src/cpu/x86/vm/templateTable_x86_64.cpp

Mon, 20 Aug 2012 09:58:58 -0700

author
kvn
date
Mon, 20 Aug 2012 09:58:58 -0700
changeset 4002
09aad8452938
parent 3969
1d7922586cf6
child 4037
da91efe96a93
permissions
-rw-r--r--

7190310: Inlining WeakReference.get(), and hoisting $referent may lead to non-terminating loops
Summary: In C2 add software membar after load from Reference.referent field to prevent commoning of loads across safepoint since GC can change its value. In C1 always generate Reference.get() intrinsic.
Reviewed-by: roland, twisti, dholmes, johnc

     1 /*
     2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreterRuntime.hpp"
    28 #include "interpreter/templateTable.hpp"
    29 #include "memory/universe.inline.hpp"
    30 #include "oops/methodDataOop.hpp"
    31 #include "oops/objArrayKlass.hpp"
    32 #include "oops/oop.inline.hpp"
    33 #include "prims/methodHandles.hpp"
    34 #include "runtime/sharedRuntime.hpp"
    35 #include "runtime/stubRoutines.hpp"
    36 #include "runtime/synchronizer.hpp"
    38 #ifndef CC_INTERP
    40 #define __ _masm->
    42 // Platform-dependent initialization
    44 void TemplateTable::pd_initialize() {
    45   // No amd64 specific initialization
    46 }
    48 // Address computation: local variables
    50 static inline Address iaddress(int n) {
    51   return Address(r14, Interpreter::local_offset_in_bytes(n));
    52 }
    54 static inline Address laddress(int n) {
    55   return iaddress(n + 1);
    56 }
    58 static inline Address faddress(int n) {
    59   return iaddress(n);
    60 }
    62 static inline Address daddress(int n) {
    63   return laddress(n);
    64 }
    66 static inline Address aaddress(int n) {
    67   return iaddress(n);
    68 }
    70 static inline Address iaddress(Register r) {
    71   return Address(r14, r, Address::times_8);
    72 }
    74 static inline Address laddress(Register r) {
    75   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
    76 }
    78 static inline Address faddress(Register r) {
    79   return iaddress(r);
    80 }
    82 static inline Address daddress(Register r) {
    83   return laddress(r);
    84 }
    86 static inline Address aaddress(Register r) {
    87   return iaddress(r);
    88 }
    90 static inline Address at_rsp() {
    91   return Address(rsp, 0);
    92 }
    94 // At top of Java expression stack which may be different than esp().  It
    95 // isn't for category 1 objects.
    96 static inline Address at_tos   () {
    97   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
    98 }
   100 static inline Address at_tos_p1() {
   101   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
   102 }
   104 static inline Address at_tos_p2() {
   105   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
   106 }
   108 static inline Address at_tos_p3() {
   109   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
   110 }
   112 // Condition conversion
   113 static Assembler::Condition j_not(TemplateTable::Condition cc) {
   114   switch (cc) {
   115   case TemplateTable::equal        : return Assembler::notEqual;
   116   case TemplateTable::not_equal    : return Assembler::equal;
   117   case TemplateTable::less         : return Assembler::greaterEqual;
   118   case TemplateTable::less_equal   : return Assembler::greater;
   119   case TemplateTable::greater      : return Assembler::lessEqual;
   120   case TemplateTable::greater_equal: return Assembler::less;
   121   }
   122   ShouldNotReachHere();
   123   return Assembler::zero;
   124 }
   127 // Miscelaneous helper routines
   128 // Store an oop (or NULL) at the address described by obj.
   129 // If val == noreg this means store a NULL
   131 static void do_oop_store(InterpreterMacroAssembler* _masm,
   132                          Address obj,
   133                          Register val,
   134                          BarrierSet::Name barrier,
   135                          bool precise) {
   136   assert(val == noreg || val == rax, "parameter is just for looks");
   137   switch (barrier) {
   138 #ifndef SERIALGC
   139     case BarrierSet::G1SATBCT:
   140     case BarrierSet::G1SATBCTLogging:
   141       {
   142         // flatten object address if needed
   143         if (obj.index() == noreg && obj.disp() == 0) {
   144           if (obj.base() != rdx) {
   145             __ movq(rdx, obj.base());
   146           }
   147         } else {
   148           __ leaq(rdx, obj);
   149         }
   150         __ g1_write_barrier_pre(rdx /* obj */,
   151                                 rbx /* pre_val */,
   152                                 r15_thread /* thread */,
   153                                 r8  /* tmp */,
   154                                 val != noreg /* tosca_live */,
   155                                 false /* expand_call */);
   156         if (val == noreg) {
   157           __ store_heap_oop_null(Address(rdx, 0));
   158         } else {
   159           __ store_heap_oop(Address(rdx, 0), val);
   160           __ g1_write_barrier_post(rdx /* store_adr */,
   161                                    val /* new_val */,
   162                                    r15_thread /* thread */,
   163                                    r8 /* tmp */,
   164                                    rbx /* tmp2 */);
   165         }
   167       }
   168       break;
   169 #endif // SERIALGC
   170     case BarrierSet::CardTableModRef:
   171     case BarrierSet::CardTableExtension:
   172       {
   173         if (val == noreg) {
   174           __ store_heap_oop_null(obj);
   175         } else {
   176           __ store_heap_oop(obj, val);
   177           // flatten object address if needed
   178           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
   179             __ store_check(obj.base());
   180           } else {
   181             __ leaq(rdx, obj);
   182             __ store_check(rdx);
   183           }
   184         }
   185       }
   186       break;
   187     case BarrierSet::ModRef:
   188     case BarrierSet::Other:
   189       if (val == noreg) {
   190         __ store_heap_oop_null(obj);
   191       } else {
   192         __ store_heap_oop(obj, val);
   193       }
   194       break;
   195     default      :
   196       ShouldNotReachHere();
   198   }
   199 }
   201 Address TemplateTable::at_bcp(int offset) {
   202   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
   203   return Address(r13, offset);
   204 }
   206 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
   207                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
   208                                    int byte_no) {
   209   if (!RewriteBytecodes)  return;
   210   Label L_patch_done;
   212   switch (bc) {
   213   case Bytecodes::_fast_aputfield:
   214   case Bytecodes::_fast_bputfield:
   215   case Bytecodes::_fast_cputfield:
   216   case Bytecodes::_fast_dputfield:
   217   case Bytecodes::_fast_fputfield:
   218   case Bytecodes::_fast_iputfield:
   219   case Bytecodes::_fast_lputfield:
   220   case Bytecodes::_fast_sputfield:
   221     {
   222       // We skip bytecode quickening for putfield instructions when
   223       // the put_code written to the constant pool cache is zero.
   224       // This is required so that every execution of this instruction
   225       // calls out to InterpreterRuntime::resolve_get_put to do
   226       // additional, required work.
   227       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
   228       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
   229       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
   230       __ movl(bc_reg, bc);
   231       __ cmpl(temp_reg, (int) 0);
   232       __ jcc(Assembler::zero, L_patch_done);  // don't patch
   233     }
   234     break;
   235   default:
   236     assert(byte_no == -1, "sanity");
   237     // the pair bytecodes have already done the load.
   238     if (load_bc_into_bc_reg) {
   239       __ movl(bc_reg, bc);
   240     }
   241   }
   243   if (JvmtiExport::can_post_breakpoint()) {
   244     Label L_fast_patch;
   245     // if a breakpoint is present we can't rewrite the stream directly
   246     __ movzbl(temp_reg, at_bcp(0));
   247     __ cmpl(temp_reg, Bytecodes::_breakpoint);
   248     __ jcc(Assembler::notEqual, L_fast_patch);
   249     __ get_method(temp_reg);
   250     // Let breakpoint table handling rewrite to quicker bytecode
   251     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, r13, bc_reg);
   252 #ifndef ASSERT
   253     __ jmpb(L_patch_done);
   254 #else
   255     __ jmp(L_patch_done);
   256 #endif
   257     __ bind(L_fast_patch);
   258   }
   260 #ifdef ASSERT
   261   Label L_okay;
   262   __ load_unsigned_byte(temp_reg, at_bcp(0));
   263   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
   264   __ jcc(Assembler::equal, L_okay);
   265   __ cmpl(temp_reg, bc_reg);
   266   __ jcc(Assembler::equal, L_okay);
   267   __ stop("patching the wrong bytecode");
   268   __ bind(L_okay);
   269 #endif
   271   // patch bytecode
   272   __ movb(at_bcp(0), bc_reg);
   273   __ bind(L_patch_done);
   274 }
   277 // Individual instructions
   279 void TemplateTable::nop() {
   280   transition(vtos, vtos);
   281   // nothing to do
   282 }
   284 void TemplateTable::shouldnotreachhere() {
   285   transition(vtos, vtos);
   286   __ stop("shouldnotreachhere bytecode");
   287 }
   289 void TemplateTable::aconst_null() {
   290   transition(vtos, atos);
   291   __ xorl(rax, rax);
   292 }
   294 void TemplateTable::iconst(int value) {
   295   transition(vtos, itos);
   296   if (value == 0) {
   297     __ xorl(rax, rax);
   298   } else {
   299     __ movl(rax, value);
   300   }
   301 }
   303 void TemplateTable::lconst(int value) {
   304   transition(vtos, ltos);
   305   if (value == 0) {
   306     __ xorl(rax, rax);
   307   } else {
   308     __ movl(rax, value);
   309   }
   310 }
   312 void TemplateTable::fconst(int value) {
   313   transition(vtos, ftos);
   314   static float one = 1.0f, two = 2.0f;
   315   switch (value) {
   316   case 0:
   317     __ xorps(xmm0, xmm0);
   318     break;
   319   case 1:
   320     __ movflt(xmm0, ExternalAddress((address) &one));
   321     break;
   322   case 2:
   323     __ movflt(xmm0, ExternalAddress((address) &two));
   324     break;
   325   default:
   326     ShouldNotReachHere();
   327     break;
   328   }
   329 }
   331 void TemplateTable::dconst(int value) {
   332   transition(vtos, dtos);
   333   static double one = 1.0;
   334   switch (value) {
   335   case 0:
   336     __ xorpd(xmm0, xmm0);
   337     break;
   338   case 1:
   339     __ movdbl(xmm0, ExternalAddress((address) &one));
   340     break;
   341   default:
   342     ShouldNotReachHere();
   343     break;
   344   }
   345 }
   347 void TemplateTable::bipush() {
   348   transition(vtos, itos);
   349   __ load_signed_byte(rax, at_bcp(1));
   350 }
   352 void TemplateTable::sipush() {
   353   transition(vtos, itos);
   354   __ load_unsigned_short(rax, at_bcp(1));
   355   __ bswapl(rax);
   356   __ sarl(rax, 16);
   357 }
   359 void TemplateTable::ldc(bool wide) {
   360   transition(vtos, vtos);
   361   Label call_ldc, notFloat, notClass, Done;
   363   if (wide) {
   364     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   365   } else {
   366     __ load_unsigned_byte(rbx, at_bcp(1));
   367   }
   369   __ get_cpool_and_tags(rcx, rax);
   370   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   371   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   373   // get type
   374   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
   376   // unresolved string - get the resolved string
   377   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
   378   __ jccb(Assembler::equal, call_ldc);
   380   // unresolved class - get the resolved class
   381   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
   382   __ jccb(Assembler::equal, call_ldc);
   384   // unresolved class in error state - call into runtime to throw the error
   385   // from the first resolution attempt
   386   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
   387   __ jccb(Assembler::equal, call_ldc);
   389   // resolved class - need to call vm to get java mirror of the class
   390   __ cmpl(rdx, JVM_CONSTANT_Class);
   391   __ jcc(Assembler::notEqual, notClass);
   393   __ bind(call_ldc);
   394   __ movl(c_rarg1, wide);
   395   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
   396   __ push_ptr(rax);
   397   __ verify_oop(rax);
   398   __ jmp(Done);
   400   __ bind(notClass);
   401   __ cmpl(rdx, JVM_CONSTANT_Float);
   402   __ jccb(Assembler::notEqual, notFloat);
   403   // ftos
   404   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   405   __ push_f();
   406   __ jmp(Done);
   408   __ bind(notFloat);
   409 #ifdef ASSERT
   410   {
   411     Label L;
   412     __ cmpl(rdx, JVM_CONSTANT_Integer);
   413     __ jcc(Assembler::equal, L);
   414     __ cmpl(rdx, JVM_CONSTANT_String);
   415     __ jcc(Assembler::equal, L);
   416     __ cmpl(rdx, JVM_CONSTANT_Object);
   417     __ jcc(Assembler::equal, L);
   418     __ stop("unexpected tag type in ldc");
   419     __ bind(L);
   420   }
   421 #endif
   422   // atos and itos
   423   Label isOop;
   424   __ cmpl(rdx, JVM_CONSTANT_Integer);
   425   __ jcc(Assembler::notEqual, isOop);
   426   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
   427   __ push_i(rax);
   428   __ jmp(Done);
   430   __ bind(isOop);
   431   __ movptr(rax, Address(rcx, rbx, Address::times_8, base_offset));
   432   __ push_ptr(rax);
   434   if (VerifyOops) {
   435     __ verify_oop(rax);
   436   }
   438   __ bind(Done);
   439 }
   441 // Fast path for caching oop constants.
   442 // %%% We should use this to handle Class and String constants also.
   443 // %%% It will simplify the ldc/primitive path considerably.
   444 void TemplateTable::fast_aldc(bool wide) {
   445   transition(vtos, atos);
   447   if (!EnableInvokeDynamic) {
   448     // We should not encounter this bytecode if !EnableInvokeDynamic.
   449     // The verifier will stop it.  However, if we get past the verifier,
   450     // this will stop the thread in a reasonable way, without crashing the JVM.
   451     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
   452                      InterpreterRuntime::throw_IncompatibleClassChangeError));
   453     // the call_VM checks for exception, so we should never return here.
   454     __ should_not_reach_here();
   455     return;
   456   }
   458   const Register cache = rcx;
   459   const Register index = rdx;
   461   resolve_cache_and_index(f12_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
   462   if (VerifyOops) {
   463     __ verify_oop(rax);
   464   }
   466   Label L_done, L_throw_exception;
   467   const Register con_klass_temp = rcx;  // same as cache
   468   const Register array_klass_temp = rdx;  // same as index
   469   __ load_klass(con_klass_temp, rax);
   470   __ lea(array_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr()));
   471   __ cmpptr(con_klass_temp, Address(array_klass_temp, 0));
   472   __ jcc(Assembler::notEqual, L_done);
   473   __ cmpl(Address(rax, arrayOopDesc::length_offset_in_bytes()), 0);
   474   __ jcc(Assembler::notEqual, L_throw_exception);
   475   __ xorptr(rax, rax);
   476   __ jmp(L_done);
   478   // Load the exception from the system-array which wraps it:
   479   __ bind(L_throw_exception);
   480   __ load_heap_oop(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   481   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
   483   __ bind(L_done);
   484 }
   486 void TemplateTable::ldc2_w() {
   487   transition(vtos, vtos);
   488   Label Long, Done;
   489   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
   491   __ get_cpool_and_tags(rcx, rax);
   492   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
   493   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
   495   // get type
   496   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
   497           JVM_CONSTANT_Double);
   498   __ jccb(Assembler::notEqual, Long);
   499   // dtos
   500   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
   501   __ push_d();
   502   __ jmpb(Done);
   504   __ bind(Long);
   505   // ltos
   506   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
   507   __ push_l();
   509   __ bind(Done);
   510 }
   512 void TemplateTable::locals_index(Register reg, int offset) {
   513   __ load_unsigned_byte(reg, at_bcp(offset));
   514   __ negptr(reg);
   515 }
   517 void TemplateTable::iload() {
   518   transition(vtos, itos);
   519   if (RewriteFrequentPairs) {
   520     Label rewrite, done;
   521     const Register bc = c_rarg3;
   522     assert(rbx != bc, "register damaged");
   524     // get next byte
   525     __ load_unsigned_byte(rbx,
   526                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
   527     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
   528     // last two iloads in a pair.  Comparing against fast_iload means that
   529     // the next bytecode is neither an iload or a caload, and therefore
   530     // an iload pair.
