src/share/vm/opto/library_call.cpp

Mon, 20 Aug 2012 09:58:58 -0700

author
kvn
date
Mon, 20 Aug 2012 09:58:58 -0700
changeset 4002
09aad8452938
parent 3969
1d7922586cf6
child 4037
da91efe96a93
permissions
-rw-r--r--

7190310: Inlining WeakReference.get(), and hoisting $referent may lead to non-terminating loops
Summary: In C2 add software membar after load from Reference.referent field to prevent commoning of loads across safepoint since GC can change its value. In C1 always generate Reference.get() intrinsic.
Reviewed-by: roland, twisti, dholmes, johnc

     1 /*
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mulnode.hpp"
    36 #include "opto/parse.hpp"
    37 #include "opto/runtime.hpp"
    38 #include "opto/subnode.hpp"
    39 #include "prims/nativeLookup.hpp"
    40 #include "runtime/sharedRuntime.hpp"
    42 class LibraryIntrinsic : public InlineCallGenerator {
    43   // Extend the set of intrinsics known to the runtime:
    44  public:
    45  private:
    46   bool             _is_virtual;
    47   vmIntrinsics::ID _intrinsic_id;
    49  public:
    50   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
    51     : InlineCallGenerator(m),
    52       _is_virtual(is_virtual),
    53       _intrinsic_id(id)
    54   {
    55   }
    56   virtual bool is_intrinsic() const { return true; }
    57   virtual bool is_virtual()   const { return _is_virtual; }
    58   virtual JVMState* generate(JVMState* jvms);
    59   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    60 };
    63 // Local helper class for LibraryIntrinsic:
    64 class LibraryCallKit : public GraphKit {
    65  private:
    66   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
    68  public:
    69   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
    70     : GraphKit(caller),
    71       _intrinsic(intrinsic)
    72   {
    73   }
    75   ciMethod*         caller()    const    { return jvms()->method(); }
    76   int               bci()       const    { return jvms()->bci(); }
    77   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
    78   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
    79   ciMethod*         callee()    const    { return _intrinsic->method(); }
    80   ciSignature*      signature() const    { return callee()->signature(); }
    81   int               arg_size()  const    { return callee()->arg_size(); }
    83   bool try_to_inline();
    85   // Helper functions to inline natives
    86   void push_result(RegionNode* region, PhiNode* value);
    87   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
    88   Node* generate_slow_guard(Node* test, RegionNode* region);
    89   Node* generate_fair_guard(Node* test, RegionNode* region);
    90   Node* generate_negative_guard(Node* index, RegionNode* region,
    91                                 // resulting CastII of index:
    92                                 Node* *pos_index = NULL);
    93   Node* generate_nonpositive_guard(Node* index, bool never_negative,
    94                                    // resulting CastII of index:
    95                                    Node* *pos_index = NULL);
    96   Node* generate_limit_guard(Node* offset, Node* subseq_length,
    97                              Node* array_length,
    98                              RegionNode* region);
    99   Node* generate_current_thread(Node* &tls_output);
   100   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   101                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   102   Node* load_mirror_from_klass(Node* klass);
   103   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   104                                       int nargs,
   105                                       RegionNode* region, int null_path,
   106                                       int offset);
   107   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
   108                                RegionNode* region, int null_path) {
   109     int offset = java_lang_Class::klass_offset_in_bytes();
   110     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   111                                          region, null_path,
   112                                          offset);
   113   }
   114   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   115                                      int nargs,
   116                                      RegionNode* region, int null_path) {
   117     int offset = java_lang_Class::array_klass_offset_in_bytes();
   118     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
   119                                          region, null_path,
   120                                          offset);
   121   }
   122   Node* generate_access_flags_guard(Node* kls,
   123                                     int modifier_mask, int modifier_bits,
   124                                     RegionNode* region);
   125   Node* generate_interface_guard(Node* kls, RegionNode* region);
   126   Node* generate_array_guard(Node* kls, RegionNode* region) {
   127     return generate_array_guard_common(kls, region, false, false);
   128   }
   129   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   130     return generate_array_guard_common(kls, region, false, true);
   131   }
   132   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   133     return generate_array_guard_common(kls, region, true, false);
   134   }
   135   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   136     return generate_array_guard_common(kls, region, true, true);
   137   }
   138   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   139                                     bool obj_array, bool not_array);
   140   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   141   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   142                                      bool is_virtual = false, bool is_static = false);
   143   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   144     return generate_method_call(method_id, false, true);
   145   }
   146   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   147     return generate_method_call(method_id, true, false);
   148   }
   150   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   151   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   152   bool inline_string_compareTo();
   153   bool inline_string_indexOf();
   154   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   155   bool inline_string_equals();
   156   Node* pop_math_arg();
   157   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   158   bool inline_math_native(vmIntrinsics::ID id);
   159   bool inline_trig(vmIntrinsics::ID id);
   160   bool inline_trans(vmIntrinsics::ID id);
   161   bool inline_abs(vmIntrinsics::ID id);
   162   bool inline_sqrt(vmIntrinsics::ID id);
   163   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
   164   bool inline_pow(vmIntrinsics::ID id);
   165   bool inline_exp(vmIntrinsics::ID id);
   166   bool inline_min_max(vmIntrinsics::ID id);
   167   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   168   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   169   int classify_unsafe_addr(Node* &base, Node* &offset);
   170   Node* make_unsafe_address(Node* base, Node* offset);
   171   // Helper for inline_unsafe_access.
   172   // Generates the guards that check whether the result of
   173   // Unsafe.getObject should be recorded in an SATB log buffer.
   174   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, int nargs, bool need_mem_bar);
   175   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   176   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   177   bool inline_unsafe_allocate();
   178   bool inline_unsafe_copyMemory();
   179   bool inline_native_currentThread();
   180 #ifdef TRACE_HAVE_INTRINSICS
   181   bool inline_native_classID();
   182   bool inline_native_threadID();
   183 #endif
   184   bool inline_native_time_funcs(address method, const char* funcName);
   185   bool inline_native_isInterrupted();
   186   bool inline_native_Class_query(vmIntrinsics::ID id);
   187   bool inline_native_subtype_check();
   189   bool inline_native_newArray();
   190   bool inline_native_getLength();
   191   bool inline_array_copyOf(bool is_copyOfRange);
   192   bool inline_array_equals();
   193   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   194   bool inline_native_clone(bool is_virtual);
   195   bool inline_native_Reflection_getCallerClass();
   196   bool is_method_invoke_or_aux_frame(JVMState* jvms);
   197   // Helper function for inlining native object hash method
   198   bool inline_native_hashcode(bool is_virtual, bool is_static);
   199   bool inline_native_getClass();
   201   // Helper functions for inlining arraycopy
   202   bool inline_arraycopy();
   203   void generate_arraycopy(const TypePtr* adr_type,
   204                           BasicType basic_elem_type,
   205                           Node* src,  Node* src_offset,
   206                           Node* dest, Node* dest_offset,
   207                           Node* copy_length,
   208                           bool disjoint_bases = false,
   209                           bool length_never_negative = false,
   210                           RegionNode* slow_region = NULL);
   211   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   212                                                 RegionNode* slow_region);
   213   void generate_clear_array(const TypePtr* adr_type,
   214                             Node* dest,
   215                             BasicType basic_elem_type,
   216                             Node* slice_off,
   217                             Node* slice_len,
   218                             Node* slice_end);
   219   bool generate_block_arraycopy(const TypePtr* adr_type,
   220                                 BasicType basic_elem_type,
   221                                 AllocateNode* alloc,
   222                                 Node* src,  Node* src_offset,
   223                                 Node* dest, Node* dest_offset,
   224                                 Node* dest_size, bool dest_uninitialized);
   225   void generate_slow_arraycopy(const TypePtr* adr_type,
   226                                Node* src,  Node* src_offset,
   227                                Node* dest, Node* dest_offset,
   228                                Node* copy_length, bool dest_uninitialized);
   229   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   230                                      Node* dest_elem_klass,
   231                                      Node* src,  Node* src_offset,
   232                                      Node* dest, Node* dest_offset,
   233                                      Node* copy_length, bool dest_uninitialized);
   234   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   235                                    Node* src,  Node* src_offset,
   236                                    Node* dest, Node* dest_offset,
   237                                    Node* copy_length, bool dest_uninitialized);
   238   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   239                                     BasicType basic_elem_type,
   240                                     bool disjoint_bases,
   241                                     Node* src,  Node* src_offset,
   242                                     Node* dest, Node* dest_offset,
   243                                     Node* copy_length, bool dest_uninitialized);
   244   bool inline_unsafe_CAS(BasicType type);
   245   bool inline_unsafe_ordered_store(BasicType type);
   246   bool inline_fp_conversions(vmIntrinsics::ID id);
   247   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
   248   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
   249   bool inline_bitCount(vmIntrinsics::ID id);
   250   bool inline_reverseBytes(vmIntrinsics::ID id);
   252   bool inline_reference_get();
   253 };
   256 //---------------------------make_vm_intrinsic----------------------------
   257 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   258   vmIntrinsics::ID id = m->intrinsic_id();
   259   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   261   if (DisableIntrinsic[0] != '\0'
   262       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   263     // disabled by a user request on the command line:
   264     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   265     return NULL;
   266   }
   268   if (!m->is_loaded()) {
   269     // do not attempt to inline unloaded methods
   270     return NULL;
   271   }
   273   // Only a few intrinsics implement a virtual dispatch.
   274   // They are expensive calls which are also frequently overridden.
   275   if (is_virtual) {
   276     switch (id) {
   277     case vmIntrinsics::_hashCode:
   278     case vmIntrinsics::_clone:
   279       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   280       break;
   281     default:
   282       return NULL;
   283     }
   284   }
   286   // -XX:-InlineNatives disables nearly all intrinsics:
   287   if (!InlineNatives) {
   288     switch (id) {
   289     case vmIntrinsics::_indexOf:
   290     case vmIntrinsics::_compareTo:
   291     case vmIntrinsics::_equals:
   292     case vmIntrinsics::_equalsC:
   293       break;  // InlineNatives does not control String.compareTo
   294     case vmIntrinsics::_Reference_get:
   295       break;  // InlineNatives does not control Reference.get
   296     default:
   297       return NULL;
   298     }
   299   }
   301   switch (id) {
   302   case vmIntrinsics::_compareTo:
   303     if (!SpecialStringCompareTo)  return NULL;
   304     break;
   305   case vmIntrinsics::_indexOf:
   306     if (!SpecialStringIndexOf)  return NULL;
   307     break;
   308   case vmIntrinsics::_equals:
   309     if (!SpecialStringEquals)  return NULL;
   310     break;
   311   case vmIntrinsics::_equalsC:
   312     if (!SpecialArraysEquals)  return NULL;
   313     break;
   314   case vmIntrinsics::_arraycopy:
   315     if (!InlineArrayCopy)  return NULL;
   316     break;
   317   case vmIntrinsics::_copyMemory:
   318     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   319     if (!InlineArrayCopy)  return NULL;
   320     break;
   321   case vmIntrinsics::_hashCode:
   322     if (!InlineObjectHash)  return NULL;
   323     break;
   324   case vmIntrinsics::_clone:
   325   case vmIntrinsics::_copyOf:
   326   case vmIntrinsics::_copyOfRange:
   327     if (!InlineObjectCopy)  return NULL;
   328     // These also use the arraycopy intrinsic mechanism:
   329     if (!InlineArrayCopy)  return NULL;
   330     break;
   331   case vmIntrinsics::_checkIndex:
   332     // We do not intrinsify this.  The optimizer does fine with it.
   333     return NULL;
   335   case vmIntrinsics::_getCallerClass:
   336     if (!UseNewReflection)  return NULL;
   337     if (!InlineReflectionGetCallerClass)  return NULL;
   338     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
   339     break;
   341   case vmIntrinsics::_bitCount_i:
   342     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   343     break;
   345   case vmIntrinsics::_bitCount_l:
   346     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   347     break;
   349   case vmIntrinsics::_numberOfLeadingZeros_i:
   350     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   351     break;
   353   case vmIntrinsics::_numberOfLeadingZeros_l:
   354     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   355     break;
   357   case vmIntrinsics::_numberOfTrailingZeros_i:
   358     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   359     break;
   361   case vmIntrinsics::_numberOfTrailingZeros_l:
   362     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   363     break;
   365   case vmIntrinsics::_Reference_get:
   366     // Use the intrinsic version of Reference.get() so that the value in
   367     // the referent field can be registered by the G1 pre-barrier code.
   368     // Also add memory barrier to prevent commoning reads from this field
   369     // across safepoint since GC can change it value.
   370     break;
   372  default:
   373     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   374     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   375     break;
   376   }
   378   // -XX:-InlineClassNatives disables natives from the Class class.
   379   // The flag applies to all reflective calls, notably Array.newArray
   380   // (visible to Java programmers as Array.newInstance).
   381   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   382       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   383     if (!InlineClassNatives)  return NULL;
   384   }
   386   // -XX:-InlineThreadNatives disables natives from the Thread class.
   387   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   388     if (!InlineThreadNatives)  return NULL;
   389   }
   391   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   392   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   393       m->holder()->name() == ciSymbol::java_lang_Float() ||
   394       m->holder()->name() == ciSymbol::java_lang_Double()) {
   395     if (!InlineMathNatives)  return NULL;
   396   }
   398   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   399   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   400     if (!InlineUnsafeOps)  return NULL;
   401   }
   403   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
   404 }
   406 //----------------------register_library_intrinsics-----------------------
   407 // Initialize this file's data structures, for each Compile instance.
   408 void Compile::register_library_intrinsics() {
   409   // Nothing to do here.
   410 }
   412 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
   413   LibraryCallKit kit(jvms, this);
   414   Compile* C = kit.C;
   415   int nodes = C->unique();
   416 #ifndef PRODUCT
   417   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
   418     char buf[1000];
   419     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   420     tty->print_cr("Intrinsic %s", str);
   421   }
   422 #endif
   424   if (kit.try_to_inline()) {
   425     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   426       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   427     }
   428     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   429     if (C->log()) {
   430       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   431                      vmIntrinsics::name_at(intrinsic_id()),
   432                      (is_virtual() ? " virtual='1'" : ""),
   433                      C->unique() - nodes);
   434     }
   435     return kit.transfer_exceptions_into_jvms();
   436   }
   438   // The intrinsic bailed out
   439   if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
   440     if (jvms->has_method()) {
   441       // Not a root compile.
   442       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   443       CompileTask::print_inlining(kit.callee(), jvms->depth() - 1, kit.bci(), msg);
   444     } else {
   445       // Root compile
   446       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   447                vmIntrinsics::name_at(intrinsic_id()),
   448                (is_virtual() ? " (virtual)" : ""), kit.bci());
   449     }
   450   }
   451   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   452   return NULL;
   453 }
   455 bool LibraryCallKit::try_to_inline() {
   456   // Handle symbolic names for otherwise undistinguished boolean switches:
   457   const bool is_store       = true;
   458   const bool is_native_ptr  = true;
   459   const bool is_static      = true;
   461   if (!jvms()->has_method()) {
   462     // Root JVMState has a null method.
   463     assert(map()->memory()->Opcode() == Op_Parm, "");
   464     // Insert the memory aliasing node
   465     set_all_memory(reset_memory());
   466   }
   467   assert(merged_memory(), "");
   469   switch (intrinsic_id()) {
   470   case vmIntrinsics::_hashCode:
   471     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   472   case vmIntrinsics::_identityHashCode:
   473     return inline_native_hashcode(/*!virtual*/ false, is_static);
   474   case vmIntrinsics::_getClass:
   475     return inline_native_getClass();
   477   case vmIntrinsics::_dsin:
   478   case vmIntrinsics::_dcos:
   479   case vmIntrinsics::_dtan:
   480   case vmIntrinsics::_dabs:
   481   case vmIntrinsics::_datan2:
   482   case vmIntrinsics::_dsqrt:
   483   case vmIntrinsics::_dexp:
   484   case vmIntrinsics::_dlog:
   485   case vmIntrinsics::_dlog10:
   486   case vmIntrinsics::_dpow:
   487     return inline_math_native(intrinsic_id());
   489   case vmIntrinsics::_min:
   490   case vmIntrinsics::_max:
   491     return inline_min_max(intrinsic_id());
   493   case vmIntrinsics::_arraycopy:
   494     return inline_arraycopy();
   496   case vmIntrinsics::_compareTo:
   497     return inline_string_compareTo();
   498   case vmIntrinsics::_indexOf:
   499     return inline_string_indexOf();
   500   case vmIntrinsics::_equals:
   501     return inline_string_equals();
   503   case vmIntrinsics::_getObject:
   504     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
   505   case vmIntrinsics::_getBoolean:
   506     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
   507   case vmIntrinsics::_getByte:
   508     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
   509   case vmIntrinsics::_getShort:
   510     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
   511   case vmIntrinsics::_getChar:
   512     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
   513   case vmIntrinsics::_getInt:
   514     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
   515   case vmIntrinsics::_getLong:
   516     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
   517   case vmIntrinsics::_getFloat:
   518     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
   519   case vmIntrinsics::_getDouble:
   520     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
   522   case vmIntrinsics::_putObject:
   523     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
   524   case vmIntrinsics::_putBoolean:
   525     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
   526   case vmIntrinsics::_putByte:
   527     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
   528   case vmIntrinsics::_putShort:
   529     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
   530   case vmIntrinsics::_putChar:
   531     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
   532   case vmIntrinsics::_putInt:
   533     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
   534   case vmIntrinsics::_putLong:
   535     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
   536   case vmIntrinsics::_putFloat:
   537     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
   538   case vmIntrinsics::_putDouble:
   539     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
   541   case vmIntrinsics::_getByte_raw:
   542     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
   543   case vmIntrinsics::_getShort_raw:
   544     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
   545   case vmIntrinsics::_getChar_raw:
   546     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
   547   case vmIntrinsics::_getInt_raw:
   548     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
   549   case vmIntrinsics::_getLong_raw:
   550     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
   551   case vmIntrinsics::_getFloat_raw:
   552     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
   553   case vmIntrinsics::_getDouble_raw:
   554     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
   555   case vmIntrinsics::_getAddress_raw:
   556     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
   558   case vmIntrinsics::_putByte_raw:
   559     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
   560   case vmIntrinsics::_putShort_raw:
   561     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
   562   case vmIntrinsics::_putChar_raw:
   563     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
   564   case vmIntrinsics::_putInt_raw:
   565     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
   566   case vmIntrinsics::_putLong_raw:
   567     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
   568   case vmIntrinsics::_putFloat_raw:
   569     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
   570   case vmIntrinsics::_putDouble_raw:
   571     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
   572   case vmIntrinsics::_putAddress_raw:
   573     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
   575   case vmIntrinsics::_getObjectVolatile:
   576     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
   577   case vmIntrinsics::_getBooleanVolatile:
   578     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
   579   case vmIntrinsics::_getByteVolatile:
   580     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
   581   case vmIntrinsics::_getShortVolatile:
   582     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
   583   case vmIntrinsics::_getCharVolatile:
   584     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
   585   case vmIntrinsics::_getIntVolatile:
   586     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
   587   case vmIntrinsics::_getLongVolatile:
   588     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
   589   case vmIntrinsics::_getFloatVolatile:
   590     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
   591   case vmIntrinsics::_getDoubleVolatile:
   592     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
   594   case vmIntrinsics::_putObjectVolatile:
   595     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
   596   case vmIntrinsics::_putBooleanVolatile:
   597     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
   598   case vmIntrinsics::_putByteVolatile:
   599     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
   600   case vmIntrinsics::_putShortVolatile:
   601     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
   602   case vmIntrinsics::_putCharVolatile:
   603     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
   604   case vmIntrinsics::_putIntVolatile:
   605     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
   606   case vmIntrinsics::_putLongVolatile:
   607     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
   608   case vmIntrinsics::_putFloatVolatile:
   609     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
   610   case vmIntrinsics::_putDoubleVolatile:
   611     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
   613   case vmIntrinsics::_prefetchRead:
   614     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   615   case vmIntrinsics::_prefetchWrite:
   616     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
   617   case vmIntrinsics::_prefetchReadStatic:
   618     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
   619   case vmIntrinsics::_prefetchWriteStatic:
   620     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
   622   case vmIntrinsics::_compareAndSwapObject:
   623     return inline_unsafe_CAS(T_OBJECT);
   624   case vmIntrinsics::_compareAndSwapInt:
   625     return inline_unsafe_CAS(T_INT);
   626   case vmIntrinsics::_compareAndSwapLong:
   627     return inline_unsafe_CAS(T_LONG);
   629   case vmIntrinsics::_putOrderedObject:
   630     return inline_unsafe_ordered_store(T_OBJECT);
   631   case vmIntrinsics::_putOrderedInt:
   632     return inline_unsafe_ordered_store(T_INT);
   633   case vmIntrinsics::_putOrderedLong:
   634     return inline_unsafe_ordered_store(T_LONG);
   636   case vmIntrinsics::_currentThread:
   637     return inline_native_currentThread();
   638   case vmIntrinsics::_isInterrupted:
   639     return inline_native_isInterrupted();
   641 #ifdef TRACE_HAVE_INTRINSICS
   642   case vmIntrinsics::_classID:
   643     return inline_native_classID();
   644   case vmIntrinsics::_threadID:
   645     return inline_native_threadID();
   646   case vmIntrinsics::_counterTime:
   647     return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   648 #endif
   649   case vmIntrinsics::_currentTimeMillis:
   650     return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   651   case vmIntrinsics::_nanoTime:
   652     return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   653   case vmIntrinsics::_allocateInstance:
   654     return inline_unsafe_allocate();
   655   case vmIntrinsics::_copyMemory:
   656     return inline_unsafe_copyMemory();
   657   case vmIntrinsics::_newArray:
   658     return inline_native_newArray();
   659   case vmIntrinsics::_getLength:
   660     return inline_native_getLength();
   661   case vmIntrinsics::_copyOf:
   662     return inline_array_copyOf(false);
   663   case vmIntrinsics::_copyOfRange:
   664     return inline_array_copyOf(true);
   665   case vmIntrinsics::_equalsC:
   666     return inline_array_equals();
   667   case vmIntrinsics::_clone:
   668     return inline_native_clone(intrinsic()->is_virtual());
   670   case vmIntrinsics::_isAssignableFrom:
   671     return inline_native_subtype_check();
   673   case vmIntrinsics::_isInstance:
   674   case vmIntrinsics::_getModifiers:
   675   case vmIntrinsics::_isInterface:
   676   case vmIntrinsics::_isArray:
   677   case vmIntrinsics::_isPrimitive:
   678   case vmIntrinsics::_getSuperclass:
   679   case vmIntrinsics::_getComponentType:
   680   case vmIntrinsics::_getClassAccessFlags:
   681     return inline_native_Class_query(intrinsic_id());
   683   case vmIntrinsics::_floatToRawIntBits:
   684   case vmIntrinsics::_floatToIntBits:
   685   case vmIntrinsics::_intBitsToFloat:
   686   case vmIntrinsics::_doubleToRawLongBits:
   687   case vmIntrinsics::_doubleToLongBits:
   688   case vmIntrinsics::_longBitsToDouble:
   689     return inline_fp_conversions(intrinsic_id());
   691   case vmIntrinsics::_numberOfLeadingZeros_i:
   692   case vmIntrinsics::_numberOfLeadingZeros_l:
   693     return inline_numberOfLeadingZeros(intrinsic_id());
   695   case vmIntrinsics::_numberOfTrailingZeros_i:
   696   case vmIntrinsics::_numberOfTrailingZeros_l:
   697     return inline_numberOfTrailingZeros(intrinsic_id());
   699   case vmIntrinsics::_bitCount_i:
   700   case vmIntrinsics::_bitCount_l:
   701     return inline_bitCount(intrinsic_id());
   703   case vmIntrinsics::_reverseBytes_i:
   704   case vmIntrinsics::_reverseBytes_l:
   705   case vmIntrinsics::_reverseBytes_s:
   706   case vmIntrinsics::_reverseBytes_c:
   707     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
   709   case vmIntrinsics::_getCallerClass:
   710     return inline_native_Reflection_getCallerClass();
   712   case vmIntrinsics::_Reference_get:
   713     return inline_reference_get();
   715   default:
   716     // If you get here, it may be that someone has added a new intrinsic
   717     // to the list in vmSymbols.hpp without implementing it here.
