src/share/vm/memory/referenceProcessor.cpp

Wed, 15 Feb 2012 10:12:55 -0800

author
never
date
Wed, 15 Feb 2012 10:12:55 -0800
changeset 3571
09d00c18e323
parent 3357
441e946dc1af
child 3900
d2a62e0f25eb
permissions
-rw-r--r--

7145537: minor tweaks to LogEvents
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/javaClasses.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "gc_interface/collectedHeap.hpp"
    29 #include "gc_interface/collectedHeap.inline.hpp"
    30 #include "memory/referencePolicy.hpp"
    31 #include "memory/referenceProcessor.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "runtime/java.hpp"
    34 #include "runtime/jniHandles.hpp"
    36 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
    37 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
    38 bool             ReferenceProcessor::_pending_list_uses_discovered_field = false;
    39 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
    41 void referenceProcessor_init() {
    42   ReferenceProcessor::init_statics();
    43 }
    45 void ReferenceProcessor::init_statics() {
    46   // We need a monotonically non-deccreasing time in ms but
    47   // os::javaTimeMillis() does not guarantee monotonicity.
    48   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
    50   // Initialize the soft ref timestamp clock.
    51   _soft_ref_timestamp_clock = now;
    52   // Also update the soft ref clock in j.l.r.SoftReference
    53   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
    55   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
    56   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
    57                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
    58   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
    59     vm_exit_during_initialization("Could not allocate reference policy object");
    60   }
    61   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
    62             RefDiscoveryPolicy == ReferentBasedDiscovery,
    63             "Unrecongnized RefDiscoveryPolicy");
    64   _pending_list_uses_discovered_field = JDK_Version::current().pending_list_uses_discovered_field();
    65 }
    67 void ReferenceProcessor::enable_discovery(bool verify_disabled, bool check_no_refs) {
    68 #ifdef ASSERT
    69   // Verify that we're not currently discovering refs
    70   assert(!verify_disabled || !_discovering_refs, "nested call?");
    72   if (check_no_refs) {
    73     // Verify that the discovered lists are empty
    74     verify_no_references_recorded();
    75   }
    76 #endif // ASSERT
    78   // Someone could have modified the value of the static
    79   // field in the j.l.r.SoftReference class that holds the
    80   // soft reference timestamp clock using reflection or
    81   // Unsafe between GCs. Unconditionally update the static
    82   // field in ReferenceProcessor here so that we use the new
    83   // value during reference discovery.
    85   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
    86   _discovering_refs = true;
    87 }
    89 ReferenceProcessor::ReferenceProcessor(MemRegion span,
    90                                        bool      mt_processing,
    91                                        uint      mt_processing_degree,
    92                                        bool      mt_discovery,
    93                                        uint      mt_discovery_degree,
    94                                        bool      atomic_discovery,
    95                                        BoolObjectClosure* is_alive_non_header,
    96                                        bool      discovered_list_needs_barrier)  :
    97   _discovering_refs(false),
    98   _enqueuing_is_done(false),
    99   _is_alive_non_header(is_alive_non_header),
   100   _discovered_list_needs_barrier(discovered_list_needs_barrier),
   101   _bs(NULL),
   102   _processing_is_mt(mt_processing),
   103   _next_id(0)
   104 {
   105   _span = span;
   106   _discovery_is_atomic = atomic_discovery;
   107   _discovery_is_mt     = mt_discovery;
   108   _num_q               = MAX2(1U, mt_processing_degree);
   109   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
   110   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
   111                                           _max_num_q * number_of_subclasses_of_ref());
   112   if (_discovered_refs == NULL) {
   113     vm_exit_during_initialization("Could not allocated RefProc Array");
   114   }
   115   _discoveredSoftRefs    = &_discovered_refs[0];
   116   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
   117   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
   118   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
   120   // Initialize all entries to NULL
   121   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   122     _discovered_refs[i].set_head(NULL);
   123     _discovered_refs[i].set_length(0);
   124   }
   126   // If we do barriers, cache a copy of the barrier set.
   127   if (discovered_list_needs_barrier) {
   128     _bs = Universe::heap()->barrier_set();
   129   }
   130   setup_policy(false /* default soft ref policy */);
   131 }
   133 #ifndef PRODUCT
   134 void ReferenceProcessor::verify_no_references_recorded() {
   135   guarantee(!_discovering_refs, "Discovering refs?");
   136   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   137     guarantee(_discovered_refs[i].is_empty(),
   138               "Found non-empty discovered list");
   139   }
   140 }
   141 #endif
   143 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
   144   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   145     if (UseCompressedOops) {
   146       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
   147     } else {
   148       f->do_oop((oop*)_discovered_refs[i].adr_head());
   149     }
   150   }
   151 }
   153 void ReferenceProcessor::update_soft_ref_master_clock() {
   154   // Update (advance) the soft ref master clock field. This must be done
   155   // after processing the soft ref list.
   157   // We need a monotonically non-deccreasing time in ms but
   158   // os::javaTimeMillis() does not guarantee monotonicity.
   159   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
   160   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
   161   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
   163   NOT_PRODUCT(
   164   if (now < _soft_ref_timestamp_clock) {
   165     warning("time warp: "INT64_FORMAT" to "INT64_FORMAT,
   166             _soft_ref_timestamp_clock, now);
   167   }
   168   )
   169   // The values of now and _soft_ref_timestamp_clock are set using
   170   // javaTimeNanos(), which is guaranteed to be monotonically
   171   // non-decreasing provided the underlying platform provides such
   172   // a time source (and it is bug free).
   173   // In product mode, however, protect ourselves from non-monotonicty.
   174   if (now > _soft_ref_timestamp_clock) {
   175     _soft_ref_timestamp_clock = now;
   176     java_lang_ref_SoftReference::set_clock(now);
   177   }
   178   // Else leave clock stalled at its old value until time progresses
   179   // past clock value.
   180 }
   182 void ReferenceProcessor::process_discovered_references(
   183   BoolObjectClosure*           is_alive,
   184   OopClosure*                  keep_alive,
   185   VoidClosure*                 complete_gc,
   186   AbstractRefProcTaskExecutor* task_executor) {
   187   NOT_PRODUCT(verify_ok_to_handle_reflists());
   189   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
   190   // Stop treating discovered references specially.
