src/cpu/x86/vm/assembler_x86.hpp

Mon, 20 Aug 2012 09:58:58 -0700

author
kvn
date
Mon, 20 Aug 2012 09:58:58 -0700
changeset 4002
09aad8452938
parent 4001
006050192a5a
child 4037
da91efe96a93
permissions
-rw-r--r--

7190310: Inlining WeakReference.get(), and hoisting $referent may lead to non-terminating loops
Summary: In C2 add software membar after load from Reference.referent field to prevent commoning of loads across safepoint since GC can change its value. In C1 always generate Reference.get() intrinsic.
Reviewed-by: roland, twisti, dholmes, johnc

     1 /*
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
    26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
    28 class BiasedLockingCounters;
    30 // Contains all the definitions needed for x86 assembly code generation.
    32 // Calling convention
    33 class Argument VALUE_OBJ_CLASS_SPEC {
    34  public:
    35   enum {
    36 #ifdef _LP64
    37 #ifdef _WIN64
    38     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
    39     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
    40 #else
    41     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
    42     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
    43 #endif // _WIN64
    44     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
    45     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
    46 #else
    47     n_register_parameters = 0   // 0 registers used to pass arguments
    48 #endif // _LP64
    49   };
    50 };
    53 #ifdef _LP64
    54 // Symbolically name the register arguments used by the c calling convention.
    55 // Windows is different from linux/solaris. So much for standards...
    57 #ifdef _WIN64
    59 REGISTER_DECLARATION(Register, c_rarg0, rcx);
    60 REGISTER_DECLARATION(Register, c_rarg1, rdx);
    61 REGISTER_DECLARATION(Register, c_rarg2, r8);
    62 REGISTER_DECLARATION(Register, c_rarg3, r9);
    64 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    65 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    66 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    67 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    69 #else
    71 REGISTER_DECLARATION(Register, c_rarg0, rdi);
    72 REGISTER_DECLARATION(Register, c_rarg1, rsi);
    73 REGISTER_DECLARATION(Register, c_rarg2, rdx);
    74 REGISTER_DECLARATION(Register, c_rarg3, rcx);
    75 REGISTER_DECLARATION(Register, c_rarg4, r8);
    76 REGISTER_DECLARATION(Register, c_rarg5, r9);
    78 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
    79 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
    80 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
    81 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
    82 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
    83 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
    84 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
    85 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
    87 #endif // _WIN64
    89 // Symbolically name the register arguments used by the Java calling convention.
    90 // We have control over the convention for java so we can do what we please.
    91 // What pleases us is to offset the java calling convention so that when
    92 // we call a suitable jni method the arguments are lined up and we don't
    93 // have to do little shuffling. A suitable jni method is non-static and a
    94 // small number of arguments (two fewer args on windows)
    95 //
    96 //        |-------------------------------------------------------|
    97 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
    98 //        |-------------------------------------------------------|
    99 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
   100 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
   101 //        |-------------------------------------------------------|
   102 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
   103 //        |-------------------------------------------------------|
   105 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
   106 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
   107 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
   108 // Windows runs out of register args here
   109 #ifdef _WIN64
   110 REGISTER_DECLARATION(Register, j_rarg3, rdi);
   111 REGISTER_DECLARATION(Register, j_rarg4, rsi);
   112 #else
   113 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
   114 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
   115 #endif /* _WIN64 */
   116 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
   118 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
   119 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
   120 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
   121 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
   122 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
   123 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
   124 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
   125 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
   127 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
   128 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
   130 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
   131 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
   133 #else
   134 // rscratch1 will apear in 32bit code that is dead but of course must compile
   135 // Using noreg ensures if the dead code is incorrectly live and executed it
   136 // will cause an assertion failure
   137 #define rscratch1 noreg
   138 #define rscratch2 noreg
   140 #endif // _LP64
   142 // JSR 292 fixed register usages:
   143 REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
   145 // Address is an abstraction used to represent a memory location
   146 // using any of the amd64 addressing modes with one object.
   147 //
   148 // Note: A register location is represented via a Register, not
   149 //       via an address for efficiency & simplicity reasons.