   531     __ cmpl(rbx, Bytecodes::_iload);
   532     __ jcc(Assembler::equal, done);
   534     __ cmpl(rbx, Bytecodes::_fast_iload);
   535     __ movl(bc, Bytecodes::_fast_iload2);
   536     __ jccb(Assembler::equal, rewrite);
   538     // if _caload, rewrite to fast_icaload
   539     __ cmpl(rbx, Bytecodes::_caload);
   540     __ movl(bc, Bytecodes::_fast_icaload);
   541     __ jccb(Assembler::equal, rewrite);
   543     // rewrite so iload doesn't check again.
   544     __ movl(bc, Bytecodes::_fast_iload);
   546     // rewrite
   547     // bc: fast bytecode
   548     __ bind(rewrite);
   549     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
   550     __ bind(done);
   551   }
   553   // Get the local value into tos
   554   locals_index(rbx);
   555   __ movl(rax, iaddress(rbx));
   556 }
   558 void TemplateTable::fast_iload2() {
   559   transition(vtos, itos);
   560   locals_index(rbx);
   561   __ movl(rax, iaddress(rbx));
   562   __ push(itos);
   563   locals_index(rbx, 3);
   564   __ movl(rax, iaddress(rbx));
   565 }
   567 void TemplateTable::fast_iload() {
   568   transition(vtos, itos);
   569   locals_index(rbx);
   570   __ movl(rax, iaddress(rbx));
   571 }
   573 void TemplateTable::lload() {
   574   transition(vtos, ltos);
   575   locals_index(rbx);
   576   __ movq(rax, laddress(rbx));
   577 }
   579 void TemplateTable::fload() {
   580   transition(vtos, ftos);
   581   locals_index(rbx);
   582   __ movflt(xmm0, faddress(rbx));
   583 }
   585 void TemplateTable::dload() {
   586   transition(vtos, dtos);
   587   locals_index(rbx);
   588   __ movdbl(xmm0, daddress(rbx));
   589 }
   591 void TemplateTable::aload() {
   592   transition(vtos, atos);
   593   locals_index(rbx);
   594   __ movptr(rax, aaddress(rbx));
   595 }
   597 void TemplateTable::locals_index_wide(Register reg) {
   598   __ movl(reg, at_bcp(2));
   599   __ bswapl(reg);
   600   __ shrl(reg, 16);
   601   __ negptr(reg);
   602 }
   604 void TemplateTable::wide_iload() {
   605   transition(vtos, itos);
   606   locals_index_wide(rbx);
   607   __ movl(rax, iaddress(rbx));
   608 }
   610 void TemplateTable::wide_lload() {
   611   transition(vtos, ltos);
   612   locals_index_wide(rbx);
   613   __ movq(rax, laddress(rbx));
   614 }
   616 void TemplateTable::wide_fload() {
   617   transition(vtos, ftos);
   618   locals_index_wide(rbx);
   619   __ movflt(xmm0, faddress(rbx));
   620 }
   622 void TemplateTable::wide_dload() {
   623   transition(vtos, dtos);
   624   locals_index_wide(rbx);
   625   __ movdbl(xmm0, daddress(rbx));
   626 }
   628 void TemplateTable::wide_aload() {
   629   transition(vtos, atos);
   630   locals_index_wide(rbx);
   631   __ movptr(rax, aaddress(rbx));
   632 }
   634 void TemplateTable::index_check(Register array, Register index) {
   635   // destroys rbx
   636   // check array
   637   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
   638   // sign extend index for use by indexed load
   639   __ movl2ptr(index, index);
   640   // check index
   641   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
   642   if (index != rbx) {
   643     // ??? convention: move aberrant index into ebx for exception message
   644     assert(rbx != array, "different registers");
   645     __ movl(rbx, index);
   646   }
   647   __ jump_cc(Assembler::aboveEqual,
   648              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
   649 }
   651 void TemplateTable::iaload() {
   652   transition(itos, itos);
   653   __ pop_ptr(rdx);
   654   // eax: index
   655   // rdx: array
   656   index_check(rdx, rax); // kills rbx
   657   __ movl(rax, Address(rdx, rax,
   658                        Address::times_4,
   659                        arrayOopDesc::base_offset_in_bytes(T_INT)));
   660 }
   662 void TemplateTable::laload() {
   663   transition(itos, ltos);
   664   __ pop_ptr(rdx);
   665   // eax: index
   666   // rdx: array
   667   index_check(rdx, rax); // kills rbx
   668   __ movq(rax, Address(rdx, rbx,
   669                        Address::times_8,
   670                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
   671 }
   673 void TemplateTable::faload() {
   674   transition(itos, ftos);
   675   __ pop_ptr(rdx);
   676   // eax: index
   677   // rdx: array
   678   index_check(rdx, rax); // kills rbx
   679   __ movflt(xmm0, Address(rdx, rax,
   680                          Address::times_4,
   681                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
   682 }
   684 void TemplateTable::daload() {
   685   transition(itos, dtos);
   686   __ pop_ptr(rdx);
   687   // eax: index
   688   // rdx: array
   689   index_check(rdx, rax); // kills rbx
   690   __ movdbl(xmm0, Address(rdx, rax,
   691                           Address::times_8,
   692                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
   693 }
   695 void TemplateTable::aaload() {
   696   transition(itos, atos);
   697   __ pop_ptr(rdx);
   698   // eax: index
   699   // rdx: array
   700   index_check(rdx, rax); // kills rbx
   701   __ load_heap_oop(rax, Address(rdx, rax,
   702                                 UseCompressedOops ? Address::times_4 : Address::times_8,
   703                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
   704 }
   706 void TemplateTable::baload() {
   707   transition(itos, itos);
   708   __ pop_ptr(rdx);
   709   // eax: index
   710   // rdx: array
   711   index_check(rdx, rax); // kills rbx
   712   __ load_signed_byte(rax,
   713                       Address(rdx, rax,
   714                               Address::times_1,
   715                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
   716 }
   718 void TemplateTable::caload() {
   719   transition(itos, itos);
   720   __ pop_ptr(rdx);
   721   // eax: index
   722   // rdx: array
   723   index_check(rdx, rax); // kills rbx
   724   __ load_unsigned_short(rax,
   725                          Address(rdx, rax,
   726                                  Address::times_2,
   727                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   728 }
   730 // iload followed by caload frequent pair
   731 void TemplateTable::fast_icaload() {
   732   transition(vtos, itos);
   733   // load index out of locals
   734   locals_index(rbx);
   735   __ movl(rax, iaddress(rbx));
   737   // eax: index
   738   // rdx: array
   739   __ pop_ptr(rdx);
   740   index_check(rdx, rax); // kills rbx
   741   __ load_unsigned_short(rax,
   742                          Address(rdx, rax,
   743                                  Address::times_2,
   744                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   745 }
   747 void TemplateTable::saload() {
   748   transition(itos, itos);
   749   __ pop_ptr(rdx);
   750   // eax: index
   751   // rdx: array
   752   index_check(rdx, rax); // kills rbx
   753   __ load_signed_short(rax,
   754                        Address(rdx, rax,
   755                                Address::times_2,
   756                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
   757 }
   759 void TemplateTable::iload(int n) {
   760   transition(vtos, itos);
   761   __ movl(rax, iaddress(n));
   762 }
   764 void TemplateTable::lload(int n) {
   765   transition(vtos, ltos);
   766   __ movq(rax, laddress(n));
   767 }
   769 void TemplateTable::fload(int n) {
   770   transition(vtos, ftos);
   771   __ movflt(xmm0, faddress(n));
   772 }
   774 void TemplateTable::dload(int n) {
   775   transition(vtos, dtos);
   776   __ movdbl(xmm0, daddress(n));
   777 }
   779 void TemplateTable::aload(int n) {
   780   transition(vtos, atos);
   781   __ movptr(rax, aaddress(n));
   782 }
   784 void TemplateTable::aload_0() {
   785   transition(vtos, atos);
   786   // According to bytecode histograms, the pairs:
   787   //
   788   // _aload_0, _fast_igetfield
   789   // _aload_0, _fast_agetfield
   790   // _aload_0, _fast_fgetfield
   791   //
   792   // occur frequently. If RewriteFrequentPairs is set, the (slow)
   793   // _aload_0 bytecode checks if the next bytecode is either
   794   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
   795   // rewrites the current bytecode into a pair bytecode; otherwise it
   796   // rewrites the current bytecode into _fast_aload_0 that doesn't do
   797   // the pair check anymore.
   798   //
   799   // Note: If the next bytecode is _getfield, the rewrite must be
   800   //       delayed, otherwise we may miss an opportunity for a pair.
   801   //
   802   // Also rewrite frequent pairs
   803   //   aload_0, aload_1
   804   //   aload_0, iload_1
   805   // These bytecodes with a small amount of code are most profitable
   806   // to rewrite
   807   if (RewriteFrequentPairs) {
   808     Label rewrite, done;
   809     const Register bc = c_rarg3;
   810     assert(rbx != bc, "register damaged");
   811     // get next byte
   812     __ load_unsigned_byte(rbx,
   813                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
   815     // do actual aload_0
   816     aload(0);
   818     // if _getfield then wait with rewrite
   819     __ cmpl(rbx, Bytecodes::_getfield);
   820     __ jcc(Assembler::equal, done);
   822     // if _igetfield then reqrite to _fast_iaccess_0
   823     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
   824            Bytecodes::_aload_0,
   825            "fix bytecode definition");
   826     __ cmpl(rbx, Bytecodes::_fast_igetfield);
   827     __ movl(bc, Bytecodes::_fast_iaccess_0);
   828     __ jccb(Assembler::equal, rewrite);
   830     // if _agetfield then reqrite to _fast_aaccess_0
   831     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
   832            Bytecodes::_aload_0,
   833            "fix bytecode definition");
   834     __ cmpl(rbx, Bytecodes::_fast_agetfield);
   835     __ movl(bc, Bytecodes::_fast_aaccess_0);
   836     __ jccb(Assembler::equal, rewrite);
   838     // if _fgetfield then reqrite to _fast_faccess_0
   839     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
   840            Bytecodes::_aload_0,
   841            "fix bytecode definition");
   842     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
   843     __ movl(bc, Bytecodes::_fast_faccess_0);
   844     __ jccb(Assembler::equal, rewrite);
   846     // else rewrite to _fast_aload0
   847     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
   848            Bytecodes::_aload_0,
   849            "fix bytecode definition");
   850     __ movl(bc, Bytecodes::_fast_aload_0);
   852     // rewrite
   853     // bc: fast bytecode
   854     __ bind(rewrite);
   855     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
   857     __ bind(done);
   858   } else {
   859     aload(0);
   860   }
   861 }
   863 void TemplateTable::istore() {
   864   transition(itos, vtos);
   865   locals_index(rbx);
   866   __ movl(iaddress(rbx), rax);
   867 }
   869 void TemplateTable::lstore() {
   870   transition(ltos, vtos);
   871   locals_index(rbx);
   872   __ movq(laddress(rbx), rax);
   873 }
   875 void TemplateTable::fstore() {
   876   transition(ftos, vtos);
   877   locals_index(rbx);
   878   __ movflt(faddress(rbx), xmm0);
   879 }
   881 void TemplateTable::dstore() {
   882   transition(dtos, vtos);
   883   locals_index(rbx);
   884   __ movdbl(daddress(rbx), xmm0);
   885 }
   887 void TemplateTable::astore() {
   888   transition(vtos, vtos);
   889   __ pop_ptr(rax);
   890   locals_index(rbx);
   891   __ movptr(aaddress(rbx), rax);
   892 }
   894 void TemplateTable::wide_istore() {
   895   transition(vtos, vtos);
   896   __ pop_i();
   897   locals_index_wide(rbx);
   898   __ movl(iaddress(rbx), rax);
   899 }
   901 void TemplateTable::wide_lstore() {
   902   transition(vtos, vtos);
   903   __ pop_l();
   904   locals_index_wide(rbx);
   905   __ movq(laddress(rbx), rax);
   906 }
   908 void TemplateTable::wide_fstore() {
   909   transition(vtos, vtos);
   910   __ pop_f();
   911   locals_index_wide(rbx);
   912   __ movflt(faddress(rbx), xmm0);
   913 }
   915 void TemplateTable::wide_dstore() {
   916   transition(vtos, vtos);
   917   __ pop_d();
   918   locals_index_wide(rbx);
   919   __ movdbl(daddress(rbx), xmm0);
   920 }
   922 void TemplateTable::wide_astore() {
   923   transition(vtos, vtos);
   924   __ pop_ptr(rax);
   925   locals_index_wide(rbx);
   926   __ movptr(aaddress(rbx), rax);
   927 }
   929 void TemplateTable::iastore() {
   930   transition(itos, vtos);
   931   __ pop_i(rbx);
   932   __ pop_ptr(rdx);
   933   // eax: value
   934   // ebx: index
   935   // rdx: array
   936   index_check(rdx, rbx); // prefer index in ebx
   937   __ movl(Address(rdx, rbx,
   938                   Address::times_4,
   939                   arrayOopDesc::base_offset_in_bytes(T_INT)),
   940           rax);
   941 }
   943 void TemplateTable::lastore() {
   944   transition(ltos, vtos);
   945   __ pop_i(rbx);
   946   __ pop_ptr(rdx);
   947   // rax: value
   948   // ebx: index
   949   // rdx: array
   950   index_check(rdx, rbx); // prefer index in ebx
   951   __ movq(Address(rdx, rbx,
   952                   Address::times_8,
   953                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
   954           rax);
   955 }
   957 void TemplateTable::fastore() {
   958   transition(ftos, vtos);
   959   __ pop_i(rbx);
   960   __ pop_ptr(rdx);
   961   // xmm0: value
   962   // ebx:  index
   963   // rdx:  array
   964   index_check(rdx, rbx); // prefer index in ebx
   965   __ movflt(Address(rdx, rbx,
   966                    Address::times_4,
   967                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
   968            xmm0);
   969 }
   971 void TemplateTable::dastore() {
   972   transition(dtos, vtos);
   973   __ pop_i(rbx);
   974   __ pop_ptr(rdx);
   975   // xmm0: value
   976   // ebx:  index
   977   // rdx:  array
   978   index_check(rdx, rbx); // prefer index in ebx
   979   __ movdbl(Address(rdx, rbx,
   980                    Address::times_8,
   981                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
   982            xmm0);
   983 }
   985 void TemplateTable::aastore() {
   986   Label is_null, ok_is_subtype, done;
   987   transition(vtos, vtos);
   988   // stack: ..., array, index, value
   989   __ movptr(rax, at_tos());    // value
   990   __ movl(rcx, at_tos_p1()); // index
   991   __ movptr(rdx, at_tos_p2()); // array
   993   Address element_address(rdx, rcx,
   994                           UseCompressedOops? Address::times_4 : Address::times_8,
   995                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
   997   index_check(rdx, rcx);     // kills rbx
   998   // do array store check - check for NULL value first
   999   __ testptr(rax, rax);
  1000   __ jcc(Assembler::zero, is_null);
  1002   // Move subklass into rbx
  1003   __ load_klass(rbx, rax);
  1004   // Move superklass into rax
  1005   __ load_klass(rax, rdx);
  1006   __ movptr(rax, Address(rax,
  1007                          objArrayKlass::element_klass_offset()));
  1008   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
  1009   __ lea(rdx, element_address);
  1011   // Generate subtype check.  Blows rcx, rdi
  1012   // Superklass in rax.  Subklass in rbx.