   191   disable_discovery();
   193   // If discovery was concurrent, someone could have modified
   194   // the value of the static field in the j.l.r.SoftReference
   195   // class that holds the soft reference timestamp clock using
   196   // reflection or Unsafe between when discovery was enabled and
   197   // now. Unconditionally update the static field in ReferenceProcessor
   198   // here so that we use the new value during processing of the
   199   // discovered soft refs.
   201   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
   203   bool trace_time = PrintGCDetails && PrintReferenceGC;
   204   // Soft references
   205   {
   206     TraceTime tt("SoftReference", trace_time, false, gclog_or_tty);
   207     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
   208                                is_alive, keep_alive, complete_gc, task_executor);
   209   }
   211   update_soft_ref_master_clock();
   213   // Weak references
   214   {
   215     TraceTime tt("WeakReference", trace_time, false, gclog_or_tty);
   216     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
   217                                is_alive, keep_alive, complete_gc, task_executor);
   218   }
   220   // Final references
   221   {
   222     TraceTime tt("FinalReference", trace_time, false, gclog_or_tty);
   223     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
   224                                is_alive, keep_alive, complete_gc, task_executor);
   225   }
   227   // Phantom references
   228   {
   229     TraceTime tt("PhantomReference", trace_time, false, gclog_or_tty);
   230     process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
   231                                is_alive, keep_alive, complete_gc, task_executor);
   232   }
   234   // Weak global JNI references. It would make more sense (semantically) to
   235   // traverse these simultaneously with the regular weak references above, but
   236   // that is not how the JDK1.2 specification is. See #4126360. Native code can
   237   // thus use JNI weak references to circumvent the phantom references and
   238   // resurrect a "post-mortem" object.
   239   {
   240     TraceTime tt("JNI Weak Reference", trace_time, false, gclog_or_tty);
   241     if (task_executor != NULL) {
   242       task_executor->set_single_threaded_mode();
   243     }
   244     process_phaseJNI(is_alive, keep_alive, complete_gc);
   245   }
   246 }
   248 #ifndef PRODUCT
   249 // Calculate the number of jni handles.
   250 uint ReferenceProcessor::count_jni_refs() {
   251   class AlwaysAliveClosure: public BoolObjectClosure {
   252   public:
   253     virtual bool do_object_b(oop obj) { return true; }
   254     virtual void do_object(oop obj) { assert(false, "Don't call"); }
   255   };
   257   class CountHandleClosure: public OopClosure {
   258   private:
   259     int _count;
   260   public:
   261     CountHandleClosure(): _count(0) {}
   262     void do_oop(oop* unused)       { _count++; }
   263     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
   264     int count() { return _count; }
   265   };
   266   CountHandleClosure global_handle_count;
   267   AlwaysAliveClosure always_alive;
   268   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
   269   return global_handle_count.count();
   270 }
   271 #endif
   273 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
   274                                           OopClosure*        keep_alive,
   275                                           VoidClosure*       complete_gc) {
   276 #ifndef PRODUCT
   277   if (PrintGCDetails && PrintReferenceGC) {
   278     unsigned int count = count_jni_refs();
   279     gclog_or_tty->print(", %u refs", count);
   280   }
   281 #endif
   282   JNIHandles::weak_oops_do(is_alive, keep_alive);
   283   complete_gc->do_void();
   284 }
   287 template <class T>
   288 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
   289                                    AbstractRefProcTaskExecutor* task_executor) {
   291   // Remember old value of pending references list
   292   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
   293   T old_pending_list_value = *pending_list_addr;
   295   // Enqueue references that are not made active again, and
   296   // clear the decks for the next collection (cycle).
   297   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
   298   // Do the oop-check on pending_list_addr missed in
   299   // enqueue_discovered_reflist. We should probably
   300   // do a raw oop_check so that future such idempotent
   301   // oop_stores relying on the oop-check side-effect
   302   // may be elided automatically and safely without
   303   // affecting correctness.
   304   oop_store(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
   306   // Stop treating discovered references specially.
   307   ref->disable_discovery();
   309   // Return true if new pending references were added
   310   return old_pending_list_value != *pending_list_addr;
   311 }
   313 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
   314   NOT_PRODUCT(verify_ok_to_handle_reflists());
   315   if (UseCompressedOops) {
   316     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
   317   } else {
   318     return enqueue_discovered_ref_helper<oop>(this, task_executor);
   319   }
   320 }
   322 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
   323                                                     HeapWord* pending_list_addr) {
   324   // Given a list of refs linked through the "discovered" field
   325   // (java.lang.ref.Reference.discovered), self-loop their "next" field
   326   // thus distinguishing them from active References, then
   327   // prepend them to the pending list.
   328   // BKWRD COMPATIBILITY NOTE: For older JDKs (prior to the fix for 4956777),
   329   // the "next" field is used to chain the pending list, not the discovered
   330   // field.
   332   if (TraceReferenceGC && PrintGCDetails) {
   333     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
   334                            INTPTR_FORMAT, (address)refs_list.head());
   335   }
   337   oop obj = NULL;
   338   oop next_d = refs_list.head();
   339   if (pending_list_uses_discovered_field()) { // New behaviour
   340     // Walk down the list, self-looping the next field
   341     // so that the References are not considered active.
   342     while (obj != next_d) {
   343       obj = next_d;
   344       assert(obj->is_instanceRef(), "should be reference object");
   345       next_d = java_lang_ref_Reference::discovered(obj);
   346       if (TraceReferenceGC && PrintGCDetails) {
   347         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   348                                obj, next_d);
   349       }
   350       assert(java_lang_ref_Reference::next(obj) == NULL,
   351              "Reference not active; should not be discovered");
   352       // Self-loop next, so as to make Ref not active.
   353       java_lang_ref_Reference::set_next(obj, obj);
   354       if (next_d == obj) {  // obj is last
   355         // Swap refs_list into pendling_list_addr and
   356         // set obj's discovered to what we read from pending_list_addr.
   357         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   358         // Need oop_check on pending_list_addr above;
   359         // see special oop-check code at the end of
   360         // enqueue_discovered_reflists() further below.