   151 class ArrayAddress;
   153 class Address VALUE_OBJ_CLASS_SPEC {
   154  public:
   155   enum ScaleFactor {
   156     no_scale = -1,
   157     times_1  =  0,
   158     times_2  =  1,
   159     times_4  =  2,
   160     times_8  =  3,
   161     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
   162   };
   163   static ScaleFactor times(int size) {
   164     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
   165     if (size == 8)  return times_8;
   166     if (size == 4)  return times_4;
   167     if (size == 2)  return times_2;
   168     return times_1;
   169   }
   170   static int scale_size(ScaleFactor scale) {
   171     assert(scale != no_scale, "");
   172     assert(((1 << (int)times_1) == 1 &&
   173             (1 << (int)times_2) == 2 &&
   174             (1 << (int)times_4) == 4 &&
   175             (1 << (int)times_8) == 8), "");
   176     return (1 << (int)scale);
   177   }
   179  private:
   180   Register         _base;
   181   Register         _index;
   182   ScaleFactor      _scale;
   183   int              _disp;
   184   RelocationHolder _rspec;
   186   // Easily misused constructors make them private
   187   // %%% can we make these go away?
   188   NOT_LP64(Address(address loc, RelocationHolder spec);)
   189   Address(int disp, address loc, relocInfo::relocType rtype);
   190   Address(int disp, address loc, RelocationHolder spec);
   192  public:
   194  int disp() { return _disp; }
   195   // creation
   196   Address()
   197     : _base(noreg),
   198       _index(noreg),
   199       _scale(no_scale),
   200       _disp(0) {
   201   }
   203   // No default displacement otherwise Register can be implicitly
   204   // converted to 0(Register) which is quite a different animal.
   206   Address(Register base, int disp)
   207     : _base(base),
   208       _index(noreg),
   209       _scale(no_scale),
   210       _disp(disp) {
   211   }
   213   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
   214     : _base (base),
   215       _index(index),
   216       _scale(scale),
   217       _disp (disp) {
   218     assert(!index->is_valid() == (scale == Address::no_scale),
   219            "inconsistent address");
   220   }
   222   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
   223     : _base (base),
   224       _index(index.register_or_noreg()),
   225       _scale(scale),
   226       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
   227     if (!index.is_register())  scale = Address::no_scale;
   228     assert(!_index->is_valid() == (scale == Address::no_scale),
   229            "inconsistent address");
   230   }
   232   Address plus_disp(int disp) const {
   233     Address a = (*this);
   234     a._disp += disp;
   235     return a;
   236   }
   237   Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const {
   238     Address a = (*this);
   239     a._disp += disp.constant_or_zero() * scale_size(scale);
   240     if (disp.is_register()) {
   241       assert(!a.index()->is_valid(), "competing indexes");
   242       a._index = disp.as_register();
   243       a._scale = scale;
   244     }
   245     return a;
   246   }
   247   bool is_same_address(Address a) const {
   248     // disregard _rspec
   249     return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale;
   250   }
   252   // The following two overloads are used in connection with the
   253   // ByteSize type (see sizes.hpp).  They simplify the use of
   254   // ByteSize'd arguments in assembly code. Note that their equivalent
   255   // for the optimized build are the member functions with int disp
   256   // argument since ByteSize is mapped to an int type in that case.
   257   //
   258   // Note: DO NOT introduce similar overloaded functions for WordSize
   259   // arguments as in the optimized mode, both ByteSize and WordSize
   260   // are mapped to the same type and thus the compiler cannot make a
   261   // distinction anymore (=> compiler errors).
   263 #ifdef ASSERT
   264   Address(Register base, ByteSize disp)
   265     : _base(base),
   266       _index(noreg),
   267       _scale(no_scale),
   268       _disp(in_bytes(disp)) {
   269   }
   271   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
   272     : _base(base),
   273       _index(index),
   274       _scale(scale),
   275       _disp(in_bytes(disp)) {
   276     assert(!index->is_valid() == (scale == Address::no_scale),
   277            "inconsistent address");
   278   }
   280   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
   281     : _base (base),
   282       _index(index.register_or_noreg()),
   283       _scale(scale),
   284       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
   285     if (!index.is_register())  scale = Address::no_scale;
   286     assert(!_index->is_valid() == (scale == Address::no_scale),
   287            "inconsistent address");
   288   }
   290 #endif // ASSERT
   292   // accessors
   293   bool        uses(Register reg) const { return _base == reg || _index == reg; }
   294   Register    base()             const { return _base;  }
   295   Register    index()            const { return _index; }
   296   ScaleFactor scale()            const { return _scale; }
   297   int         disp()             const { return _disp;  }
   299   // Convert the raw encoding form into the form expected by the constructor for
   300   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
   301   // that to noreg for the Address constructor.