  1013   __ gen_subtype_check(rbx, ok_is_subtype);
  1015   // Come here on failure
  1016   // object is at TOS
  1017   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
  1019   // Come here on success
  1020   __ bind(ok_is_subtype);
  1022   // Get the value we will store
  1023   __ movptr(rax, at_tos());
  1024   // Now store using the appropriate barrier
  1025   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
  1026   __ jmp(done);
  1028   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
  1029   __ bind(is_null);
  1030   __ profile_null_seen(rbx);
  1032   // Store a NULL
  1033   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
  1035   // Pop stack arguments
  1036   __ bind(done);
  1037   __ addptr(rsp, 3 * Interpreter::stackElementSize);
  1040 void TemplateTable::bastore() {
  1041   transition(itos, vtos);
  1042   __ pop_i(rbx);
  1043   __ pop_ptr(rdx);
  1044   // eax: value
  1045   // ebx: index
  1046   // rdx: array
  1047   index_check(rdx, rbx); // prefer index in ebx
  1048   __ movb(Address(rdx, rbx,
  1049                   Address::times_1,
  1050                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
  1051           rax);
  1054 void TemplateTable::castore() {
  1055   transition(itos, vtos);
  1056   __ pop_i(rbx);
  1057   __ pop_ptr(rdx);
  1058   // eax: value
  1059   // ebx: index
  1060   // rdx: array
  1061   index_check(rdx, rbx);  // prefer index in ebx
  1062   __ movw(Address(rdx, rbx,
  1063                   Address::times_2,
  1064                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
  1065           rax);
  1068 void TemplateTable::sastore() {
  1069   castore();
  1072 void TemplateTable::istore(int n) {
  1073   transition(itos, vtos);
  1074   __ movl(iaddress(n), rax);
  1077 void TemplateTable::lstore(int n) {
  1078   transition(ltos, vtos);
  1079   __ movq(laddress(n), rax);
  1082 void TemplateTable::fstore(int n) {
  1083   transition(ftos, vtos);
  1084   __ movflt(faddress(n), xmm0);
  1087 void TemplateTable::dstore(int n) {
  1088   transition(dtos, vtos);
  1089   __ movdbl(daddress(n), xmm0);
  1092 void TemplateTable::astore(int n) {
  1093   transition(vtos, vtos);
  1094   __ pop_ptr(rax);
  1095   __ movptr(aaddress(n), rax);
  1098 void TemplateTable::pop() {
  1099   transition(vtos, vtos);
  1100   __ addptr(rsp, Interpreter::stackElementSize);
  1103 void TemplateTable::pop2() {
  1104   transition(vtos, vtos);
  1105   __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1108 void TemplateTable::dup() {
  1109   transition(vtos, vtos);
  1110   __ load_ptr(0, rax);
  1111   __ push_ptr(rax);
  1112   // stack: ..., a, a
  1115 void TemplateTable::dup_x1() {
  1116   transition(vtos, vtos);
  1117   // stack: ..., a, b
  1118   __ load_ptr( 0, rax);  // load b
  1119   __ load_ptr( 1, rcx);  // load a
  1120   __ store_ptr(1, rax);  // store b
  1121   __ store_ptr(0, rcx);  // store a
  1122   __ push_ptr(rax);      // push b
  1123   // stack: ..., b, a, b
  1126 void TemplateTable::dup_x2() {
  1127   transition(vtos, vtos);
  1128   // stack: ..., a, b, c
  1129   __ load_ptr( 0, rax);  // load c
  1130   __ load_ptr( 2, rcx);  // load a
  1131   __ store_ptr(2, rax);  // store c in a
  1132   __ push_ptr(rax);      // push c
  1133   // stack: ..., c, b, c, c
  1134   __ load_ptr( 2, rax);  // load b
  1135   __ store_ptr(2, rcx);  // store a in b
  1136   // stack: ..., c, a, c, c
  1137   __ store_ptr(1, rax);  // store b in c
  1138   // stack: ..., c, a, b, c
  1141 void TemplateTable::dup2() {
  1142   transition(vtos, vtos);
  1143   // stack: ..., a, b
  1144   __ load_ptr(1, rax);  // load a
  1145   __ push_ptr(rax);     // push a
  1146   __ load_ptr(1, rax);  // load b
  1147   __ push_ptr(rax);     // push b
  1148   // stack: ..., a, b, a, b
  1151 void TemplateTable::dup2_x1() {
  1152   transition(vtos, vtos);
  1153   // stack: ..., a, b, c
  1154   __ load_ptr( 0, rcx);  // load c
  1155   __ load_ptr( 1, rax);  // load b
  1156   __ push_ptr(rax);      // push b
  1157   __ push_ptr(rcx);      // push c
  1158   // stack: ..., a, b, c, b, c
  1159   __ store_ptr(3, rcx);  // store c in b
  1160   // stack: ..., a, c, c, b, c
  1161   __ load_ptr( 4, rcx);  // load a
  1162   __ store_ptr(2, rcx);  // store a in 2nd c
  1163   // stack: ..., a, c, a, b, c
  1164   __ store_ptr(4, rax);  // store b in a
  1165   // stack: ..., b, c, a, b, c
  1168 void TemplateTable::dup2_x2() {
  1169   transition(vtos, vtos);
  1170   // stack: ..., a, b, c, d
  1171   __ load_ptr( 0, rcx);  // load d
  1172   __ load_ptr( 1, rax);  // load c
  1173   __ push_ptr(rax);      // push c
  1174   __ push_ptr(rcx);      // push d
  1175   // stack: ..., a, b, c, d, c, d
  1176   __ load_ptr( 4, rax);  // load b
  1177   __ store_ptr(2, rax);  // store b in d
  1178   __ store_ptr(4, rcx);  // store d in b
  1179   // stack: ..., a, d, c, b, c, d
  1180   __ load_ptr( 5, rcx);  // load a
  1181   __ load_ptr( 3, rax);  // load c
  1182   __ store_ptr(3, rcx);  // store a in c
  1183   __ store_ptr(5, rax);  // store c in a
  1184   // stack: ..., c, d, a, b, c, d
  1187 void TemplateTable::swap() {
  1188   transition(vtos, vtos);
  1189   // stack: ..., a, b
  1190   __ load_ptr( 1, rcx);  // load a
  1191   __ load_ptr( 0, rax);  // load b
  1192   __ store_ptr(0, rcx);  // store a in b
  1193   __ store_ptr(1, rax);  // store b in a
  1194   // stack: ..., b, a
  1197 void TemplateTable::iop2(Operation op) {
  1198   transition(itos, itos);
  1199   switch (op) {
  1200   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
  1201   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
  1202   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
  1203   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
  1204   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
  1205   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
  1206   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
  1207   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
  1208   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
  1209   default   : ShouldNotReachHere();
  1213 void TemplateTable::lop2(Operation op) {
  1214   transition(ltos, ltos);
  1215   switch (op) {
  1216   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
  1217   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
  1218   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
  1219   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
  1220   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
  1221   default   : ShouldNotReachHere();
  1225 void TemplateTable::idiv() {
  1226   transition(itos, itos);
  1227   __ movl(rcx, rax);
  1228   __ pop_i(rax);
  1229   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1230   //       they are not equal, one could do a normal division (no correction
  1231   //       needed), which may speed up this implementation for the common case.
  1232   //       (see also JVM spec., p.243 & p.271)
  1233   __ corrected_idivl(rcx);
  1236 void TemplateTable::irem() {
  1237   transition(itos, itos);
  1238   __ movl(rcx, rax);
  1239   __ pop_i(rax);
  1240   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
  1241   //       they are not equal, one could do a normal division (no correction
  1242   //       needed), which may speed up this implementation for the common case.
  1243   //       (see also JVM spec., p.243 & p.271)
  1244   __ corrected_idivl(rcx);
  1245   __ movl(rax, rdx);
  1248 void TemplateTable::lmul() {
  1249   transition(ltos, ltos);
  1250   __ pop_l(rdx);
  1251   __ imulq(rax, rdx);
  1254 void TemplateTable::ldiv() {
  1255   transition(ltos, ltos);
  1256   __ mov(rcx, rax);
  1257   __ pop_l(rax);
  1258   // generate explicit div0 check
  1259   __ testq(rcx, rcx);
  1260   __ jump_cc(Assembler::zero,
  1261              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1262   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1263   //       they are not equal, one could do a normal division (no correction
  1264   //       needed), which may speed up this implementation for the common case.
  1265   //       (see also JVM spec., p.243 & p.271)
  1266   __ corrected_idivq(rcx); // kills rbx
  1269 void TemplateTable::lrem() {
  1270   transition(ltos, ltos);
  1271   __ mov(rcx, rax);
  1272   __ pop_l(rax);
  1273   __ testq(rcx, rcx);
  1274   __ jump_cc(Assembler::zero,
  1275              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
  1276   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
  1277   //       they are not equal, one could do a normal division (no correction
  1278   //       needed), which may speed up this implementation for the common case.
  1279   //       (see also JVM spec., p.243 & p.271)
  1280   __ corrected_idivq(rcx); // kills rbx
  1281   __ mov(rax, rdx);
  1284 void TemplateTable::lshl() {
  1285   transition(itos, ltos);
  1286   __ movl(rcx, rax);                             // get shift count
  1287   __ pop_l(rax);                                 // get shift value
  1288   __ shlq(rax);
  1291 void TemplateTable::lshr() {
  1292   transition(itos, ltos);
  1293   __ movl(rcx, rax);                             // get shift count
  1294   __ pop_l(rax);                                 // get shift value
  1295   __ sarq(rax);
  1298 void TemplateTable::lushr() {
  1299   transition(itos, ltos);
  1300   __ movl(rcx, rax);                             // get shift count
  1301   __ pop_l(rax);                                 // get shift value
  1302   __ shrq(rax);
  1305 void TemplateTable::fop2(Operation op) {
  1306   transition(ftos, ftos);
  1307   switch (op) {
  1308   case add:
  1309     __ addss(xmm0, at_rsp());
  1310     __ addptr(rsp, Interpreter::stackElementSize);
  1311     break;
  1312   case sub:
  1313     __ movflt(xmm1, xmm0);
  1314     __ pop_f(xmm0);
  1315     __ subss(xmm0, xmm1);
  1316     break;
  1317   case mul:
  1318     __ mulss(xmm0, at_rsp());
  1319     __ addptr(rsp, Interpreter::stackElementSize);
  1320     break;
  1321   case div:
  1322     __ movflt(xmm1, xmm0);
  1323     __ pop_f(xmm0);
  1324     __ divss(xmm0, xmm1);
  1325     break;
  1326   case rem:
  1327     __ movflt(xmm1, xmm0);
  1328     __ pop_f(xmm0);
  1329     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
  1330     break;
  1331   default:
  1332     ShouldNotReachHere();
  1333     break;
  1337 void TemplateTable::dop2(Operation op) {
  1338   transition(dtos, dtos);
  1339   switch (op) {
  1340   case add:
  1341     __ addsd(xmm0, at_rsp());
  1342     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1343     break;
  1344   case sub:
  1345     __ movdbl(xmm1, xmm0);
  1346     __ pop_d(xmm0);
  1347     __ subsd(xmm0, xmm1);
  1348     break;
  1349   case mul:
  1350     __ mulsd(xmm0, at_rsp());
  1351     __ addptr(rsp, 2 * Interpreter::stackElementSize);
  1352     break;
  1353   case div:
  1354     __ movdbl(xmm1, xmm0);
  1355     __ pop_d(xmm0);
  1356     __ divsd(xmm0, xmm1);
  1357     break;
  1358   case rem:
  1359     __ movdbl(xmm1, xmm0);
  1360     __ pop_d(xmm0);
  1361     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
  1362     break;
  1363   default:
  1364     ShouldNotReachHere();
  1365     break;
  1369 void TemplateTable::ineg() {
  1370   transition(itos, itos);
  1371   __ negl(rax);
  1374 void TemplateTable::lneg() {
  1375   transition(ltos, ltos);
  1376   __ negq(rax);
  1379 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  1380 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  1381   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  1382   // of 128-bits operands for SSE instructions.
  1383   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
  1384   // Store the value to a 128-bits operand.
  1385   operand[0] = lo;
  1386   operand[1] = hi;
  1387   return operand;
  1390 // Buffer for 128-bits masks used by SSE instructions.