   361         java_lang_ref_Reference::set_discovered(obj, old); // old may be NULL
   362       }
   363     }
   364   } else { // Old behaviour
   365     // Walk down the list, copying the discovered field into
   366     // the next field and clearing the discovered field.
   367     while (obj != next_d) {
   368       obj = next_d;
   369       assert(obj->is_instanceRef(), "should be reference object");
   370       next_d = java_lang_ref_Reference::discovered(obj);
   371       if (TraceReferenceGC && PrintGCDetails) {
   372         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
   373                                obj, next_d);
   374       }
   375       assert(java_lang_ref_Reference::next(obj) == NULL,
   376              "The reference should not be enqueued");
   377       if (next_d == obj) {  // obj is last
   378         // Swap refs_list into pendling_list_addr and
   379         // set obj's next to what we read from pending_list_addr.
   380         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
   381         // Need oop_check on pending_list_addr above;
   382         // see special oop-check code at the end of
   383         // enqueue_discovered_reflists() further below.
   384         if (old == NULL) {
   385           // obj should be made to point to itself, since
   386           // pending list was empty.
   387           java_lang_ref_Reference::set_next(obj, obj);
   388         } else {
   389           java_lang_ref_Reference::set_next(obj, old);
   390         }
   391       } else {
   392         java_lang_ref_Reference::set_next(obj, next_d);
   393       }
   394       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
   395     }
   396   }
   397 }
   399 // Parallel enqueue task
   400 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
   401 public:
   402   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
   403                      DiscoveredList      discovered_refs[],
   404                      HeapWord*           pending_list_addr,
   405                      int                 n_queues)
   406     : EnqueueTask(ref_processor, discovered_refs,
   407                   pending_list_addr, n_queues)
   408   { }
   410   virtual void work(unsigned int work_id) {
   411     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
   412     // Simplest first cut: static partitioning.
   413     int index = work_id;
   414     // The increment on "index" must correspond to the maximum number of queues
   415     // (n_queues) with which that ReferenceProcessor was created.  That
   416     // is because of the "clever" way the discovered references lists were
   417     // allocated and are indexed into.
   418     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
   419     for (int j = 0;
   420          j < ReferenceProcessor::number_of_subclasses_of_ref();
   421          j++, index += _n_queues) {
   422       _ref_processor.enqueue_discovered_reflist(
   423         _refs_lists[index], _pending_list_addr);
   424       _refs_lists[index].set_head(NULL);
   425       _refs_lists[index].set_length(0);
   426     }
   427   }
   428 };
   430 // Enqueue references that are not made active again
   431 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
   432   AbstractRefProcTaskExecutor* task_executor) {
   433   if (_processing_is_mt && task_executor != NULL) {
   434     // Parallel code
   435     RefProcEnqueueTask tsk(*this, _discovered_refs,
   436                            pending_list_addr, _max_num_q);
   437     task_executor->execute(tsk);
   438   } else {
   439     // Serial code: call the parent class's implementation
   440     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   441       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
   442       _discovered_refs[i].set_head(NULL);
   443       _discovered_refs[i].set_length(0);
   444     }
   445   }
   446 }
   448 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
   449   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
   450   oop discovered = java_lang_ref_Reference::discovered(_ref);
   451   assert(_discovered_addr && discovered->is_oop_or_null(),
   452          "discovered field is bad");
   453   _next = discovered;
   454   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
   455   _referent = java_lang_ref_Reference::referent(_ref);
   456   assert(Universe::heap()->is_in_reserved_or_null(_referent),
   457          "Wrong oop found in java.lang.Reference object");
   458   assert(allow_null_referent ?
   459              _referent->is_oop_or_null()
   460            : _referent->is_oop(),
   461          "bad referent");
   462 }
   464 void DiscoveredListIterator::remove() {
   465   assert(_ref->is_oop(), "Dropping a bad reference");
   466   oop_store_raw(_discovered_addr, NULL);
   468   // First _prev_next ref actually points into DiscoveredList (gross).
   469   oop new_next;
   470   if (_next == _ref) {
   471     // At the end of the list, we should make _prev point to itself.
   472     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
   473     // and _prev will be NULL.
   474     new_next = _prev;
   475   } else {
   476     new_next = _next;
   477   }
   479   if (UseCompressedOops) {
   480     // Remove Reference object from list.
   481     oopDesc::encode_store_heap_oop((narrowOop*)_prev_next, new_next);
   482   } else {
   483     // Remove Reference object from list.
   484     oopDesc::store_heap_oop((oop*)_prev_next, new_next);
   485   }
   486   NOT_PRODUCT(_removed++);
   487   _refs_list.dec_length(1);
   488 }
   490 // Make the Reference object active again.
   491 void DiscoveredListIterator::make_active() {
   492   // For G1 we don't want to use set_next - it
   493   // will dirty the card for the next field of
   494   // the reference object and will fail
   495   // CT verification.
   496   if (UseG1GC) {
   497     BarrierSet* bs = oopDesc::bs();
   498     HeapWord* next_addr = java_lang_ref_Reference::next_addr(_ref);
   500     if (UseCompressedOops) {
   501       bs->write_ref_field_pre((narrowOop*)next_addr, NULL);
   502     } else {
   503       bs->write_ref_field_pre((oop*)next_addr, NULL);
   504     }
   505     java_lang_ref_Reference::set_next_raw(_ref, NULL);
   506   } else {
   507     java_lang_ref_Reference::set_next(_ref, NULL);
   508   }
   509 }
   511 void DiscoveredListIterator::clear_referent() {
   512   oop_store_raw(_referent_addr, NULL);
   513 }
   515 // NOTE: process_phase*() are largely similar, and at a high level
   516 // merely iterate over the extant list applying a predicate to
   517 // each of its elements and possibly removing that element from the
   518 // list and applying some further closures to that element.
   519 // We should consider the possibility of replacing these
   520 // process_phase*() methods by abstracting them into
   521 // a single general iterator invocation that receives appropriate
   522 // closures that accomplish this work.
   524 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
   525 // referents are not alive, but that should be kept alive for policy reasons.
   526 // Keep alive the transitive closure of all such referents.