   302   static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
   304   static Address make_array(ArrayAddress);
   306  private:
   307   bool base_needs_rex() const {
   308     return _base != noreg && _base->encoding() >= 8;
   309   }
   311   bool index_needs_rex() const {
   312     return _index != noreg &&_index->encoding() >= 8;
   313   }
   315   relocInfo::relocType reloc() const { return _rspec.type(); }
   317   friend class Assembler;
   318   friend class MacroAssembler;
   319   friend class LIR_Assembler; // base/index/scale/disp
   320 };
   322 //
   323 // AddressLiteral has been split out from Address because operands of this type
   324 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
   325 // the few instructions that need to deal with address literals are unique and the
   326 // MacroAssembler does not have to implement every instruction in the Assembler
   327 // in order to search for address literals that may need special handling depending
   328 // on the instruction and the platform. As small step on the way to merging i486/amd64
   329 // directories.
   330 //
   331 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
   332   friend class ArrayAddress;
   333   RelocationHolder _rspec;
   334   // Typically we use AddressLiterals we want to use their rval
   335   // However in some situations we want the lval (effect address) of the item.
   336   // We provide a special factory for making those lvals.
   337   bool _is_lval;
   339   // If the target is far we'll need to load the ea of this to
   340   // a register to reach it. Otherwise if near we can do rip
   341   // relative addressing.
   343   address          _target;
   345  protected:
   346   // creation
   347   AddressLiteral()
   348     : _is_lval(false),
   349       _target(NULL)
   350   {}
   352   public:
   355   AddressLiteral(address target, relocInfo::relocType rtype);
   357   AddressLiteral(address target, RelocationHolder const& rspec)
   358     : _rspec(rspec),
   359       _is_lval(false),
   360       _target(target)
   361   {}
   363   AddressLiteral addr() {
   364     AddressLiteral ret = *this;
   365     ret._is_lval = true;
   366     return ret;
   367   }
   370  private:
   372   address target() { return _target; }
   373   bool is_lval() { return _is_lval; }
   375   relocInfo::relocType reloc() const { return _rspec.type(); }
   376   const RelocationHolder& rspec() const { return _rspec; }
   378   friend class Assembler;
   379   friend class MacroAssembler;
   380   friend class Address;
   381   friend class LIR_Assembler;
   382 };
   384 // Convience classes
   385 class RuntimeAddress: public AddressLiteral {
   387   public:
   389   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
   391 };
   393 class OopAddress: public AddressLiteral {
   395   public:
   397   OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
   399 };
   401 class ExternalAddress: public AddressLiteral {
   402  private:
   403   static relocInfo::relocType reloc_for_target(address target) {
   404     // Sometimes ExternalAddress is used for values which aren't
   405     // exactly addresses, like the card table base.
   406     // external_word_type can't be used for values in the first page
   407     // so just skip the reloc in that case.
   408     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
   409   }
   411  public:
   413   ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {}
   415 };
   417 class InternalAddress: public AddressLiteral {
   419   public:
   421   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
   423 };
   425 // x86 can do array addressing as a single operation since disp can be an absolute
   426 // address amd64 can't. We create a class that expresses the concept but does extra
   427 // magic on amd64 to get the final result
   429 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
   430   private:
   432   AddressLiteral _base;
   433   Address        _index;
   435   public:
   437   ArrayAddress() {};
   438   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
   439   AddressLiteral base() { return _base; }
   440   Address index() { return _index; }
   442 };
   444 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
   446 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
   447 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
   448 // is what you get. The Assembler is generating code into a CodeBuffer.