  1391 static jlong float_signflip_pool[2*2];
  1392 static jlong double_signflip_pool[2*2];
  1394 void TemplateTable::fneg() {
  1395   transition(ftos, ftos);
  1396   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
  1397   __ xorps(xmm0, ExternalAddress((address) float_signflip));
  1400 void TemplateTable::dneg() {
  1401   transition(dtos, dtos);
  1402   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
  1403   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
  1406 void TemplateTable::iinc() {
  1407   transition(vtos, vtos);
  1408   __ load_signed_byte(rdx, at_bcp(2)); // get constant
  1409   locals_index(rbx);
  1410   __ addl(iaddress(rbx), rdx);
  1413 void TemplateTable::wide_iinc() {
  1414   transition(vtos, vtos);
  1415   __ movl(rdx, at_bcp(4)); // get constant
  1416   locals_index_wide(rbx);
  1417   __ bswapl(rdx); // swap bytes & sign-extend constant
  1418   __ sarl(rdx, 16);
  1419   __ addl(iaddress(rbx), rdx);
  1420   // Note: should probably use only one movl to get both
  1421   //       the index and the constant -> fix this
  1424 void TemplateTable::convert() {
  1425   // Checking
  1426 #ifdef ASSERT
  1428     TosState tos_in  = ilgl;
  1429     TosState tos_out = ilgl;
  1430     switch (bytecode()) {
  1431     case Bytecodes::_i2l: // fall through
  1432     case Bytecodes::_i2f: // fall through
  1433     case Bytecodes::_i2d: // fall through
  1434     case Bytecodes::_i2b: // fall through
  1435     case Bytecodes::_i2c: // fall through
  1436     case Bytecodes::_i2s: tos_in = itos; break;
  1437     case Bytecodes::_l2i: // fall through
  1438     case Bytecodes::_l2f: // fall through
  1439     case Bytecodes::_l2d: tos_in = ltos; break;
  1440     case Bytecodes::_f2i: // fall through
  1441     case Bytecodes::_f2l: // fall through
  1442     case Bytecodes::_f2d: tos_in = ftos; break;
  1443     case Bytecodes::_d2i: // fall through
  1444     case Bytecodes::_d2l: // fall through
  1445     case Bytecodes::_d2f: tos_in = dtos; break;
  1446     default             : ShouldNotReachHere();
  1448     switch (bytecode()) {
  1449     case Bytecodes::_l2i: // fall through
  1450     case Bytecodes::_f2i: // fall through
  1451     case Bytecodes::_d2i: // fall through
  1452     case Bytecodes::_i2b: // fall through
  1453     case Bytecodes::_i2c: // fall through
  1454     case Bytecodes::_i2s: tos_out = itos; break;
  1455     case Bytecodes::_i2l: // fall through
  1456     case Bytecodes::_f2l: // fall through
  1457     case Bytecodes::_d2l: tos_out = ltos; break;
  1458     case Bytecodes::_i2f: // fall through
  1459     case Bytecodes::_l2f: // fall through
  1460     case Bytecodes::_d2f: tos_out = ftos; break;
  1461     case Bytecodes::_i2d: // fall through
  1462     case Bytecodes::_l2d: // fall through
  1463     case Bytecodes::_f2d: tos_out = dtos; break;
  1464     default             : ShouldNotReachHere();
  1466     transition(tos_in, tos_out);
  1468 #endif // ASSERT
  1470   static const int64_t is_nan = 0x8000000000000000L;
  1472   // Conversion
  1473   switch (bytecode()) {
  1474   case Bytecodes::_i2l:
  1475     __ movslq(rax, rax);
  1476     break;
  1477   case Bytecodes::_i2f:
  1478     __ cvtsi2ssl(xmm0, rax);
  1479     break;
  1480   case Bytecodes::_i2d:
  1481     __ cvtsi2sdl(xmm0, rax);
  1482     break;
  1483   case Bytecodes::_i2b:
  1484     __ movsbl(rax, rax);
  1485     break;
  1486   case Bytecodes::_i2c:
  1487     __ movzwl(rax, rax);
  1488     break;
  1489   case Bytecodes::_i2s:
  1490     __ movswl(rax, rax);
  1491     break;
  1492   case Bytecodes::_l2i:
  1493     __ movl(rax, rax);
  1494     break;
  1495   case Bytecodes::_l2f:
  1496     __ cvtsi2ssq(xmm0, rax);
  1497     break;
  1498   case Bytecodes::_l2d:
  1499     __ cvtsi2sdq(xmm0, rax);
  1500     break;
  1501   case Bytecodes::_f2i:
  1503     Label L;
  1504     __ cvttss2sil(rax, xmm0);
  1505     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1506     __ jcc(Assembler::notEqual, L);
  1507     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
  1508     __ bind(L);
  1510     break;
  1511   case Bytecodes::_f2l:
  1513     Label L;
  1514     __ cvttss2siq(rax, xmm0);
  1515     // NaN or overflow/underflow?
  1516     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1517     __ jcc(Assembler::notEqual, L);
  1518     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
  1519     __ bind(L);
  1521     break;
  1522   case Bytecodes::_f2d:
  1523     __ cvtss2sd(xmm0, xmm0);
  1524     break;
  1525   case Bytecodes::_d2i:
  1527     Label L;
  1528     __ cvttsd2sil(rax, xmm0);
  1529     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
  1530     __ jcc(Assembler::notEqual, L);
  1531     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
  1532     __ bind(L);
  1534     break;
  1535   case Bytecodes::_d2l:
  1537     Label L;
  1538     __ cvttsd2siq(rax, xmm0);
  1539     // NaN or overflow/underflow?
  1540     __ cmp64(rax, ExternalAddress((address) &is_nan));
  1541     __ jcc(Assembler::notEqual, L);
  1542     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
  1543     __ bind(L);
  1545     break;
  1546   case Bytecodes::_d2f:
  1547     __ cvtsd2ss(xmm0, xmm0);
  1548     break;
  1549   default:
  1550     ShouldNotReachHere();
  1554 void TemplateTable::lcmp() {
  1555   transition(ltos, itos);
  1556   Label done;
  1557   __ pop_l(rdx);
  1558   __ cmpq(rdx, rax);
  1559   __ movl(rax, -1);
  1560   __ jccb(Assembler::less, done);
  1561   __ setb(Assembler::notEqual, rax);
  1562   __ movzbl(rax, rax);
  1563   __ bind(done);
  1566 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
  1567   Label done;
  1568   if (is_float) {
  1569     // XXX get rid of pop here, use ... reg, mem32
  1570     __ pop_f(xmm1);
  1571     __ ucomiss(xmm1, xmm0);
  1572   } else {
  1573     // XXX get rid of pop here, use ... reg, mem64
  1574     __ pop_d(xmm1);
  1575     __ ucomisd(xmm1, xmm0);
  1577   if (unordered_result < 0) {
  1578     __ movl(rax, -1);
  1579     __ jccb(Assembler::parity, done);
  1580     __ jccb(Assembler::below, done);
  1581     __ setb(Assembler::notEqual, rdx);
  1582     __ movzbl(rax, rdx);
  1583   } else {
  1584     __ movl(rax, 1);
  1585     __ jccb(Assembler::parity, done);
  1586     __ jccb(Assembler::above, done);
  1587     __ movl(rax, 0);
  1588     __ jccb(Assembler::equal, done);
  1589     __ decrementl(rax);
  1591   __ bind(done);
  1594 void TemplateTable::branch(bool is_jsr, bool is_wide) {
  1595   __ get_method(rcx); // rcx holds method
  1596   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
  1597                                      // holds bumped taken count
  1599   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() +
  1600                              InvocationCounter::counter_offset();
  1601   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() +
  1602                               InvocationCounter::counter_offset();
  1603   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
  1605   // Load up edx with the branch displacement
  1606   __ movl(rdx, at_bcp(1));
  1607   __ bswapl(rdx);
  1609   if (!is_wide) {
  1610     __ sarl(rdx, 16);
  1612   __ movl2ptr(rdx, rdx);
  1614   // Handle all the JSR stuff here, then exit.
  1615   // It's much shorter and cleaner than intermingling with the non-JSR
  1616   // normal-branch stuff occurring below.
  1617   if (is_jsr) {
  1618     // Pre-load the next target bytecode into rbx
  1619     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
  1621     // compute return address as bci in rax
  1622     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
  1623                         in_bytes(constMethodOopDesc::codes_offset())));
  1624     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
  1625     // Adjust the bcp in r13 by the displacement in rdx
  1626     __ addptr(r13, rdx);
  1627     // jsr returns atos that is not an oop
  1628     __ push_i(rax);
  1629     __ dispatch_only(vtos);
  1630     return;
  1633   // Normal (non-jsr) branch handling
  1635   // Adjust the bcp in r13 by the displacement in rdx
  1636   __ addptr(r13, rdx);
  1638   assert(UseLoopCounter || !UseOnStackReplacement,
  1639          "on-stack-replacement requires loop counters");
  1640   Label backedge_counter_overflow;
  1641   Label profile_method;
  1642   Label dispatch;
  1643   if (UseLoopCounter) {
  1644     // increment backedge counter for backward branches
  1645     // rax: MDO
  1646     // ebx: MDO bumped taken-count
  1647     // rcx: method
  1648     // rdx: target offset
  1649     // r13: target bcp
  1650     // r14: locals pointer
  1651     __ testl(rdx, rdx);             // check if forward or backward branch
  1652     __ jcc(Assembler::positive, dispatch); // count only if backward branch
  1653     if (TieredCompilation) {
  1654       Label no_mdo;
  1655       int increment = InvocationCounter::count_increment;
  1656       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
  1657       if (ProfileInterpreter) {
  1658         // Are we profiling?
  1659         __ movptr(rbx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
  1660         __ testptr(rbx, rbx);
  1661         __ jccb(Assembler::zero, no_mdo);
  1662         // Increment the MDO backedge counter
  1663         const Address mdo_backedge_counter(rbx, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
  1664                                            in_bytes(InvocationCounter::counter_offset()));
  1665         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
  1666                                    rax, false, Assembler::zero, &backedge_counter_overflow);
  1667         __ jmp(dispatch);
  1669       __ bind(no_mdo);
  1670       // Increment backedge counter in methodOop
  1671       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
  1672                                  rax, false, Assembler::zero, &backedge_counter_overflow);
  1673     } else {
  1674       // increment counter
  1675       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
  1676       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
  1677       __ movl(Address(rcx, be_offset), rax);        // store counter
  1679       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
  1680       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
  1681       __ addl(rax, Address(rcx, be_offset));        // add both counters
  1683       if (ProfileInterpreter) {
  1684         // Test to see if we should create a method data oop
  1685         __ cmp32(rax,
  1686                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
  1687         __ jcc(Assembler::less, dispatch);
  1689         // if no method data exists, go to profile method
  1690         __ test_method_data_pointer(rax, profile_method);
  1692         if (UseOnStackReplacement) {
  1693           // check for overflow against ebx which is the MDO taken count
  1694           __ cmp32(rbx,
  1695                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1696           __ jcc(Assembler::below, dispatch);
  1698           // When ProfileInterpreter is on, the backedge_count comes
  1699           // from the methodDataOop, which value does not get reset on
  1700           // the call to frequency_counter_overflow().  To avoid
  1701           // excessive calls to the overflow routine while the method is
  1702           // being compiled, add a second test to make sure the overflow
  1703           // function is called only once every overflow_frequency.
  1704           const int overflow_frequency = 1024;
  1705           __ andl(rbx, overflow_frequency - 1);
  1706           __ jcc(Assembler::zero, backedge_counter_overflow);
  1709       } else {
  1710         if (UseOnStackReplacement) {
  1711           // check for overflow against eax, which is the sum of the
  1712           // counters
  1713           __ cmp32(rax,
  1714                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
  1715           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
  1720     __ bind(dispatch);
  1723   // Pre-load the next target bytecode into rbx
  1724   __ load_unsigned_byte(rbx, Address(r13, 0));
  1726   // continue with the bytecode @ target
  1727   // eax: return bci for jsr's, unused otherwise
  1728   // ebx: target bytecode
  1729   // r13: target bcp
  1730   __ dispatch_only(vtos);
  1732   if (UseLoopCounter) {
  1733     if (ProfileInterpreter) {
  1734       // Out-of-line code to allocate method data oop.
  1735       __ bind(profile_method);
  1736       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1737       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1738       __ set_method_data_pointer_for_bcp();
  1739       __ jmp(dispatch);
  1742     if (UseOnStackReplacement) {
  1743       // invocation counter overflow
  1744       __ bind(backedge_counter_overflow);
  1745       __ negptr(rdx);
  1746       __ addptr(rdx, r13); // branch bcp
  1747       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
  1748       __ call_VM(noreg,
  1749                  CAST_FROM_FN_PTR(address,
  1750                                   InterpreterRuntime::frequency_counter_overflow),
  1751                  rdx);
  1752       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
  1754       // rax: osr nmethod (osr ok) or NULL (osr not possible)
  1755       // ebx: target bytecode
  1756       // rdx: scratch
  1757       // r14: locals pointer
  1758       // r13: bcp
  1759       __ testptr(rax, rax);                        // test result
  1760       __ jcc(Assembler::zero, dispatch);         // no osr if null
  1761       // nmethod may have been invalidated (VM may block upon call_VM return)
  1762       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
  1763       __ cmpl(rcx, InvalidOSREntryBci);
  1764       __ jcc(Assembler::equal, dispatch);
  1766       // We have the address of an on stack replacement routine in eax
  1767       // We need to prepare to execute the OSR method. First we must
  1768       // migrate the locals and monitors off of the stack.
  1770       __ mov(r13, rax);                             // save the nmethod
  1772       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
  1774       // eax is OSR buffer, move it to expected parameter location
  1775       __ mov(j_rarg0, rax);
  1777       // We use j_rarg definitions here so that registers don't conflict as parameter
  1778       // registers change across platforms as we are in the midst of a calling
  1779       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
  1781       const Register retaddr = j_rarg2;
  1782       const Register sender_sp = j_rarg1;
  1784       // pop the interpreter frame
  1785       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
  1786       __ leave();                                // remove frame anchor
  1787       __ pop(retaddr);                           // get return address
  1788       __ mov(rsp, sender_sp);                   // set sp to sender sp
  1789       // Ensure compiled code always sees stack at proper alignment
  1790       __ andptr(rsp, -(StackAlignmentInBytes));
  1792       // unlike x86 we need no specialized return from compiled code
  1793       // to the interpreter or the call stub.
  1795       // push the return address
  1796       __ push(retaddr);
  1798       // and begin the OSR nmethod
  1799       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
  1805 void TemplateTable::if_0cmp(Condition cc) {
  1806   transition(itos, vtos);
  1807   // assume branch is more often taken than not (loops use backward branches)
  1808   Label not_taken;
  1809   __ testl(rax, rax);
  1810   __ jcc(j_not(cc), not_taken);
  1811   branch(false, false);
  1812   __ bind(not_taken);
  1813   __ profile_not_taken_branch(rax);
  1816 void TemplateTable::if_icmp(Condition cc) {
  1817   transition(itos, vtos);
  1818   // assume branch is more often taken than not (loops use backward branches)
  1819   Label not_taken;
  1820   __ pop_i(rdx);
  1821   __ cmpl(rdx, rax);
  1822   __ jcc(j_not(cc), not_taken);
  1823   branch(false, false);
  1824   __ bind(not_taken);
  1825   __ profile_not_taken_branch(rax);
  1828 void TemplateTable::if_nullcmp(Condition cc) {
  1829   transition(atos, vtos);
  1830   // assume branch is more often taken than not (loops use backward branches)
  1831   Label not_taken;
  1832   __ testptr(rax, rax);
  1833   __ jcc(j_not(cc), not_taken);
  1834   branch(false, false);
  1835   __ bind(not_taken);
  1836   __ profile_not_taken_branch(rax);
  1839 void TemplateTable::if_acmp(Condition cc) {
  1840   transition(atos, vtos);
  1841   // assume branch is more often taken than not (loops use backward branches)
  1842   Label not_taken;
  1843   __ pop_ptr(rdx);
  1844   __ cmpptr(rdx, rax);
  1845   __ jcc(j_not(cc), not_taken);
  1846   branch(false, false);
  1847   __ bind(not_taken);
  1848   __ profile_not_taken_branch(rax);
  1851 void TemplateTable::ret() {
  1852   transition(vtos, vtos);
  1853   locals_index(rbx);
  1854   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
  1855   __ profile_ret(rbx, rcx);
  1856   __ get_method(rax);
  1857   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1858   __ lea(r13, Address(r13, rbx, Address::times_1,
  1859                       constMethodOopDesc::codes_offset()));
  1860   __ dispatch_next(vtos);
  1863 void TemplateTable::wide_ret() {
  1864   transition(vtos, vtos);
  1865   locals_index_wide(rbx);
  1866   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
  1867   __ profile_ret(rbx, rcx);
  1868   __ get_method(rax);
  1869   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
  1870   __ lea(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
  1871   __ dispatch_next(vtos);
  1874 void TemplateTable::tableswitch() {
  1875   Label default_case, continue_execution;
  1876   transition(itos, vtos);
  1877   // align r13
  1878   __ lea(rbx, at_bcp(BytesPerInt));
  1879   __ andptr(rbx, -BytesPerInt);
  1880   // load lo & hi
  1881   __ movl(rcx, Address(rbx, BytesPerInt));
  1882   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
  1883   __ bswapl(rcx);
  1884   __ bswapl(rdx);
  1885   // check against lo & hi
  1886   __ cmpl(rax, rcx);
  1887   __ jcc(Assembler::less, default_case);
  1888   __ cmpl(rax, rdx);
  1889   __ jcc(Assembler::greater, default_case);
  1890   // lookup dispatch offset
  1891   __ subl(rax, rcx);
  1892   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
  1893   __ profile_switch_case(rax, rbx, rcx);
  1894   // continue execution
  1895   __ bind(continue_execution);
  1896   __ bswapl(rdx);
  1897   __ movl2ptr(rdx, rdx);
  1898   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1899   __ addptr(r13, rdx);
  1900   __ dispatch_only(vtos);
  1901   // handle default
  1902   __ bind(default_case);
  1903   __ profile_switch_default(rax);
  1904   __ movl(rdx, Address(rbx, 0));
  1905   __ jmp(continue_execution);
  1908 void TemplateTable::lookupswitch() {
  1909   transition(itos, itos);
  1910   __ stop("lookupswitch bytecode should have been rewritten");
  1913 void TemplateTable::fast_linearswitch() {
  1914   transition(itos, vtos);
  1915   Label loop_entry, loop, found, continue_execution;
  1916   // bswap rax so we can avoid bswapping the table entries
  1917   __ bswapl(rax);
  1918   // align r13
  1919   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
  1920                                     // this instruction (change offsets
  1921                                     // below)
  1922   __ andptr(rbx, -BytesPerInt);
  1923   // set counter
  1924   __ movl(rcx, Address(rbx, BytesPerInt));
  1925   __ bswapl(rcx);
  1926   __ jmpb(loop_entry);
  1927   // table search
  1928   __ bind(loop);
  1929   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
  1930   __ jcc(Assembler::equal, found);
  1931   __ bind(loop_entry);
  1932   __ decrementl(rcx);
  1933   __ jcc(Assembler::greaterEqual, loop);
  1934   // default case
  1935   __ profile_switch_default(rax);
  1936   __ movl(rdx, Address(rbx, 0));
  1937   __ jmp(continue_execution);
  1938   // entry found -> get offset
  1939   __ bind(found);
  1940   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
  1941   __ profile_switch_case(rcx, rax, rbx);
  1942   // continue execution
  1943   __ bind(continue_execution);
  1944   __ bswapl(rdx);
  1945   __ movl2ptr(rdx, rdx);
  1946   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
  1947   __ addptr(r13, rdx);
  1948   __ dispatch_only(vtos);
  1951 void TemplateTable::fast_binaryswitch() {
  1952   transition(itos, vtos);
  1953   // Implementation using the following core algorithm:
  1954   //
  1955   // int binary_search(int key, LookupswitchPair* array, int n) {
  1956   //   // Binary search according to "Methodik des Programmierens" by
  1957   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
  1958   //   int i = 0;
  1959   //   int j = n;
  1960   //   while (i+1 < j) {
  1961   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
  1962   //     // with      Q: for all i: 0 <= i < n: key < a[i]
  1963   //     // where a stands for the array and assuming that the (inexisting)
  1964   //     // element a[n] is infinitely big.