   527 void
   528 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
   529                                    ReferencePolicy*   policy,
   530                                    BoolObjectClosure* is_alive,
   531                                    OopClosure*        keep_alive,
   532                                    VoidClosure*       complete_gc) {
   533   assert(policy != NULL, "Must have a non-NULL policy");
   534   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   535   // Decide which softly reachable refs should be kept alive.
   536   while (iter.has_next()) {
   537     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
   538     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
   539     if (referent_is_dead &&
   540         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
   541       if (TraceReferenceGC) {
   542         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
   543                                iter.obj(), iter.obj()->blueprint()->internal_name());
   544       }
   545       // Remove Reference object from list
   546       iter.remove();
   547       // Make the Reference object active again
   548       iter.make_active();
   549       // keep the referent around
   550       iter.make_referent_alive();
   551       iter.move_to_next();
   552     } else {
   553       iter.next();
   554     }
   555   }
   556   // Close the reachable set
   557   complete_gc->do_void();
   558   NOT_PRODUCT(
   559     if (PrintGCDetails && TraceReferenceGC) {
   560       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
   561         "discovered Refs by policy, from list " INTPTR_FORMAT,
   562         iter.removed(), iter.processed(), (address)refs_list.head());
   563     }
   564   )
   565 }
   567 // Traverse the list and remove any Refs that are not active, or
   568 // whose referents are either alive or NULL.
   569 void
   570 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
   571                              BoolObjectClosure* is_alive,
   572                              OopClosure*        keep_alive) {
   573   assert(discovery_is_atomic(), "Error");
   574   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   575   while (iter.has_next()) {
   576     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   577     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
   578     assert(next == NULL, "Should not discover inactive Reference");
   579     if (iter.is_referent_alive()) {
   580       if (TraceReferenceGC) {
   581         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
   582                                iter.obj(), iter.obj()->blueprint()->internal_name());
   583       }
   584       // The referent is reachable after all.
   585       // Remove Reference object from list.
   586       iter.remove();
   587       // Update the referent pointer as necessary: Note that this
   588       // should not entail any recursive marking because the
   589       // referent must already have been traversed.
   590       iter.make_referent_alive();
   591       iter.move_to_next();
   592     } else {
   593       iter.next();
   594     }
   595   }
   596   NOT_PRODUCT(
   597     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   598       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   599         "Refs in discovered list " INTPTR_FORMAT,
   600         iter.removed(), iter.processed(), (address)refs_list.head());
   601     }
   602   )
   603 }
   605 void
   606 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
   607                                                   BoolObjectClosure* is_alive,
   608                                                   OopClosure*        keep_alive,
   609                                                   VoidClosure*       complete_gc) {
   610   assert(!discovery_is_atomic(), "Error");
   611   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   612   while (iter.has_next()) {
   613     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   614     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
   615     oop next = java_lang_ref_Reference::next(iter.obj());
   616     if ((iter.referent() == NULL || iter.is_referent_alive() ||
   617          next != NULL)) {
   618       assert(next->is_oop_or_null(), "bad next field");
   619       // Remove Reference object from list
   620       iter.remove();
   621       // Trace the cohorts
   622       iter.make_referent_alive();
   623       if (UseCompressedOops) {
   624         keep_alive->do_oop((narrowOop*)next_addr);
   625       } else {
   626         keep_alive->do_oop((oop*)next_addr);
   627       }
   628       iter.move_to_next();
   629     } else {
   630       iter.next();
   631     }
   632   }
   633   // Now close the newly reachable set
   634   complete_gc->do_void();
   635   NOT_PRODUCT(
   636     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
   637       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
   638         "Refs in discovered list " INTPTR_FORMAT,
   639         iter.removed(), iter.processed(), (address)refs_list.head());
   640     }
   641   )
   642 }
   644 // Traverse the list and process the referents, by either
   645 // clearing them or keeping them (and their reachable
   646 // closure) alive.
   647 void
   648 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
   649                                    bool               clear_referent,
   650                                    BoolObjectClosure* is_alive,
   651                                    OopClosure*        keep_alive,
   652                                    VoidClosure*       complete_gc) {
   653   ResourceMark rm;
   654   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
   655   while (iter.has_next()) {
   656     iter.update_discovered();
   657     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
   658     if (clear_referent) {
   659       // NULL out referent pointer
   660       iter.clear_referent();
   661     } else {
   662       // keep the referent around
   663       iter.make_referent_alive();
   664     }
   665     if (TraceReferenceGC) {
   666       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
   667                              clear_referent ? "cleared " : "",
   668                              iter.obj(), iter.obj()->blueprint()->internal_name());
   669     }
   670     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
   671     iter.next();
   672   }
   673   // Remember to update the next pointer of the last ref.
   674   iter.update_discovered();
   675   // Close the reachable set
   676   complete_gc->do_void();
   677 }
   679 void
   680 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
   681   oop obj = NULL;
   682   oop next = refs_list.head();
   683   while (next != obj) {
   684     obj = next;
   685     next = java_lang_ref_Reference::discovered(obj);
   686     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
   687   }
   688   refs_list.set_head(NULL);
   689   refs_list.set_length(0);
   690 }
   692 void
   693 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
   694   clear_discovered_references(refs_list);
   695 }
   697 void ReferenceProcessor::abandon_partial_discovery() {
   698   // loop over the lists
   699   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   700     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   701       gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
   702     }
   703     abandon_partial_discovered_list(_discovered_refs[i]);
   704   }
   705 }
   707 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
   708 public:
   709   RefProcPhase1Task(ReferenceProcessor& ref_processor,
   710                     DiscoveredList      refs_lists[],
   711                     ReferencePolicy*    policy,
   712                     bool                marks_oops_alive)
   713     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   714       _policy(policy)
   715   { }
   716   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   717                     OopClosure& keep_alive,
   718                     VoidClosure& complete_gc)
   719   {
   720     Thread* thr = Thread::current();
   721     int refs_list_index = ((WorkerThread*)thr)->id();
   722     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
   723                                   &is_alive, &keep_alive, &complete_gc);
   724   }
   725 private:
   726   ReferencePolicy* _policy;
   727 };
   729 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
   730 public:
   731   RefProcPhase2Task(ReferenceProcessor& ref_processor,
   732                     DiscoveredList      refs_lists[],
   733                     bool                marks_oops_alive)
   734     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
   735   { }
   736   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   737                     OopClosure& keep_alive,
   738                     VoidClosure& complete_gc)
   739   {
   740     _ref_processor.process_phase2(_refs_lists[i],
   741                                   &is_alive, &keep_alive, &complete_gc);
   742   }
   743 };
   745 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
   746 public:
   747   RefProcPhase3Task(ReferenceProcessor& ref_processor,
   748                     DiscoveredList      refs_lists[],
   749                     bool                clear_referent,
   750                     bool                marks_oops_alive)
   751     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
   752       _clear_referent(clear_referent)
   753   { }
   754   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
   755                     OopClosure& keep_alive,
   756                     VoidClosure& complete_gc)
   757   {
   758     // Don't use "refs_list_index" calculated in this way because
   759     // balance_queues() has moved the Ref's into the first n queues.