   450 class Assembler : public AbstractAssembler  {
   451   friend class AbstractAssembler; // for the non-virtual hack
   452   friend class LIR_Assembler; // as_Address()
   453   friend class StubGenerator;
   455  public:
   456   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
   457     zero          = 0x4,
   458     notZero       = 0x5,
   459     equal         = 0x4,
   460     notEqual      = 0x5,
   461     less          = 0xc,
   462     lessEqual     = 0xe,
   463     greater       = 0xf,
   464     greaterEqual  = 0xd,
   465     below         = 0x2,
   466     belowEqual    = 0x6,
   467     above         = 0x7,
   468     aboveEqual    = 0x3,
   469     overflow      = 0x0,
   470     noOverflow    = 0x1,
   471     carrySet      = 0x2,
   472     carryClear    = 0x3,
   473     negative      = 0x8,
   474     positive      = 0x9,
   475     parity        = 0xa,
   476     noParity      = 0xb
   477   };
   479   enum Prefix {
   480     // segment overrides
   481     CS_segment = 0x2e,
   482     SS_segment = 0x36,
   483     DS_segment = 0x3e,
   484     ES_segment = 0x26,
   485     FS_segment = 0x64,
   486     GS_segment = 0x65,
   488     REX        = 0x40,
   490     REX_B      = 0x41,
   491     REX_X      = 0x42,
   492     REX_XB     = 0x43,
   493     REX_R      = 0x44,
   494     REX_RB     = 0x45,
   495     REX_RX     = 0x46,
   496     REX_RXB    = 0x47,
   498     REX_W      = 0x48,
   500     REX_WB     = 0x49,
   501     REX_WX     = 0x4A,
   502     REX_WXB    = 0x4B,
   503     REX_WR     = 0x4C,
   504     REX_WRB    = 0x4D,
   505     REX_WRX    = 0x4E,
   506     REX_WRXB   = 0x4F,
   508     VEX_3bytes = 0xC4,
   509     VEX_2bytes = 0xC5
   510   };
   512   enum VexPrefix {
   513     VEX_B = 0x20,
   514     VEX_X = 0x40,
   515     VEX_R = 0x80,
   516     VEX_W = 0x80
   517   };
   519   enum VexSimdPrefix {
   520     VEX_SIMD_NONE = 0x0,
   521     VEX_SIMD_66   = 0x1,
   522     VEX_SIMD_F3   = 0x2,
   523     VEX_SIMD_F2   = 0x3
   524   };
   526   enum VexOpcode {
   527     VEX_OPCODE_NONE  = 0x0,
   528     VEX_OPCODE_0F    = 0x1,
   529     VEX_OPCODE_0F_38 = 0x2,
   530     VEX_OPCODE_0F_3A = 0x3
   531   };
   533   enum WhichOperand {
   534     // input to locate_operand, and format code for relocations
   535     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
   536     disp32_operand = 1,          // embedded 32-bit displacement or address
   537     call32_operand = 2,          // embedded 32-bit self-relative displacement
   538 #ifndef _LP64
   539     _WhichOperand_limit = 3
   540 #else
   541      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
   542     _WhichOperand_limit = 4
   543 #endif
   544   };
   548   // NOTE: The general philopsophy of the declarations here is that 64bit versions
   549   // of instructions are freely declared without the need for wrapping them an ifdef.
   550   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
   551   // In the .cpp file the implementations are wrapped so that they are dropped out
   552   // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
   553   // to the size it was prior to merging up the 32bit and 64bit assemblers.
   554   //
   555   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
   556   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
   558 private:
   561   // 64bit prefixes
   562   int prefix_and_encode(int reg_enc, bool byteinst = false);
   563   int prefixq_and_encode(int reg_enc);
   565   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
   566   int prefixq_and_encode(int dst_enc, int src_enc);
   568   void prefix(Register reg);
   569   void prefix(Address adr);
   570   void prefixq(Address adr);
   572   void prefix(Address adr, Register reg,  bool byteinst = false);
   573   void prefix(Address adr, XMMRegister reg);
   574   void prefixq(Address adr, Register reg);
   575   void prefixq(Address adr, XMMRegister reg);
   577   void prefetch_prefix(Address src);
   579   void rex_prefix(Address adr, XMMRegister xreg,
   580                   VexSimdPrefix pre, VexOpcode opc, bool rex_w);
   581   int  rex_prefix_and_encode(int dst_enc, int src_enc,
   582                              VexSimdPrefix pre, VexOpcode opc, bool rex_w);
   584   void vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w,
   585                   int nds_enc, VexSimdPrefix pre, VexOpcode opc,
   586                   bool vector256);
   588   void vex_prefix(Address adr, int nds_enc, int xreg_enc,
   589                   VexSimdPrefix pre, VexOpcode opc,
   590                   bool vex_w, bool vector256);
   592   void vex_prefix(XMMRegister dst, XMMRegister nds, Address src,
   593                   VexSimdPrefix pre, bool vector256 = false) {
   594     int dst_enc = dst->encoding();
   595     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
   596     vex_prefix(src, nds_enc, dst_enc, pre, VEX_OPCODE_0F, false, vector256);
   597   }
   599   int  vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc,
   600                              VexSimdPrefix pre, VexOpcode opc,
   601                              bool vex_w, bool vector256);
   603   int  vex_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
   604                              VexSimdPrefix pre, bool vector256 = false,
   605                              VexOpcode opc = VEX_OPCODE_0F) {
   606     int src_enc = src->encoding();
   607     int dst_enc = dst->encoding();
   608     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
   609     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, false, vector256);
   610   }
   612   void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr,
   613                    VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
   614                    bool rex_w = false, bool vector256 = false);
   616   void simd_prefix(XMMRegister dst, Address src,
   617                    VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
   618     simd_prefix(dst, xnoreg, src, pre, opc);
   619   }
   621   void simd_prefix(Address dst, XMMRegister src, VexSimdPrefix pre) {