   718 #ifndef PRODUCT
   719     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   720       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   721                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   722     }
   723 #endif
   724     return false;
   725   }
   726 }
   728 //------------------------------push_result------------------------------
   729 // Helper function for finishing intrinsics.
   730 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
   731   record_for_igvn(region);
   732   set_control(_gvn.transform(region));
   733   BasicType value_type = value->type()->basic_type();
   734   push_node(value_type, _gvn.transform(value));
   735 }
   737 //------------------------------generate_guard---------------------------
   738 // Helper function for generating guarded fast-slow graph structures.
   739 // The given 'test', if true, guards a slow path.  If the test fails
   740 // then a fast path can be taken.  (We generally hope it fails.)
   741 // In all cases, GraphKit::control() is updated to the fast path.
   742 // The returned value represents the control for the slow path.
   743 // The return value is never 'top'; it is either a valid control
   744 // or NULL if it is obvious that the slow path can never be taken.
   745 // Also, if region and the slow control are not NULL, the slow edge
   746 // is appended to the region.
   747 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   748   if (stopped()) {
   749     // Already short circuited.
   750     return NULL;
   751   }
   753   // Build an if node and its projections.
   754   // If test is true we take the slow path, which we assume is uncommon.
   755   if (_gvn.type(test) == TypeInt::ZERO) {
   756     // The slow branch is never taken.  No need to build this guard.
   757     return NULL;
   758   }
   760   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   762   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
   763   if (if_slow == top()) {
   764     // The slow branch is never taken.  No need to build this guard.
   765     return NULL;
   766   }
   768   if (region != NULL)
   769     region->add_req(if_slow);
   771   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
   772   set_control(if_fast);
   774   return if_slow;
   775 }
   777 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   778   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   779 }
   780 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   781   return generate_guard(test, region, PROB_FAIR);
   782 }
   784 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   785                                                      Node* *pos_index) {
   786   if (stopped())
   787     return NULL;                // already stopped
   788   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   789     return NULL;                // index is already adequately typed
   790   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   791   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   792   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   793   if (is_neg != NULL && pos_index != NULL) {
   794     // Emulate effect of Parse::adjust_map_after_if.
   795     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
   796     ccast->set_req(0, control());
   797     (*pos_index) = _gvn.transform(ccast);
   798   }
   799   return is_neg;
   800 }
   802 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
   803                                                         Node* *pos_index) {
   804   if (stopped())
   805     return NULL;                // already stopped
   806   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
   807     return NULL;                // index is already adequately typed
   808   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
   809   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
   810   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
   811   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
   812   if (is_notp != NULL && pos_index != NULL) {
   813     // Emulate effect of Parse::adjust_map_after_if.
   814     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
   815     ccast->set_req(0, control());
   816     (*pos_index) = _gvn.transform(ccast);
   817   }
   818   return is_notp;
   819 }
   821 // Make sure that 'position' is a valid limit index, in [0..length].
   822 // There are two equivalent plans for checking this:
   823 //   A. (offset + copyLength)  unsigned<=  arrayLength
   824 //   B. offset  <=  (arrayLength - copyLength)
   825 // We require that all of the values above, except for the sum and
   826 // difference, are already known to be non-negative.
   827 // Plan A is robust in the face of overflow, if offset and copyLength
   828 // are both hugely positive.
   829 //
   830 // Plan B is less direct and intuitive, but it does not overflow at
   831 // all, since the difference of two non-negatives is always
   832 // representable.  Whenever Java methods must perform the equivalent
   833 // check they generally use Plan B instead of Plan A.
   834 // For the moment we use Plan A.
   835 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
   836                                                   Node* subseq_length,
   837                                                   Node* array_length,
   838                                                   RegionNode* region) {
   839   if (stopped())
   840     return NULL;                // already stopped
   841   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
   842   if (zero_offset && subseq_length->eqv_uncast(array_length))
   843     return NULL;                // common case of whole-array copy
   844   Node* last = subseq_length;
   845   if (!zero_offset)             // last += offset
   846     last = _gvn.transform( new (C, 3) AddINode(last, offset));
   847   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
   848   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
   849   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
   850   return is_over;
   851 }
   854 //--------------------------generate_current_thread--------------------
   855 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
   856   ciKlass*    thread_klass = env()->Thread_klass();
   857   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
   858   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
   859   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
   860   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
   861   tls_output = thread;
   862   return threadObj;
   863 }
   866 //------------------------------make_string_method_node------------------------
   867 // Helper method for String intrinsic functions. This version is called
   868 // with str1 and str2 pointing to String object nodes.
   869 //
   870 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
   871   Node* no_ctrl = NULL;
   873   // Get start addr of string
   874   Node* str1_value   = load_String_value(no_ctrl, str1);
   875   Node* str1_offset  = load_String_offset(no_ctrl, str1);
   876   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
   878   // Get length of string 1
   879   Node* str1_len  = load_String_length(no_ctrl, str1);
   881   Node* str2_value   = load_String_value(no_ctrl, str2);
   882   Node* str2_offset  = load_String_offset(no_ctrl, str2);
   883   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
   885   Node* str2_len = NULL;
   886   Node* result = NULL;
   888   switch (opcode) {
   889   case Op_StrIndexOf:
   890     // Get length of string 2
   891     str2_len = load_String_length(no_ctrl, str2);
   893     result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
   894                                  str1_start, str1_len, str2_start, str2_len);
   895     break;
   896   case Op_StrComp:
   897     // Get length of string 2
   898     str2_len = load_String_length(no_ctrl, str2);
   900     result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
   901                                  str1_start, str1_len, str2_start, str2_len);
   902     break;
   903   case Op_StrEquals:
   904     result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
   905                                str1_start, str2_start, str1_len);
   906     break;
   907   default:
   908     ShouldNotReachHere();
   909     return NULL;
   910   }
   912   // All these intrinsics have checks.
   913   C->set_has_split_ifs(true); // Has chance for split-if optimization
   915   return _gvn.transform(result);
   916 }
   918 // Helper method for String intrinsic functions. This version is called
   919 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
   920 // to Int nodes containing the lenghts of str1 and str2.
   921 //
   922 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
   924   Node* result = NULL;
   925   switch (opcode) {
   926   case Op_StrIndexOf:
   927     result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
   928                                  str1_start, cnt1, str2_start, cnt2);
   929     break;
   930   case Op_StrComp:
   931     result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
   932                                  str1_start, cnt1, str2_start, cnt2);
   933     break;
   934   case Op_StrEquals:
   935     result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
   936                                  str1_start, str2_start, cnt1);
   937     break;
   938   default:
   939     ShouldNotReachHere();
   940     return NULL;
   941   }
   943   // All these intrinsics have checks.
   944   C->set_has_split_ifs(true); // Has chance for split-if optimization
   946   return _gvn.transform(result);
   947 }
   949 //------------------------------inline_string_compareTo------------------------
   950 bool LibraryCallKit::inline_string_compareTo() {
   952   if (!Matcher::has_match_rule(Op_StrComp)) return false;
   954   _sp += 2;
   955   Node *argument = pop();  // pop non-receiver first:  it was pushed second
   956   Node *receiver = pop();
   958   // Null check on self without removing any arguments.  The argument
   959   // null check technically happens in the wrong place, which can lead to
   960   // invalid stack traces when string compare is inlined into a method
   961   // which handles NullPointerExceptions.
   962   _sp += 2;
   963   receiver = do_null_check(receiver, T_OBJECT);
   964   argument = do_null_check(argument, T_OBJECT);
   965   _sp -= 2;
   966   if (stopped()) {
   967     return true;
   968   }
   970   Node* compare = make_string_method_node(Op_StrComp, receiver, argument);
   971   push(compare);
   972   return true;
   973 }
   975 //------------------------------inline_string_equals------------------------
   976 bool LibraryCallKit::inline_string_equals() {
   978   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
   980   int nargs = 2;
   981   _sp += nargs;
   982   Node* argument = pop();  // pop non-receiver first:  it was pushed second
   983   Node* receiver = pop();
   985   // Null check on self without removing any arguments.  The argument
   986   // null check technically happens in the wrong place, which can lead to
   987   // invalid stack traces when string compare is inlined into a method
   988   // which handles NullPointerExceptions.
   989   _sp += nargs;
   990   receiver = do_null_check(receiver, T_OBJECT);
   991   //should not do null check for argument for String.equals(), because spec
   992   //allows to specify NULL as argument.
   993   _sp -= nargs;
   995   if (stopped()) {
   996     return true;
   997   }
   999   // paths (plus control) merge
  1000   RegionNode* region = new (C, 5) RegionNode(5);
  1001   Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
  1003   // does source == target string?
  1004   Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
  1005   Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
  1007   Node* if_eq = generate_slow_guard(bol, NULL);
  1008   if (if_eq != NULL) {
  1009     // receiver == argument
  1010     phi->init_req(2, intcon(1));
  1011     region->init_req(2, if_eq);
  1014   // get String klass for instanceOf
  1015   ciInstanceKlass* klass = env()->String_klass();
  1017   if (!stopped()) {
  1018     _sp += nargs;          // gen_instanceof might do an uncommon trap
  1019     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1020     _sp -= nargs;
  1021     Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
  1022     Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
  1024     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1025     //instanceOf == true, fallthrough
  1027     if (inst_false != NULL) {
  1028       phi->init_req(3, intcon(0));
  1029       region->init_req(3, inst_false);
  1033   if (!stopped()) {
  1034     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1036     // Properly cast the argument to String
  1037     argument = _gvn.transform(new (C, 2) CheckCastPPNode(control(), argument, string_type));
  1038     // This path is taken only when argument's type is String:NotNull.
  1039     argument = cast_not_null(argument, false);
  1041     Node* no_ctrl = NULL;
  1043     // Get start addr of receiver
  1044     Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1045     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1046     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1048     // Get length of receiver
  1049     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1051     // Get start addr of argument
  1052     Node* argument_val   = load_String_value(no_ctrl, argument);
  1053     Node* argument_offset = load_String_offset(no_ctrl, argument);
  1054     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1056     // Get length of argument
  1057     Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1059     // Check for receiver count != argument count
  1060     Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
  1061     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
  1062     Node* if_ne = generate_slow_guard(bol, NULL);
  1063     if (if_ne != NULL) {
  1064       phi->init_req(4, intcon(0));
  1065       region->init_req(4, if_ne);
  1068     // Check for count == 0 is done by assembler code for StrEquals.
  1070     if (!stopped()) {
  1071       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1072       phi->init_req(1, equals);
  1073       region->init_req(1, control());
  1077   // post merge
  1078   set_control(_gvn.transform(region));
  1079   record_for_igvn(region);
  1081   push(_gvn.transform(phi));
  1083   return true;
  1086 //------------------------------inline_array_equals----------------------------
  1087 bool LibraryCallKit::inline_array_equals() {
  1089   if (!Matcher::has_match_rule(Op_AryEq)) return false;
  1091   _sp += 2;
  1092   Node *argument2 = pop();
  1093   Node *argument1 = pop();
  1095   Node* equals =
  1096     _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
  1097                                         argument1, argument2) );
  1098   push(equals);
  1099   return true;
  1102 // Java version of String.indexOf(constant string)
  1103 // class StringDecl {
  1104 //   StringDecl(char[] ca) {
  1105 //     offset = 0;
  1106 //     count = ca.length;
  1107 //     value = ca;
  1108 //   }
  1109 //   int offset;
  1110 //   int count;
  1111 //   char[] value;
  1112 // }
  1113 //
  1114 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1115 //                             int targetOffset, int cache_i, int md2) {
  1116 //   int cache = cache_i;
  1117 //   int sourceOffset = string_object.offset;
  1118 //   int sourceCount = string_object.count;
  1119 //   int targetCount = target_object.length;
  1120 //
  1121 //   int targetCountLess1 = targetCount - 1;
  1122 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1123 //
  1124 //   char[] source = string_object.value;
  1125 //   char[] target = target_object;
  1126 //   int lastChar = target[targetCountLess1];
  1127 //
  1128 //  outer_loop:
  1129 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1130 //     int src = source[i + targetCountLess1];
  1131 //     if (src == lastChar) {
  1132 //       // With random strings and a 4-character alphabet,
  1133 //       // reverse matching at this point sets up 0.8% fewer
  1134 //       // frames, but (paradoxically) makes 0.3% more probes.
  1135 //       // Since those probes are nearer the lastChar probe,
  1136 //       // there is may be a net D$ win with reverse matching.
  1137 //       // But, reversing loop inhibits unroll of inner loop
  1138 //       // for unknown reason.  So, does running outer loop from
  1139 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1140 //       for (int j = 0; j < targetCountLess1; j++) {
  1141 //         if (target[targetOffset + j] != source[i+j]) {
  1142 //           if ((cache & (1 << source[i+j])) == 0) {
  1143 //             if (md2 < j+1) {
  1144 //               i += j+1;
  1145 //               continue outer_loop;
  1146 //             }
  1147 //           }
  1148 //           i += md2;
  1149 //           continue outer_loop;
  1150 //         }
  1151 //       }
  1152 //       return i - sourceOffset;
  1153 //     }
  1154 //     if ((cache & (1 << src)) == 0) {
  1155 //       i += targetCountLess1;
  1156 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1157 //     i++;
  1158 //   }
  1159 //   return -1;
  1160 // }
  1162 //------------------------------string_indexOf------------------------
  1163 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1164                                      jint cache_i, jint md2_i) {
  1166   Node* no_ctrl  = NULL;
  1167   float likely   = PROB_LIKELY(0.9);
  1168   float unlikely = PROB_UNLIKELY(0.9);
  1170   const int nargs = 2; // number of arguments to push back for uncommon trap in predicate
  1172   Node* source        = load_String_value(no_ctrl, string_object);
  1173   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1174   Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1176   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
  1177   jint target_length = target_array->length();
  1178   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1179   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1181   IdealKit kit(this, false, true);
  1182 #define __ kit.
  1183   Node* zero             = __ ConI(0);
  1184   Node* one              = __ ConI(1);
  1185   Node* cache            = __ ConI(cache_i);
  1186   Node* md2              = __ ConI(md2_i);
  1187   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1188   Node* targetCount      = __ ConI(target_length);
  1189   Node* targetCountLess1 = __ ConI(target_length - 1);
  1190   Node* targetOffset     = __ ConI(targetOffset_i);
  1191   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1193   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1194   Node* outer_loop = __ make_label(2 /* goto */);
  1195   Node* return_    = __ make_label(1);
  1197   __ set(rtn,__ ConI(-1));
  1198   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1199        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1200        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1201        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1202        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1203          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1204               Node* tpj = __ AddI(targetOffset, __ value(j));
  1205               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1206               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1207               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1208               __ if_then(targ, BoolTest::ne, src2); {
  1209                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1210                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1211                     __ increment(i, __ AddI(__ value(j), one));
  1212                     __ goto_(outer_loop);
  1213                   } __ end_if(); __ dead(j);
  1214                 }__ end_if(); __ dead(j);
  1215                 __ increment(i, md2);
  1216                 __ goto_(outer_loop);
  1217               }__ end_if();
  1218               __ increment(j, one);
  1219          }__ end_loop(); __ dead(j);
  1220          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1221          __ goto_(return_);
  1222        }__ end_if();
  1223        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1224          __ increment(i, targetCountLess1);
  1225        }__ end_if();
  1226        __ increment(i, one);
  1227        __ bind(outer_loop);
  1228   }__ end_loop(); __ dead(i);
  1229   __ bind(return_);
  1231   // Final sync IdealKit and GraphKit.
  1232   final_sync(kit);
  1233   Node* result = __ value(rtn);
  1234 #undef __
  1235   C->set_has_loops(true);
  1236   return result;
  1239 //------------------------------inline_string_indexOf------------------------
  1240 bool LibraryCallKit::inline_string_indexOf() {
  1242   _sp += 2;
  1243   Node *argument = pop();  // pop non-receiver first:  it was pushed second
  1244   Node *receiver = pop();
  1246   Node* result;
  1247   // Disable the use of pcmpestri until it can be guaranteed that
  1248   // the load doesn't cross into the uncommited space.
  1249   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1250       UseSSE42Intrinsics) {
  1251     // Generate SSE4.2 version of indexOf
  1252     // We currently only have match rules that use SSE4.2
  1254     // Null check on self without removing any arguments.  The argument
  1255     // null check technically happens in the wrong place, which can lead to
  1256     // invalid stack traces when string compare is inlined into a method
  1257     // which handles NullPointerExceptions.
  1258     _sp += 2;
  1259     receiver = do_null_check(receiver, T_OBJECT);
  1260     argument = do_null_check(argument, T_OBJECT);
  1261     _sp -= 2;
  1263     if (stopped()) {
  1264       return true;
  1267     ciInstanceKlass* str_klass = env()->String_klass();
  1268     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1270     // Make the merge point
  1271     RegionNode* result_rgn = new (C, 4) RegionNode(4);
  1272     Node*       result_phi = new (C, 4) PhiNode(result_rgn, TypeInt::INT);
  1273     Node* no_ctrl  = NULL;
  1275     // Get start addr of source string
  1276     Node* source = load_String_value(no_ctrl, receiver);
  1277     Node* source_offset = load_String_offset(no_ctrl, receiver);
  1278     Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1280     // Get length of source string
  1281     Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1283     // Get start addr of substring
  1284     Node* substr = load_String_value(no_ctrl, argument);
  1285     Node* substr_offset = load_String_offset(no_ctrl, argument);
  1286     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1288     // Get length of source string
  1289     Node* substr_cnt  = load_String_length(no_ctrl, argument);
  1291     // Check for substr count > string count
  1292     Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
  1293     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
  1294     Node* if_gt = generate_slow_guard(bol, NULL);
  1295     if (if_gt != NULL) {
  1296       result_phi->init_req(2, intcon(-1));
  1297       result_rgn->init_req(2, if_gt);
  1300     if (!stopped()) {
  1301       // Check for substr count == 0
  1302       cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, intcon(0)) );
  1303       bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  1304       Node* if_zero = generate_slow_guard(bol, NULL);
  1305       if (if_zero != NULL) {
  1306         result_phi->init_req(3, intcon(0));
  1307         result_rgn->init_req(3, if_zero);
  1311     if (!stopped()) {
  1312       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1313       result_phi->init_req(1, result);
  1314       result_rgn->init_req(1, control());
  1316     set_control(_gvn.transform(result_rgn));
  1317     record_for_igvn(result_rgn);
  1318     result = _gvn.transform(result_phi);
  1320   } else { // Use LibraryCallKit::string_indexOf
  1321     // don't intrinsify if argument isn't a constant string.
  1322     if (!argument->is_Con()) {
  1323      return false;
  1325     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
  1326     if (str_type == NULL) {
  1327       return false;
  1329     ciInstanceKlass* klass = env()->String_klass();
  1330     ciObject* str_const = str_type->const_oop();
  1331     if (str_const == NULL || str_const->klass() != klass) {
  1332       return false;
  1334     ciInstance* str = str_const->as_instance();
  1335     assert(str != NULL, "must be instance");
  1337     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1338     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1340     int o;
  1341     int c;
  1342     if (java_lang_String::has_offset_field()) {
  1343       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1344       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1345     } else {
  1346       o = 0;
  1347       c = pat->length();
  1350     // constant strings have no offset and count == length which
  1351     // simplifies the resulting code somewhat so lets optimize for that.
  1352     if (o != 0 || c != pat->length()) {
  1353      return false;
  1356     // Null check on self without removing any arguments.  The argument
  1357     // null check technically happens in the wrong place, which can lead to
  1358     // invalid stack traces when string compare is inlined into a method
  1359     // which handles NullPointerExceptions.
  1360     _sp += 2;
  1361     receiver = do_null_check(receiver, T_OBJECT);
  1362     // No null check on the argument is needed since it's a constant String oop.
  1363     _sp -= 2;
  1364     if (stopped()) {
  1365       return true;
  1368     // The null string as a pattern always returns 0 (match at beginning of string)
  1369     if (c == 0) {
  1370       push(intcon(0));
  1371       return true;
  1374     // Generate default indexOf
  1375     jchar lastChar = pat->char_at(o + (c - 1));
  1376     int cache = 0;
  1377     int i;
  1378     for (i = 0; i < c - 1; i++) {
  1379       assert(i < pat->length(), "out of range");
  1380       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1383     int md2 = c;
  1384     for (i = 0; i < c - 1; i++) {
  1385       assert(i < pat->length(), "out of range");
  1386       if (pat->char_at(o + i) == lastChar) {
  1387         md2 = (c - 1) - i;
  1391     result = string_indexOf(receiver, pat, o, cache, md2);
  1394   push(result);
  1395   return true;
  1398 //--------------------------pop_math_arg--------------------------------
  1399 // Pop a double argument to a math function from the stack
  1400 // rounding it if necessary.