   760     // Thread* thr = Thread::current();
   761     // int refs_list_index = ((WorkerThread*)thr)->id();
   762     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
   763     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
   764                                   &is_alive, &keep_alive, &complete_gc);
   765   }
   766 private:
   767   bool _clear_referent;
   768 };
   770 void ReferenceProcessor::set_discovered(oop ref, oop value) {
   771   if (_discovered_list_needs_barrier) {
   772     java_lang_ref_Reference::set_discovered(ref, value);
   773   } else {
   774     java_lang_ref_Reference::set_discovered_raw(ref, value);
   775   }
   776 }
   778 // Balances reference queues.
   779 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
   780 // queues[0, 1, ..., _num_q-1] because only the first _num_q
   781 // corresponding to the active workers will be processed.
   782 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
   783 {
   784   // calculate total length
   785   size_t total_refs = 0;
   786   if (TraceReferenceGC && PrintGCDetails) {
   787     gclog_or_tty->print_cr("\nBalance ref_lists ");
   788   }
   790   for (uint i = 0; i < _max_num_q; ++i) {
   791     total_refs += ref_lists[i].length();
   792     if (TraceReferenceGC && PrintGCDetails) {
   793       gclog_or_tty->print("%d ", ref_lists[i].length());
   794     }
   795   }
   796   if (TraceReferenceGC && PrintGCDetails) {
   797     gclog_or_tty->print_cr(" = %d", total_refs);
   798   }
   799   size_t avg_refs = total_refs / _num_q + 1;
   800   uint to_idx = 0;
   801   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
   802     bool move_all = false;
   803     if (from_idx >= _num_q) {
   804       move_all = ref_lists[from_idx].length() > 0;
   805     }
   806     while ((ref_lists[from_idx].length() > avg_refs) ||
   807            move_all) {
   808       assert(to_idx < _num_q, "Sanity Check!");
   809       if (ref_lists[to_idx].length() < avg_refs) {
   810         // move superfluous refs
   811         size_t refs_to_move;
   812         // Move all the Ref's if the from queue will not be processed.
   813         if (move_all) {
   814           refs_to_move = MIN2(ref_lists[from_idx].length(),
   815                               avg_refs - ref_lists[to_idx].length());
   816         } else {
   817           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
   818                               avg_refs - ref_lists[to_idx].length());
   819         }
   821         assert(refs_to_move > 0, "otherwise the code below will fail");
   823         oop move_head = ref_lists[from_idx].head();
   824         oop move_tail = move_head;
   825         oop new_head  = move_head;
   826         // find an element to split the list on
   827         for (size_t j = 0; j < refs_to_move; ++j) {
   828           move_tail = new_head;
   829           new_head = java_lang_ref_Reference::discovered(new_head);
   830         }
   832         // Add the chain to the to list.
   833         if (ref_lists[to_idx].head() == NULL) {
   834           // to list is empty. Make a loop at the end.
   835           set_discovered(move_tail, move_tail);
   836         } else {
   837           set_discovered(move_tail, ref_lists[to_idx].head());
   838         }
   839         ref_lists[to_idx].set_head(move_head);
   840         ref_lists[to_idx].inc_length(refs_to_move);
   842         // Remove the chain from the from list.
   843         if (move_tail == new_head) {
   844           // We found the end of the from list.
   845           ref_lists[from_idx].set_head(NULL);
   846         } else {
   847           ref_lists[from_idx].set_head(new_head);
   848         }
   849         ref_lists[from_idx].dec_length(refs_to_move);
   850         if (ref_lists[from_idx].length() == 0) {
   851           break;
   852         }
   853       } else {
   854         to_idx = (to_idx + 1) % _num_q;
   855       }
   856     }
   857   }
   858 #ifdef ASSERT
   859   size_t balanced_total_refs = 0;
   860   for (uint i = 0; i < _max_num_q; ++i) {
   861     balanced_total_refs += ref_lists[i].length();
   862     if (TraceReferenceGC && PrintGCDetails) {
   863       gclog_or_tty->print("%d ", ref_lists[i].length());
   864     }
   865   }
   866   if (TraceReferenceGC && PrintGCDetails) {
   867     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
   868     gclog_or_tty->flush();
   869   }
   870   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
   871 #endif
   872 }
   874 void ReferenceProcessor::balance_all_queues() {
   875   balance_queues(_discoveredSoftRefs);
   876   balance_queues(_discoveredWeakRefs);
   877   balance_queues(_discoveredFinalRefs);
   878   balance_queues(_discoveredPhantomRefs);
   879 }
   881 void
   882 ReferenceProcessor::process_discovered_reflist(
   883   DiscoveredList               refs_lists[],
   884   ReferencePolicy*             policy,
   885   bool                         clear_referent,
   886   BoolObjectClosure*           is_alive,
   887   OopClosure*                  keep_alive,
   888   VoidClosure*                 complete_gc,
   889   AbstractRefProcTaskExecutor* task_executor)
   890 {
   891   bool mt_processing = task_executor != NULL && _processing_is_mt;
   892   // If discovery used MT and a dynamic number of GC threads, then
   893   // the queues must be balanced for correctness if fewer than the
   894   // maximum number of queues were used.  The number of queue used
   895   // during discovery may be different than the number to be used
   896   // for processing so don't depend of _num_q < _max_num_q as part
   897   // of the test.