   622     simd_prefix(src, dst, pre);
   623   }
   624   void simd_prefix_q(XMMRegister dst, XMMRegister nds, Address src,
   625                      VexSimdPrefix pre) {
   626     bool rex_w = true;
   627     simd_prefix(dst, nds, src, pre, VEX_OPCODE_0F, rex_w);
   628   }
   630   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src,
   631                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F,
   632                              bool rex_w = false, bool vector256 = false);
   634   // Move/convert 32-bit integer value.
   635   int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, Register src,
   636                              VexSimdPrefix pre) {
   637     // It is OK to cast from Register to XMMRegister to pass argument here
   638     // since only encoding is used in simd_prefix_and_encode() and number of
   639     // Gen and Xmm registers are the same.
   640     return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre);
   641   }
   642   int simd_prefix_and_encode(XMMRegister dst, Register src, VexSimdPrefix pre) {
   643     return simd_prefix_and_encode(dst, xnoreg, src, pre);
   644   }
   645   int simd_prefix_and_encode(Register dst, XMMRegister src,
   646                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
   647     return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc);
   648   }
   650   // Move/convert 64-bit integer value.
   651   int simd_prefix_and_encode_q(XMMRegister dst, XMMRegister nds, Register src,
   652                                VexSimdPrefix pre) {
   653     bool rex_w = true;
   654     return simd_prefix_and_encode(dst, nds, as_XMMRegister(src->encoding()), pre, VEX_OPCODE_0F, rex_w);
   655   }
   656   int simd_prefix_and_encode_q(XMMRegister dst, Register src, VexSimdPrefix pre) {
   657     return simd_prefix_and_encode_q(dst, xnoreg, src, pre);
   658   }
   659   int simd_prefix_and_encode_q(Register dst, XMMRegister src,
   660                              VexSimdPrefix pre, VexOpcode opc = VEX_OPCODE_0F) {
   661     bool rex_w = true;
   662     return simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, pre, opc, rex_w);
   663   }
   665   // Helper functions for groups of instructions
   666   void emit_arith_b(int op1, int op2, Register dst, int imm8);
   668   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
   669   // Force generation of a 4 byte immediate value even if it fits into 8bit
   670   void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32);
   671   // only 32bit??
   672   void emit_arith(int op1, int op2, Register dst, jobject obj);
   673   void emit_arith(int op1, int op2, Register dst, Register src);
   675   void emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
   676   void emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
   677   void emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre);
   678   void emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre);
   679   void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
   680                       Address src, VexSimdPrefix pre, bool vector256);
   681   void emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
   682                       XMMRegister src, VexSimdPrefix pre, bool vector256);
   684   void emit_operand(Register reg,
   685                     Register base, Register index, Address::ScaleFactor scale,
   686                     int disp,
   687                     RelocationHolder const& rspec,
   688                     int rip_relative_correction = 0);
   690   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
   692   // operands that only take the original 32bit registers
   693   void emit_operand32(Register reg, Address adr);
   695   void emit_operand(XMMRegister reg,
   696                     Register base, Register index, Address::ScaleFactor scale,
   697                     int disp,
   698                     RelocationHolder const& rspec);
   700   void emit_operand(XMMRegister reg, Address adr);
   702   void emit_operand(MMXRegister reg, Address adr);
   704   // workaround gcc (3.2.1-7) bug
   705   void emit_operand(Address adr, MMXRegister reg);
   708   // Immediate-to-memory forms
   709   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
   711   void emit_farith(int b1, int b2, int i);
   714  protected:
   715   #ifdef ASSERT
   716   void check_relocation(RelocationHolder const& rspec, int format);
   717   #endif
   719   inline void emit_long64(jlong x);
   721   void emit_data(jint data, relocInfo::relocType    rtype, int format);
   722   void emit_data(jint data, RelocationHolder const& rspec, int format);
   723   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
   724   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
   726   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
   728   // These are all easily abused and hence protected
   730   // 32BIT ONLY SECTION
   731 #ifndef _LP64
   732   // Make these disappear in 64bit mode since they would never be correct
   733   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
   734   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
   736   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
   737   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
   739   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
   740 #else
   741   // 64BIT ONLY SECTION
   742   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
   744   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
   745   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
   747   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
   748   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
   749 #endif // _LP64
   751   // These are unique in that we are ensured by the caller that the 32bit
   752   // relative in these instructions will always be able to reach the potentially
   753   // 64bit address described by entry. Since they can take a 64bit address they
   754   // don't have the 32 suffix like the other instructions in this class.