  1401 Node * LibraryCallKit::pop_math_arg() {
  1402   Node *arg = pop_pair();
  1403   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
  1404     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
  1405   return arg;
  1408 //------------------------------inline_trig----------------------------------
  1409 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1410 // argument reduction which will turn into a fast/slow diamond.
  1411 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1412   _sp += arg_size();            // restore stack pointer
  1413   Node* arg = pop_math_arg();
  1414   Node* trig = NULL;
  1416   switch (id) {
  1417   case vmIntrinsics::_dsin:
  1418     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
  1419     break;
  1420   case vmIntrinsics::_dcos:
  1421     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
  1422     break;
  1423   case vmIntrinsics::_dtan:
  1424     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
  1425     break;
  1426   default:
  1427     assert(false, "bad intrinsic was passed in");
  1428     return false;
  1431   // Rounding required?  Check for argument reduction!
  1432   if( Matcher::strict_fp_requires_explicit_rounding ) {
  1434     static const double     pi_4 =  0.7853981633974483;
  1435     static const double neg_pi_4 = -0.7853981633974483;
  1436     // pi/2 in 80-bit extended precision
  1437     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1438     // -pi/2 in 80-bit extended precision
  1439     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1440     // Cutoff value for using this argument reduction technique
  1441     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1442     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1444     // Pseudocode for sin:
  1445     // if (x <= Math.PI / 4.0) {
  1446     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1447     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1448     // } else {
  1449     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1450     // }
  1451     // return StrictMath.sin(x);
  1453     // Pseudocode for cos:
  1454     // if (x <= Math.PI / 4.0) {
  1455     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1456     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1457     // } else {
  1458     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1459     // }
  1460     // return StrictMath.cos(x);
  1462     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1463     // requires a special machine instruction to load it.  Instead we'll try
  1464     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1465     // probably do the math inside the SIN encoding.
  1467     // Make the merge point
  1468     RegionNode *r = new (C, 3) RegionNode(3);
  1469     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
  1471     // Flatten arg so we need only 1 test
  1472     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
  1473     // Node for PI/4 constant
  1474     Node *pi4 = makecon(TypeD::make(pi_4));
  1475     // Check PI/4 : abs(arg)
  1476     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
  1477     // Check: If PI/4 < abs(arg) then go slow
  1478     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
  1479     // Branch either way
  1480     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1481     set_control(opt_iff(r,iff));
  1483     // Set fast path result
  1484     phi->init_req(2,trig);
  1486     // Slow path - non-blocking leaf call
  1487     Node* call = NULL;
  1488     switch (id) {
  1489     case vmIntrinsics::_dsin:
  1490       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1491                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1492                                "Sin", NULL, arg, top());
  1493       break;
  1494     case vmIntrinsics::_dcos:
  1495       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1496                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1497                                "Cos", NULL, arg, top());
  1498       break;
  1499     case vmIntrinsics::_dtan:
  1500       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1501                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1502                                "Tan", NULL, arg, top());
  1503       break;
  1505     assert(control()->in(0) == call, "");
  1506     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
  1507     r->init_req(1,control());
  1508     phi->init_req(1,slow_result);
  1510     // Post-merge
  1511     set_control(_gvn.transform(r));
  1512     record_for_igvn(r);
  1513     trig = _gvn.transform(phi);
  1515     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1517   // Push result back on JVM stack
  1518   push_pair(trig);
  1519   return true;
  1522 //------------------------------inline_sqrt-------------------------------------
  1523 // Inline square root instruction, if possible.
  1524 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
  1525   assert(id == vmIntrinsics::_dsqrt, "Not square root");
  1526   _sp += arg_size();        // restore stack pointer
  1527   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
  1528   return true;
  1531 //------------------------------inline_abs-------------------------------------
  1532 // Inline absolute value instruction, if possible.
  1533 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
  1534   assert(id == vmIntrinsics::_dabs, "Not absolute value");
  1535   _sp += arg_size();        // restore stack pointer
  1536   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
  1537   return true;
  1540 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1541   //-------------------
  1542   //result=(result.isNaN())? funcAddr():result;
  1543   // Check: If isNaN() by checking result!=result? then either trap
  1544   // or go to runtime
  1545   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
  1546   // Build the boolean node
  1547   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
  1549   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1551       BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1552       // End the current control-flow path
  1553       push_pair(x);
  1554       if (y != NULL) {
  1555         push_pair(y);
  1557       // The pow or exp intrinsic returned a NaN, which requires a call
  1558       // to the runtime.  Recompile with the runtime call.
  1559       uncommon_trap(Deoptimization::Reason_intrinsic,
  1560                     Deoptimization::Action_make_not_entrant);
  1562     push_pair(result);
  1563   } else {
  1564     // If this inlining ever returned NaN in the past, we compile a call
  1565     // to the runtime to properly handle corner cases
  1567     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1568     Node* if_slow = _gvn.transform( new (C, 1) IfFalseNode(iff) );
  1569     Node* if_fast = _gvn.transform( new (C, 1) IfTrueNode(iff) );
  1571     if (!if_slow->is_top()) {
  1572       RegionNode* result_region = new(C, 3) RegionNode(3);
  1573       PhiNode*    result_val = new (C, 3) PhiNode(result_region, Type::DOUBLE);
  1575       result_region->init_req(1, if_fast);
  1576       result_val->init_req(1, result);
  1578       set_control(if_slow);
  1580       const TypePtr* no_memory_effects = NULL;
  1581       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1582                                    no_memory_effects,
  1583                                    x, top(), y, y ? top() : NULL);
  1584       Node* value = _gvn.transform(new (C, 1) ProjNode(rt, TypeFunc::Parms+0));
  1585 #ifdef ASSERT
  1586       Node* value_top = _gvn.transform(new (C, 1) ProjNode(rt, TypeFunc::Parms+1));
  1587       assert(value_top == top(), "second value must be top");
  1588 #endif
  1590       result_region->init_req(2, control());
  1591       result_val->init_req(2, value);
  1592       push_result(result_region, result_val);
  1593     } else {
  1594       push_pair(result);
  1599 //------------------------------inline_exp-------------------------------------
  1600 // Inline exp instructions, if possible.  The Intel hardware only misses
  1601 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1602 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
  1603   assert(id == vmIntrinsics::_dexp, "Not exp");
  1605   _sp += arg_size();        // restore stack pointer
  1606   Node *x = pop_math_arg();
  1607   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
  1609   finish_pow_exp(result, x, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1611   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1613   return true;
  1616 //------------------------------inline_pow-------------------------------------
  1617 // Inline power instructions, if possible.
  1618 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
  1619   assert(id == vmIntrinsics::_dpow, "Not pow");
  1621   // Pseudocode for pow
  1622   // if (x <= 0.0) {
  1623   //   long longy = (long)y;
  1624   //   if ((double)longy == y) { // if y is long
  1625   //     if (y + 1 == y) longy = 0; // huge number: even
  1626   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
  1627   //   } else {
  1628   //     result = NaN;
  1629   //   }
  1630   // } else {
  1631   //   result = DPow(x,y);
  1632   // }
  1633   // if (result != result)?  {
  1634   //   result = uncommon_trap() or runtime_call();
  1635   // }
  1636   // return result;
  1638   _sp += arg_size();        // restore stack pointer
  1639   Node* y = pop_math_arg();
  1640   Node* x = pop_math_arg();
  1642   Node* result = NULL;
  1644   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1645     // Short form: skip the fancy tests and just check for NaN result.
  1646     result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
  1647   } else {
  1648     // If this inlining ever returned NaN in the past, include all
  1649     // checks + call to the runtime.
  1651     // Set the merge point for If node with condition of (x <= 0.0)
  1652     // There are four possible paths to region node and phi node
  1653     RegionNode *r = new (C, 4) RegionNode(4);
  1654     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
  1656     // Build the first if node: if (x <= 0.0)
  1657     // Node for 0 constant
  1658     Node *zeronode = makecon(TypeD::ZERO);
  1659     // Check x:0
  1660     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
  1661     // Check: If (x<=0) then go complex path
  1662     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
  1663     // Branch either way
  1664     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1665     // Fast path taken; set region slot 3
  1666     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(if1) );
  1667     r->init_req(3,fast_taken); // Capture fast-control
  1669     // Fast path not-taken, i.e. slow path
  1670     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(if1) );
  1672     // Set fast path result
  1673     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
  1674     phi->init_req(3, fast_result);
  1676     // Complex path
  1677     // Build the second if node (if y is long)
  1678     // Node for (long)y
  1679     Node *longy = _gvn.transform( new (C, 2) ConvD2LNode(y));
  1680     // Node for (double)((long) y)
  1681     Node *doublelongy= _gvn.transform( new (C, 2) ConvL2DNode(longy));
  1682     // Check (double)((long) y) : y
  1683     Node *cmplongy= _gvn.transform(new (C, 3) CmpDNode(doublelongy, y));
  1684     // Check if (y isn't long) then go to slow path
  1686     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmplongy, BoolTest::ne ) );
  1687     // Branch either way
  1688     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1689     Node* ylong_path = _gvn.transform( new (C, 1) IfFalseNode(if2));
  1691     Node *slow_path = _gvn.transform( new (C, 1) IfTrueNode(if2) );
  1693     // Calculate DPow(abs(x), y)*(1 & (long)y)
  1694     // Node for constant 1
  1695     Node *conone = longcon(1);
  1696     // 1& (long)y
  1697     Node *signnode= _gvn.transform( new (C, 3) AndLNode(conone, longy) );
  1699     // A huge number is always even. Detect a huge number by checking
  1700     // if y + 1 == y and set integer to be tested for parity to 0.
  1701     // Required for corner case:
  1702     // (long)9.223372036854776E18 = max_jlong
  1703     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
  1704     // max_jlong is odd but 9.223372036854776E18 is even
  1705     Node* yplus1 = _gvn.transform( new (C, 3) AddDNode(y, makecon(TypeD::make(1))));
  1706     Node *cmpyplus1= _gvn.transform(new (C, 3) CmpDNode(yplus1, y));
  1707     Node *bolyplus1 = _gvn.transform( new (C, 2) BoolNode( cmpyplus1, BoolTest::eq ) );
  1708     Node* correctedsign = NULL;
  1709     if (ConditionalMoveLimit != 0) {
  1710       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
  1711     } else {
  1712       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
  1713       RegionNode *r = new (C, 3) RegionNode(3);
  1714       Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
  1715       r->init_req(1, _gvn.transform( new (C, 1) IfFalseNode(ifyplus1)));
  1716       r->init_req(2, _gvn.transform( new (C, 1) IfTrueNode(ifyplus1)));
  1717       phi->init_req(1, signnode);
  1718       phi->init_req(2, longcon(0));
  1719       correctedsign = _gvn.transform(phi);
  1720       ylong_path = _gvn.transform(r);
  1721       record_for_igvn(r);
  1724     // zero node
  1725     Node *conzero = longcon(0);
  1726     // Check (1&(long)y)==0?
  1727     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpLNode(correctedsign, conzero));
  1728     // Check if (1&(long)y)!=0?, if so the result is negative
  1729     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
  1730     // abs(x)
  1731     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
  1732     // abs(x)^y
  1733     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, absx, y) );
  1734     // -abs(x)^y
  1735     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
  1736     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1737     Node *signresult = NULL;
  1738     if (ConditionalMoveLimit != 0) {
  1739       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1740     } else {
  1741       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
  1742       RegionNode *r = new (C, 3) RegionNode(3);
  1743       Node *phi = new (C, 3) PhiNode(r, Type::DOUBLE);
  1744       r->init_req(1, _gvn.transform( new (C, 1) IfFalseNode(ifyeven)));
  1745       r->init_req(2, _gvn.transform( new (C, 1) IfTrueNode(ifyeven)));
  1746       phi->init_req(1, absxpowy);
  1747       phi->init_req(2, negabsxpowy);
  1748       signresult = _gvn.transform(phi);
  1749       ylong_path = _gvn.transform(r);
  1750       record_for_igvn(r);
  1752     // Set complex path fast result
  1753     r->init_req(2, ylong_path);
  1754     phi->init_req(2, signresult);
  1756     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1757     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1758     r->init_req(1,slow_path);
  1759     phi->init_req(1,slow_result);
  1761     // Post merge
  1762     set_control(_gvn.transform(r));
  1763     record_for_igvn(r);
  1764     result=_gvn.transform(phi);
  1767   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1769   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1771   return true;
  1774 //------------------------------inline_trans-------------------------------------
  1775 // Inline transcendental instructions, if possible.  The Intel hardware gets
  1776 // these right, no funny corner cases missed.
  1777 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
  1778   _sp += arg_size();        // restore stack pointer
  1779   Node* arg = pop_math_arg();
  1780   Node* trans = NULL;
  1782   switch (id) {
  1783   case vmIntrinsics::_dlog:
  1784     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
  1785     break;
  1786   case vmIntrinsics::_dlog10:
  1787     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
  1788     break;
  1789   default:
  1790     assert(false, "bad intrinsic was passed in");
  1791     return false;
  1794   // Push result back on JVM stack
  1795   push_pair(trans);
  1796   return true;
  1799 //------------------------------runtime_math-----------------------------
  1800 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1801   Node* a = NULL;
  1802   Node* b = NULL;
  1804   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1805          "must be (DD)D or (D)D type");
  1807   // Inputs
  1808   _sp += arg_size();        // restore stack pointer
  1809   if (call_type == OptoRuntime::Math_DD_D_Type()) {
  1810     b = pop_math_arg();
  1812   a = pop_math_arg();
  1814   const TypePtr* no_memory_effects = NULL;
  1815   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1816                                  no_memory_effects,
  1817                                  a, top(), b, b ? top() : NULL);
  1818   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
  1819 #ifdef ASSERT
  1820   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
  1821   assert(value_top == top(), "second value must be top");
  1822 #endif
  1824   push_pair(value);
  1825   return true;
  1828 //------------------------------inline_math_native-----------------------------
  1829 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1830   switch (id) {
  1831     // These intrinsics are not properly supported on all hardware
  1832   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
  1833     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
  1834   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
  1835     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
  1836   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
  1837     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
  1839   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
  1840     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
  1841   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
  1842     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
  1844     // These intrinsics are supported on all hardware
  1845   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
  1846   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
  1848   case vmIntrinsics::_dexp:  return
  1849     Matcher::has_match_rule(Op_ExpD) ? inline_exp(id) :
  1850     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1851   case vmIntrinsics::_dpow:  return
  1852     Matcher::has_match_rule(Op_PowD) ? inline_pow(id) :
  1853     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1855    // These intrinsics are not yet correctly implemented
  1856   case vmIntrinsics::_datan2:
  1857     return false;
  1859   default:
  1860     ShouldNotReachHere();
  1861     return false;
  1865 static bool is_simple_name(Node* n) {
  1866   return (n->req() == 1         // constant
  1867           || (n->is_Type() && n->as_Type()->type()->singleton())
  1868           || n->is_Proj()       // parameter or return value
  1869           || n->is_Phi()        // local of some sort
  1870           );
  1873 //----------------------------inline_min_max-----------------------------------
  1874 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1875   push(generate_min_max(id, argument(0), argument(1)));
  1877   return true;
  1880 Node*
  1881 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  1882   // These are the candidate return value:
  1883   Node* xvalue = x0;
  1884   Node* yvalue = y0;
  1886   if (xvalue == yvalue) {
  1887     return xvalue;
  1890   bool want_max = (id == vmIntrinsics::_max);
  1892   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  1893   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  1894   if (txvalue == NULL || tyvalue == NULL)  return top();
  1895   // This is not really necessary, but it is consistent with a
  1896   // hypothetical MaxINode::Value method:
  1897   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  1899   // %%% This folding logic should (ideally) be in a different place.
  1900   // Some should be inside IfNode, and there to be a more reliable
  1901   // transformation of ?: style patterns into cmoves.  We also want
  1902   // more powerful optimizations around cmove and min/max.
  1904   // Try to find a dominating comparison of these guys.
  1905   // It can simplify the index computation for Arrays.copyOf
  1906   // and similar uses of System.arraycopy.
  1907   // First, compute the normalized version of CmpI(x, y).
  1908   int   cmp_op = Op_CmpI;
  1909   Node* xkey = xvalue;
  1910   Node* ykey = yvalue;
  1911   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
  1912   if (ideal_cmpxy->is_Cmp()) {
  1913     // E.g., if we have CmpI(length - offset, count),
  1914     // it might idealize to CmpI(length, count + offset)
  1915     cmp_op = ideal_cmpxy->Opcode();
  1916     xkey = ideal_cmpxy->in(1);
  1917     ykey = ideal_cmpxy->in(2);
  1920   // Start by locating any relevant comparisons.
  1921   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  1922   Node* cmpxy = NULL;
  1923   Node* cmpyx = NULL;
  1924   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  1925     Node* cmp = start_from->fast_out(k);
  1926     if (cmp->outcnt() > 0 &&            // must have prior uses
  1927         cmp->in(0) == NULL &&           // must be context-independent
  1928         cmp->Opcode() == cmp_op) {      // right kind of compare
  1929       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  1930       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  1934   const int NCMPS = 2;
  1935   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  1936   int cmpn;
  1937   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1938     if (cmps[cmpn] != NULL)  break;     // find a result
  1940   if (cmpn < NCMPS) {
  1941     // Look for a dominating test that tells us the min and max.
  1942     int depth = 0;                // Limit search depth for speed
  1943     Node* dom = control();
  1944     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  1945       if (++depth >= 100)  break;
  1946       Node* ifproj = dom;
  1947       if (!ifproj->is_Proj())  continue;
  1948       Node* iff = ifproj->in(0);
  1949       if (!iff->is_If())  continue;
  1950       Node* bol = iff->in(1);
  1951       if (!bol->is_Bool())  continue;
  1952       Node* cmp = bol->in(1);
  1953       if (cmp == NULL)  continue;
  1954       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  1955         if (cmps[cmpn] == cmp)  break;
  1956       if (cmpn == NCMPS)  continue;
  1957       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1958       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  1959       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  1960       // At this point, we know that 'x btest y' is true.
  1961       switch (btest) {
  1962       case BoolTest::eq:
  1963         // They are proven equal, so we can collapse the min/max.
  1964         // Either value is the answer.  Choose the simpler.
  1965         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  1966           return yvalue;
  1967         return xvalue;
  1968       case BoolTest::lt:          // x < y
  1969       case BoolTest::le:          // x <= y
  1970         return (want_max ? yvalue : xvalue);
  1971       case BoolTest::gt:          // x > y
  1972       case BoolTest::ge:          // x >= y
  1973         return (want_max ? xvalue : yvalue);
  1978   // We failed to find a dominating test.
  1979   // Let's pick a test that might GVN with prior tests.
  1980   Node*          best_bol   = NULL;
  1981   BoolTest::mask best_btest = BoolTest::illegal;
  1982   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  1983     Node* cmp = cmps[cmpn];
  1984     if (cmp == NULL)  continue;
  1985     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  1986       Node* bol = cmp->fast_out(j);
  1987       if (!bol->is_Bool())  continue;
  1988       BoolTest::mask btest = bol->as_Bool()->_test._test;
  1989       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  1990       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  1991       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  1992         best_bol   = bol->as_Bool();
  1993         best_btest = btest;
  1998   Node* answer_if_true  = NULL;
  1999   Node* answer_if_false = NULL;
  2000   switch (best_btest) {
  2001   default:
  2002     if (cmpxy == NULL)
  2003       cmpxy = ideal_cmpxy;
  2004     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
  2005     // and fall through:
  2006   case BoolTest::lt:          // x < y
  2007   case BoolTest::le:          // x <= y
  2008     answer_if_true  = (want_max ? yvalue : xvalue);
  2009     answer_if_false = (want_max ? xvalue : yvalue);
  2010     break;
  2011   case BoolTest::gt:          // x > y
  2012   case BoolTest::ge:          // x >= y
  2013     answer_if_true  = (want_max ? xvalue : yvalue);
  2014     answer_if_false = (want_max ? yvalue : xvalue);
  2015     break;
  2018   jint hi, lo;
  2019   if (want_max) {
  2020     // We can sharpen the minimum.
  2021     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  2022     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  2023   } else {
  2024     // We can sharpen the maximum.
  2025     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  2026     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  2029   // Use a flow-free graph structure, to avoid creating excess control edges
  2030   // which could hinder other optimizations.
  2031   // Since Math.min/max is often used with arraycopy, we want
  2032   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  2033   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  2034                                answer_if_false, answer_if_true,
  2035                                TypeInt::make(lo, hi, widen));
  2037   return _gvn.transform(cmov);
  2039   /*
  2040   // This is not as desirable as it may seem, since Min and Max
  2041   // nodes do not have a full set of optimizations.
  2042   // And they would interfere, anyway, with 'if' optimizations
  2043   // and with CMoveI canonical forms.
  2044   switch (id) {
  2045   case vmIntrinsics::_min:
  2046     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  2047   case vmIntrinsics::_max:
  2048     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  2049   default:
  2050     ShouldNotReachHere();
  2052   */
  2055 inline int
  2056 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  2057   const TypePtr* base_type = TypePtr::NULL_PTR;
  2058   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  2059   if (base_type == NULL) {
  2060     // Unknown type.
  2061     return Type::AnyPtr;
  2062   } else if (base_type == TypePtr::NULL_PTR) {
  2063     // Since this is a NULL+long form, we have to switch to a rawptr.
  2064     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
  2065     offset = MakeConX(0);
  2066     return Type::RawPtr;
  2067   } else if (base_type->base() == Type::RawPtr) {
  2068     return Type::RawPtr;
  2069   } else if (base_type->isa_oopptr()) {
  2070     // Base is never null => always a heap address.
  2071     if (base_type->ptr() == TypePtr::NotNull) {
  2072       return Type::OopPtr;
  2074     // Offset is small => always a heap address.
  2075     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2076     if (offset_type != NULL &&
  2077         base_type->offset() == 0 &&     // (should always be?)
  2078         offset_type->_lo >= 0 &&
  2079         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2080       return Type::OopPtr;
  2082     // Otherwise, it might either be oop+off or NULL+addr.