   898   bool must_balance = _discovery_is_mt;
   900   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
   901       must_balance) {
   902     balance_queues(refs_lists);
   903   }
   904   if (PrintReferenceGC && PrintGCDetails) {
   905     size_t total = 0;
   906     for (uint i = 0; i < _max_num_q; ++i) {
   907       total += refs_lists[i].length();
   908     }
   909     gclog_or_tty->print(", %u refs", total);
   910   }
   912   // Phase 1 (soft refs only):
   913   // . Traverse the list and remove any SoftReferences whose
   914   //   referents are not alive, but that should be kept alive for
   915   //   policy reasons. Keep alive the transitive closure of all
   916   //   such referents.
   917   if (policy != NULL) {
   918     if (mt_processing) {
   919       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
   920       task_executor->execute(phase1);
   921     } else {
   922       for (uint i = 0; i < _max_num_q; i++) {
   923         process_phase1(refs_lists[i], policy,
   924                        is_alive, keep_alive, complete_gc);
   925       }
   926     }
   927   } else { // policy == NULL
   928     assert(refs_lists != _discoveredSoftRefs,
   929            "Policy must be specified for soft references.");
   930   }
   932   // Phase 2:
   933   // . Traverse the list and remove any refs whose referents are alive.
   934   if (mt_processing) {
   935     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
   936     task_executor->execute(phase2);
   937   } else {
   938     for (uint i = 0; i < _max_num_q; i++) {
   939       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
   940     }
   941   }
   943   // Phase 3:
   944   // . Traverse the list and process referents as appropriate.
   945   if (mt_processing) {
   946     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
   947     task_executor->execute(phase3);
   948   } else {
   949     for (uint i = 0; i < _max_num_q; i++) {
   950       process_phase3(refs_lists[i], clear_referent,
   951                      is_alive, keep_alive, complete_gc);
   952     }
   953   }
   954 }
   956 void ReferenceProcessor::clean_up_discovered_references() {
   957   // loop over the lists
   958   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
   959     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
   960       gclog_or_tty->print_cr(
   961         "\nScrubbing %s discovered list of Null referents",
   962         list_name(i));
   963     }
   964     clean_up_discovered_reflist(_discovered_refs[i]);
   965   }
   966 }
   968 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
   969   assert(!discovery_is_atomic(), "Else why call this method?");
   970   DiscoveredListIterator iter(refs_list, NULL, NULL);
   971   while (iter.has_next()) {
   972     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
   973     oop next = java_lang_ref_Reference::next(iter.obj());
   974     assert(next->is_oop_or_null(), "bad next field");
   975     // If referent has been cleared or Reference is not active,
   976     // drop it.
   977     if (iter.referent() == NULL || next != NULL) {
   978       debug_only(
   979         if (PrintGCDetails && TraceReferenceGC) {
   980           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
   981             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
   982             " and referent: " INTPTR_FORMAT,
   983             iter.obj(), next, iter.referent());
   984         }
   985       )
   986       // Remove Reference object from list
   987       iter.remove();
   988       iter.move_to_next();
   989     } else {
   990       iter.next();
   991     }
   992   }
   993   NOT_PRODUCT(
   994     if (PrintGCDetails && TraceReferenceGC) {
   995       gclog_or_tty->print(
   996         " Removed %d Refs with NULL referents out of %d discovered Refs",
   997         iter.removed(), iter.processed());
   998     }
   999   )
  1002 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
  1003   uint id = 0;
  1004   // Determine the queue index to use for this object.
  1005   if (_discovery_is_mt) {
  1006     // During a multi-threaded discovery phase,
  1007     // each thread saves to its "own" list.
  1008     Thread* thr = Thread::current();
  1009     id = thr->as_Worker_thread()->id();
  1010   } else {
  1011     // single-threaded discovery, we save in round-robin
  1012     // fashion to each of the lists.
  1013     if (_processing_is_mt) {
  1014       id = next_id();
  1017   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
  1019   // Get the discovered queue to which we will add
  1020   DiscoveredList* list = NULL;
  1021   switch (rt) {
  1022     case REF_OTHER:
  1023       // Unknown reference type, no special treatment
  1024       break;
  1025     case REF_SOFT:
  1026       list = &_discoveredSoftRefs[id];
  1027       break;
  1028     case REF_WEAK:
  1029       list = &_discoveredWeakRefs[id];
  1030       break;
  1031     case REF_FINAL:
  1032       list = &_discoveredFinalRefs[id];
  1033       break;
  1034     case REF_PHANTOM:
  1035       list = &_discoveredPhantomRefs[id];
  1036       break;
  1037     case REF_NONE:
  1038       // we should not reach here if we are an instanceRefKlass
  1039     default:
  1040       ShouldNotReachHere();
  1042   if (TraceReferenceGC && PrintGCDetails) {
  1043     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
  1045   return list;
  1048 inline void
  1049 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
  1050                                               oop             obj,
  1051                                               HeapWord*       discovered_addr) {
  1052   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
  1053   // First we must make sure this object is only enqueued once. CAS in a non null
  1054   // discovered_addr.
  1055   oop current_head = refs_list.head();
  1056   // The last ref must have its discovered field pointing to itself.
  1057   oop next_discovered = (current_head != NULL) ? current_head : obj;
  1059   // Note: In the case of G1, this specific pre-barrier is strictly
  1060   // not necessary because the only case we are interested in
  1061   // here is when *discovered_addr is NULL (see the CAS further below),
  1062   // so this will expand to nothing. As a result, we have manually
  1063   // elided this out for G1, but left in the test for some future
  1064   // collector that might have need for a pre-barrier here, e.g.:-
  1065   // _bs->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
  1066   assert(!_discovered_list_needs_barrier || UseG1GC,
  1067          "Need to check non-G1 collector: "
  1068          "may need a pre-write-barrier for CAS from NULL below");
  1069   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
  1070                                                     NULL);
  1071   if (retest == NULL) {
  1072     // This thread just won the right to enqueue the object.
  1073     // We have separate lists for enqueueing, so no synchronization
  1074     // is necessary.