  1965   //     int h = (i + j) >> 1;
  1966   //     // i < h < j
  1967   //     if (key < array[h].fast_match()) {
  1968   //       j = h;
  1969   //     } else {
  1970   //       i = h;
  1971   //     }
  1972   //   }
  1973   //   // R: a[i] <= key < a[i+1] or Q
  1974   //   // (i.e., if key is within array, i is the correct index)
  1975   //   return i;
  1976   // }
  1978   // Register allocation
  1979   const Register key   = rax; // already set (tosca)
  1980   const Register array = rbx;
  1981   const Register i     = rcx;
  1982   const Register j     = rdx;
  1983   const Register h     = rdi;
  1984   const Register temp  = rsi;
  1986   // Find array start
  1987   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
  1988                                           // get rid of this
  1989                                           // instruction (change
  1990                                           // offsets below)
  1991   __ andptr(array, -BytesPerInt);
  1993   // Initialize i & j
  1994   __ xorl(i, i);                            // i = 0;
  1995   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
  1997   // Convert j into native byteordering
  1998   __ bswapl(j);
  2000   // And start
  2001   Label entry;
  2002   __ jmp(entry);
  2004   // binary search loop
  2006     Label loop;
  2007     __ bind(loop);
  2008     // int h = (i + j) >> 1;
  2009     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
  2010     __ sarl(h, 1);                               // h = (i + j) >> 1;
  2011     // if (key < array[h].fast_match()) {
  2012     //   j = h;
  2013     // } else {
  2014     //   i = h;
  2015     // }
  2016     // Convert array[h].match to native byte-ordering before compare
  2017     __ movl(temp, Address(array, h, Address::times_8));
  2018     __ bswapl(temp);
  2019     __ cmpl(key, temp);
  2020     // j = h if (key <  array[h].fast_match())
  2021     __ cmovl(Assembler::less, j, h);
  2022     // i = h if (key >= array[h].fast_match())
  2023     __ cmovl(Assembler::greaterEqual, i, h);
  2024     // while (i+1 < j)
  2025     __ bind(entry);
  2026     __ leal(h, Address(i, 1)); // i+1
  2027     __ cmpl(h, j);             // i+1 < j
  2028     __ jcc(Assembler::less, loop);
  2031   // end of binary search, result index is i (must check again!)
  2032   Label default_case;
  2033   // Convert array[i].match to native byte-ordering before compare
  2034   __ movl(temp, Address(array, i, Address::times_8));
  2035   __ bswapl(temp);
  2036   __ cmpl(key, temp);
  2037   __ jcc(Assembler::notEqual, default_case);
  2039   // entry found -> j = offset
  2040   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
  2041   __ profile_switch_case(i, key, array);
  2042   __ bswapl(j);
  2043   __ movl2ptr(j, j);
  2044   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2045   __ addptr(r13, j);
  2046   __ dispatch_only(vtos);
  2048   // default case -> j = default offset
  2049   __ bind(default_case);
  2050   __ profile_switch_default(i);
  2051   __ movl(j, Address(array, -2 * BytesPerInt));
  2052   __ bswapl(j);
  2053   __ movl2ptr(j, j);
  2054   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
  2055   __ addptr(r13, j);
  2056   __ dispatch_only(vtos);
  2060 void TemplateTable::_return(TosState state) {
  2061   transition(state, state);
  2062   assert(_desc->calls_vm(),
  2063          "inconsistent calls_vm information"); // call in remove_activation
  2065   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
  2066     assert(state == vtos, "only valid state");
  2067     __ movptr(c_rarg1, aaddress(0));
  2068     __ load_klass(rdi, c_rarg1);
  2069     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
  2070     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
  2071     Label skip_register_finalizer;
  2072     __ jcc(Assembler::zero, skip_register_finalizer);
  2074     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
  2076     __ bind(skip_register_finalizer);
  2079   __ remove_activation(state, r13);
  2080   __ jmp(r13);
  2083 // ----------------------------------------------------------------------------
  2084 // Volatile variables demand their effects be made known to all CPU's
  2085 // in order.  Store buffers on most chips allow reads & writes to
  2086 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
  2087 // without some kind of memory barrier (i.e., it's not sufficient that
  2088 // the interpreter does not reorder volatile references, the hardware
  2089 // also must not reorder them).
  2090 //
  2091 // According to the new Java Memory Model (JMM):
  2092 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
  2093 //     writes act as aquire & release, so:
  2094 // (2) A read cannot let unrelated NON-volatile memory refs that
  2095 //     happen after the read float up to before the read.  It's OK for
  2096 //     non-volatile memory refs that happen before the volatile read to
  2097 //     float down below it.
  2098 // (3) Similar a volatile write cannot let unrelated NON-volatile
  2099 //     memory refs that happen BEFORE the write float down to after the
  2100 //     write.  It's OK for non-volatile memory refs that happen after the
  2101 //     volatile write to float up before it.
  2102 //
  2103 // We only put in barriers around volatile refs (they are expensive),
  2104 // not _between_ memory refs (that would require us to track the
  2105 // flavor of the previous memory refs).  Requirements (2) and (3)
  2106 // require some barriers before volatile stores and after volatile
  2107 // loads.  These nearly cover requirement (1) but miss the
  2108 // volatile-store-volatile-load case.  This final case is placed after
  2109 // volatile-stores although it could just as well go before
  2110 // volatile-loads.
  2111 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
  2112                                      order_constraint) {
  2113   // Helper function to insert a is-volatile test and memory barrier
  2114   if (os::is_MP()) { // Not needed on single CPU
  2115     __ membar(order_constraint);
  2119 void TemplateTable::resolve_cache_and_index(int byte_no,
  2120                                             Register result,
  2121                                             Register Rcache,
  2122                                             Register index,
  2123                                             size_t index_size) {
  2124   const Register temp = rbx;
  2125   assert_different_registers(result, Rcache, index, temp);
  2127   Label resolved;
  2128   if (byte_no == f12_oop) {
  2129     // We are resolved if the f1 field contains a non-null object (CallSite, MethodType, etc.)
  2130     // This kind of CP cache entry does not need to match bytecode_1 or bytecode_2, because
  2131     // there is a 1-1 relation between bytecode type and CP entry type.
  2132     // The caller will also load a methodOop from f2.
  2133     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
  2134     __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2135     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2136     __ testptr(result, result);
  2137     __ jcc(Assembler::notEqual, resolved);
  2138   } else {
  2139     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
  2140     assert(result == noreg, "");  //else change code for setting result
  2141     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
  2142     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
  2143     __ jcc(Assembler::equal, resolved);
  2146   // resolve first time through
  2147   address entry;
  2148   switch (bytecode()) {
  2149   case Bytecodes::_getstatic:
  2150   case Bytecodes::_putstatic:
  2151   case Bytecodes::_getfield:
  2152   case Bytecodes::_putfield:
  2153     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
  2154     break;
  2155   case Bytecodes::_invokevirtual:
  2156   case Bytecodes::_invokespecial:
  2157   case Bytecodes::_invokestatic:
  2158   case Bytecodes::_invokeinterface:
  2159     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
  2160     break;
  2161   case Bytecodes::_invokehandle:
  2162     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);
  2163     break;
  2164   case Bytecodes::_invokedynamic:
  2165     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
  2166     break;
  2167   case Bytecodes::_fast_aldc:
  2168     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
  2169     break;
  2170   case Bytecodes::_fast_aldc_w:
  2171     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
  2172     break;
  2173   default:
  2174     fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
  2175     break;
  2177   __ movl(temp, (int) bytecode());
  2178   __ call_VM(noreg, entry, temp);
  2180   // Update registers with resolved info
  2181   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
  2182   if (result != noreg)
  2183     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
  2184   __ bind(resolved);
  2187 // The cache and index registers must be set before call
  2188 void TemplateTable::load_field_cp_cache_entry(Register obj,
  2189                                               Register cache,
  2190                                               Register index,
  2191                                               Register off,
  2192                                               Register flags,
  2193                                               bool is_static = false) {
  2194   assert_different_registers(cache, index, flags, off);
  2196   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2197   // Field offset
  2198   __ movptr(off, Address(cache, index, Address::times_ptr,
  2199                          in_bytes(cp_base_offset +
  2200                                   ConstantPoolCacheEntry::f2_offset())));
  2201   // Flags
  2202   __ movl(flags, Address(cache, index, Address::times_ptr,
  2203                          in_bytes(cp_base_offset +
  2204                                   ConstantPoolCacheEntry::flags_offset())));
  2206   // klass overwrite register
  2207   if (is_static) {
  2208     __ movptr(obj, Address(cache, index, Address::times_ptr,
  2209                            in_bytes(cp_base_offset +
  2210                                     ConstantPoolCacheEntry::f1_offset())));
  2214 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
  2215                                                Register method,
  2216                                                Register itable_index,
  2217                                                Register flags,
  2218                                                bool is_invokevirtual,
  2219                                                bool is_invokevfinal, /*unused*/
  2220                                                bool is_invokedynamic) {
  2221   // setup registers
  2222   const Register cache = rcx;
  2223   const Register index = rdx;
  2224   assert_different_registers(method, flags);
  2225   assert_different_registers(method, cache, index);
  2226   assert_different_registers(itable_index, flags);
  2227   assert_different_registers(itable_index, cache, index);
  2228   // determine constant pool cache field offsets
  2229   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
  2230   const int method_offset = in_bytes(
  2231     constantPoolCacheOopDesc::base_offset() +
  2232       ((byte_no == f2_byte)
  2233        ? ConstantPoolCacheEntry::f2_offset()
  2234        : ConstantPoolCacheEntry::f1_offset()));
  2235   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2236                                     ConstantPoolCacheEntry::flags_offset());
  2237   // access constant pool cache fields
  2238   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
  2239                                     ConstantPoolCacheEntry::f2_offset());
  2241   if (byte_no == f12_oop) {
  2242     // Resolved f1_oop (CallSite, MethodType, etc.) goes into 'itable_index'.
  2243     // Resolved f2_oop (methodOop invoker) will go into 'method' (at index_offset).
  2244     // See ConstantPoolCacheEntry::set_dynamic_call and set_method_handle.
  2245     size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
  2246     resolve_cache_and_index(byte_no, itable_index, cache, index, index_size);
  2247     __ movptr(method, Address(cache, index, Address::times_ptr, index_offset));
  2248     itable_index = noreg;  // hack to disable load below
  2249   } else {
  2250     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2251     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
  2253   if (itable_index != noreg) {
  2254     // pick up itable index from f2 also:
  2255     assert(byte_no == f1_byte, "already picked up f1");
  2256     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
  2258   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
  2262 // The registers cache and index expected to be set before call.
  2263 // Correct values of the cache and index registers are preserved.
  2264 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
  2265                                             bool is_static, bool has_tos) {
  2266   // do the JVMTI work here to avoid disturbing the register state below
  2267   // We use c_rarg registers here because we want to use the register used in
  2268   // the call to the VM
  2269   if (JvmtiExport::can_post_field_access()) {
  2270     // Check to see if a field access watch has been set before we
  2271     // take the time to call into the VM.
  2272     Label L1;
  2273     assert_different_registers(cache, index, rax);
  2274     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2275     __ testl(rax, rax);
  2276     __ jcc(Assembler::zero, L1);
  2278     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
  2280     // cache entry pointer
  2281     __ addptr(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset()));
  2282     __ shll(c_rarg3, LogBytesPerWord);
  2283     __ addptr(c_rarg2, c_rarg3);
  2284     if (is_static) {
  2285       __ xorl(c_rarg1, c_rarg1); // NULL object reference
  2286     } else {
  2287       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
  2288       __ verify_oop(c_rarg1);
  2290     // c_rarg1: object pointer or NULL
  2291     // c_rarg2: cache entry pointer
  2292     // c_rarg3: jvalue object on the stack
  2293     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  2294                                        InterpreterRuntime::post_field_access),
  2295                c_rarg1, c_rarg2, c_rarg3);
  2296     __ get_cache_and_index_at_bcp(cache, index, 1);
  2297     __ bind(L1);
  2301 void TemplateTable::pop_and_check_object(Register r) {
  2302   __ pop_ptr(r);
  2303   __ null_check(r);  // for field access must check obj.