  2083     return Type::AnyPtr;
  2084   } else {
  2085     // No information:
  2086     return Type::AnyPtr;
  2090 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2091   int kind = classify_unsafe_addr(base, offset);
  2092   if (kind == Type::RawPtr) {
  2093     return basic_plus_adr(top(), base, offset);
  2094   } else {
  2095     return basic_plus_adr(base, offset);
  2099 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
  2100 // inline int Integer.numberOfLeadingZeros(int)
  2101 // inline int Long.numberOfLeadingZeros(long)
  2102 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
  2103   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
  2104   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
  2105   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
  2106   _sp += arg_size();  // restore stack pointer
  2107   switch (id) {
  2108   case vmIntrinsics::_numberOfLeadingZeros_i:
  2109     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
  2110     break;
  2111   case vmIntrinsics::_numberOfLeadingZeros_l:
  2112     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
  2113     break;
  2114   default:
  2115     ShouldNotReachHere();
  2117   return true;
  2120 //-------------------inline_numberOfTrailingZeros_int/long----------------------
  2121 // inline int Integer.numberOfTrailingZeros(int)
  2122 // inline int Long.numberOfTrailingZeros(long)
  2123 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
  2124   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
  2125   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
  2126   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
  2127   _sp += arg_size();  // restore stack pointer
  2128   switch (id) {
  2129   case vmIntrinsics::_numberOfTrailingZeros_i:
  2130     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
  2131     break;
  2132   case vmIntrinsics::_numberOfTrailingZeros_l:
  2133     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
  2134     break;
  2135   default:
  2136     ShouldNotReachHere();
  2138   return true;
  2141 //----------------------------inline_bitCount_int/long-----------------------
  2142 // inline int Integer.bitCount(int)
  2143 // inline int Long.bitCount(long)
  2144 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
  2145   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
  2146   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
  2147   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
  2148   _sp += arg_size();  // restore stack pointer
  2149   switch (id) {
  2150   case vmIntrinsics::_bitCount_i:
  2151     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
  2152     break;
  2153   case vmIntrinsics::_bitCount_l:
  2154     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
  2155     break;
  2156   default:
  2157     ShouldNotReachHere();
  2159   return true;
  2162 //----------------------------inline_reverseBytes_int/long/char/short-------------------
  2163 // inline Integer.reverseBytes(int)
  2164 // inline Long.reverseBytes(long)
  2165 // inline Character.reverseBytes(char)
  2166 // inline Short.reverseBytes(short)
  2167 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
  2168   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
  2169          id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
  2170          "not reverse Bytes");
  2171   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
  2172   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
  2173   if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
  2174   if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
  2175   _sp += arg_size();  // restore stack pointer
  2176   switch (id) {
  2177   case vmIntrinsics::_reverseBytes_i:
  2178     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
  2179     break;
  2180   case vmIntrinsics::_reverseBytes_l:
  2181     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
  2182     break;
  2183   case vmIntrinsics::_reverseBytes_c:
  2184     push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
  2185     break;
  2186   case vmIntrinsics::_reverseBytes_s:
  2187     push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
  2188     break;
  2189   default:
  2192   return true;
  2195 //----------------------------inline_unsafe_access----------------------------
  2197 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2199 // Helper that guards and inserts a pre-barrier.
  2200 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
  2201                                         Node* pre_val, int nargs, bool need_mem_bar) {
  2202   // We could be accessing the referent field of a reference object. If so, when G1
  2203   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2204   // This routine performs some compile time filters and generates suitable
  2205   // runtime filters that guard the pre-barrier code.
  2206   // Also add memory barrier for non volatile load from the referent field
  2207   // to prevent commoning of loads across safepoint.
  2208   if (!UseG1GC && !need_mem_bar)
  2209     return;
  2211   // Some compile time checks.
  2213   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2214   const TypeX* otype = offset->find_intptr_t_type();
  2215   if (otype != NULL && otype->is_con() &&
  2216       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2217     // Constant offset but not the reference_offset so just return
  2218     return;
  2221   // We only need to generate the runtime guards for instances.
  2222   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2223   if (btype != NULL) {
  2224     if (btype->isa_aryptr()) {
  2225       // Array type so nothing to do
  2226       return;
  2229     const TypeInstPtr* itype = btype->isa_instptr();
  2230     if (itype != NULL) {
  2231       // Can the klass of base_oop be statically determined to be
  2232       // _not_ a sub-class of Reference and _not_ Object?
  2233       ciKlass* klass = itype->klass();
  2234       if ( klass->is_loaded() &&
  2235           !klass->is_subtype_of(env()->Reference_klass()) &&
  2236           !env()->Object_klass()->is_subtype_of(klass)) {
  2237         return;
  2242   // The compile time filters did not reject base_oop/offset so
  2243   // we need to generate the following runtime filters
  2244   //
  2245   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2246   //   if (instance_of(base, java.lang.ref.Reference)) {
  2247   //     pre_barrier(_, pre_val, ...);
  2248   //   }
  2249   // }
  2251   float likely  = PROB_LIKELY(0.999);
  2252   float unlikely  = PROB_UNLIKELY(0.999);
  2254   IdealKit ideal(this);
  2255 #define __ ideal.
  2257   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2259   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2260       // Update graphKit memory and control from IdealKit.
  2261       sync_kit(ideal);
  2263       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2264       _sp += nargs;  // gen_instanceof might do an uncommon trap
  2265       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2266       _sp -= nargs;
  2268       // Update IdealKit memory and control from graphKit.
  2269       __ sync_kit(this);
  2271       Node* one = __ ConI(1);
  2272       // is_instof == 0 if base_oop == NULL
  2273       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2275         // Update graphKit from IdeakKit.
  2276         sync_kit(ideal);
  2278         // Use the pre-barrier to record the value in the referent field
  2279         pre_barrier(false /* do_load */,
  2280                     __ ctrl(),
  2281                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2282                     pre_val /* pre_val */,
  2283                     T_OBJECT);
  2284         if (need_mem_bar) {
  2285           // Add memory barrier to prevent commoning reads from this field
  2286           // across safepoint since GC can change its value.
  2287           insert_mem_bar(Op_MemBarCPUOrder);
  2289         // Update IdealKit from graphKit.
  2290         __ sync_kit(this);
  2292       } __ end_if(); // _ref_type != ref_none
  2293   } __ end_if(); // offset == referent_offset
  2295   // Final sync IdealKit and GraphKit.
  2296   final_sync(ideal);
  2297 #undef __
  2301 // Interpret Unsafe.fieldOffset cookies correctly:
  2302 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2304 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2305   if (callee()->is_static())  return false;  // caller must have the capability!
  2307 #ifndef PRODUCT
  2309     ResourceMark rm;
  2310     // Check the signatures.
  2311     ciSignature* sig = signature();
  2312 #ifdef ASSERT
  2313     if (!is_store) {
  2314       // Object getObject(Object base, int/long offset), etc.
  2315       BasicType rtype = sig->return_type()->basic_type();
  2316       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2317           rtype = T_ADDRESS;  // it is really a C void*
  2318       assert(rtype == type, "getter must return the expected value");
  2319       if (!is_native_ptr) {
  2320         assert(sig->count() == 2, "oop getter has 2 arguments");
  2321         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2322         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2323       } else {
  2324         assert(sig->count() == 1, "native getter has 1 argument");
  2325         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2327     } else {
  2328       // void putObject(Object base, int/long offset, Object x), etc.
  2329       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2330       if (!is_native_ptr) {
  2331         assert(sig->count() == 3, "oop putter has 3 arguments");
  2332         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2333         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2334       } else {
  2335         assert(sig->count() == 2, "native putter has 2 arguments");
  2336         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2338       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2339       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2340         vtype = T_ADDRESS;  // it is really a C void*
  2341       assert(vtype == type, "putter must accept the expected value");
  2343 #endif // ASSERT
  2345 #endif //PRODUCT
  2347   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2349   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
  2351   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
  2352   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
  2353   assert(callee()->arg_size() == nargs, "must be");
  2355   debug_only(int saved_sp = _sp);
  2356   _sp += nargs;
  2358   Node* val;
  2359   debug_only(val = (Node*)(uintptr_t)-1);
  2362   if (is_store) {
  2363     // Get the value being stored.  (Pop it first; it was pushed last.)
  2364     switch (type) {
  2365     case T_DOUBLE:
  2366     case T_LONG:
  2367     case T_ADDRESS:
  2368       val = pop_pair();
  2369       break;
  2370     default:
  2371       val = pop();
  2375   // Build address expression.  See the code in inline_unsafe_prefetch.
  2376   Node *adr;
  2377   Node *heap_base_oop = top();
  2378   Node* offset = top();
  2380   if (!is_native_ptr) {
  2381     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2382     offset = pop_pair();
  2383     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2384     Node* base   = pop();
  2385     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2386     // to be plain byte offsets, which are also the same as those accepted
  2387     // by oopDesc::field_base.
  2388     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2389            "fieldOffset must be byte-scaled");
  2390     // 32-bit machines ignore the high half!
  2391     offset = ConvL2X(offset);
  2392     adr = make_unsafe_address(base, offset);
  2393     heap_base_oop = base;
  2394   } else {
  2395     Node* ptr = pop_pair();
  2396     // Adjust Java long to machine word:
  2397     ptr = ConvL2X(ptr);
  2398     adr = make_unsafe_address(NULL, ptr);
  2401   // Pop receiver last:  it was pushed first.
  2402   Node *receiver = pop();
  2404   assert(saved_sp == _sp, "must have correct argument count");
  2406   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2408   // First guess at the value type.
  2409   const Type *value_type = Type::get_const_basic_type(type);
  2411   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2412   // there was not enough information to nail it down.
  2413   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2414   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2416   // We will need memory barriers unless we can determine a unique
  2417   // alias category for this reference.  (Note:  If for some reason
  2418   // the barriers get omitted and the unsafe reference begins to "pollute"
  2419   // the alias analysis of the rest of the graph, either Compile::can_alias
  2420   // or Compile::must_alias will throw a diagnostic assert.)
  2421   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2423   // If we are reading the value of the referent field of a Reference
  2424   // object (either by using Unsafe directly or through reflection)
  2425   // then, if G1 is enabled, we need to record the referent in an
  2426   // SATB log buffer using the pre-barrier mechanism.
  2427   // Also we need to add memory barrier to prevent commoning reads
  2428   // from this field across safepoint since GC can change its value.
  2429   bool need_read_barrier = !is_native_ptr && !is_store &&
  2430                            offset != top() && heap_base_oop != top();
  2432   if (!is_store && type == T_OBJECT) {
  2433     // Attempt to infer a sharper value type from the offset and base type.
  2434     ciKlass* sharpened_klass = NULL;
  2436     // See if it is an instance field, with an object type.
  2437     if (alias_type->field() != NULL) {
  2438       assert(!is_native_ptr, "native pointer op cannot use a java address");
  2439       if (alias_type->field()->type()->is_klass()) {
  2440         sharpened_klass = alias_type->field()->type()->as_klass();
  2444     // See if it is a narrow oop array.
  2445     if (adr_type->isa_aryptr()) {
  2446       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2447         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2448         if (elem_type != NULL) {
  2449           sharpened_klass = elem_type->klass();
  2454     if (sharpened_klass != NULL) {
  2455       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2457       // Sharpen the value type.
  2458       value_type = tjp;
  2460 #ifndef PRODUCT
  2461       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  2462         tty->print("  from base type:  ");   adr_type->dump();
  2463         tty->print("  sharpened value: "); value_type->dump();
  2465 #endif
  2469   // Null check on self without removing any arguments.  The argument
  2470   // null check technically happens in the wrong place, which can lead to
  2471   // invalid stack traces when the primitive is inlined into a method
  2472   // which handles NullPointerExceptions.
  2473   _sp += nargs;
  2474   do_null_check(receiver, T_OBJECT);
  2475   _sp -= nargs;
  2476   if (stopped()) {
  2477     return true;
  2479   // Heap pointers get a null-check from the interpreter,
  2480   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2481   // and it is not possible to fully distinguish unintended nulls
  2482   // from intended ones in this API.
  2484   if (is_volatile) {
  2485     // We need to emit leading and trailing CPU membars (see below) in
  2486     // addition to memory membars when is_volatile. This is a little
  2487     // too strong, but avoids the need to insert per-alias-type
  2488     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2489     // we cannot do effectively here because we probably only have a
  2490     // rough approximation of type.
  2491     need_mem_bar = true;
  2492     // For Stores, place a memory ordering barrier now.
  2493     if (is_store)
  2494       insert_mem_bar(Op_MemBarRelease);
  2497   // Memory barrier to prevent normal and 'unsafe' accesses from
  2498   // bypassing each other.  Happens after null checks, so the
  2499   // exception paths do not take memory state from the memory barrier,
  2500   // so there's no problems making a strong assert about mixing users
  2501   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2502   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2503   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2505   if (!is_store) {
  2506     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2507     // load value and push onto stack
  2508     switch (type) {
  2509     case T_BOOLEAN:
  2510     case T_CHAR:
  2511     case T_BYTE:
  2512     case T_SHORT:
  2513     case T_INT:
  2514     case T_FLOAT:
  2515       push(p);
  2516       break;
  2517     case T_OBJECT:
  2518       if (need_read_barrier) {
  2519         insert_pre_barrier(heap_base_oop, offset, p, nargs, !(is_volatile || need_mem_bar));
  2521       push(p);
  2522       break;
  2523     case T_ADDRESS:
  2524       // Cast to an int type.
  2525       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
  2526       p = ConvX2L(p);
  2527       push_pair(p);
  2528       break;
  2529     case T_DOUBLE:
  2530     case T_LONG:
  2531       push_pair( p );
  2532       break;
  2533     default: ShouldNotReachHere();
  2535   } else {
  2536     // place effect of store into memory
  2537     switch (type) {
  2538     case T_DOUBLE:
  2539       val = dstore_rounding(val);
  2540       break;
  2541     case T_ADDRESS:
  2542       // Repackage the long as a pointer.
  2543       val = ConvL2X(val);
  2544       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
  2545       break;
  2548     if (type != T_OBJECT ) {
  2549       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2550     } else {
  2551       // Possibly an oop being stored to Java heap or native memory
  2552       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2553         // oop to Java heap.
  2554         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2555       } else {
  2556         // We can't tell at compile time if we are storing in the Java heap or outside
  2557         // of it. So we need to emit code to conditionally do the proper type of
  2558         // store.
  2560         IdealKit ideal(this);
  2561 #define __ ideal.
  2562         // QQQ who knows what probability is here??
  2563         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2564           // Sync IdealKit and graphKit.
  2565           sync_kit(ideal);
  2566           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2567           // Update IdealKit memory.
  2568           __ sync_kit(this);
  2569         } __ else_(); {
  2570           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2571         } __ end_if();
  2572         // Final sync IdealKit and GraphKit.
  2573         final_sync(ideal);
  2574 #undef __
  2579   if (is_volatile) {
  2580     if (!is_store)
  2581       insert_mem_bar(Op_MemBarAcquire);
  2582     else
  2583       insert_mem_bar(Op_MemBarVolatile);
  2586   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2588   return true;
  2591 //----------------------------inline_unsafe_prefetch----------------------------
  2593 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2594 #ifndef PRODUCT
  2596     ResourceMark rm;
  2597     // Check the signatures.
  2598     ciSignature* sig = signature();
  2599 #ifdef ASSERT
  2600     // Object getObject(Object base, int/long offset), etc.
  2601     BasicType rtype = sig->return_type()->basic_type();
  2602     if (!is_native_ptr) {
  2603       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2604       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2605       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2606     } else {
  2607       assert(sig->count() == 1, "native prefetch has 1 argument");
  2608       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2610 #endif // ASSERT
  2612 #endif // !PRODUCT
  2614   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2616   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
  2617   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
  2619   debug_only(int saved_sp = _sp);
  2620   _sp += nargs;
  2622   // Build address expression.  See the code in inline_unsafe_access.
  2623   Node *adr;
  2624   if (!is_native_ptr) {
  2625     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2626     Node* offset = pop_pair();
  2627     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2628     Node* base   = pop();
  2629     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2630     // to be plain byte offsets, which are also the same as those accepted
  2631     // by oopDesc::field_base.
  2632     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2633            "fieldOffset must be byte-scaled");
  2634     // 32-bit machines ignore the high half!
  2635     offset = ConvL2X(offset);
  2636     adr = make_unsafe_address(base, offset);
  2637   } else {
  2638     Node* ptr = pop_pair();
  2639     // Adjust Java long to machine word:
  2640     ptr = ConvL2X(ptr);
  2641     adr = make_unsafe_address(NULL, ptr);
  2644   if (is_static) {
  2645     assert(saved_sp == _sp, "must have correct argument count");
  2646   } else {
  2647     // Pop receiver last:  it was pushed first.
  2648     Node *receiver = pop();
  2649     assert(saved_sp == _sp, "must have correct argument count");
  2651     // Null check on self without removing any arguments.  The argument
  2652     // null check technically happens in the wrong place, which can lead to
  2653     // invalid stack traces when the primitive is inlined into a method
  2654     // which handles NullPointerExceptions.
  2655     _sp += nargs;
  2656     do_null_check(receiver, T_OBJECT);
  2657     _sp -= nargs;
  2658     if (stopped()) {
  2659       return true;
  2663   // Generate the read or write prefetch
  2664   Node *prefetch;
  2665   if (is_store) {
  2666     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
  2667   } else {
  2668     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
  2670   prefetch->init_req(0, control());
  2671   set_i_o(_gvn.transform(prefetch));
  2673   return true;
  2676 //----------------------------inline_unsafe_CAS----------------------------
  2678 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
  2679   // This basic scheme here is the same as inline_unsafe_access, but
  2680   // differs in enough details that combining them would make the code
  2681   // overly confusing.  (This is a true fact! I originally combined
  2682   // them, but even I was confused by it!) As much code/comments as
  2683   // possible are retained from inline_unsafe_access though to make
  2684   // the correspondences clearer. - dl
  2686   if (callee()->is_static())  return false;  // caller must have the capability!
  2688 #ifndef PRODUCT
  2690     ResourceMark rm;
  2691     // Check the signatures.
  2692     ciSignature* sig = signature();
  2693 #ifdef ASSERT
  2694     BasicType rtype = sig->return_type()->basic_type();
  2695     assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2696     assert(sig->count() == 4, "CAS has 4 arguments");
  2697     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2698     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2699 #endif // ASSERT
  2701 #endif //PRODUCT
  2703   // number of stack slots per value argument (1 or 2)
  2704   int type_words = type2size[type];
  2706   // Cannot inline wide CAS on machines that don't support it natively
  2707   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
  2708     return false;
  2710   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2712   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
  2713   int nargs = 1 + 1 + 2  + type_words + type_words;
  2715   // pop arguments: newval, oldval, offset, base, and receiver
  2716   debug_only(int saved_sp = _sp);
  2717   _sp += nargs;
  2718   Node* newval   = (type_words == 1) ? pop() : pop_pair();
  2719   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
  2720   Node *offset   = pop_pair();
  2721   Node *base     = pop();
  2722   Node *receiver = pop();
  2723   assert(saved_sp == _sp, "must have correct argument count");
  2725   //  Null check receiver.
  2726   _sp += nargs;
  2727   do_null_check(receiver, T_OBJECT);
  2728   _sp -= nargs;
  2729   if (stopped()) {
  2730     return true;
  2733   // Build field offset expression.
  2734   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2735   // to be plain byte offsets, which are also the same as those accepted
  2736   // by oopDesc::field_base.
  2737   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2738   // 32-bit machines ignore the high half of long offsets
  2739   offset = ConvL2X(offset);
  2740   Node* adr = make_unsafe_address(base, offset);
  2741   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2743   // (Unlike inline_unsafe_access, there seems no point in trying
  2744   // to refine types. Just use the coarse types here.
  2745   const Type *value_type = Type::get_const_basic_type(type);
  2746   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2747   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2748   int alias_idx = C->get_alias_index(adr_type);
  2750   // Memory-model-wise, a CAS acts like a little synchronized block,
  2751   // so needs barriers on each side.  These don't translate into
  2752   // actual barriers on most machines, but we still need rest of
  2753   // compiler to respect ordering.
  2755   insert_mem_bar(Op_MemBarRelease);
  2756   insert_mem_bar(Op_MemBarCPUOrder);
  2758   // 4984716: MemBars must be inserted before this
  2759   //          memory node in order to avoid a false
  2760   //          dependency which will confuse the scheduler.
  2761   Node *mem = memory(alias_idx);
  2763   // For now, we handle only those cases that actually exist: ints,
  2764   // longs, and Object. Adding others should be straightforward.
  2765   Node* cas;
  2766   switch(type) {
  2767   case T_INT:
  2768     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2769     break;
  2770   case T_LONG:
  2771     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2772     break;
  2773   case T_OBJECT:
  2774     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  2775     // could be delayed during Parse (for example, in adjust_map_after_if()).
  2776     // Execute transformation here to avoid barrier generation in such case.
  2777     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  2778       newval = _gvn.makecon(TypePtr::NULL_PTR);
  2780     // Reference stores need a store barrier.
  2781     // (They don't if CAS fails, but it isn't worth checking.)
  2782     pre_barrier(true /* do_load*/,
  2783                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2784                 NULL /* pre_val*/,
  2785                 T_OBJECT);
  2786 #ifdef _LP64
  2787     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2788       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2789       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2790       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
  2791                                                           newval_enc, oldval_enc));
  2792     } else
  2793 #endif
  2795       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2797     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
  2798     break;
  2799   default:
  2800     ShouldNotReachHere();
  2801     break;
  2804   // SCMemProjNodes represent the memory state of CAS. Their main
  2805   // role is to prevent CAS nodes from being optimized away when their
  2806   // results aren't used.
  2807   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
  2808   set_memory(proj, alias_idx);
  2810   // Add the trailing membar surrounding the access
  2811   insert_mem_bar(Op_MemBarCPUOrder);
  2812   insert_mem_bar(Op_MemBarAcquire);
  2814   push(cas);
  2815   return true;
  2818 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2819   // This is another variant of inline_unsafe_access, differing in
  2820   // that it always issues store-store ("release") barrier and ensures
  2821   // store-atomicity (which only matters for "long").
  2823   if (callee()->is_static())  return false;  // caller must have the capability!
