembler::above:        return Assembler::belowEqual;
  9473     case Assembler::aboveEqual:   return Assembler::below;
  9474     case Assembler::overflow:     return Assembler::noOverflow;
  9475     case Assembler::noOverflow:   return Assembler::overflow;
  9476     case Assembler::negative:     return Assembler::positive;
  9477     case Assembler::positive:     return Assembler::negative;
  9478     case Assembler::parity:       return Assembler::noParity;
  9479     case Assembler::noParity:     return Assembler::parity;
  9481   ShouldNotReachHere(); return Assembler::overflow;
  9484 SkipIfEqual::SkipIfEqual(
  9485     MacroAssembler* masm, const bool* flag_addr, bool value) {
  9486   _masm = masm;
  9487   _masm->cmp8(ExternalAddress((address)flag_addr), value);
  9488   _masm->jcc(Assembler::equal, _label);
  9491 SkipIfEqual::~SkipIfEqual() {
  9492   _masm->bind(_label);

mercurial