  2304   __ verify_oop(r);
  2307 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
  2308   transition(vtos, vtos);
  2310   const Register cache = rcx;
  2311   const Register index = rdx;
  2312   const Register obj   = c_rarg3;
  2313   const Register off   = rbx;
  2314   const Register flags = rax;
  2315   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
  2317   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2318   jvmti_post_field_access(cache, index, is_static, false);
  2319   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2321   if (!is_static) {
  2322     // obj is on the stack
  2323     pop_and_check_object(obj);
  2326   const Address field(obj, off, Address::times_1);
  2328   Label Done, notByte, notInt, notShort, notChar,
  2329               notLong, notFloat, notObj, notDouble;
  2331   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2332   // Make sure we don't need to mask edx after the above shift
  2333   assert(btos == 0, "change code, btos != 0");
  2335   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
  2336   __ jcc(Assembler::notZero, notByte);
  2337   // btos
  2338   __ load_signed_byte(rax, field);
  2339   __ push(btos);
  2340   // Rewrite bytecode to be faster
  2341   if (!is_static) {
  2342     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
  2344   __ jmp(Done);
  2346   __ bind(notByte);
  2347   __ cmpl(flags, atos);
  2348   __ jcc(Assembler::notEqual, notObj);
  2349   // atos
  2350   __ load_heap_oop(rax, field);
  2351   __ push(atos);
  2352   if (!is_static) {
  2353     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
  2355   __ jmp(Done);
  2357   __ bind(notObj);
  2358   __ cmpl(flags, itos);
  2359   __ jcc(Assembler::notEqual, notInt);
  2360   // itos
  2361   __ movl(rax, field);
  2362   __ push(itos);
  2363   // Rewrite bytecode to be faster
  2364   if (!is_static) {
  2365     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
  2367   __ jmp(Done);
  2369   __ bind(notInt);
  2370   __ cmpl(flags, ctos);
  2371   __ jcc(Assembler::notEqual, notChar);
  2372   // ctos
  2373   __ load_unsigned_short(rax, field);
  2374   __ push(ctos);
  2375   // Rewrite bytecode to be faster
  2376   if (!is_static) {
  2377     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
  2379   __ jmp(Done);
  2381   __ bind(notChar);
  2382   __ cmpl(flags, stos);
  2383   __ jcc(Assembler::notEqual, notShort);
  2384   // stos
  2385   __ load_signed_short(rax, field);
  2386   __ push(stos);
  2387   // Rewrite bytecode to be faster
  2388   if (!is_static) {
  2389     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
  2391   __ jmp(Done);
  2393   __ bind(notShort);
  2394   __ cmpl(flags, ltos);
  2395   __ jcc(Assembler::notEqual, notLong);
  2396   // ltos
  2397   __ movq(rax, field);
  2398   __ push(ltos);
  2399   // Rewrite bytecode to be faster
  2400   if (!is_static) {
  2401     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
  2403   __ jmp(Done);
  2405   __ bind(notLong);
  2406   __ cmpl(flags, ftos);
  2407   __ jcc(Assembler::notEqual, notFloat);
  2408   // ftos
  2409   __ movflt(xmm0, field);
  2410   __ push(ftos);
  2411   // Rewrite bytecode to be faster
  2412   if (!is_static) {
  2413     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
  2415   __ jmp(Done);
  2417   __ bind(notFloat);
  2418 #ifdef ASSERT
  2419   __ cmpl(flags, dtos);
  2420   __ jcc(Assembler::notEqual, notDouble);
  2421 #endif
  2422   // dtos
  2423   __ movdbl(xmm0, field);
  2424   __ push(dtos);
  2425   // Rewrite bytecode to be faster
  2426   if (!is_static) {
  2427     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
  2429 #ifdef ASSERT
  2430   __ jmp(Done);
  2432   __ bind(notDouble);
  2433   __ stop("Bad state");
  2434 #endif
  2436   __ bind(Done);
  2437   // [jk] not needed currently
  2438   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
  2439   //                                              Assembler::LoadStore));
  2443 void TemplateTable::getfield(int byte_no) {
  2444   getfield_or_static(byte_no, false);
  2447 void TemplateTable::getstatic(int byte_no) {
  2448   getfield_or_static(byte_no, true);
  2451 // The registers cache and index expected to be set before call.
  2452 // The function may destroy various registers, just not the cache and index registers.
  2453 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
  2454   transition(vtos, vtos);
  2456   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
  2458   if (JvmtiExport::can_post_field_modification()) {
  2459     // Check to see if a field modification watch has been set before
  2460     // we take the time to call into the VM.
  2461     Label L1;
  2462     assert_different_registers(cache, index, rax);
  2463     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2464     __ testl(rax, rax);
  2465     __ jcc(Assembler::zero, L1);
  2467     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
  2469     if (is_static) {
  2470       // Life is simple.  Null out the object pointer.
  2471       __ xorl(c_rarg1, c_rarg1);
  2472     } else {
  2473       // Life is harder. The stack holds the value on top, followed by
  2474       // the object.  We don't know the size of the value, though; it
  2475       // could be one or two words depending on its type. As a result,
  2476       // we must find the type to determine where the object is.
  2477       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
  2478                            Address::times_8,
  2479                            in_bytes(cp_base_offset +
  2480                                      ConstantPoolCacheEntry::flags_offset())));
  2481       __ shrl(c_rarg3, ConstantPoolCacheEntry::tos_state_shift);
  2482       // Make sure we don't need to mask rcx after the above shift
  2483       ConstantPoolCacheEntry::verify_tos_state_shift();
  2484       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
  2485       __ cmpl(c_rarg3, ltos);
  2486       __ cmovptr(Assembler::equal,
  2487                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
  2488       __ cmpl(c_rarg3, dtos);
  2489       __ cmovptr(Assembler::equal,
  2490                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
  2492     // cache entry pointer
  2493     __ addptr(c_rarg2, in_bytes(cp_base_offset));
  2494     __ shll(rscratch1, LogBytesPerWord);
  2495     __ addptr(c_rarg2, rscratch1);
  2496     // object (tos)
  2497     __ mov(c_rarg3, rsp);
  2498     // c_rarg1: object pointer set up above (NULL if static)
  2499     // c_rarg2: cache entry pointer
  2500     // c_rarg3: jvalue object on the stack
  2501     __ call_VM(noreg,
  2502                CAST_FROM_FN_PTR(address,
  2503                                 InterpreterRuntime::post_field_modification),
  2504                c_rarg1, c_rarg2, c_rarg3);
  2505     __ get_cache_and_index_at_bcp(cache, index, 1);
  2506     __ bind(L1);
  2510 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
  2511   transition(vtos, vtos);
  2513   const Register cache = rcx;
  2514   const Register index = rdx;
  2515   const Register obj   = rcx;
  2516   const Register off   = rbx;
  2517   const Register flags = rax;
  2518   const Register bc    = c_rarg3;
  2520   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
  2521   jvmti_post_field_mod(cache, index, is_static);
  2522   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
  2524   // [jk] not needed currently
  2525   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2526   //                                              Assembler::StoreStore));
  2528   Label notVolatile, Done;
  2529   __ movl(rdx, flags);
  2530   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2531   __ andl(rdx, 0x1);
  2533   // field address
  2534   const Address field(obj, off, Address::times_1);
  2536   Label notByte, notInt, notShort, notChar,
  2537         notLong, notFloat, notObj, notDouble;
  2539   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  2541   assert(btos == 0, "change code, btos != 0");
  2542   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
  2543   __ jcc(Assembler::notZero, notByte);
  2545   // btos
  2547     __ pop(btos);
  2548     if (!is_static) pop_and_check_object(obj);
  2549     __ movb(field, rax);
  2550     if (!is_static) {
  2551       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
  2553     __ jmp(Done);
  2556   __ bind(notByte);
  2557   __ cmpl(flags, atos);
  2558   __ jcc(Assembler::notEqual, notObj);
  2560   // atos
  2562     __ pop(atos);
  2563     if (!is_static) pop_and_check_object(obj);
  2564     // Store into the field
  2565     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2566     if (!is_static) {
  2567       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
  2569     __ jmp(Done);
  2572   __ bind(notObj);
  2573   __ cmpl(flags, itos);
  2574   __ jcc(Assembler::notEqual, notInt);
  2576   // itos
  2578     __ pop(itos);
  2579     if (!is_static) pop_and_check_object(obj);
  2580     __ movl(field, rax);
  2581     if (!is_static) {
  2582       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
  2584     __ jmp(Done);
  2587   __ bind(notInt);
  2588   __ cmpl(flags, ctos);
  2589   __ jcc(Assembler::notEqual, notChar);
  2591   // ctos
  2593     __ pop(ctos);
  2594     if (!is_static) pop_and_check_object(obj);
  2595     __ movw(field, rax);
  2596     if (!is_static) {
  2597       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
  2599     __ jmp(Done);
  2602   __ bind(notChar);
  2603   __ cmpl(flags, stos);
  2604   __ jcc(Assembler::notEqual, notShort);
  2606   // stos
  2608     __ pop(stos);
  2609     if (!is_static) pop_and_check_object(obj);
  2610     __ movw(field, rax);
  2611     if (!is_static) {
  2612       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
  2614     __ jmp(Done);
  2617   __ bind(notShort);
  2618   __ cmpl(flags, ltos);
  2619   __ jcc(Assembler::notEqual, notLong);
  2621   // ltos
  2623     __ pop(ltos);
  2624     if (!is_static) pop_and_check_object(obj);
  2625     __ movq(field, rax);
  2626     if (!is_static) {
  2627       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
  2629     __ jmp(Done);
  2632   __ bind(notLong);
  2633   __ cmpl(flags, ftos);
  2634   __ jcc(Assembler::notEqual, notFloat);
  2636   // ftos
  2638     __ pop(ftos);
  2639     if (!is_static) pop_and_check_object(obj);
  2640     __ movflt(field, xmm0);
  2641     if (!is_static) {
  2642       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
  2644     __ jmp(Done);
  2647   __ bind(notFloat);
  2648 #ifdef ASSERT
  2649   __ cmpl(flags, dtos);
  2650   __ jcc(Assembler::notEqual, notDouble);
  2651 #endif
  2653   // dtos
  2655     __ pop(dtos);
  2656     if (!is_static) pop_and_check_object(obj);
  2657     __ movdbl(field, xmm0);
  2658     if (!is_static) {
  2659       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
  2663 #ifdef ASSERT
  2664   __ jmp(Done);
  2666   __ bind(notDouble);
  2667   __ stop("Bad state");
  2668 #endif
  2670   __ bind(Done);
  2672   // Check for volatile store
  2673   __ testl(rdx, rdx);
  2674   __ jcc(Assembler::zero, notVolatile);
  2675   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2676                                                Assembler::StoreStore));
  2677   __ bind(notVolatile);
  2680 void TemplateTable::putfield(int byte_no) {
  2681   putfield_or_static(byte_no, false);
  2684 void TemplateTable::putstatic(int byte_no) {
  2685   putfield_or_static(byte_no, true);
  2688 void TemplateTable::jvmti_post_fast_field_mod() {
  2689   if (JvmtiExport::can_post_field_modification()) {
  2690     // Check to see if a field modification watch has been set before
  2691     // we take the time to call into the VM.
  2692     Label L2;
  2693     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
  2694     __ testl(c_rarg3, c_rarg3);
  2695     __ jcc(Assembler::zero, L2);
  2696     __ pop_ptr(rbx);                  // copy the object pointer from tos
  2697     __ verify_oop(rbx);
  2698     __ push_ptr(rbx);                 // put the object pointer back on tos
  2699     // Save tos values before call_VM() clobbers them. Since we have
  2700     // to do it for every data type, we use the saved values as the
  2701     // jvalue object.
  2702     switch (bytecode()) {          // load values into the jvalue object
  2703     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
  2704     case Bytecodes::_fast_bputfield: // fall through
  2705     case Bytecodes::_fast_sputfield: // fall through
  2706     case Bytecodes::_fast_cputfield: // fall through
  2707     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
  2708     case Bytecodes::_fast_dputfield: __ push_d(); break;
  2709     case Bytecodes::_fast_fputfield: __ push_f(); break;
  2710     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
  2712     default:
  2713       ShouldNotReachHere();
  2715     __ mov(c_rarg3, rsp);             // points to jvalue on the stack
  2716     // access constant pool cache entry
  2717     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
  2718     __ verify_oop(rbx);
  2719     // rbx: object pointer copied above
  2720     // c_rarg2: cache entry pointer
  2721     // c_rarg3: jvalue object on the stack
  2722     __ call_VM(noreg,
  2723                CAST_FROM_FN_PTR(address,
  2724                                 InterpreterRuntime::post_field_modification),
  2725                rbx, c_rarg2, c_rarg3);
  2727     switch (bytecode()) {             // restore tos values
  2728     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
  2729     case Bytecodes::_fast_bputfield: // fall through
  2730     case Bytecodes::_fast_sputfield: // fall through
  2731     case Bytecodes::_fast_cputfield: // fall through
  2732     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
  2733     case Bytecodes::_fast_dputfield: __ pop_d(); break;
  2734     case Bytecodes::_fast_fputfield: __ pop_f(); break;
  2735     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
  2737     __ bind(L2);
  2741 void TemplateTable::fast_storefield(TosState state) {
  2742   transition(state, vtos);
  2744   ByteSize base = constantPoolCacheOopDesc::base_offset();
  2746   jvmti_post_fast_field_mod();
  2748   // access constant pool cache
  2749   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2751   // test for volatile with rdx
  2752   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2753                        in_bytes(base +
  2754                                 ConstantPoolCacheEntry::flags_offset())));
  2756   // replace index with field offset from cache entry
  2757   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2758                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
  2760   // [jk] not needed currently
  2761   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
  2762   //                                              Assembler::StoreStore));
  2764   Label notVolatile;
  2765   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2766   __ andl(rdx, 0x1);
  2768   // Get object from stack
  2769   pop_and_check_object(rcx);
  2771   // field address
  2772   const Address field(rcx, rbx, Address::times_1);
  2774   // access field
  2775   switch (bytecode()) {
  2776   case Bytecodes::_fast_aputfield:
  2777     do_oop_store(_masm, field, rax, _bs->kind(), false);
  2778     break;
  2779   case Bytecodes::_fast_lputfield:
  2780     __ movq(field, rax);
  2781     break;
  2782   case Bytecodes::_fast_iputfield:
  2783     __ movl(field, rax);
  2784     break;
  2785   case Bytecodes::_fast_bputfield:
  2786     __ movb(field, rax);
  2787     break;
  2788   case Bytecodes::_fast_sputfield:
  2789     // fall through
  2790   case Bytecodes::_fast_cputfield:
  2791     __ movw(field, rax);
  2792     break;
  2793   case Bytecodes::_fast_fputfield:
  2794     __ movflt(field, xmm0);
  2795     break;
  2796   case Bytecodes::_fast_dputfield:
  2797     __ movdbl(field, xmm0);
  2798     break;
  2799   default:
  2800     ShouldNotReachHere();
  2803   // Check for volatile store
  2804   __ testl(rdx, rdx);
  2805   __ jcc(Assembler::zero, notVolatile);
  2806   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
  2807                                                Assembler::StoreStore));
  2808   __ bind(notVolatile);
  2812 void TemplateTable::fast_accessfield(TosState state) {
  2813   transition(atos, state);
  2815   // Do the JVMTI work here to avoid disturbing the register state below
  2816   if (JvmtiExport::can_post_field_access()) {
  2817     // Check to see if a field access watch has been set before we
  2818     // take the time to call into the VM.