  2825 #ifndef PRODUCT
  2827     ResourceMark rm;
  2828     // Check the signatures.
  2829     ciSignature* sig = signature();
  2830 #ifdef ASSERT
  2831     BasicType rtype = sig->return_type()->basic_type();
  2832     assert(rtype == T_VOID, "must return void");
  2833     assert(sig->count() == 3, "has 3 arguments");
  2834     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2835     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2836 #endif // ASSERT
  2838 #endif //PRODUCT
  2840   // number of stack slots per value argument (1 or 2)
  2841   int type_words = type2size[type];
  2843   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2845   // Argument words:  "this" plus oop plus offset plus value;
  2846   int nargs = 1 + 1 + 2 + type_words;
  2848   // pop arguments: val, offset, base, and receiver
  2849   debug_only(int saved_sp = _sp);
  2850   _sp += nargs;
  2851   Node* val      = (type_words == 1) ? pop() : pop_pair();
  2852   Node *offset   = pop_pair();
  2853   Node *base     = pop();
  2854   Node *receiver = pop();
  2855   assert(saved_sp == _sp, "must have correct argument count");
  2857   //  Null check receiver.
  2858   _sp += nargs;
  2859   do_null_check(receiver, T_OBJECT);
  2860   _sp -= nargs;
  2861   if (stopped()) {
  2862     return true;
  2865   // Build field offset expression.
  2866   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2867   // 32-bit machines ignore the high half of long offsets
  2868   offset = ConvL2X(offset);
  2869   Node* adr = make_unsafe_address(base, offset);
  2870   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2871   const Type *value_type = Type::get_const_basic_type(type);
  2872   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2874   insert_mem_bar(Op_MemBarRelease);
  2875   insert_mem_bar(Op_MemBarCPUOrder);
  2876   // Ensure that the store is atomic for longs:
  2877   bool require_atomic_access = true;
  2878   Node* store;
  2879   if (type == T_OBJECT) // reference stores need a store barrier.
  2880     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  2881   else {
  2882     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  2884   insert_mem_bar(Op_MemBarCPUOrder);
  2885   return true;
  2888 bool LibraryCallKit::inline_unsafe_allocate() {
  2889   if (callee()->is_static())  return false;  // caller must have the capability!
  2890   int nargs = 1 + 1;
  2891   assert(signature()->size() == nargs-1, "alloc has 1 argument");
  2892   null_check_receiver(callee());  // check then ignore argument(0)
  2893   _sp += nargs;  // set original stack for use by uncommon_trap
  2894   Node* cls = do_null_check(argument(1), T_OBJECT);
  2895   _sp -= nargs;
  2896   if (stopped())  return true;
  2898   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  2899   _sp += nargs;  // set original stack for use by uncommon_trap
  2900   kls = do_null_check(kls, T_OBJECT);
  2901   _sp -= nargs;
  2902   if (stopped())  return true;  // argument was like int.class
  2904   // Note:  The argument might still be an illegal value like
  2905   // Serializable.class or Object[].class.   The runtime will handle it.
  2906   // But we must make an explicit check for initialization.
  2907   Node* insp = basic_plus_adr(kls, in_bytes(instanceKlass::init_state_offset()));
  2908   // Use T_BOOLEAN for instanceKlass::_init_state so the compiler
  2909   // can generate code to load it as unsigned byte.
  2910   Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
  2911   Node* bits = intcon(instanceKlass::fully_initialized);
  2912   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
  2913   // The 'test' is non-zero if we need to take a slow path.
  2915   Node* obj = new_instance(kls, test);
  2916   push(obj);
  2918   return true;
  2921 #ifdef TRACE_HAVE_INTRINSICS
  2922 /*
  2923  * oop -> myklass
  2924  * myklass->trace_id |= USED
  2925  * return myklass->trace_id & ~0x3
  2926  */
  2927 bool LibraryCallKit::inline_native_classID() {
  2928   int nargs = 1 + 1;
  2929   null_check_receiver(callee());  // check then ignore argument(0)
  2930   _sp += nargs;
  2931   Node* cls = do_null_check(argument(1), T_OBJECT);
  2932   _sp -= nargs;
  2933   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
  2934   _sp += nargs;
  2935   kls = do_null_check(kls, T_OBJECT);
  2936   _sp -= nargs;
  2937   ByteSize offset = TRACE_ID_OFFSET;
  2938   Node* insp = basic_plus_adr(kls, in_bytes(offset));
  2939   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
  2940   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  2941   Node* andl = _gvn.transform(new (C, 3) AndLNode(tvalue, bits));
  2942   Node* clsused = longcon(0x01l); // set the class bit
  2943   Node* orl = _gvn.transform(new (C, 3) OrLNode(tvalue, clsused));
  2945   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  2946   store_to_memory(control(), insp, orl, T_LONG, adr_type);
  2947   push_pair(andl);
  2948   return true;
  2951 bool LibraryCallKit::inline_native_threadID() {
  2952   Node* tls_ptr = NULL;
  2953   Node* cur_thr = generate_current_thread(tls_ptr);
  2954   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  2955   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  2956   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  2958   Node* threadid = NULL;
  2959   size_t thread_id_size = OSThread::thread_id_size();
  2960   if (thread_id_size == (size_t) BytesPerLong) {
  2961     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
  2962     push(threadid);
  2963   } else if (thread_id_size == (size_t) BytesPerInt) {
  2964     threadid = make_load(control(), p, TypeInt::INT, T_INT);
  2965     push(threadid);
  2966   } else {
  2967     ShouldNotReachHere();
  2969   return true;
  2971 #endif
  2973 //------------------------inline_native_time_funcs--------------
  2974 // inline code for System.currentTimeMillis() and System.nanoTime()
  2975 // these have the same type and signature
  2976 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  2977   const TypeFunc *tf = OptoRuntime::void_long_Type();
  2978   const TypePtr* no_memory_effects = NULL;
  2979   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  2980   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
  2981 #ifdef ASSERT
  2982   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
  2983   assert(value_top == top(), "second value must be top");
  2984 #endif
  2985   push_pair(value);
  2986   return true;
  2989 //------------------------inline_native_currentThread------------------
  2990 bool LibraryCallKit::inline_native_currentThread() {
  2991   Node* junk = NULL;
  2992   push(generate_current_thread(junk));
  2993   return true;
  2996 //------------------------inline_native_isInterrupted------------------
  2997 bool LibraryCallKit::inline_native_isInterrupted() {
  2998   const int nargs = 1+1;  // receiver + boolean
  2999   assert(nargs == arg_size(), "sanity");
  3000   // Add a fast path to t.isInterrupted(clear_int):
  3001   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
  3002   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  3003   // So, in the common case that the interrupt bit is false,
  3004   // we avoid making a call into the VM.  Even if the interrupt bit
  3005   // is true, if the clear_int argument is false, we avoid the VM call.
  3006   // However, if the receiver is not currentThread, we must call the VM,
  3007   // because there must be some locking done around the operation.
  3009   // We only go to the fast case code if we pass two guards.
  3010   // Paths which do not pass are accumulated in the slow_region.
  3011   RegionNode* slow_region = new (C, 1) RegionNode(1);
  3012   record_for_igvn(slow_region);
  3013   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
  3014   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
  3015   enum { no_int_result_path   = 1,
  3016          no_clear_result_path = 2,
  3017          slow_result_path     = 3
  3018   };
  3020   // (a) Receiving thread must be the current thread.
  3021   Node* rec_thr = argument(0);
  3022   Node* tls_ptr = NULL;
  3023   Node* cur_thr = generate_current_thread(tls_ptr);
  3024   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
  3025   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
  3027   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
  3028   if (!known_current_thread)
  3029     generate_slow_guard(bol_thr, slow_region);
  3031   // (b) Interrupt bit on TLS must be false.
  3032   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3033   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  3034   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  3035   // Set the control input on the field _interrupted read to prevent it floating up.
  3036   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  3037   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
  3038   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
  3040   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  3042   // First fast path:  if (!TLS._interrupted) return false;
  3043   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
  3044   result_rgn->init_req(no_int_result_path, false_bit);
  3045   result_val->init_req(no_int_result_path, intcon(0));
  3047   // drop through to next case
  3048   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
  3050   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  3051   Node* clr_arg = argument(1);
  3052   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
  3053   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
  3054   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  3056   // Second fast path:  ... else if (!clear_int) return true;
  3057   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
  3058   result_rgn->init_req(no_clear_result_path, false_arg);
  3059   result_val->init_req(no_clear_result_path, intcon(1));
  3061   // drop through to next case
  3062   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
  3064   // (d) Otherwise, go to the slow path.
  3065   slow_region->add_req(control());
  3066   set_control( _gvn.transform(slow_region) );
  3068   if (stopped()) {
  3069     // There is no slow path.
  3070     result_rgn->init_req(slow_result_path, top());
  3071     result_val->init_req(slow_result_path, top());
  3072   } else {
  3073     // non-virtual because it is a private non-static
  3074     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  3076     Node* slow_val = set_results_for_java_call(slow_call);
  3077     // this->control() comes from set_results_for_java_call
  3079     // If we know that the result of the slow call will be true, tell the optimizer!
  3080     if (known_current_thread)  slow_val = intcon(1);
  3082     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  3083     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  3084     // These two phis are pre-filled with copies of of the fast IO and Memory
  3085     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  3086     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  3088     result_rgn->init_req(slow_result_path, control());
  3089     io_phi    ->init_req(slow_result_path, i_o());
  3090     mem_phi   ->init_req(slow_result_path, reset_memory());
  3091     result_val->init_req(slow_result_path, slow_val);
  3093     set_all_memory( _gvn.transform(mem_phi) );
  3094     set_i_o(        _gvn.transform(io_phi) );
  3097   push_result(result_rgn, result_val);
  3098   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3100   return true;
  3103 //---------------------------load_mirror_from_klass----------------------------
  3104 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  3105 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  3106   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  3107   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  3110 //-----------------------load_klass_from_mirror_common-------------------------
  3111 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  3112 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  3113 // and branch to the given path on the region.
  3114 // If never_see_null, take an uncommon trap on null, so we can optimistically
  3115 // compile for the non-null case.
  3116 // If the region is NULL, force never_see_null = true.
  3117 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  3118                                                     bool never_see_null,
  3119                                                     int nargs,
  3120                                                     RegionNode* region,
  3121                                                     int null_path,
  3122                                                     int offset) {
  3123   if (region == NULL)  never_see_null = true;
  3124   Node* p = basic_plus_adr(mirror, offset);
  3125   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3126   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
  3127   _sp += nargs; // any deopt will start just before call to enclosing method
  3128   Node* null_ctl = top();
  3129   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3130   if (region != NULL) {
  3131     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3132     region->init_req(null_path, null_ctl);
  3133   } else {
  3134     assert(null_ctl == top(), "no loose ends");
  3136   _sp -= nargs;
  3137   return kls;
  3140 //--------------------(inline_native_Class_query helpers)---------------------
  3141 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3142 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3143 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3144   // Branch around if the given klass has the given modifier bit set.
  3145   // Like generate_guard, adds a new path onto the region.
  3146   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3147   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  3148   Node* mask = intcon(modifier_mask);
  3149   Node* bits = intcon(modifier_bits);
  3150   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
  3151   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
  3152   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
  3153   return generate_fair_guard(bol, region);
  3155 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3156   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3159 //-------------------------inline_native_Class_query-------------------
  3160 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3161   int nargs = 1+0;  // just the Class mirror, in most cases
  3162   const Type* return_type = TypeInt::BOOL;
  3163   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3164   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3165   bool expect_prim = false;     // most of these guys expect to work on refs
  3167   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3169   switch (id) {
  3170   case vmIntrinsics::_isInstance:
  3171     nargs = 1+1;  // the Class mirror, plus the object getting queried about
  3172     // nothing is an instance of a primitive type
  3173     prim_return_value = intcon(0);
  3174     break;
  3175   case vmIntrinsics::_getModifiers:
  3176     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3177     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3178     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3179     break;
  3180   case vmIntrinsics::_isInterface:
  3181     prim_return_value = intcon(0);
  3182     break;
  3183   case vmIntrinsics::_isArray:
  3184     prim_return_value = intcon(0);
  3185     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3186     break;
  3187   case vmIntrinsics::_isPrimitive:
  3188     prim_return_value = intcon(1);
  3189     expect_prim = true;  // obviously
  3190     break;
  3191   case vmIntrinsics::_getSuperclass:
  3192     prim_return_value = null();
  3193     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3194     break;
  3195   case vmIntrinsics::_getComponentType:
  3196     prim_return_value = null();
  3197     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3198     break;
  3199   case vmIntrinsics::_getClassAccessFlags:
  3200     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3201     return_type = TypeInt::INT;  // not bool!  6297094
  3202     break;
  3203   default:
  3204     ShouldNotReachHere();
  3207   Node* mirror =                      argument(0);
  3208   Node* obj    = (nargs <= 1)? top(): argument(1);
  3210   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3211   if (mirror_con == NULL)  return false;  // cannot happen?
  3213 #ifndef PRODUCT
  3214   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
  3215     ciType* k = mirror_con->java_mirror_type();
  3216     if (k) {
  3217       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3218       k->print_name();
  3219       tty->cr();
  3222 #endif
  3224   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3225   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3226   record_for_igvn(region);
  3227   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
  3229   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3230   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3231   // if it is. See bug 4774291.
  3233   // For Reflection.getClassAccessFlags(), the null check occurs in
  3234   // the wrong place; see inline_unsafe_access(), above, for a similar
  3235   // situation.
  3236   _sp += nargs;  // set original stack for use by uncommon_trap
  3237   mirror = do_null_check(mirror, T_OBJECT);
  3238   _sp -= nargs;
  3239   // If mirror or obj is dead, only null-path is taken.
  3240   if (stopped())  return true;
  3242   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3244   // Now load the mirror's klass metaobject, and null-check it.
  3245   // Side-effects region with the control path if the klass is null.
  3246   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
  3247                                      region, _prim_path);
  3248   // If kls is null, we have a primitive mirror.
  3249   phi->init_req(_prim_path, prim_return_value);
  3250   if (stopped()) { push_result(region, phi); return true; }
  3252   Node* p;  // handy temp
  3253   Node* null_ctl;
  3255   // Now that we have the non-null klass, we can perform the real query.
  3256   // For constant classes, the query will constant-fold in LoadNode::Value.
  3257   Node* query_value = top();
  3258   switch (id) {
  3259   case vmIntrinsics::_isInstance:
  3260     // nothing is an instance of a primitive type
  3261     _sp += nargs;          // gen_instanceof might do an uncommon trap
  3262     query_value = gen_instanceof(obj, kls);
  3263     _sp -= nargs;
  3264     break;
  3266   case vmIntrinsics::_getModifiers:
  3267     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3268     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3269     break;
  3271   case vmIntrinsics::_isInterface:
  3272     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3273     if (generate_interface_guard(kls, region) != NULL)
  3274       // A guard was added.  If the guard is taken, it was an interface.
  3275       phi->add_req(intcon(1));
  3276     // If we fall through, it's a plain class.
  3277     query_value = intcon(0);
  3278     break;
  3280   case vmIntrinsics::_isArray:
  3281     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3282     if (generate_array_guard(kls, region) != NULL)
  3283       // A guard was added.  If the guard is taken, it was an array.
  3284       phi->add_req(intcon(1));
  3285     // If we fall through, it's a plain class.
  3286     query_value = intcon(0);
  3287     break;
  3289   case vmIntrinsics::_isPrimitive:
  3290     query_value = intcon(0); // "normal" path produces false
  3291     break;
  3293   case vmIntrinsics::_getSuperclass:
  3294     // The rules here are somewhat unfortunate, but we can still do better
  3295     // with random logic than with a JNI call.
  3296     // Interfaces store null or Object as _super, but must report null.
  3297     // Arrays store an intermediate super as _super, but must report Object.
  3298     // Other types can report the actual _super.
  3299     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3300     if (generate_interface_guard(kls, region) != NULL)
  3301       // A guard was added.  If the guard is taken, it was an interface.
  3302       phi->add_req(null());
  3303     if (generate_array_guard(kls, region) != NULL)
  3304       // A guard was added.  If the guard is taken, it was an array.
  3305       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3306     // If we fall through, it's a plain class.  Get its _super.
  3307     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3308     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
  3309     null_ctl = top();
  3310     kls = null_check_oop(kls, &null_ctl);
  3311     if (null_ctl != top()) {
  3312       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3313       region->add_req(null_ctl);
  3314       phi   ->add_req(null());
  3316     if (!stopped()) {
  3317       query_value = load_mirror_from_klass(kls);
  3319     break;
  3321   case vmIntrinsics::_getComponentType:
  3322     if (generate_array_guard(kls, region) != NULL) {
  3323       // Be sure to pin the oop load to the guard edge just created:
  3324       Node* is_array_ctrl = region->in(region->req()-1);
  3325       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()));
  3326       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  3327       phi->add_req(cmo);
  3329     query_value = null();  // non-array case is null
  3330     break;
  3332   case vmIntrinsics::_getClassAccessFlags:
  3333     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3334     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3335     break;
  3337   default:
  3338     ShouldNotReachHere();
  3341   // Fall-through is the normal case of a query to a real class.
  3342   phi->init_req(1, query_value);
  3343   region->init_req(1, control());
  3345   push_result(region, phi);
  3346   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3348   return true;
  3351 //--------------------------inline_native_subtype_check------------------------
  3352 // This intrinsic takes the JNI calls out of the heart of
  3353 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3354 bool LibraryCallKit::inline_native_subtype_check() {
  3355   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
  3357   // Pull both arguments off the stack.
  3358   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3359   args[0] = argument(0);
  3360   args[1] = argument(1);
  3361   Node* klasses[2];             // corresponding Klasses: superk, subk
  3362   klasses[0] = klasses[1] = top();
  3364   enum {
  3365     // A full decision tree on {superc is prim, subc is prim}:
  3366     _prim_0_path = 1,           // {P,N} => false
  3367                                 // {P,P} & superc!=subc => false
  3368     _prim_same_path,            // {P,P} & superc==subc => true
  3369     _prim_1_path,               // {N,P} => false
  3370     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3371     _both_ref_path,             // {N,N} & subtype check loses => false
  3372     PATH_LIMIT
  3373   };
  3375   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3376   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
  3377   record_for_igvn(region);
  3379   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3380   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3381   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3383   // First null-check both mirrors and load each mirror's klass metaobject.
  3384   int which_arg;
  3385   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3386     Node* arg = args[which_arg];
  3387     _sp += nargs;  // set original stack for use by uncommon_trap
  3388     arg = do_null_check(arg, T_OBJECT);
  3389     _sp -= nargs;
  3390     if (stopped())  break;
  3391     args[which_arg] = _gvn.transform(arg);
  3393     Node* p = basic_plus_adr(arg, class_klass_offset);
  3394     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3395     klasses[which_arg] = _gvn.transform(kls);
  3398   // Having loaded both klasses, test each for null.
  3399   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3400   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3401     Node* kls = klasses[which_arg];
  3402     Node* null_ctl = top();
  3403     _sp += nargs;  // set original stack for use by uncommon_trap
  3404     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3405     _sp -= nargs;
  3406     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3407     region->init_req(prim_path, null_ctl);
  3408     if (stopped())  break;
  3409     klasses[which_arg] = kls;
  3412   if (!stopped()) {
  3413     // now we have two reference types, in klasses[0..1]
  3414     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3415     Node* superk = klasses[0];  // the receiver
  3416     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3417     // now we have a successful reference subtype check
  3418     region->set_req(_ref_subtype_path, control());
  3421   // If both operands are primitive (both klasses null), then
  3422   // we must return true when they are identical primitives.
  3423   // It is convenient to test this after the first null klass check.
  3424   set_control(region->in(_prim_0_path)); // go back to first null check
  3425   if (!stopped()) {
  3426     // Since superc is primitive, make a guard for the superc==subc case.
  3427     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
  3428     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
  3429     generate_guard(bol_eq, region, PROB_FAIR);
  3430     if (region->req() == PATH_LIMIT+1) {
  3431       // A guard was added.  If the added guard is taken, superc==subc.
  3432       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3433       region->del_req(PATH_LIMIT);
  3435     region->set_req(_prim_0_path, control()); // Not equal after all.
  3438   // these are the only paths that produce 'true':
  3439   phi->set_req(_prim_same_path,   intcon(1));
  3440   phi->set_req(_ref_subtype_path, intcon(1));
  3442   // pull together the cases:
  3443   assert(region->req() == PATH_LIMIT, "sane region");
  3444   for (uint i = 1; i < region->req(); i++) {
  3445     Node* ctl = region->in(i);
  3446     if (ctl == NULL || ctl == top()) {
  3447       region->set_req(i, top());
  3448       phi   ->set_req(i, top());
  3449     } else if (phi->in(i) == NULL) {
  3450       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3454   set_control(_gvn.transform(region));
  3455   push(_gvn.transform(phi));
  3457   return true;
  3460 //---------------------generate_array_guard_common------------------------
  3461 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3462                                                   bool obj_array, bool not_array) {
  3463   // If obj_array/non_array==false/false:
  3464   // Branch around if the given klass is in fact an array (either obj or prim).
  3465   // If obj_array/non_array==false/true:
  3466   // Branch around if the given klass is not an array klass of any kind.
  3467   // If obj_array/non_array==true/true:
  3468   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3469   // If obj_array/non_array==true/false:
  3470   // Branch around if the kls is an oop array (Object[] or subtype)
  3471   //
  3472   // Like generate_guard, adds a new path onto the region.
  3473   jint  layout_con = 0;
  3474   Node* layout_val = get_layout_helper(kls, layout_con);
  3475   if (layout_val == NULL) {
  3476     bool query = (obj_array
  3477                   ? Klass::layout_helper_is_objArray(layout_con)
  3478                   : Klass::layout_helper_is_javaArray(layout_con));
  3479     if (query == not_array) {
  3480       return NULL;                       // never a branch
  3481     } else {                             // always a branch
  3482       Node* always_branch = control();
  3483       if (region != NULL)
  3484         region->add_req(always_branch);
  3485       set_control(top());
  3486       return always_branch;
  3489   // Now test the correct condition.