  1075     refs_list.set_head(obj);
  1076     refs_list.inc_length(1);
  1077     if (_discovered_list_needs_barrier) {
  1078       _bs->write_ref_field((void*)discovered_addr, next_discovered);
  1081     if (TraceReferenceGC) {
  1082       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
  1083                              obj, obj->blueprint()->internal_name());
  1085   } else {
  1086     // If retest was non NULL, another thread beat us to it:
  1087     // The reference has already been discovered...
  1088     if (TraceReferenceGC) {
  1089       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1090                              obj, obj->blueprint()->internal_name());
  1095 #ifndef PRODUCT
  1096 // Non-atomic (i.e. concurrent) discovery might allow us
  1097 // to observe j.l.References with NULL referents, being those
  1098 // cleared concurrently by mutators during (or after) discovery.
  1099 void ReferenceProcessor::verify_referent(oop obj) {
  1100   bool da = discovery_is_atomic();
  1101   oop referent = java_lang_ref_Reference::referent(obj);
  1102   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
  1103          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
  1104                  INTPTR_FORMAT " during %satomic discovery ",
  1105                  (intptr_t)referent, (intptr_t)obj, da ? "" : "non-"));
  1107 #endif
  1109 // We mention two of several possible choices here:
  1110 // #0: if the reference object is not in the "originating generation"
  1111 //     (or part of the heap being collected, indicated by our "span"
  1112 //     we don't treat it specially (i.e. we scan it as we would
  1113 //     a normal oop, treating its references as strong references).
  1114 //     This means that references can't be discovered unless their
  1115 //     referent is also in the same span. This is the simplest,
  1116 //     most "local" and most conservative approach, albeit one
  1117 //     that may cause weak references to be enqueued least promptly.
  1118 //     We call this choice the "ReferenceBasedDiscovery" policy.
  1119 // #1: the reference object may be in any generation (span), but if
  1120 //     the referent is in the generation (span) being currently collected
  1121 //     then we can discover the reference object, provided
  1122 //     the object has not already been discovered by
  1123 //     a different concurrently running collector (as may be the
  1124 //     case, for instance, if the reference object is in CMS and
  1125 //     the referent in DefNewGeneration), and provided the processing
  1126 //     of this reference object by the current collector will
  1127 //     appear atomic to every other collector in the system.
  1128 //     (Thus, for instance, a concurrent collector may not
  1129 //     discover references in other generations even if the
  1130 //     referent is in its own generation). This policy may,
  1131 //     in certain cases, enqueue references somewhat sooner than
  1132 //     might Policy #0 above, but at marginally increased cost
  1133 //     and complexity in processing these references.
  1134 //     We call this choice the "RefeferentBasedDiscovery" policy.
  1135 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
  1136   // Make sure we are discovering refs (rather than processing discovered refs).
  1137   if (!_discovering_refs || !RegisterReferences) {
  1138     return false;
  1140   // We only discover active references.
  1141   oop next = java_lang_ref_Reference::next(obj);
  1142   if (next != NULL) {   // Ref is no longer active
  1143     return false;
  1146   HeapWord* obj_addr = (HeapWord*)obj;
  1147   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1148       !_span.contains(obj_addr)) {
  1149     // Reference is not in the originating generation;
  1150     // don't treat it specially (i.e. we want to scan it as a normal
  1151     // object with strong references).
  1152     return false;
  1155   // We only discover references whose referents are not (yet)
  1156   // known to be strongly reachable.
  1157   if (is_alive_non_header() != NULL) {
  1158     verify_referent(obj);
  1159     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
  1160       return false;  // referent is reachable
  1163   if (rt == REF_SOFT) {
  1164     // For soft refs we can decide now if these are not
  1165     // current candidates for clearing, in which case we
  1166     // can mark through them now, rather than delaying that
  1167     // to the reference-processing phase. Since all current
  1168     // time-stamp policies advance the soft-ref clock only
  1169     // at a major collection cycle, this is always currently
  1170     // accurate.
  1171     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
  1172       return false;
  1176   ResourceMark rm;      // Needed for tracing.
  1178   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
  1179   const oop  discovered = java_lang_ref_Reference::discovered(obj);
  1180   assert(discovered->is_oop_or_null(), "bad discovered field");
  1181   if (discovered != NULL) {
  1182     // The reference has already been discovered...
  1183     if (TraceReferenceGC) {
  1184       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
  1185                              obj, obj->blueprint()->internal_name());
  1187     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1188       // assumes that an object is not processed twice;
  1189       // if it's been already discovered it must be on another
  1190       // generation's discovered list; so we won't discover it.
  1191       return false;
  1192     } else {
  1193       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
  1194              "Unrecognized policy");
  1195       // Check assumption that an object is not potentially
  1196       // discovered twice except by concurrent collectors that potentially
  1197       // trace the same Reference object twice.
  1198       assert(UseConcMarkSweepGC || UseG1GC,
  1199              "Only possible with a concurrent marking collector");
  1200       return true;
  1204   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
  1205     verify_referent(obj);
  1206     // Discover if and only if EITHER:
  1207     // .. reference is in our span, OR
  1208     // .. we are an atomic collector and referent is in our span
  1209     if (_span.contains(obj_addr) ||
  1210         (discovery_is_atomic() &&
  1211          _span.contains(java_lang_ref_Reference::referent(obj)))) {
  1212       // should_enqueue = true;
  1213     } else {
  1214       return false;
  1216   } else {
  1217     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
  1218            _span.contains(obj_addr), "code inconsistency");
  1221   // Get the right type of discovered queue head.
  1222   DiscoveredList* list = get_discovered_list(rt);
  1223   if (list == NULL) {
  1224     return false;   // nothing special needs to be done
  1227   if (_discovery_is_mt) {
  1228     add_to_discovered_list_mt(*list, obj, discovered_addr);
  1229   } else {
  1230     // If "_discovered_list_needs_barrier", we do write barriers when
  1231     // updating the discovered reference list.  Otherwise, we do a raw store
  1232     // here: the field will be visited later when processing the discovered
  1233     // references.
  1234     oop current_head = list->head();
  1235     // The last ref must have its discovered field pointing to itself.