  2819     Label L1;
  2820     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
  2821     __ testl(rcx, rcx);
  2822     __ jcc(Assembler::zero, L1);
  2823     // access constant pool cache entry
  2824     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
  2825     __ verify_oop(rax);
  2826     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
  2827     __ mov(c_rarg1, rax);
  2828     // c_rarg1: object pointer copied above
  2829     // c_rarg2: cache entry pointer
  2830     __ call_VM(noreg,
  2831                CAST_FROM_FN_PTR(address,
  2832                                 InterpreterRuntime::post_field_access),
  2833                c_rarg1, c_rarg2);
  2834     __ pop_ptr(rax); // restore object pointer
  2835     __ bind(L1);
  2838   // access constant pool cache
  2839   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
  2840   // replace index with field offset from cache entry
  2841   // [jk] not needed currently
  2842   // if (os::is_MP()) {
  2843   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
  2844   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2845   //                                 ConstantPoolCacheEntry::flags_offset())));
  2846   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2847   //   __ andl(rdx, 0x1);
  2848   // }
  2849   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
  2850                          in_bytes(constantPoolCacheOopDesc::base_offset() +
  2851                                   ConstantPoolCacheEntry::f2_offset())));
  2853   // rax: object
  2854   __ verify_oop(rax);
  2855   __ null_check(rax);
  2856   Address field(rax, rbx, Address::times_1);
  2858   // access field
  2859   switch (bytecode()) {
  2860   case Bytecodes::_fast_agetfield:
  2861     __ load_heap_oop(rax, field);
  2862     __ verify_oop(rax);
  2863     break;
  2864   case Bytecodes::_fast_lgetfield:
  2865     __ movq(rax, field);
  2866     break;
  2867   case Bytecodes::_fast_igetfield:
  2868     __ movl(rax, field);
  2869     break;
  2870   case Bytecodes::_fast_bgetfield:
  2871     __ movsbl(rax, field);
  2872     break;
  2873   case Bytecodes::_fast_sgetfield:
  2874     __ load_signed_short(rax, field);
  2875     break;
  2876   case Bytecodes::_fast_cgetfield:
  2877     __ load_unsigned_short(rax, field);
  2878     break;
  2879   case Bytecodes::_fast_fgetfield:
  2880     __ movflt(xmm0, field);
  2881     break;
  2882   case Bytecodes::_fast_dgetfield:
  2883     __ movdbl(xmm0, field);
  2884     break;
  2885   default:
  2886     ShouldNotReachHere();
  2888   // [jk] not needed currently
  2889   // if (os::is_MP()) {
  2890   //   Label notVolatile;
  2891   //   __ testl(rdx, rdx);
  2892   //   __ jcc(Assembler::zero, notVolatile);
  2893   //   __ membar(Assembler::LoadLoad);
  2894   //   __ bind(notVolatile);
  2895   //};
  2898 void TemplateTable::fast_xaccess(TosState state) {
  2899   transition(vtos, state);
  2901   // get receiver
  2902   __ movptr(rax, aaddress(0));
  2903   // access constant pool cache
  2904   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
  2905   __ movptr(rbx,
  2906             Address(rcx, rdx, Address::times_8,
  2907                     in_bytes(constantPoolCacheOopDesc::base_offset() +
  2908                              ConstantPoolCacheEntry::f2_offset())));
  2909   // make sure exception is reported in correct bcp range (getfield is
  2910   // next instruction)
  2911   __ increment(r13);
  2912   __ null_check(rax);
  2913   switch (state) {
  2914   case itos:
  2915     __ movl(rax, Address(rax, rbx, Address::times_1));
  2916     break;
  2917   case atos:
  2918     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
  2919     __ verify_oop(rax);
  2920     break;
  2921   case ftos:
  2922     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
  2923     break;
  2924   default:
  2925     ShouldNotReachHere();
  2928   // [jk] not needed currently
  2929   // if (os::is_MP()) {
  2930   //   Label notVolatile;
  2931   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
  2932   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
  2933   //                                 ConstantPoolCacheEntry::flags_offset())));
  2934   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
  2935   //   __ testl(rdx, 0x1);
  2936   //   __ jcc(Assembler::zero, notVolatile);
  2937   //   __ membar(Assembler::LoadLoad);
  2938   //   __ bind(notVolatile);
  2939   // }
  2941   __ decrement(r13);
  2946 //-----------------------------------------------------------------------------
  2947 // Calls
  2949 void TemplateTable::count_calls(Register method, Register temp) {
  2950   // implemented elsewhere
  2951   ShouldNotReachHere();
  2954 void TemplateTable::prepare_invoke(int byte_no,
  2955                                    Register method,  // linked method (or i-klass)
  2956                                    Register index,   // itable index, MethodType, etc.
  2957                                    Register recv,    // if caller wants to see it
  2958                                    Register flags    // if caller wants to test it
  2959                                    ) {
  2960   // determine flags
  2961   const Bytecodes::Code code = bytecode();
  2962   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
  2963   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
  2964   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
  2965   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
  2966   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
  2967   const bool load_receiver       = (recv  != noreg);
  2968   const bool save_flags          = (flags != noreg);
  2969   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
  2970   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
  2971   assert(flags == noreg || flags == rdx, "");
  2972   assert(recv  == noreg || recv  == rcx, "");
  2974   // setup registers & access constant pool cache
  2975   if (recv  == noreg)  recv  = rcx;
  2976   if (flags == noreg)  flags = rdx;
  2977   assert_different_registers(method, index, recv, flags);
  2979   // save 'interpreter return address'
  2980   __ save_bcp();
  2982   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
  2984   // maybe push appendix to arguments (just before return address)
  2985   if (is_invokedynamic || is_invokehandle) {
  2986     Label L_no_push;
  2987     __ verify_oop(index);
  2988     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
  2989     __ jccb(Assembler::zero, L_no_push);
  2990     // Push the appendix as a trailing parameter.
  2991     // This must be done before we get the receiver,
  2992     // since the parameter_size includes it.
  2993     __ push(index);  // push appendix (MethodType, CallSite, etc.)
  2994     __ bind(L_no_push);
  2997   // load receiver if needed (after appendix is pushed so parameter size is correct)
  2998   // Note: no return address pushed yet
  2999   if (load_receiver) {
  3000     __ movl(recv, flags);
  3001     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
  3002     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
  3003     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
  3004     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
  3005     __ movptr(recv, recv_addr);
  3006     __ verify_oop(recv);
  3009   if (save_flags) {
  3010     __ movl(r13, flags);
  3013   // compute return type
  3014   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
  3015   // Make sure we don't need to mask flags after the above shift
  3016   ConstantPoolCacheEntry::verify_tos_state_shift();
  3017   // load return address
  3019     const address table_addr = (is_invokeinterface || is_invokedynamic) ?
  3020         (address)Interpreter::return_5_addrs_by_index_table() :
  3021         (address)Interpreter::return_3_addrs_by_index_table();
  3022     ExternalAddress table(table_addr);
  3023     __ lea(rscratch1, table);
  3024     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
  3027   // push return address
  3028   __ push(flags);
  3030   // Restore flags value from the constant pool cache, and restore rsi
  3031   // for later null checks.  r13 is the bytecode pointer
  3032   if (save_flags) {
  3033     __ movl(flags, r13);
  3034     __ restore_bcp();
  3039 void TemplateTable::invokevirtual_helper(Register index,
  3040                                          Register recv,
  3041                                          Register flags) {
  3042   // Uses temporary registers rax, rdx
  3043   assert_different_registers(index, recv, rax, rdx);
  3044   assert(index == rbx, "");
  3045   assert(recv  == rcx, "");
  3047   // Test for an invoke of a final method
  3048   Label notFinal;
  3049   __ movl(rax, flags);
  3050   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
  3051   __ jcc(Assembler::zero, notFinal);
  3053   const Register method = index;  // method must be rbx
  3054   assert(method == rbx,
  3055          "methodOop must be rbx for interpreter calling convention");
  3057   // do the call - the index is actually the method to call
  3058   // that is, f2 is a vtable index if !is_vfinal, else f2 is a methodOop
  3059   __ verify_oop(method);
  3061   // It's final, need a null check here!
  3062   __ null_check(recv);
  3064   // profile this call
  3065   __ profile_final_call(rax);
  3067   __ jump_from_interpreted(method, rax);
  3069   __ bind(notFinal);
  3071   // get receiver klass
  3072   __ null_check(recv, oopDesc::klass_offset_in_bytes());
  3073   __ load_klass(rax, recv);
  3074   __ verify_oop(rax);
  3076   // profile this call
  3077   __ profile_virtual_call(rax, r14, rdx);
  3079   // get target methodOop & entry point
  3080   __ lookup_virtual_method(rax, index, method);
  3081   __ jump_from_interpreted(method, rdx);
  3085 void TemplateTable::invokevirtual(int byte_no) {
  3086   transition(vtos, vtos);
  3087   assert(byte_no == f2_byte, "use this argument");
  3088   prepare_invoke(byte_no,
  3089                  rbx,    // method or vtable index
  3090                  noreg,  // unused itable index
  3091                  rcx, rdx); // recv, flags
  3093   // rbx: index
  3094   // rcx: receiver
  3095   // rdx: flags
  3097   invokevirtual_helper(rbx, rcx, rdx);
  3101 void TemplateTable::invokespecial(int byte_no) {
  3102   transition(vtos, vtos);
  3103   assert(byte_no == f1_byte, "use this argument");
  3104   prepare_invoke(byte_no, rbx, noreg,  // get f1 methodOop
  3105                  rcx);  // get receiver also for null check
  3106   __ verify_oop(rcx);
  3107   __ null_check(rcx);
  3108   // do the call
  3109   __ verify_oop(rbx);
  3110   __ profile_call(rax);
  3111   __ jump_from_interpreted(rbx, rax);
  3115 void TemplateTable::invokestatic(int byte_no) {
  3116   transition(vtos, vtos);
  3117   assert(byte_no == f1_byte, "use this argument");
  3118   prepare_invoke(byte_no, rbx);  // get f1 methodOop
  3119   // do the call
  3120   __ verify_oop(rbx);
  3121   __ profile_call(rax);
  3122   __ jump_from_interpreted(rbx, rax);
  3125 void TemplateTable::fast_invokevfinal(int byte_no) {
  3126   transition(vtos, vtos);
  3127   assert(byte_no == f2_byte, "use this argument");
  3128   __ stop("fast_invokevfinal not used on amd64");
  3131 void TemplateTable::invokeinterface(int byte_no) {
  3132   transition(vtos, vtos);
  3133   assert(byte_no == f1_byte, "use this argument");
  3134   prepare_invoke(byte_no, rax, rbx,  // get f1 klassOop, f2 itable index
  3135                  rcx, rdx); // recv, flags
  3137   // rax: interface klass (from f1)
  3138   // rbx: itable index (from f2)
  3139   // rcx: receiver
  3140   // rdx: flags
  3142   // Special case of invokeinterface called for virtual method of
  3143   // java.lang.Object.  See cpCacheOop.cpp for details.
  3144   // This code isn't produced by javac, but could be produced by
  3145   // another compliant java compiler.
  3146   Label notMethod;
  3147   __ movl(r14, rdx);
  3148   __ andl(r14, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
  3149   __ jcc(Assembler::zero, notMethod);
  3151   invokevirtual_helper(rbx, rcx, rdx);
  3152   __ bind(notMethod);
  3154   // Get receiver klass into rdx - also a null check
  3155   __ restore_locals();  // restore r14
  3156   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
  3157   __ load_klass(rdx, rcx);
  3158   __ verify_oop(rdx);
  3160   // profile this call
  3161   __ profile_virtual_call(rdx, r13, r14);
  3163   Label no_such_interface, no_such_method;
  3165   __ lookup_interface_method(// inputs: rec. class, interface, itable index
  3166                              rdx, rax, rbx,
  3167                              // outputs: method, scan temp. reg
  3168                              rbx, r13,
  3169                              no_such_interface);
  3171   // rbx: methodOop to call
  3172   // rcx: receiver
  3173   // Check for abstract method error
  3174   // Note: This should be done more efficiently via a throw_abstract_method_error
  3175   //       interpreter entry point and a conditional jump to it in case of a null
  3176   //       method.
  3177   __ testptr(rbx, rbx);
  3178   __ jcc(Assembler::zero, no_such_method);
  3180   // do the call
  3181   // rcx: receiver
  3182   // rbx,: methodOop
  3183   __ jump_from_interpreted(rbx, rdx);
  3184   __ should_not_reach_here();
  3186   // exception handling code follows...
  3187   // note: must restore interpreter registers to canonical
  3188   //       state for exception handling to work correctly!
  3190   __ bind(no_such_method);
  3191   // throw exception
  3192   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3193   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3194   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3195   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
  3196   // the call_VM checks for exception, so we should never return here.
  3197   __ should_not_reach_here();
  3199   __ bind(no_such_interface);
  3200   // throw exception
  3201   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
  3202   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
  3203   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
  3204   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3205                    InterpreterRuntime::throw_IncompatibleClassChangeError));
  3206   // the call_VM checks for exception, so we should never return here.
  3207   __ should_not_reach_here();
  3211 void TemplateTable::invokehandle(int byte_no) {
  3212   transition(vtos, vtos);
  3213   assert(byte_no == f12_oop, "use this argument");
  3214   const Register rbx_method = rbx;  // f2
  3215   const Register rax_mtype  = rax;  // f1
  3216   const Register rcx_recv   = rcx;
  3217   const Register rdx_flags  = rdx;
  3219   if (!EnableInvokeDynamic) {
  3220     // rewriter does not generate this bytecode
  3221     __ should_not_reach_here();
  3222     return;
  3225   prepare_invoke(byte_no,
  3226                  rbx_method, rax_mtype,  // get f2 methodOop, f1 MethodType
  3227                  rcx_recv);
  3228   __ verify_oop(rbx_method);
  3229   __ verify_oop(rcx_recv);
  3230   __ null_check(rcx_recv);
  3232   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
  3234   // FIXME: profile the LambdaForm also
  3235   __ profile_final_call(rax);
  3237   __ jump_from_interpreted(rbx_method, rdx);
  3241 void TemplateTable::invokedynamic(int byte_no) {
  3242   transition(vtos, vtos);
  3243   assert(byte_no == f12_oop, "use this argument");
  3245   if (!EnableInvokeDynamic) {
  3246     // We should not encounter this bytecode if !EnableInvokeDynamic.
  3247     // The verifier will stop it.  However, if we get past the verifier,
  3248     // this will stop the thread in a reasonable way, without crashing the JVM.
  3249     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3250                      InterpreterRuntime::throw_IncompatibleClassChangeError));
  3251     // the call_VM checks for exception, so we should never return here.
  3252     __ should_not_reach_here();
  3253     return;
  3256   const Register rbx_method   = rbx;
  3257   const Register rax_callsite = rax;
  3259   prepare_invoke(byte_no, rbx_method, rax_callsite);
  3261   // rax: CallSite object (from f1)
  3262   // rbx: MH.linkToCallSite method (from f2)
  3264   // Note:  rax_callsite is already pushed by prepare_invoke
  3266   // %%% should make a type profile for any invokedynamic that takes a ref argument
  3267   // profile this call
  3268   __ profile_call(r13);
  3270   __ verify_oop(rax_callsite);
  3272   __ jump_from_interpreted(rbx_method, rdx);
  3276 //-----------------------------------------------------------------------------
  3277 // Allocation
  3279 void TemplateTable::_new() {
  3280   transition(vtos, atos);
  3281   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
  3282   Label slow_case;
  3283   Label done;
  3284   Label initialize_header;
  3285   Label initialize_object; // including clearing the fields
  3286   Label allocate_shared;
  3288   __ get_cpool_and_tags(rsi, rax);
  3289   // Make sure the class we're about to instantiate has been resolved.