  3490   jint  nval = (obj_array
  3491                 ? ((jint)Klass::_lh_array_tag_type_value
  3492                    <<    Klass::_lh_array_tag_shift)
  3493                 : Klass::_lh_neutral_value);
  3494   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
  3495   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3496   // invert the test if we are looking for a non-array
  3497   if (not_array)  btest = BoolTest(btest).negate();
  3498   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
  3499   return generate_fair_guard(bol, region);
  3503 //-----------------------inline_native_newArray--------------------------
  3504 bool LibraryCallKit::inline_native_newArray() {
  3505   int nargs = 2;
  3506   Node* mirror    = argument(0);
  3507   Node* count_val = argument(1);
  3509   _sp += nargs;  // set original stack for use by uncommon_trap
  3510   mirror = do_null_check(mirror, T_OBJECT);
  3511   _sp -= nargs;
  3512   // If mirror or obj is dead, only null-path is taken.
  3513   if (stopped())  return true;
  3515   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3516   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3517   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3518                                                       TypeInstPtr::NOTNULL);
  3519   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3520   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3521                                                       TypePtr::BOTTOM);
  3523   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3524   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3525                                                   nargs,
  3526                                                   result_reg, _slow_path);
  3527   Node* normal_ctl   = control();
  3528   Node* no_array_ctl = result_reg->in(_slow_path);
  3530   // Generate code for the slow case.  We make a call to newArray().
  3531   set_control(no_array_ctl);
  3532   if (!stopped()) {
  3533     // Either the input type is void.class, or else the
  3534     // array klass has not yet been cached.  Either the
  3535     // ensuing call will throw an exception, or else it
  3536     // will cache the array klass for next time.
  3537     PreserveJVMState pjvms(this);
  3538     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3539     Node* slow_result = set_results_for_java_call(slow_call);
  3540     // this->control() comes from set_results_for_java_call
  3541     result_reg->set_req(_slow_path, control());
  3542     result_val->set_req(_slow_path, slow_result);
  3543     result_io ->set_req(_slow_path, i_o());
  3544     result_mem->set_req(_slow_path, reset_memory());
  3547   set_control(normal_ctl);
  3548   if (!stopped()) {
  3549     // Normal case:  The array type has been cached in the java.lang.Class.
  3550     // The following call works fine even if the array type is polymorphic.
  3551     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3552     Node* obj = new_array(klass_node, count_val, nargs);
  3553     result_reg->init_req(_normal_path, control());
  3554     result_val->init_req(_normal_path, obj);
  3555     result_io ->init_req(_normal_path, i_o());
  3556     result_mem->init_req(_normal_path, reset_memory());
  3559   // Return the combined state.
  3560   set_i_o(        _gvn.transform(result_io)  );
  3561   set_all_memory( _gvn.transform(result_mem) );
  3562   push_result(result_reg, result_val);
  3563   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3565   return true;
  3568 //----------------------inline_native_getLength--------------------------
  3569 bool LibraryCallKit::inline_native_getLength() {
  3570   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3572   int nargs = 1;
  3573   Node* array = argument(0);
  3575   _sp += nargs;  // set original stack for use by uncommon_trap
  3576   array = do_null_check(array, T_OBJECT);
  3577   _sp -= nargs;
  3579   // If array is dead, only null-path is taken.
  3580   if (stopped())  return true;
  3582   // Deoptimize if it is a non-array.
  3583   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3585   if (non_array != NULL) {
  3586     PreserveJVMState pjvms(this);
  3587     set_control(non_array);
  3588     _sp += nargs;  // push the arguments back on the stack
  3589     uncommon_trap(Deoptimization::Reason_intrinsic,
  3590                   Deoptimization::Action_maybe_recompile);
  3593   // If control is dead, only non-array-path is taken.
  3594   if (stopped())  return true;
  3596   // The works fine even if the array type is polymorphic.
  3597   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3598   push( load_array_length(array) );
  3600   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3602   return true;
  3605 //------------------------inline_array_copyOf----------------------------
  3606 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3607   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3609   // Restore the stack and pop off the arguments.
  3610   int nargs = 3 + (is_copyOfRange? 1: 0);
  3611   Node* original          = argument(0);
  3612   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3613   Node* end               = is_copyOfRange? argument(2): argument(1);
  3614   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3616   Node* newcopy;
  3618   //set the original stack and the reexecute bit for the interpreter to reexecute
  3619   //the bytecode that invokes Arrays.copyOf if deoptimization happens
  3620   { PreserveReexecuteState preexecs(this);
  3621     _sp += nargs;
  3622     jvms()->set_should_reexecute(true);
  3624     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
  3625     original          = do_null_check(original, T_OBJECT);
  3627     // Check if a null path was taken unconditionally.
  3628     if (stopped())  return true;
  3630     Node* orig_length = load_array_length(original);
  3632     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
  3633                                               NULL, 0);
  3634     klass_node = do_null_check(klass_node, T_OBJECT);
  3636     RegionNode* bailout = new (C, 1) RegionNode(1);
  3637     record_for_igvn(bailout);
  3639     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3640     // Bail out if that is so.
  3641     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3642     if (not_objArray != NULL) {
  3643       // Improve the klass node's type from the new optimistic assumption:
  3644       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3645       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3646       Node* cast = new (C, 2) CastPPNode(klass_node, akls);
  3647       cast->init_req(0, control());
  3648       klass_node = _gvn.transform(cast);
  3651     // Bail out if either start or end is negative.
  3652     generate_negative_guard(start, bailout, &start);
  3653     generate_negative_guard(end,   bailout, &end);
  3655     Node* length = end;
  3656     if (_gvn.type(start) != TypeInt::ZERO) {
  3657       length = _gvn.transform( new (C, 3) SubINode(end, start) );
  3660     // Bail out if length is negative.
  3661     // Without this the new_array would throw
  3662     // NegativeArraySizeException but IllegalArgumentException is what
  3663     // should be thrown
  3664     generate_negative_guard(length, bailout, &length);
  3666     if (bailout->req() > 1) {
  3667       PreserveJVMState pjvms(this);
  3668       set_control( _gvn.transform(bailout) );
  3669       uncommon_trap(Deoptimization::Reason_intrinsic,
  3670                     Deoptimization::Action_maybe_recompile);
  3673     if (!stopped()) {
  3675       // How many elements will we copy from the original?
  3676       // The answer is MinI(orig_length - start, length).
  3677       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
  3678       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3680       newcopy = new_array(klass_node, length, 0);
  3682       // Generate a direct call to the right arraycopy function(s).
  3683       // We know the copy is disjoint but we might not know if the
  3684       // oop stores need checking.
  3685       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3686       // This will fail a store-check if x contains any non-nulls.
  3687       bool disjoint_bases = true;
  3688       // if start > orig_length then the length of the copy may be
  3689       // negative.
  3690       bool length_never_negative = !is_copyOfRange;
  3691       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3692                          original, start, newcopy, intcon(0), moved,
  3693                          disjoint_bases, length_never_negative);
  3695   } //original reexecute and sp are set back here
  3697   if(!stopped()) {
  3698     push(newcopy);
  3701   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3703   return true;
  3707 //----------------------generate_virtual_guard---------------------------
  3708 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3709 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3710                                              RegionNode* slow_region) {
  3711   ciMethod* method = callee();
  3712   int vtable_index = method->vtable_index();
  3713   // Get the methodOop out of the appropriate vtable entry.
  3714   int entry_offset  = (instanceKlass::vtable_start_offset() +
  3715                      vtable_index*vtableEntry::size()) * wordSize +
  3716                      vtableEntry::method_offset_in_bytes();
  3717   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3718   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
  3720   // Compare the target method with the expected method (e.g., Object.hashCode).
  3721   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
  3723   Node* native_call = makecon(native_call_addr);
  3724   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
  3725   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
  3727   return generate_slow_guard(test_native, slow_region);
  3730 //-----------------------generate_method_call----------------------------
  3731 // Use generate_method_call to make a slow-call to the real
  3732 // method if the fast path fails.  An alternative would be to
  3733 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3734 // This only works for expanding the current library call,
  3735 // not another intrinsic.  (E.g., don't use this for making an
  3736 // arraycopy call inside of the copyOf intrinsic.)
  3737 CallJavaNode*
  3738 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3739   // When compiling the intrinsic method itself, do not use this technique.
  3740   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3742   ciMethod* method = callee();
  3743   // ensure the JVMS we have will be correct for this call
  3744   guarantee(method_id == method->intrinsic_id(), "must match");
  3746   const TypeFunc* tf = TypeFunc::make(method);
  3747   int tfdc = tf->domain()->cnt();
  3748   CallJavaNode* slow_call;
  3749   if (is_static) {
  3750     assert(!is_virtual, "");
  3751     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3752                                 SharedRuntime::get_resolve_static_call_stub(),
  3753                                 method, bci());
  3754   } else if (is_virtual) {
  3755     null_check_receiver(method);
  3756     int vtable_index = methodOopDesc::invalid_vtable_index;
  3757     if (UseInlineCaches) {
  3758       // Suppress the vtable call
  3759     } else {
  3760       // hashCode and clone are not a miranda methods,
  3761       // so the vtable index is fixed.
  3762       // No need to use the linkResolver to get it.
  3763        vtable_index = method->vtable_index();
  3765     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
  3766                                 SharedRuntime::get_resolve_virtual_call_stub(),
  3767                                 method, vtable_index, bci());
  3768   } else {  // neither virtual nor static:  opt_virtual
  3769     null_check_receiver(method);
  3770     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
  3771                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3772                                 method, bci());
  3773     slow_call->set_optimized_virtual(true);
  3775   set_arguments_for_java_call(slow_call);
  3776   set_edges_for_java_call(slow_call);
  3777   return slow_call;
  3781 //------------------------------inline_native_hashcode--------------------
  3782 // Build special case code for calls to hashCode on an object.
  3783 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3784   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3785   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3787   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3789   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  3790   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
  3791                                                       TypeInt::INT);
  3792   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  3793   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  3794                                                       TypePtr::BOTTOM);
  3795   Node* obj = NULL;
  3796   if (!is_static) {
  3797     // Check for hashing null object
  3798     obj = null_check_receiver(callee());
  3799     if (stopped())  return true;        // unconditionally null
  3800     result_reg->init_req(_null_path, top());
  3801     result_val->init_req(_null_path, top());
  3802   } else {
  3803     // Do a null check, and return zero if null.
  3804     // System.identityHashCode(null) == 0
  3805     obj = argument(0);
  3806     Node* null_ctl = top();
  3807     obj = null_check_oop(obj, &null_ctl);
  3808     result_reg->init_req(_null_path, null_ctl);
  3809     result_val->init_req(_null_path, _gvn.intcon(0));
  3812   // Unconditionally null?  Then return right away.
  3813   if (stopped()) {
  3814     set_control( result_reg->in(_null_path) );
  3815     if (!stopped())
  3816       push(      result_val ->in(_null_path) );
  3817     return true;
  3820   // After null check, get the object's klass.
  3821   Node* obj_klass = load_object_klass(obj);
  3823   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3824   // For each case we generate slightly different code.
  3826   // We only go to the fast case code if we pass a number of guards.  The
  3827   // paths which do not pass are accumulated in the slow_region.
  3828   RegionNode* slow_region = new (C, 1) RegionNode(1);
  3829   record_for_igvn(slow_region);
  3831   // If this is a virtual call, we generate a funny guard.  We pull out
  3832   // the vtable entry corresponding to hashCode() from the target object.
  3833   // If the target method which we are calling happens to be the native
  3834   // Object hashCode() method, we pass the guard.  We do not need this
  3835   // guard for non-virtual calls -- the caller is known to be the native
  3836   // Object hashCode().
  3837   if (is_virtual) {
  3838     generate_virtual_guard(obj_klass, slow_region);
  3841   // Get the header out of the object, use LoadMarkNode when available
  3842   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  3843   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
  3845   // Test the header to see if it is unlocked.
  3846   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  3847   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
  3848   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  3849   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
  3850   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
  3852   generate_slow_guard(test_unlocked, slow_region);
  3854   // Get the hash value and check to see that it has been properly assigned.
  3855   // We depend on hash_mask being at most 32 bits and avoid the use of
  3856   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  3857   // vm: see markOop.hpp.
  3858   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  3859   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  3860   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
  3861   // This hack lets the hash bits live anywhere in the mark object now, as long
  3862   // as the shift drops the relevant bits into the low 32 bits.  Note that
  3863   // Java spec says that HashCode is an int so there's no point in capturing
  3864   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  3865   hshifted_header      = ConvX2I(hshifted_header);
  3866   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
  3868   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  3869   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
  3870   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
  3872   generate_slow_guard(test_assigned, slow_region);
  3874   Node* init_mem = reset_memory();
  3875   // fill in the rest of the null path:
  3876   result_io ->init_req(_null_path, i_o());
  3877   result_mem->init_req(_null_path, init_mem);
  3879   result_val->init_req(_fast_path, hash_val);
  3880   result_reg->init_req(_fast_path, control());
  3881   result_io ->init_req(_fast_path, i_o());
  3882   result_mem->init_req(_fast_path, init_mem);
  3884   // Generate code for the slow case.  We make a call to hashCode().
  3885   set_control(_gvn.transform(slow_region));
  3886   if (!stopped()) {
  3887     // No need for PreserveJVMState, because we're using up the present state.
  3888     set_all_memory(init_mem);
  3889     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
  3890     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
  3891     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  3892     Node* slow_result = set_results_for_java_call(slow_call);
  3893     // this->control() comes from set_results_for_java_call
  3894     result_reg->init_req(_slow_path, control());
  3895     result_val->init_req(_slow_path, slow_result);
  3896     result_io  ->set_req(_slow_path, i_o());
  3897     result_mem ->set_req(_slow_path, reset_memory());
  3900   // Return the combined state.
  3901   set_i_o(        _gvn.transform(result_io)  );
  3902   set_all_memory( _gvn.transform(result_mem) );
  3903   push_result(result_reg, result_val);
  3905   return true;
  3908 //---------------------------inline_native_getClass----------------------------
  3909 // Build special case code for calls to getClass on an object.
  3910 bool LibraryCallKit::inline_native_getClass() {
  3911   Node* obj = null_check_receiver(callee());
  3912   if (stopped())  return true;
  3913   push( load_mirror_from_klass(load_object_klass(obj)) );
  3914   return true;
  3917 //-----------------inline_native_Reflection_getCallerClass---------------------
  3918 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  3919 //
  3920 // NOTE that this code must perform the same logic as
  3921 // vframeStream::security_get_caller_frame in that it must skip
  3922 // Method.invoke() and auxiliary frames.
  3927 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  3928   ciMethod*       method = callee();
  3930 #ifndef PRODUCT
  3931   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3932     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  3934 #endif
  3936   debug_only(int saved_sp = _sp);
  3938   // Argument words:  (int depth)
  3939   int nargs = 1;
  3941   _sp += nargs;
  3942   Node* caller_depth_node = pop();
  3944   assert(saved_sp == _sp, "must have correct argument count");
  3946   // The depth value must be a constant in order for the runtime call
  3947   // to be eliminated.
  3948   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
  3949   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
  3950 #ifndef PRODUCT
  3951     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3952       tty->print_cr("  Bailing out because caller depth was not a constant");
  3954 #endif
  3955     return false;
  3957   // Note that the JVM state at this point does not include the
  3958   // getCallerClass() frame which we are trying to inline. The
  3959   // semantics of getCallerClass(), however, are that the "first"
  3960   // frame is the getCallerClass() frame, so we subtract one from the
  3961   // requested depth before continuing. We don't inline requests of
  3962   // getCallerClass(0).
  3963   int caller_depth = caller_depth_type->get_con() - 1;
  3964   if (caller_depth < 0) {
  3965 #ifndef PRODUCT
  3966     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3967       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
  3969 #endif
  3970     return false;
  3973   if (!jvms()->has_method()) {
  3974 #ifndef PRODUCT
  3975     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  3976       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  3978 #endif
  3979     return false;
  3981   int _depth = jvms()->depth();  // cache call chain depth
  3983   // Walk back up the JVM state to find the caller at the required
  3984   // depth. NOTE that this code must perform the same logic as
  3985   // vframeStream::security_get_caller_frame in that it must skip
  3986   // Method.invoke() and auxiliary frames. Note also that depth is
  3987   // 1-based (1 is the bottom of the inlining).
  3988   int inlining_depth = _depth;
  3989   JVMState* caller_jvms = NULL;
  3991   if (inlining_depth > 0) {
  3992     caller_jvms = jvms();
  3993     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
  3994     do {
  3995       // The following if-tests should be performed in this order
  3996       if (is_method_invoke_or_aux_frame(caller_jvms)) {
  3997         // Skip a Method.invoke() or auxiliary frame
  3998       } else if (caller_depth > 0) {
  3999         // Skip real frame
  4000         --caller_depth;
  4001       } else {
  4002         // We're done: reached desired caller after skipping.
  4003         break;
  4005       caller_jvms = caller_jvms->caller();
  4006       --inlining_depth;
  4007     } while (inlining_depth > 0);
  4010   if (inlining_depth == 0) {
  4011 #ifndef PRODUCT
  4012     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  4013       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
  4014       tty->print_cr("  JVM state at this point:");
  4015       for (int i = _depth; i >= 1; i--) {
  4016         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  4019 #endif
  4020     return false; // Reached end of inlining
  4023   // Acquire method holder as java.lang.Class
  4024   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
  4025   ciInstance*      caller_mirror = caller_klass->java_mirror();
  4026   // Push this as a constant
  4027   push(makecon(TypeInstPtr::make(caller_mirror)));
  4028 #ifndef PRODUCT
  4029   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
  4030     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
  4031     tty->print_cr("  JVM state at this point:");
  4032     for (int i = _depth; i >= 1; i--) {
  4033       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
  4036 #endif
  4037   return true;
  4040 // Helper routine for above
  4041 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
  4042   ciMethod* method = jvms->method();
  4044   // Is this the Method.invoke method itself?
  4045   if (method->intrinsic_id() == vmIntrinsics::_invoke)
  4046     return true;
  4048   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
  4049   ciKlass* k = method->holder();
  4050   if (k->is_instance_klass()) {
  4051     ciInstanceKlass* ik = k->as_instance_klass();
  4052     for (; ik != NULL; ik = ik->super()) {
  4053       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
  4054           ik == env()->find_system_klass(ik->name())) {
  4055         return true;
  4059   else if (method->is_method_handle_intrinsic() ||
  4060            method->is_compiled_lambda_form()) {
  4061     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
  4062     return true;
  4065   return false;
  4068 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  4069   // restore the arguments
  4070   _sp += arg_size();
  4072   switch (id) {
  4073   case vmIntrinsics::_floatToRawIntBits:
  4074     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
  4075     break;
  4077   case vmIntrinsics::_intBitsToFloat:
  4078     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
  4079     break;
  4081   case vmIntrinsics::_doubleToRawLongBits:
  4082     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
  4083     break;
  4085   case vmIntrinsics::_longBitsToDouble:
  4086     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
  4087     break;
  4089   case vmIntrinsics::_doubleToLongBits: {
  4090     Node* value = pop_pair();
  4092     // two paths (plus control) merge in a wood
  4093     RegionNode *r = new (C, 3) RegionNode(3);
  4094     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
  4096     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
  4097     // Build the boolean node
  4098     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  4100     // Branch either way.
  4101     // NaN case is less traveled, which makes all the difference.
  4102     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4103     Node *opt_isnan = _gvn.transform(ifisnan);
  4104     assert( opt_isnan->is_If(), "Expect an IfNode");
  4105     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4106     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  4108     set_control(iftrue);
  4110     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4111     Node *slow_result = longcon(nan_bits); // return NaN
  4112     phi->init_req(1, _gvn.transform( slow_result ));
  4113     r->init_req(1, iftrue);
  4115     // Else fall through
  4116     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  4117     set_control(iffalse);
  4119     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
  4120     r->init_req(2, iffalse);
  4122     // Post merge
  4123     set_control(_gvn.transform(r));
  4124     record_for_igvn(r);
  4126     Node* result = _gvn.transform(phi);
  4127     assert(result->bottom_type()->isa_long(), "must be");
  4128     push_pair(result);
  4130     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4132     break;
  4135   case vmIntrinsics::_floatToIntBits: {
  4136     Node* value = pop();
  4138     // two paths (plus control) merge in a wood
  4139     RegionNode *r = new (C, 3) RegionNode(3);
  4140     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
  4142     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
  4143     // Build the boolean node
  4144     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
  4146     // Branch either way.
  4147     // NaN case is less traveled, which makes all the difference.
  4148     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4149     Node *opt_isnan = _gvn.transform(ifisnan);
  4150     assert( opt_isnan->is_If(), "Expect an IfNode");
  4151     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4152     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
  4154     set_control(iftrue);
  4156     static const jint nan_bits = 0x7fc00000;
  4157     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4158     phi->init_req(1, _gvn.transform( slow_result ));
  4159     r->init_req(1, iftrue);
  4161     // Else fall through
  4162     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
  4163     set_control(iffalse);
  4165     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
  4166     r->init_req(2, iffalse);
  4168     // Post merge
  4169     set_control(_gvn.transform(r));
  4170     record_for_igvn(r);
  4172     Node* result = _gvn.transform(phi);
  4173     assert(result->bottom_type()->isa_int(), "must be");
  4174     push(result);
  4176     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4178     break;
  4181   default:
  4182     ShouldNotReachHere();
  4185   return true;
  4188 #ifdef _LP64
  4189 #define XTOP ,top() /*additional argument*/
  4190 #else  //_LP64
  4191 #define XTOP        /*no additional argument*/
  4192 #endif //_LP64
  4194 //----------------------inline_unsafe_copyMemory-------------------------
  4195 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4196   if (callee()->is_static())  return false;  // caller must have the capability!
  4197   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
  4198   assert(signature()->size() == nargs-1, "copy has 5 arguments");
  4199   null_check_receiver(callee());  // check then ignore argument(0)
  4200   if (stopped())  return true;
  4202   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4204   Node* src_ptr = argument(1);
  4205   Node* src_off = ConvL2X(argument(2));
  4206   assert(argument(3)->is_top(), "2nd half of long");
  4207   Node* dst_ptr = argument(4);
  4208   Node* dst_off = ConvL2X(argument(5));
  4209   assert(argument(6)->is_top(), "2nd half of long");
  4210   Node* size    = ConvL2X(argument(7));
  4211   assert(argument(8)->is_top(), "2nd half of long");
  4213   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4214          "fieldOffset must be byte-scaled");
  4216   Node* src = make_unsafe_address(src_ptr, src_off);
  4217   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4219   // Conservatively insert a memory barrier on all memory slices.