  1236     oop next_discovered = (current_head != NULL) ? current_head : obj;
  1238     // As in the case further above, since we are over-writing a NULL
  1239     // pre-value, we can safely elide the pre-barrier here for the case of G1.
  1240     // e.g.:- _bs->write_ref_field_pre((oop* or narrowOop*)discovered_addr, next_discovered);
  1241     assert(discovered == NULL, "control point invariant");
  1242     assert(!_discovered_list_needs_barrier || UseG1GC,
  1243            "For non-G1 collector, may need a pre-write-barrier for CAS from NULL below");
  1244     oop_store_raw(discovered_addr, next_discovered);
  1245     if (_discovered_list_needs_barrier) {
  1246       _bs->write_ref_field((void*)discovered_addr, next_discovered);
  1248     list->set_head(obj);
  1249     list->inc_length(1);
  1251     if (TraceReferenceGC) {
  1252       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
  1253                                 obj, obj->blueprint()->internal_name());
  1256   assert(obj->is_oop(), "Discovered a bad reference");
  1257   verify_referent(obj);
  1258   return true;
  1261 // Preclean the discovered references by removing those
  1262 // whose referents are alive, and by marking from those that
  1263 // are not active. These lists can be handled here
  1264 // in any order and, indeed, concurrently.
  1265 void ReferenceProcessor::preclean_discovered_references(
  1266   BoolObjectClosure* is_alive,
  1267   OopClosure* keep_alive,
  1268   VoidClosure* complete_gc,
  1269   YieldClosure* yield,
  1270   bool should_unload_classes) {
  1272   NOT_PRODUCT(verify_ok_to_handle_reflists());
  1274 #ifdef ASSERT
  1275   bool must_remember_klasses = ClassUnloading && !UseConcMarkSweepGC ||
  1276                                CMSClassUnloadingEnabled && UseConcMarkSweepGC ||
  1277                                ExplicitGCInvokesConcurrentAndUnloadsClasses &&
  1278                                  UseConcMarkSweepGC && should_unload_classes;
  1279   RememberKlassesChecker mx(must_remember_klasses);
  1280 #endif
  1281   // Soft references
  1283     TraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
  1284               false, gclog_or_tty);
  1285     for (uint i = 0; i < _max_num_q; i++) {
  1286       if (yield->should_return()) {
  1287         return;
  1289       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
  1290                                   keep_alive, complete_gc, yield);
  1294   // Weak references
  1296     TraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
  1297               false, gclog_or_tty);
  1298     for (uint i = 0; i < _max_num_q; i++) {
  1299       if (yield->should_return()) {
  1300         return;
  1302       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
  1303                                   keep_alive, complete_gc, yield);
  1307   // Final references
  1309     TraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
  1310               false, gclog_or_tty);
  1311     for (uint i = 0; i < _max_num_q; i++) {
  1312       if (yield->should_return()) {
  1313         return;
  1315       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
  1316                                   keep_alive, complete_gc, yield);
  1320   // Phantom references
  1322     TraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
  1323               false, gclog_or_tty);
  1324     for (uint i = 0; i < _max_num_q; i++) {
  1325       if (yield->should_return()) {
  1326         return;
  1328       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
  1329                                   keep_alive, complete_gc, yield);
  1334 // Walk the given discovered ref list, and remove all reference objects
  1335 // whose referents are still alive, whose referents are NULL or which
  1336 // are not active (have a non-NULL next field). NOTE: When we are
  1337 // thus precleaning the ref lists (which happens single-threaded today),
  1338 // we do not disable refs discovery to honour the correct semantics of
  1339 // java.lang.Reference. As a result, we need to be careful below
  1340 // that ref removal steps interleave safely with ref discovery steps
  1341 // (in this thread).
  1342 void
  1343 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
  1344                                                 BoolObjectClosure* is_alive,
  1345                                                 OopClosure*        keep_alive,
  1346                                                 VoidClosure*       complete_gc,
  1347                                                 YieldClosure*      yield) {
  1348   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
  1349   while (iter.has_next()) {
  1350     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
  1351     oop obj = iter.obj();
  1352     oop next = java_lang_ref_Reference::next(obj);
  1353     if (iter.referent() == NULL || iter.is_referent_alive() ||
  1354         next != NULL) {
  1355       // The referent has been cleared, or is alive, or the Reference is not
  1356       // active; we need to trace and mark its cohort.
  1357       if (TraceReferenceGC) {
  1358         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
  1359                                iter.obj(), iter.obj()->blueprint()->internal_name());
  1361       // Remove Reference object from list
  1362       iter.remove();
  1363       // Keep alive its cohort.
  1364       iter.make_referent_alive();
  1365       if (UseCompressedOops) {
  1366         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
  1367         keep_alive->do_oop(next_addr);
  1368       } else {
  1369         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
  1370         keep_alive->do_oop(next_addr);
  1372       iter.move_to_next();
  1373     } else {
  1374       iter.next();
  1377   // Close the reachable set
  1378   complete_gc->do_void();
  1380   NOT_PRODUCT(
  1381     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
  1382       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
  1383         "Refs in discovered list " INTPTR_FORMAT,
  1384         iter.removed(), iter.processed(), (address)refs_list.head());
  1389 const char* ReferenceProcessor::list_name(uint i) {
  1390    assert(i >= 0 && i <= _max_num_q * number_of_subclasses_of_ref(),
  1391           "Out of bounds index");
  1393    int j = i / _max_num_q;
  1394    switch (j) {
  1395      case 0: return "SoftRef";
  1396      case 1: return "WeakRef";
  1397      case 2: return "FinalRef";
  1398      case 3: return "PhantomRef";
  1400    ShouldNotReachHere();
  1401    return NULL;
  1404 #ifndef PRODUCT
  1405 void ReferenceProcessor::verify_ok_to_handle_reflists() {
  1406   // empty for now
  1408 #endif
  1410 #ifndef PRODUCT
  1411 void ReferenceProcessor::clear_discovered_references() {
  1412   guarantee(!_discovering_refs, "Discovering refs?");
  1413   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
  1414     clear_discovered_references(_discovered_refs[i]);
  1418 #endif // PRODUCT

mercurial