  3290   // This is done before loading instanceKlass to be consistent with the order
  3291   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
  3292   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
  3293   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
  3294           JVM_CONSTANT_Class);
  3295   __ jcc(Assembler::notEqual, slow_case);
  3297   // get instanceKlass
  3298   __ movptr(rsi, Address(rsi, rdx,
  3299             Address::times_8, sizeof(constantPoolOopDesc)));
  3301   // make sure klass is initialized & doesn't have finalizer
  3302   // make sure klass is fully initialized
  3303   __ cmpb(Address(rsi,
  3304                   instanceKlass::init_state_offset()),
  3305           instanceKlass::fully_initialized);
  3306   __ jcc(Assembler::notEqual, slow_case);
  3308   // get instance_size in instanceKlass (scaled to a count of bytes)
  3309   __ movl(rdx,
  3310           Address(rsi,
  3311                   Klass::layout_helper_offset()));
  3312   // test to see if it has a finalizer or is malformed in some way
  3313   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
  3314   __ jcc(Assembler::notZero, slow_case);
  3316   // Allocate the instance
  3317   // 1) Try to allocate in the TLAB
  3318   // 2) if fail and the object is large allocate in the shared Eden
  3319   // 3) if the above fails (or is not applicable), go to a slow case
  3320   // (creates a new TLAB, etc.)
  3322   const bool allow_shared_alloc =
  3323     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
  3325   if (UseTLAB) {
  3326     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
  3327     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3328     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
  3329     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
  3330     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
  3331     if (ZeroTLAB) {
  3332       // the fields have been already cleared
  3333       __ jmp(initialize_header);
  3334     } else {
  3335       // initialize both the header and fields
  3336       __ jmp(initialize_object);
  3340   // Allocation in the shared Eden, if allowed.
  3341   //
  3342   // rdx: instance size in bytes
  3343   if (allow_shared_alloc) {
  3344     __ bind(allocate_shared);
  3346     ExternalAddress top((address)Universe::heap()->top_addr());
  3347     ExternalAddress end((address)Universe::heap()->end_addr());
  3349     const Register RtopAddr = rscratch1;
  3350     const Register RendAddr = rscratch2;
  3352     __ lea(RtopAddr, top);
  3353     __ lea(RendAddr, end);
  3354     __ movptr(rax, Address(RtopAddr, 0));
  3356     // For retries rax gets set by cmpxchgq
  3357     Label retry;
  3358     __ bind(retry);
  3359     __ lea(rbx, Address(rax, rdx, Address::times_1));
  3360     __ cmpptr(rbx, Address(RendAddr, 0));
  3361     __ jcc(Assembler::above, slow_case);
  3363     // Compare rax with the top addr, and if still equal, store the new
  3364     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
  3365     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
  3366     //
  3367     // rax: object begin
  3368     // rbx: object end
  3369     // rdx: instance size in bytes
  3370     if (os::is_MP()) {
  3371       __ lock();
  3373     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
  3375     // if someone beat us on the allocation, try again, otherwise continue
  3376     __ jcc(Assembler::notEqual, retry);
  3378     __ incr_allocated_bytes(r15_thread, rdx, 0);
  3381   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
  3382     // The object is initialized before the header.  If the object size is
  3383     // zero, go directly to the header initialization.
  3384     __ bind(initialize_object);
  3385     __ decrementl(rdx, sizeof(oopDesc));
  3386     __ jcc(Assembler::zero, initialize_header);
  3388     // Initialize object fields
  3389     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3390     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
  3392       Label loop;
  3393       __ bind(loop);
  3394       __ movq(Address(rax, rdx, Address::times_8,
  3395                       sizeof(oopDesc) - oopSize),
  3396               rcx);
  3397       __ decrementl(rdx);
  3398       __ jcc(Assembler::notZero, loop);
  3401     // initialize object header only.
  3402     __ bind(initialize_header);
  3403     if (UseBiasedLocking) {
  3404       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset()));
  3405       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
  3406     } else {
  3407       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
  3408                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
  3410     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
  3411     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
  3412     __ store_klass(rax, rsi);      // store klass last
  3415       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
  3416       // Trigger dtrace event for fastpath
  3417       __ push(atos); // save the return value
  3418       __ call_VM_leaf(
  3419            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
  3420       __ pop(atos); // restore the return value
  3423     __ jmp(done);
  3427   // slow case
  3428   __ bind(slow_case);
  3429   __ get_constant_pool(c_rarg1);
  3430   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3431   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
  3432   __ verify_oop(rax);
  3434   // continue
  3435   __ bind(done);
  3438 void TemplateTable::newarray() {
  3439   transition(itos, atos);
  3440   __ load_unsigned_byte(c_rarg1, at_bcp(1));
  3441   __ movl(c_rarg2, rax);
  3442   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
  3443           c_rarg1, c_rarg2);
  3446 void TemplateTable::anewarray() {
  3447   transition(itos, atos);
  3448   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
  3449   __ get_constant_pool(c_rarg1);
  3450   __ movl(c_rarg3, rax);
  3451   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
  3452           c_rarg1, c_rarg2, c_rarg3);
  3455 void TemplateTable::arraylength() {
  3456   transition(atos, itos);
  3457   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
  3458   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
  3461 void TemplateTable::checkcast() {
  3462   transition(atos, atos);
  3463   Label done, is_null, ok_is_subtype, quicked, resolved;
  3464   __ testptr(rax, rax); // object is in rax
  3465   __ jcc(Assembler::zero, is_null);
  3467   // Get cpool & tags index
  3468   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3469   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3470   // See if bytecode has already been quicked
  3471   __ cmpb(Address(rdx, rbx,
  3472                   Address::times_1,
  3473                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3474           JVM_CONSTANT_Class);
  3475   __ jcc(Assembler::equal, quicked);
  3476   __ push(atos); // save receiver for result, and for GC
  3477   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3478   __ pop_ptr(rdx); // restore receiver
  3479   __ jmpb(resolved);
  3481   // Get superklass in rax and subklass in rbx
  3482   __ bind(quicked);
  3483   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
  3484   __ movptr(rax, Address(rcx, rbx,
  3485                        Address::times_8, sizeof(constantPoolOopDesc)));
  3487   __ bind(resolved);
  3488   __ load_klass(rbx, rdx);
  3490   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
  3491   // Superklass in rax.  Subklass in rbx.
  3492   __ gen_subtype_check(rbx, ok_is_subtype);
  3494   // Come here on failure
  3495   __ push_ptr(rdx);
  3496   // object is at TOS
  3497   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
  3499   // Come here on success
  3500   __ bind(ok_is_subtype);
  3501   __ mov(rax, rdx); // Restore object in rdx
  3503   // Collect counts on whether this check-cast sees NULLs a lot or not.
  3504   if (ProfileInterpreter) {
  3505     __ jmp(done);
  3506     __ bind(is_null);
  3507     __ profile_null_seen(rcx);
  3508   } else {
  3509     __ bind(is_null);   // same as 'done'
  3511   __ bind(done);
  3514 void TemplateTable::instanceof() {
  3515   transition(atos, itos);
  3516   Label done, is_null, ok_is_subtype, quicked, resolved;
  3517   __ testptr(rax, rax);
  3518   __ jcc(Assembler::zero, is_null);
  3520   // Get cpool & tags index
  3521   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
  3522   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
  3523   // See if bytecode has already been quicked
  3524   __ cmpb(Address(rdx, rbx,
  3525                   Address::times_1,
  3526                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
  3527           JVM_CONSTANT_Class);
  3528   __ jcc(Assembler::equal, quicked);
  3530   __ push(atos); // save receiver for result, and for GC
  3531   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
  3532   __ pop_ptr(rdx); // restore receiver
  3533   __ verify_oop(rdx);
  3534   __ load_klass(rdx, rdx);
  3535   __ jmpb(resolved);
  3537   // Get superklass in rax and subklass in rdx
  3538   __ bind(quicked);
  3539   __ load_klass(rdx, rax);
  3540   __ movptr(rax, Address(rcx, rbx,
  3541                          Address::times_8, sizeof(constantPoolOopDesc)));
  3543   __ bind(resolved);
  3545   // Generate subtype check.  Blows rcx, rdi
  3546   // Superklass in rax.  Subklass in rdx.
  3547   __ gen_subtype_check(rdx, ok_is_subtype);
  3549   // Come here on failure
  3550   __ xorl(rax, rax);
  3551   __ jmpb(done);
  3552   // Come here on success
  3553   __ bind(ok_is_subtype);
  3554   __ movl(rax, 1);
  3556   // Collect counts on whether this test sees NULLs a lot or not.
  3557   if (ProfileInterpreter) {
  3558     __ jmp(done);
  3559     __ bind(is_null);
  3560     __ profile_null_seen(rcx);
  3561   } else {
  3562     __ bind(is_null);   // same as 'done'
  3564   __ bind(done);
  3565   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
  3566   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
  3569 //-----------------------------------------------------------------------------
  3570 // Breakpoints
  3571 void TemplateTable::_breakpoint() {
  3572   // Note: We get here even if we are single stepping..
  3573   // jbug inists on setting breakpoints at every bytecode
  3574   // even if we are in single step mode.
  3576   transition(vtos, vtos);
  3578   // get the unpatched byte code
  3579   __ get_method(c_rarg1);
  3580   __ call_VM(noreg,
  3581              CAST_FROM_FN_PTR(address,
  3582                               InterpreterRuntime::get_original_bytecode_at),
  3583              c_rarg1, r13);
  3584   __ mov(rbx, rax);
  3586   // post the breakpoint event
  3587   __ get_method(c_rarg1);
  3588   __ call_VM(noreg,
  3589              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
  3590              c_rarg1, r13);
  3592   // complete the execution of original bytecode
  3593   __ dispatch_only_normal(vtos);
  3596 //-----------------------------------------------------------------------------
  3597 // Exceptions
  3599 void TemplateTable::athrow() {
  3600   transition(atos, vtos);
  3601   __ null_check(rax);
  3602   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
  3605 //-----------------------------------------------------------------------------
  3606 // Synchronization
  3607 //
  3608 // Note: monitorenter & exit are symmetric routines; which is reflected
  3609 //       in the assembly code structure as well
  3610 //
  3611 // Stack layout:
  3612 //
  3613 // [expressions  ] <--- rsp               = expression stack top
  3614 // ..
  3615 // [expressions  ]
  3616 // [monitor entry] <--- monitor block top = expression stack bot
  3617 // ..
  3618 // [monitor entry]
  3619 // [frame data   ] <--- monitor block bot
  3620 // ...
  3621 // [saved rbp    ] <--- rbp
  3622 void TemplateTable::monitorenter() {
  3623   transition(atos, vtos);
  3625   // check for NULL object
  3626   __ null_check(rax);
  3628   const Address monitor_block_top(
  3629         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3630   const Address monitor_block_bot(
  3631         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3632   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3634   Label allocated;
  3636   // initialize entry pointer
  3637   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
  3639   // find a free slot in the monitor block (result in c_rarg1)
  3641     Label entry, loop, exit;
  3642     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
  3643                                      // starting with top-most entry
  3644     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3645                                      // of monitor block
  3646     __ jmpb(entry);
  3648     __ bind(loop);
  3649     // check if current entry is used
  3650     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
  3651     // if not used then remember entry in c_rarg1
  3652     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
  3653     // check if current entry is for same object
  3654     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
  3655     // if same object then stop searching
  3656     __ jccb(Assembler::equal, exit);
  3657     // otherwise advance to next entry
  3658     __ addptr(c_rarg3, entry_size);
  3659     __ bind(entry);
  3660     // check if bottom reached
  3661     __ cmpptr(c_rarg3, c_rarg2);
  3662     // if not at bottom then check this entry
  3663     __ jcc(Assembler::notEqual, loop);
  3664     __ bind(exit);
  3667   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
  3668   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
  3670   // allocate one if there's no free slot
  3672     Label entry, loop;
  3673     // 1. compute new pointers             // rsp: old expression stack top
  3674     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
  3675     __ subptr(rsp, entry_size);            // move expression stack top
  3676     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
  3677     __ mov(c_rarg3, rsp);                  // set start value for copy loop
  3678     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
  3679     __ jmp(entry);
  3680     // 2. move expression stack contents
  3681     __ bind(loop);
  3682     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
  3683                                                       // word from old location
  3684     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
  3685     __ addptr(c_rarg3, wordSize);                     // advance to next word
  3686     __ bind(entry);
  3687     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
  3688     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
  3689                                             // copy next word
  3692   // call run-time routine
  3693   // c_rarg1: points to monitor entry
  3694   __ bind(allocated);
  3696   // Increment bcp to point to the next bytecode, so exception
  3697   // handling for async. exceptions work correctly.
  3698   // The object has already been poped from the stack, so the
  3699   // expression stack looks correct.
  3700   __ increment(r13);
  3702   // store object
  3703   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
  3704   __ lock_object(c_rarg1);
  3706   // check to make sure this monitor doesn't cause stack overflow after locking
  3707   __ save_bcp();  // in case of exception
  3708   __ generate_stack_overflow_check(0);
  3710   // The bcp has already been incremented. Just need to dispatch to
  3711   // next instruction.
  3712   __ dispatch_next(vtos);
  3716 void TemplateTable::monitorexit() {
  3717   transition(atos, vtos);
  3719   // check for NULL object
  3720   __ null_check(rax);
  3722   const Address monitor_block_top(
  3723         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
  3724   const Address monitor_block_bot(
  3725         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
  3726   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
  3728   Label found;
  3730   // find matching slot
  3732     Label entry, loop;
  3733     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
  3734                                      // starting with top-most entry
  3735     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
  3736                                      // of monitor block
  3737     __ jmpb(entry);
  3739     __ bind(loop);
  3740     // check if current entry is for same object
  3741     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
  3742     // if same object then stop searching
  3743     __ jcc(Assembler::equal, found);
  3744     // otherwise advance to next entry
  3745     __ addptr(c_rarg1, entry_size);
  3746     __ bind(entry);
  3747     // check if bottom reached
  3748     __ cmpptr(c_rarg1, c_rarg2);
  3749     // if not at bottom then check this entry
  3750     __ jcc(Assembler::notEqual, loop);
  3753   // error handling. Unlocking was not block-structured
  3754   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
  3755                    InterpreterRuntime::throw_illegal_monitor_state_exception));
  3756   __ should_not_reach_here();
  3758   // call run-time routine
  3759   // rsi: points to monitor entry
  3760   __ bind(found);
  3761   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
  3762   __ unlock_object(c_rarg1);
  3763   __ pop_ptr(rax); // discard object
  3767 // Wide instructions
  3768 void TemplateTable::wide() {
  3769   transition(vtos, vtos);
  3770   __ load_unsigned_byte(rbx, at_bcp(1));
  3771   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
  3772   __ jmp(Address(rscratch1, rbx, Address::times_8));
  3773   // Note: the r13 increment step is part of the individual wide
  3774   // bytecode implementations
  3778 // Multi arrays
  3779 void TemplateTable::multianewarray() {
  3780   transition(vtos, atos);
  3781   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
  3782   // last dim is on top of stack; we want address of first one:
  3783   // first_addr = last_addr + (ndims - 1) * wordSize
  3784   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
  3785   call_VM(rax,
  3786           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
  3787           c_rarg1);
  3788   __ load_unsigned_byte(rbx, at_bcp(3));
  3789   __ lea(rsp, Address(rsp, rbx, Address::times_8));
  3791 #endif // !CC_INTERP

mercurial