  4220   // Do not let writes of the copy source or destination float below the copy.
  4221   insert_mem_bar(Op_MemBarCPUOrder);
  4223   // Call it.  Note that the length argument is not scaled.
  4224   make_runtime_call(RC_LEAF|RC_NO_FP,
  4225                     OptoRuntime::fast_arraycopy_Type(),
  4226                     StubRoutines::unsafe_arraycopy(),
  4227                     "unsafe_arraycopy",
  4228                     TypeRawPtr::BOTTOM,
  4229                     src, dst, size XTOP);
  4231   // Do not let reads of the copy destination float above the copy.
  4232   insert_mem_bar(Op_MemBarCPUOrder);
  4234   return true;
  4237 //------------------------clone_coping-----------------------------------
  4238 // Helper function for inline_native_clone.
  4239 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4240   assert(obj_size != NULL, "");
  4241   Node* raw_obj = alloc_obj->in(1);
  4242   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4244   AllocateNode* alloc = NULL;
  4245   if (ReduceBulkZeroing) {
  4246     // We will be completely responsible for initializing this object -
  4247     // mark Initialize node as complete.
  4248     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4249     // The object was just allocated - there should be no any stores!
  4250     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4251     // Mark as complete_with_arraycopy so that on AllocateNode
  4252     // expansion, we know this AllocateNode is initialized by an array
  4253     // copy and a StoreStore barrier exists after the array copy.
  4254     alloc->initialization()->set_complete_with_arraycopy();
  4257   // Copy the fastest available way.
  4258   // TODO: generate fields copies for small objects instead.
  4259   Node* src  = obj;
  4260   Node* dest = alloc_obj;
  4261   Node* size = _gvn.transform(obj_size);
  4263   // Exclude the header but include array length to copy by 8 bytes words.
  4264   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4265   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4266                             instanceOopDesc::base_offset_in_bytes();
  4267   // base_off:
  4268   // 8  - 32-bit VM
  4269   // 12 - 64-bit VM, compressed oops
  4270   // 16 - 64-bit VM, normal oops
  4271   if (base_off % BytesPerLong != 0) {
  4272     assert(UseCompressedOops, "");
  4273     if (is_array) {
  4274       // Exclude length to copy by 8 bytes words.
  4275       base_off += sizeof(int);
  4276     } else {
  4277       // Include klass to copy by 8 bytes words.
  4278       base_off = instanceOopDesc::klass_offset_in_bytes();
  4280     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4282   src  = basic_plus_adr(src,  base_off);
  4283   dest = basic_plus_adr(dest, base_off);
  4285   // Compute the length also, if needed:
  4286   Node* countx = size;
  4287   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
  4288   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4290   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4291   bool disjoint_bases = true;
  4292   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4293                                src, NULL, dest, NULL, countx,
  4294                                /*dest_uninitialized*/true);
  4296   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4297   if (card_mark) {
  4298     assert(!is_array, "");
  4299     // Put in store barrier for any and all oops we are sticking
  4300     // into this object.  (We could avoid this if we could prove
  4301     // that the object type contains no oop fields at all.)
  4302     Node* no_particular_value = NULL;
  4303     Node* no_particular_field = NULL;
  4304     int raw_adr_idx = Compile::AliasIdxRaw;
  4305     post_barrier(control(),
  4306                  memory(raw_adr_type),
  4307                  alloc_obj,
  4308                  no_particular_field,
  4309                  raw_adr_idx,
  4310                  no_particular_value,
  4311                  T_OBJECT,
  4312                  false);
  4315   // Do not let reads from the cloned object float above the arraycopy.
  4316   if (alloc != NULL) {
  4317     // Do not let stores that initialize this object be reordered with
  4318     // a subsequent store that would make this object accessible by
  4319     // other threads.
  4320     // Record what AllocateNode this StoreStore protects so that
  4321     // escape analysis can go from the MemBarStoreStoreNode to the
  4322     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4323     // based on the escape status of the AllocateNode.
  4324     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4325   } else {
  4326     insert_mem_bar(Op_MemBarCPUOrder);
  4330 //------------------------inline_native_clone----------------------------
  4331 // Here are the simple edge cases:
  4332 //  null receiver => normal trap
  4333 //  virtual and clone was overridden => slow path to out-of-line clone
  4334 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4335 //
  4336 // The general case has two steps, allocation and copying.
  4337 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4338 //
  4339 // Copying also has two cases, oop arrays and everything else.
  4340 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4341 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4342 //
  4343 // These steps fold up nicely if and when the cloned object's klass
  4344 // can be sharply typed as an object array, a type array, or an instance.
  4345 //
  4346 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4347   int nargs = 1;
  4348   PhiNode* result_val;
  4350   //set the original stack and the reexecute bit for the interpreter to reexecute
  4351   //the bytecode that invokes Object.clone if deoptimization happens
  4352   { PreserveReexecuteState preexecs(this);
  4353     jvms()->set_should_reexecute(true);
  4355     //null_check_receiver will adjust _sp (push and pop)
  4356     Node* obj = null_check_receiver(callee());
  4357     if (stopped())  return true;
  4359     _sp += nargs;
  4361     Node* obj_klass = load_object_klass(obj);
  4362     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4363     const TypeOopPtr*   toop   = ((tklass != NULL)
  4364                                 ? tklass->as_instance_type()
  4365                                 : TypeInstPtr::NOTNULL);
  4367     // Conservatively insert a memory barrier on all memory slices.
  4368     // Do not let writes into the original float below the clone.
  4369     insert_mem_bar(Op_MemBarCPUOrder);
  4371     // paths into result_reg:
  4372     enum {
  4373       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4374       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4375       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4376       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4377       PATH_LIMIT
  4378     };
  4379     RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4380     result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
  4381                                                         TypeInstPtr::NOTNULL);
  4382     PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
  4383     PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
  4384                                                         TypePtr::BOTTOM);
  4385     record_for_igvn(result_reg);
  4387     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4388     int raw_adr_idx = Compile::AliasIdxRaw;
  4390     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4391     if (array_ctl != NULL) {
  4392       // It's an array.
  4393       PreserveJVMState pjvms(this);
  4394       set_control(array_ctl);
  4395       Node* obj_length = load_array_length(obj);
  4396       Node* obj_size  = NULL;
  4397       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);
  4399       if (!use_ReduceInitialCardMarks()) {
  4400         // If it is an oop array, it requires very special treatment,
  4401         // because card marking is required on each card of the array.
  4402         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4403         if (is_obja != NULL) {
  4404           PreserveJVMState pjvms2(this);
  4405           set_control(is_obja);
  4406           // Generate a direct call to the right arraycopy function(s).
  4407           bool disjoint_bases = true;
  4408           bool length_never_negative = true;
  4409           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4410                              obj, intcon(0), alloc_obj, intcon(0),
  4411                              obj_length,
  4412                              disjoint_bases, length_never_negative);
  4413           result_reg->init_req(_objArray_path, control());
  4414           result_val->init_req(_objArray_path, alloc_obj);
  4415           result_i_o ->set_req(_objArray_path, i_o());
  4416           result_mem ->set_req(_objArray_path, reset_memory());
  4419       // Otherwise, there are no card marks to worry about.
  4420       // (We can dispense with card marks if we know the allocation
  4421       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4422       //  causes the non-eden paths to take compensating steps to
  4423       //  simulate a fresh allocation, so that no further
  4424       //  card marks are required in compiled code to initialize
  4425       //  the object.)
  4427       if (!stopped()) {
  4428         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4430         // Present the results of the copy.
  4431         result_reg->init_req(_array_path, control());
  4432         result_val->init_req(_array_path, alloc_obj);
  4433         result_i_o ->set_req(_array_path, i_o());
  4434         result_mem ->set_req(_array_path, reset_memory());
  4438     // We only go to the instance fast case code if we pass a number of guards.
  4439     // The paths which do not pass are accumulated in the slow_region.
  4440     RegionNode* slow_region = new (C, 1) RegionNode(1);
  4441     record_for_igvn(slow_region);
  4442     if (!stopped()) {
  4443       // It's an instance (we did array above).  Make the slow-path tests.
  4444       // If this is a virtual call, we generate a funny guard.  We grab
  4445       // the vtable entry corresponding to clone() from the target object.
  4446       // If the target method which we are calling happens to be the
  4447       // Object clone() method, we pass the guard.  We do not need this
  4448       // guard for non-virtual calls; the caller is known to be the native
  4449       // Object clone().
  4450       if (is_virtual) {
  4451         generate_virtual_guard(obj_klass, slow_region);
  4454       // The object must be cloneable and must not have a finalizer.
  4455       // Both of these conditions may be checked in a single test.
  4456       // We could optimize the cloneable test further, but we don't care.
  4457       generate_access_flags_guard(obj_klass,
  4458                                   // Test both conditions:
  4459                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4460                                   // Must be cloneable but not finalizer:
  4461                                   JVM_ACC_IS_CLONEABLE,
  4462                                   slow_region);
  4465     if (!stopped()) {
  4466       // It's an instance, and it passed the slow-path tests.
  4467       PreserveJVMState pjvms(this);
  4468       Node* obj_size  = NULL;
  4469       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
  4471       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4473       // Present the results of the slow call.
  4474       result_reg->init_req(_instance_path, control());
  4475       result_val->init_req(_instance_path, alloc_obj);
  4476       result_i_o ->set_req(_instance_path, i_o());
  4477       result_mem ->set_req(_instance_path, reset_memory());
  4480     // Generate code for the slow case.  We make a call to clone().
  4481     set_control(_gvn.transform(slow_region));
  4482     if (!stopped()) {
  4483       PreserveJVMState pjvms(this);
  4484       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4485       Node* slow_result = set_results_for_java_call(slow_call);
  4486       // this->control() comes from set_results_for_java_call
  4487       result_reg->init_req(_slow_path, control());
  4488       result_val->init_req(_slow_path, slow_result);
  4489       result_i_o ->set_req(_slow_path, i_o());
  4490       result_mem ->set_req(_slow_path, reset_memory());
  4493     // Return the combined state.
  4494     set_control(    _gvn.transform(result_reg) );
  4495     set_i_o(        _gvn.transform(result_i_o) );
  4496     set_all_memory( _gvn.transform(result_mem) );
  4497   } //original reexecute and sp are set back here
  4499   push(_gvn.transform(result_val));
  4501   return true;
  4504 //------------------------------basictype2arraycopy----------------------------
  4505 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4506                                             Node* src_offset,
  4507                                             Node* dest_offset,
  4508                                             bool disjoint_bases,
  4509                                             const char* &name,
  4510                                             bool dest_uninitialized) {
  4511   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4512   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4514   bool aligned = false;
  4515   bool disjoint = disjoint_bases;
  4517   // if the offsets are the same, we can treat the memory regions as
  4518   // disjoint, because either the memory regions are in different arrays,
  4519   // or they are identical (which we can treat as disjoint.)  We can also
  4520   // treat a copy with a destination index  less that the source index
  4521   // as disjoint since a low->high copy will work correctly in this case.
  4522   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4523       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4524     // both indices are constants
  4525     int s_offs = src_offset_inttype->get_con();
  4526     int d_offs = dest_offset_inttype->get_con();
  4527     int element_size = type2aelembytes(t);
  4528     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4529               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4530     if (s_offs >= d_offs)  disjoint = true;
  4531   } else if (src_offset == dest_offset && src_offset != NULL) {
  4532     // This can occur if the offsets are identical non-constants.
  4533     disjoint = true;
  4536   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4540 //------------------------------inline_arraycopy-----------------------
  4541 bool LibraryCallKit::inline_arraycopy() {
  4542   // Restore the stack and pop off the arguments.
  4543   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
  4544   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
  4546   Node *src         = argument(0);
  4547   Node *src_offset  = argument(1);
  4548   Node *dest        = argument(2);
  4549   Node *dest_offset = argument(3);
  4550   Node *length      = argument(4);
  4552   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4553   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4554   // is.  The checks we choose to mandate at compile time are:
  4555   //
  4556   // (1) src and dest are arrays.
  4557   const Type* src_type = src->Value(&_gvn);
  4558   const Type* dest_type = dest->Value(&_gvn);
  4559   const TypeAryPtr* top_src = src_type->isa_aryptr();
  4560   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4561   if (top_src  == NULL || top_src->klass()  == NULL ||
  4562       top_dest == NULL || top_dest->klass() == NULL) {
  4563     // Conservatively insert a memory barrier on all memory slices.
  4564     // Do not let writes into the source float below the arraycopy.
  4565     insert_mem_bar(Op_MemBarCPUOrder);
  4567     // Call StubRoutines::generic_arraycopy stub.
  4568     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4569                        src, src_offset, dest, dest_offset, length);
  4571     // Do not let reads from the destination float above the arraycopy.
  4572     // Since we cannot type the arrays, we don't know which slices
  4573     // might be affected.  We could restrict this barrier only to those
  4574     // memory slices which pertain to array elements--but don't bother.
  4575     if (!InsertMemBarAfterArraycopy)
  4576       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4577       insert_mem_bar(Op_MemBarCPUOrder);
  4578     return true;
  4581   // (2) src and dest arrays must have elements of the same BasicType
  4582   // Figure out the size and type of the elements we will be copying.
  4583   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4584   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4585   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4586   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4588   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4589     // The component types are not the same or are not recognized.  Punt.
  4590     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4591     generate_slow_arraycopy(TypePtr::BOTTOM,
  4592                             src, src_offset, dest, dest_offset, length,
  4593                             /*dest_uninitialized*/false);
  4594     return true;
  4597   //---------------------------------------------------------------------------
  4598   // We will make a fast path for this call to arraycopy.
  4600   // We have the following tests left to perform:
  4601   //
  4602   // (3) src and dest must not be null.
  4603   // (4) src_offset must not be negative.
  4604   // (5) dest_offset must not be negative.
  4605   // (6) length must not be negative.
  4606   // (7) src_offset + length must not exceed length of src.
  4607   // (8) dest_offset + length must not exceed length of dest.
  4608   // (9) each element of an oop array must be assignable
  4610   RegionNode* slow_region = new (C, 1) RegionNode(1);
  4611   record_for_igvn(slow_region);
  4613   // (3) operands must not be null
  4614   // We currently perform our null checks with the do_null_check routine.
  4615   // This means that the null exceptions will be reported in the caller
  4616   // rather than (correctly) reported inside of the native arraycopy call.
  4617   // This should be corrected, given time.  We do our null check with the
  4618   // stack pointer restored.
  4619   _sp += nargs;
  4620   src  = do_null_check(src,  T_ARRAY);
  4621   dest = do_null_check(dest, T_ARRAY);
  4622   _sp -= nargs;
  4624   // (4) src_offset must not be negative.
  4625   generate_negative_guard(src_offset, slow_region);
  4627   // (5) dest_offset must not be negative.
  4628   generate_negative_guard(dest_offset, slow_region);
  4630   // (6) length must not be negative (moved to generate_arraycopy()).
  4631   // generate_negative_guard(length, slow_region);
  4633   // (7) src_offset + length must not exceed length of src.
  4634   generate_limit_guard(src_offset, length,
  4635                        load_array_length(src),
  4636                        slow_region);
  4638   // (8) dest_offset + length must not exceed length of dest.
  4639   generate_limit_guard(dest_offset, length,
  4640                        load_array_length(dest),
  4641                        slow_region);
  4643   // (9) each element of an oop array must be assignable
  4644   // The generate_arraycopy subroutine checks this.
  4646   // This is where the memory effects are placed:
  4647   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4648   generate_arraycopy(adr_type, dest_elem,
  4649                      src, src_offset, dest, dest_offset, length,
  4650                      false, false, slow_region);
  4652   return true;
  4655 //-----------------------------generate_arraycopy----------------------
  4656 // Generate an optimized call to arraycopy.
  4657 // Caller must guard against non-arrays.
  4658 // Caller must determine a common array basic-type for both arrays.
  4659 // Caller must validate offsets against array bounds.
  4660 // The slow_region has already collected guard failure paths
  4661 // (such as out of bounds length or non-conformable array types).
  4662 // The generated code has this shape, in general:
  4663 //
  4664 //     if (length == 0)  return   // via zero_path
  4665 //     slowval = -1
  4666 //     if (types unknown) {
  4667 //       slowval = call generic copy loop
  4668 //       if (slowval == 0)  return  // via checked_path
  4669 //     } else if (indexes in bounds) {
  4670 //       if ((is object array) && !(array type check)) {
  4671 //         slowval = call checked copy loop
  4672 //         if (slowval == 0)  return  // via checked_path
  4673 //       } else {
  4674 //         call bulk copy loop
  4675 //         return  // via fast_path
  4676 //       }
  4677 //     }
  4678 //     // adjust params for remaining work:
  4679 //     if (slowval != -1) {
  4680 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4681 //     }
  4682 //   slow_region:
  4683 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4684 //     return  // via slow_call_path
  4685 //
  4686 // This routine is used from several intrinsics:  System.arraycopy,
  4687 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4688 //
  4689 void
  4690 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4691                                    BasicType basic_elem_type,
  4692                                    Node* src,  Node* src_offset,
  4693                                    Node* dest, Node* dest_offset,
  4694                                    Node* copy_length,
  4695                                    bool disjoint_bases,
  4696                                    bool length_never_negative,
  4697                                    RegionNode* slow_region) {
  4699   if (slow_region == NULL) {
  4700     slow_region = new(C,1) RegionNode(1);
  4701     record_for_igvn(slow_region);
  4704   Node* original_dest      = dest;
  4705   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4706   bool  dest_uninitialized = false;
  4708   // See if this is the initialization of a newly-allocated array.
  4709   // If so, we will take responsibility here for initializing it to zero.
  4710   // (Note:  Because tightly_coupled_allocation performs checks on the
  4711   // out-edges of the dest, we need to avoid making derived pointers
  4712   // from it until we have checked its uses.)
  4713   if (ReduceBulkZeroing
  4714       && !ZeroTLAB              // pointless if already zeroed
  4715       && basic_elem_type != T_CONFLICT // avoid corner case
  4716       && !src->eqv_uncast(dest)
  4717       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4718           != NULL)
  4719       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4720       && alloc->maybe_set_complete(&_gvn)) {
  4721     // "You break it, you buy it."
  4722     InitializeNode* init = alloc->initialization();
  4723     assert(init->is_complete(), "we just did this");
  4724     init->set_complete_with_arraycopy();
  4725     assert(dest->is_CheckCastPP(), "sanity");
  4726     assert(dest->in(0)->in(0) == init, "dest pinned");
  4727     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4728     // From this point on, every exit path is responsible for
  4729     // initializing any non-copied parts of the object to zero.
  4730     // Also, if this flag is set we make sure that arraycopy interacts properly
  4731     // with G1, eliding pre-barriers. See CR 6627983.
  4732     dest_uninitialized = true;
  4733   } else {
  4734     // No zeroing elimination here.
  4735     alloc             = NULL;
  4736     //original_dest   = dest;
  4737     //dest_uninitialized = false;
  4740   // Results are placed here:
  4741   enum { fast_path        = 1,  // normal void-returning assembly stub
  4742          checked_path     = 2,  // special assembly stub with cleanup
  4743          slow_call_path   = 3,  // something went wrong; call the VM
  4744          zero_path        = 4,  // bypass when length of copy is zero
  4745          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4746          PATH_LIMIT       = 6
  4747   };
  4748   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
  4749   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
  4750   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
  4751   record_for_igvn(result_region);
  4752   _gvn.set_type_bottom(result_i_o);
  4753   _gvn.set_type_bottom(result_memory);
  4754   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4756   // The slow_control path:
  4757   Node* slow_control;
  4758   Node* slow_i_o = i_o();
  4759   Node* slow_mem = memory(adr_type);
  4760   debug_only(slow_control = (Node*) badAddress);
  4762   // Checked control path:
  4763   Node* checked_control = top();
  4764   Node* checked_mem     = NULL;
  4765   Node* checked_i_o     = NULL;
  4766   Node* checked_value   = NULL;
  4768   if (basic_elem_type == T_CONFLICT) {
  4769     assert(!dest_uninitialized, "");
  4770     Node* cv = generate_generic_arraycopy(adr_type,
  4771                                           src, src_offset, dest, dest_offset,
  4772                                           copy_length, dest_uninitialized);
  4773     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4774     checked_control = control();
  4775     checked_i_o     = i_o();
  4776     checked_mem     = memory(adr_type);
  4777     checked_value   = cv;
  4778     set_control(top());         // no fast path
  4781   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4782   if (not_pos != NULL) {
  4783     PreserveJVMState pjvms(this);
  4784     set_control(not_pos);
  4786     // (6) length must not be negative.
  4787     if (!length_never_negative) {
  4788       generate_negative_guard(copy_length, slow_region);
  4791     // copy_length is 0.
  4792     if (!stopped() && dest_uninitialized) {
  4793       Node* dest_length = alloc->in(AllocateNode::ALength);
  4794       if (copy_length->eqv_uncast(dest_length)
  4795           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4796         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4797       } else {
  4798         // Clear the whole thing since there are no source elements to copy.
  4799         generate_clear_array(adr_type, dest, basic_elem_type,
  4800                              intcon(0), NULL,
  4801                              alloc->in(AllocateNode::AllocSize));
  4802         // Use a secondary InitializeNode as raw memory barrier.
  4803         // Currently it is needed only on this path since other
  4804         // paths have stub or runtime calls as raw memory barriers.
  4805         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4806                                                        Compile::AliasIdxRaw,
  4807                                                        top())->as_Initialize();
  4808         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4812     // Present the results of the fast call.
  4813     result_region->init_req(zero_path, control());
  4814     result_i_o   ->init_req(zero_path, i_o());
  4815     result_memory->init_req(zero_path, memory(adr_type));
  4818   if (!stopped() && dest_uninitialized) {
  4819     // We have to initialize the *uncopied* part of the array to zero.
  4820     // The copy destination is the slice dest[off..off+len].  The other slices
  4821     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4822     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4823     Node* dest_length = alloc->in(AllocateNode::ALength);
  4824     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
  4825                                                           copy_length) );
  4827     // If there is a head section that needs zeroing, do it now.
  4828     if (find_int_con(dest_offset, -1) != 0) {
  4829       generate_clear_array(adr_type, dest, basic_elem_type,
  4830                            intcon(0), dest_offset,
  4831                            NULL);
  4834     // Next, perform a dynamic check on the tail length.
  4835     // It is often zero, and we can win big if we prove this.
  4836     // There are two wins:  Avoid generating the ClearArray
  4837     // with its attendant messy index arithmetic, and upgrade
  4838     // the copy to a more hardware-friendly word size of 64 bits.
  4839     Node* tail_ctl = NULL;
  4840     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  4841       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
  4842       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
  4843       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4844       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  4847     // At this point, let's assume there is no tail.
  4848     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  4849       // There is no tail.  Try an upgrade to a 64-bit copy.
  4850       bool didit = false;
  4851       { PreserveJVMState pjvms(this);
  4852         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  4853                                          src, src_offset, dest, dest_offset,
  4854                                          dest_size, dest_uninitialized);
  4855         if (didit) {
  4856           // Present the results of the block-copying fast call.
  4857           result_region->init_req(bcopy_path, control());
  4858           result_i_o   ->init_req(bcopy_path, i_o());
  4859           result_memory->init_req(bcopy_path, memory(adr_type));
  4862       if (didit)
  4863         set_control(top());     // no regular fast path
  4866     // Clear the tail, if any.
  4867     if (tail_ctl != NULL) {
  4868       Node* notail_ctl = stopped() ? NULL : control();
  4869       set_control(tail_ctl);
  4870       if (notail_ctl == NULL) {
  4871         generate_clear_array(adr_type, dest, basic_elem_type,
  4872                              dest_tail, NULL,
  4873                              dest_size);
  4874       } else {
  4875         // Make a local merge.
  4876         Node* done_ctl = new(C,3) RegionNode(3);
  4877         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
  4878         done_ctl->init_req(1, notail_ctl);
  4879         done_mem->init_req(1, memory(adr_type));
  4880         generate_clear_array(adr_type, dest, basic_elem_type,
  4881                              dest_tail, NULL,
  4882                              dest_size);
  4883         done_ctl->init_req(2, control());
  4884         done_mem->init_req(2, memory(adr_type));
  4885         set_control( _gvn.transform(done_ctl) );
  4886         set_memory(  _gvn.transform(done_mem), adr_type );
  4891   BasicType copy_type = basic_elem_type;
  4892   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  4893   if (!stopped() && copy_type == T_OBJECT) {
  4894     // If src and dest have compatible element types, we can copy bits.
  4895     // Types S[] and D[] are compatible if D is a supertype of S.
  4896     //
  4897     // If they are not, we will use checked_oop_disjoint_arraycopy,
  4898     // which performs a fast optimistic per-oop check, and backs off
  4899     // further to JVM_ArrayCopy on the first per-oop check that fails.
  4900     // (Actually, we don't move raw bits only; the GC requires card marks.)
  4902     // Get the klassOop for both src and dest
  4903     Node* src_klass  = load_object_klass(src);
  4904     Node* dest_klass = load_object_klass(dest);
  4906     // Generate the subtype check.
  4907     // This might fold up statically, or then again it might not.
  4908     //
  4909     // Non-static example:  Copying List<String>.elements to a new String[].
  4910     // The backing store for a List<String> is always an Object[],
  4911     // but its elements are always type String, if the generic types
  4912     // are correct at the source level.
  4913     //
  4914     // Test S[] against D[], not S against D, because (probably)
  4915     // the secondary supertype cache is less busy for S[] than S.
  4916     // This usually only matters when D is an interface.
  4917     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  4918     // Plug failing path into checked_oop_disjoint_arraycopy
  4919     if (not_subtype_ctrl != top()) {
  4920       PreserveJVMState pjvms(this);
  4921       set_control(not_subtype_ctrl);
  4922       // (At this point we can assume disjoint_bases, since types differ.)
  4923       int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
  4924       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  4925       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  4926       Node* dest_elem_klass = _gvn.transform(n1);
  4927       Node* cv = generate_checkcast_arraycopy(adr_type,
  4928                                               dest_elem_klass,
  4929                                               src, src_offset, dest, dest_offset,
  4930                                               ConvI2X(copy_length), dest_uninitialized);
  4931       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4932       checked_control = control();
  4933       checked_i_o     = i_o();
  4934       checked_mem     = memory(adr_type);
  4935       checked_value   = cv;
  4937     // At this point we know we do not need type checks on oop stores.
  4939     // Let's see if we need card marks:
  4940     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  4941       // If we do not need card marks, copy using the jint or jlong stub.
  4942       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  4943       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  4944              "sizes agree");
  4948   if (!stopped()) {
  4949     // Generate the fast path, if possible.
  4950     PreserveJVMState pjvms(this);
  4951     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  4952                                  src, src_offset, dest, dest_offset,
  4953                                  ConvI2X(copy_length), dest_uninitialized);
  4955     // Present the results of the fast call.
  4956     result_region->init_req(fast_path, control());
  4957     result_i_o   ->init_req(fast_path, i_o());
  4958     result_memory->init_req(fast_path, memory(adr_type));
  4961   // Here are all the slow paths up to this point, in one bundle:
  4962   slow_control = top();
  4963   if (slow_region != NULL)
  4964     slow_control = _gvn.transform(slow_region);
  4965   debug_only(slow_region = (RegionNode*)badAddress);
  4967   set_control(checked_control);
  4968   if (!stopped()) {
  4969     // Clean up after the checked call.
  4970     // The returned value is either 0 or -1^K,
  4971     // where K = number of partially transferred array elements.
  4972     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
  4973     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
  4974     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  4976     // If it is 0, we are done, so transfer to the end.
  4977     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
  4978     result_region->init_req(checked_path, checks_done);
  4979     result_i_o   ->init_req(checked_path, checked_i_o);
  4980     result_memory->init_req(checked_path, checked_mem);
  4982     // If it is not zero, merge into the slow call.
  4983     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
  4984     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
  4985     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
  4986     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  4987     record_for_igvn(slow_reg2);
  4988     slow_reg2  ->init_req(1, slow_control);
  4989     slow_i_o2  ->init_req(1, slow_i_o);
  4990     slow_mem2  ->init_req(1, slow_mem);
  4991     slow_reg2  ->init_req(2, control());
  4992     slow_i_o2  ->init_req(2, checked_i_o);
  4993     slow_mem2  ->init_req(2, checked_mem);
  4995     slow_control = _gvn.transform(slow_reg2);
  4996     slow_i_o     = _gvn.transform(slow_i_o2);
  4997     slow_mem     = _gvn.transform(slow_mem2);
  4999     if (alloc != NULL) {
  5000       // We'll restart from the very beginning, after zeroing the whole thing.
  5001       // This can cause double writes, but that's OK since dest is brand new.
  5002       // So we ignore the low 31 bits of the value returned from the stub.
  5003     } else {
  5004       // We must continue the copy exactly where it failed, or else
  5005       // another thread might see the wrong number of writes to dest.
  5006       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
  5007       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
  5008       slow_offset->init_req(1, intcon(0));
  5009       slow_offset->init_req(2, checked_offset);
  5010       slow_offset  = _gvn.transform(slow_offset);
  5012       // Adjust the arguments by the conditionally incoming offset.
  5013       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
  5014       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
  5015       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
  5017       // Tweak the node variables to adjust the code produced below:
  5018       src_offset  = src_off_plus;
  5019       dest_offset = dest_off_plus;
  5020       copy_length = length_minus;
  5024   set_control(slow_control);
  5025   if (!stopped()) {
  5026     // Generate the slow path, if needed.
  5027     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  5029     set_memory(slow_mem, adr_type);
  5030     set_i_o(slow_i_o);
  5032     if (dest_uninitialized) {
  5033       generate_clear_array(adr_type, dest, basic_elem_type,
  5034                            intcon(0), NULL,
  5035                            alloc->in(AllocateNode::AllocSize));
  5038     generate_slow_arraycopy(adr_type,
  5039                             src, src_offset, dest, dest_offset,
  5040                             copy_length, /*dest_uninitialized*/false);
  5042     result_region->init_req(slow_call_path, control());
  5043     result_i_o   ->init_req(slow_call_path, i_o());
  5044     result_memory->init_req(slow_call_path, memory(adr_type));
  5047   // Remove unused edges.
  5048   for (uint i = 1; i < result_region->req(); i++) {
  5049     if (result_region->in(i) == NULL)
  5050       result_region->init_req(i, top());
  5053   // Finished; return the combined state.
  5054   set_control( _gvn.transform(result_region) );
  5055   set_i_o(     _gvn.transform(result_i_o)    );
  5056   set_memory(  _gvn.transform(result_memory), adr_type );
  5058   // The memory edges above are precise in order to model effects around
  5059   // array copies accurately to allow value numbering of field loads around
  5060   // arraycopy.  Such field loads, both before and after, are common in Java
  5061   // collections and similar classes involving header/array data structures.
  5062   //
  5063   // But with low number of register or when some registers are used or killed
  5064   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  5065   // The next memory barrier is added to avoid it. If the arraycopy can be
  5066   // optimized away (which it can, sometimes) then we can manually remove
  5067   // the membar also.
  5068   //
  5069   // Do not let reads from the cloned object float above the arraycopy.
  5070   if (alloc != NULL) {
  5071     // Do not let stores that initialize this object be reordered with
  5072     // a subsequent store that would make this object accessible by
  5073     // other threads.
  5074     // Record what AllocateNode this StoreStore protects so that
  5075     // escape analysis can go from the MemBarStoreStoreNode to the
  5076     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  5077     // based on the escape status of the AllocateNode.
  5078     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  5079   } else if (InsertMemBarAfterArraycopy)
  5080     insert_mem_bar(Op_MemBarCPUOrder);
  5084 // Helper function which determines if an arraycopy immediately follows
  5085 // an allocation, with no intervening tests or other escapes for the object.
  5086 AllocateArrayNode*
  5087 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  5088                                            RegionNode* slow_region) {
  5089   if (stopped())             return NULL;  // no fast path
  5090   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  5092   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  5093   if (alloc == NULL)  return NULL;
  5095   Node* rawmem = memory(Compile::AliasIdxRaw);
  5096   // Is the allocation's memory state untouched?
  5097   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  5098     // Bail out if there have been raw-memory effects since the allocation.
  5099     // (Example:  There might have been a call or safepoint.)
  5100     return NULL;
  5102   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  5103   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5104     return NULL;
  5107   // There must be no unexpected observers of this allocation.
  5108   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5109     Node* obs = ptr->fast_out(i);
  5110     if (obs != this->map()) {
  5111       return NULL;
  5115   // This arraycopy must unconditionally follow the allocation of the ptr.
  5116   Node* alloc_ctl = ptr->in(0);
  5117   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5119   Node* ctl = control();
  5120   while (ctl != alloc_ctl) {
  5121     // There may be guards which feed into the slow_region.
  5122     // Any other control flow means that we might not get a chance
  5123     // to finish initializing the allocated object.
  5124     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5125       IfNode* iff = ctl->in(0)->as_If();
  5126       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5127       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5128       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5129         ctl = iff->in(0);       // This test feeds the known slow_region.
  5130         continue;
  5132       // One more try:  Various low-level checks bottom out in
  5133       // uncommon traps.  If the debug-info of the trap omits
  5134       // any reference to the allocation, as we've already
  5135       // observed, then there can be no objection to the trap.
  5136       bool found_trap = false;
  5137       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5138         Node* obs = not_ctl->fast_out(j);
  5139         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5140             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5141           found_trap = true; break;
  5144       if (found_trap) {
  5145         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5146         continue;
  5149     return NULL;
  5152   // If we get this far, we have an allocation which immediately
  5153   // precedes the arraycopy, and we can take over zeroing the new object.
  5154   // The arraycopy will finish the initialization, and provide
  5155   // a new control state to which we will anchor the destination pointer.
  5157   return alloc;
  5160 // Helper for initialization of arrays, creating a ClearArray.
  5161 // It writes zero bits in [start..end), within the body of an array object.
  5162 // The memory effects are all chained onto the 'adr_type' alias category.
  5163 //
  5164 // Since the object is otherwise uninitialized, we are free
  5165 // to put a little "slop" around the edges of the cleared area,
  5166 // as long as it does not go back into the array's header,
  5167 // or beyond the array end within the heap.
  5168 //
  5169 // The lower edge can be rounded down to the nearest jint and the
  5170 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5171 //
  5172 // Arguments:
  5173 //   adr_type           memory slice where writes are generated
  5174 //   dest               oop of the destination array
  5175 //   basic_elem_type    element type of the destination
  5176 //   slice_idx          array index of first element to store
  5177 //   slice_len          number of elements to store (or NULL)
  5178 //   dest_size          total size in bytes of the array object
  5179 //
  5180 // Exactly one of slice_len or dest_size must be non-NULL.
  5181 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5182 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5183 void
  5184 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5185                                      Node* dest,
  5186                                      BasicType basic_elem_type,
  5187                                      Node* slice_idx,
  5188                                      Node* slice_len,
  5189                                      Node* dest_size) {
  5190   // one or the other but not both of slice_len and dest_size:
  5191   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5192   if (slice_len == NULL)  slice_len = top();
  5193   if (dest_size == NULL)  dest_size = top();
  5195   // operate on this memory slice:
  5196   Node* mem = memory(adr_type); // memory slice to operate on
  5198   // scaling and rounding of indexes:
  5199   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5200   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5201   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5202   int bump_bit  = (-1 << scale) & BytesPerInt;
  5204   // determine constant starts and ends
  5205   const intptr_t BIG_NEG = -128;
  5206   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5207   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5208   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5209   if (slice_len_con == 0) {
  5210     return;                     // nothing to do here
  5212   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5213   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5214   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5215     assert(end_con < 0, "not two cons");
  5216     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5217                        BytesPerLong);
  5220   if (start_con >= 0 && end_con >= 0) {
  5221     // Constant start and end.  Simple.
  5222     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5223                                        start_con, end_con, &_gvn);
  5224   } else if (start_con >= 0 && dest_size != top()) {
  5225     // Constant start, pre-rounded end after the tail of the array.
  5226     Node* end = dest_size;
  5227     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5228                                        start_con, end, &_gvn);
  5229   } else if (start_con >= 0 && slice_len != top()) {
  5230     // Constant start, non-constant end.  End needs rounding up.
  5231     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5232     intptr_t end_base  = abase + (slice_idx_con << scale);
  5233     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5234     Node*    end       = ConvI2X(slice_len);
  5235     if (scale != 0)
  5236       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
  5237     end_base += end_round;
  5238     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
  5239     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
  5240     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5241                                        start_con, end, &_gvn);
  5242   } else if (start_con < 0 && dest_size != top()) {
  5243     // Non-constant start, pre-rounded end after the tail of the array.
  5244     // This is almost certainly a "round-to-end" operation.
  5245     Node* start = slice_idx;
  5246     start = ConvI2X(start);
  5247     if (scale != 0)
  5248       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
  5249     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
  5250     if ((bump_bit | clear_low) != 0) {
  5251       int to_clear = (bump_bit | clear_low);
  5252       // Align up mod 8, then store a jint zero unconditionally
  5253       // just before the mod-8 boundary.
  5254       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5255           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5256         bump_bit = 0;
  5257         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5258       } else {
  5259         // Bump 'start' up to (or past) the next jint boundary:
  5260         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
  5261         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5263       // Round bumped 'start' down to jlong boundary in body of array.
  5264       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
  5265       if (bump_bit != 0) {
  5266         // Store a zero to the immediately preceding jint:
  5267         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
  5268         Node* p1 = basic_plus_adr(dest, x1);
  5269         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  5270         mem = _gvn.transform(mem);
  5273     Node* end = dest_size; // pre-rounded
  5274     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5275                                        start, end, &_gvn);
  5276   } else {
  5277     // Non-constant start, unrounded non-constant end.
  5278     // (Nobody zeroes a random midsection of an array using this routine.)
  5279     ShouldNotReachHere();       // fix caller
  5282   // Done.
  5283   set_memory(mem, adr_type);
  5287 bool
  5288 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5289                                          BasicType basic_elem_type,
  5290                                          AllocateNode* alloc,
  5291                                          Node* src,  Node* src_offset,
  5292                                          Node* dest, Node* dest_offset,
  5293                                          Node* dest_size, bool dest_uninitialized) {
  5294   // See if there is an advantage from block transfer.
  5295   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5296   if (scale >= LogBytesPerLong)
  5297     return false;               // it is already a block transfer
  5299   // Look at the alignment of the starting offsets.
  5300   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5302   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5303   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5304   if (src_off_con < 0 || dest_off_con < 0)
  5305     // At present, we can only understand constants.
  5306     return false;
  5308   intptr_t src_off  = abase + (src_off_con  << scale);
  5309   intptr_t dest_off = abase + (dest_off_con << scale);
  5311   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5312     // Non-aligned; too bad.
  5313     // One more chance:  Pick off an initial 32-bit word.
  5314     // This is a common case, since abase can be odd mod 8.
  5315     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5316         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5317       Node* sptr = basic_plus_adr(src,  src_off);
  5318       Node* dptr = basic_plus_adr(dest, dest_off);
  5319       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5320       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5321       src_off += BytesPerInt;
  5322       dest_off += BytesPerInt;
  5323     } else {
  5324       return false;
  5327   assert(src_off % BytesPerLong == 0, "");
  5328   assert(dest_off % BytesPerLong == 0, "");
  5330   // Do this copy by giant steps.
  5331   Node* sptr  = basic_plus_adr(src,  src_off);
  5332   Node* dptr  = basic_plus_adr(dest, dest_off);
  5333   Node* countx = dest_size;
  5334   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
  5335   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
  5337   bool disjoint_bases = true;   // since alloc != NULL
  5338   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5339                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5341   return true;
  5345 // Helper function; generates code for the slow case.
  5346 // We make a call to a runtime method which emulates the native method,
  5347 // but without the native wrapper overhead.
  5348 void
  5349 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5350                                         Node* src,  Node* src_offset,
  5351                                         Node* dest, Node* dest_offset,
  5352                                         Node* copy_length, bool dest_uninitialized) {
  5353   assert(!dest_uninitialized, "Invariant");
  5354   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5355                                  OptoRuntime::slow_arraycopy_Type(),
  5356                                  OptoRuntime::slow_arraycopy_Java(),
  5357                                  "slow_arraycopy", adr_type,
  5358                                  src, src_offset, dest, dest_offset,
  5359                                  copy_length);
  5361   // Handle exceptions thrown by this fellow:
  5362   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5365 // Helper function; generates code for cases requiring runtime checks.
  5366 Node*
  5367 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5368                                              Node* dest_elem_klass,
  5369                                              Node* src,  Node* src_offset,
  5370                                              Node* dest, Node* dest_offset,
  5371                                              Node* copy_length, bool dest_uninitialized) {
  5372   if (stopped())  return NULL;
  5374   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5375   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5376     return NULL;
  5379   // Pick out the parameters required to perform a store-check
  5380   // for the target array.  This is an optimistic check.  It will
  5381   // look in each non-null element's class, at the desired klass's
  5382   // super_check_offset, for the desired klass.
  5383   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5384   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5385   Node* n3 = new(C, 3) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
  5386   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5387   Node* check_value  = dest_elem_klass;
  5389   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5390   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5392   // (We know the arrays are never conjoint, because their types differ.)
  5393   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5394                                  OptoRuntime::checkcast_arraycopy_Type(),
  5395                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5396                                  // five arguments, of which two are
  5397                                  // intptr_t (jlong in LP64)
  5398                                  src_start, dest_start,
  5399                                  copy_length XTOP,
  5400                                  check_offset XTOP,
  5401                                  check_value);
  5403   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5407 // Helper function; generates code for cases requiring runtime checks.
  5408 Node*
  5409 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5410                                            Node* src,  Node* src_offset,
  5411                                            Node* dest, Node* dest_offset,
  5412                                            Node* copy_length, bool dest_uninitialized) {
  5413   assert(!dest_uninitialized, "Invariant");
  5414   if (stopped())  return NULL;
  5415   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5416   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5417     return NULL;
  5420   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5421                     OptoRuntime::generic_arraycopy_Type(),
  5422                     copyfunc_addr, "generic_arraycopy", adr_type,
  5423                     src, src_offset, dest, dest_offset, copy_length);
  5425   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
  5428 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5429 void
  5430 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5431                                              BasicType basic_elem_type,
  5432                                              bool disjoint_bases,
  5433                                              Node* src,  Node* src_offset,
  5434                                              Node* dest, Node* dest_offset,
  5435                                              Node* copy_length, bool dest_uninitialized) {
  5436   if (stopped())  return;               // nothing to do
  5438   Node* src_start  = src;
  5439   Node* dest_start = dest;
  5440   if (src_offset != NULL || dest_offset != NULL) {
  5441     assert(src_offset != NULL && dest_offset != NULL, "");
  5442     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5443     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5446   // Figure out which arraycopy runtime method to call.
  5447   const char* copyfunc_name = "arraycopy";
  5448   address     copyfunc_addr =
  5449       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5450                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5452   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5453   make_runtime_call(RC_LEAF|RC_NO_FP,
  5454                     OptoRuntime::fast_arraycopy_Type(),
  5455                     copyfunc_addr, copyfunc_name, adr_type,
  5456                     src_start, dest_start, copy_length XTOP);
  5459 //----------------------------inline_reference_get----------------------------
  5461 bool LibraryCallKit::inline_reference_get() {
  5462   const int nargs = 1; // self
  5464   guarantee(java_lang_ref_Reference::referent_offset > 0,
  5465             "should have already been set");
  5467   int referent_offset = java_lang_ref_Reference::referent_offset;
  5469   // Restore the stack and pop off the argument
  5470   _sp += nargs;
  5471   Node *reference_obj = pop();
  5473   // Null check on self without removing any arguments.
  5474   _sp += nargs;
  5475   reference_obj = do_null_check(reference_obj, T_OBJECT);
  5476   _sp -= nargs;;
  5478   if (stopped()) return true;
  5480   Node *adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5482   ciInstanceKlass* klass = env()->Object_klass();
  5483   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5485   Node* no_ctrl = NULL;
  5486   Node *result = make_load(no_ctrl, adr, object_type, T_OBJECT);
  5488   // Use the pre-barrier to record the value in the referent field
  5489   pre_barrier(false /* do_load */,
  5490               control(),
  5491               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5492               result /* pre_val */,
  5493               T_OBJECT);
  5495   // Add memory barrier to prevent commoning reads from this field
  5496   // across safepoint since GC can change its value.
  5497   insert_mem_bar(Op_MemBarCPUOrder);
  5499   push(result);
  5500   return true;

mercurial