   756   void call_literal(address entry, RelocationHolder const& rspec);
   757   void jmp_literal(address entry, RelocationHolder const& rspec);
   759   // Avoid using directly section
   760   // Instructions in this section are actually usable by anyone without danger
   761   // of failure but have performance issues that are addressed my enhanced
   762   // instructions which will do the proper thing base on the particular cpu.
   763   // We protect them because we don't trust you...
   765   // Don't use next inc() and dec() methods directly. INC & DEC instructions
   766   // could cause a partial flag stall since they don't set CF flag.
   767   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
   768   // which call inc() & dec() or add() & sub() in accordance with
   769   // the product flag UseIncDec value.
   771   void decl(Register dst);
   772   void decl(Address dst);
   773   void decq(Register dst);
   774   void decq(Address dst);
   776   void incl(Register dst);
   777   void incl(Address dst);
   778   void incq(Register dst);
   779   void incq(Address dst);
   781   // New cpus require use of movsd and movss to avoid partial register stall
   782   // when loading from memory. But for old Opteron use movlpd instead of movsd.
   783   // The selection is done in MacroAssembler::movdbl() and movflt().
   785   // Move Scalar Single-Precision Floating-Point Values
   786   void movss(XMMRegister dst, Address src);
   787   void movss(XMMRegister dst, XMMRegister src);
   788   void movss(Address dst, XMMRegister src);
   790   // Move Scalar Double-Precision Floating-Point Values
   791   void movsd(XMMRegister dst, Address src);
   792   void movsd(XMMRegister dst, XMMRegister src);
   793   void movsd(Address dst, XMMRegister src);
   794   void movlpd(XMMRegister dst, Address src);
   796   // New cpus require use of movaps and movapd to avoid partial register stall
   797   // when moving between registers.
   798   void movaps(XMMRegister dst, XMMRegister src);
   799   void movapd(XMMRegister dst, XMMRegister src);
   801   // End avoid using directly
   804   // Instruction prefixes
   805   void prefix(Prefix p);
   807   public:
   809   // Creation
   810   Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
   812   // Decoding
   813   static address locate_operand(address inst, WhichOperand which);
   814   static address locate_next_instruction(address inst);
   816   // Utilities
   817   static bool is_polling_page_far() NOT_LP64({ return false;});
   819   // Generic instructions
   820   // Does 32bit or 64bit as needed for the platform. In some sense these
   821   // belong in macro assembler but there is no need for both varieties to exist
   823   void lea(Register dst, Address src);
   825   void mov(Register dst, Register src);
   827   void pusha();
   828   void popa();
   830   void pushf();
   831   void popf();
   833   void push(int32_t imm32);
   835   void push(Register src);
   837   void pop(Register dst);
   839   // These are dummies to prevent surprise implicit conversions to Register
   840   void push(void* v);
   841   void pop(void* v);
   843   // These do register sized moves/scans
   844   void rep_mov();
   845   void rep_set();
   846   void repne_scan();
   847 #ifdef _LP64
   848   void repne_scanl();
   849 #endif
   851   // Vanilla instructions in lexical order
   853   void adcl(Address dst, int32_t imm32);
   854   void adcl(Address dst, Register src);
   855   void adcl(Register dst, int32_t imm32);
   856   void adcl(Register dst, Address src);
   857   void adcl(Register dst, Register src);
   859   void adcq(Register dst, int32_t imm32);
   860   void adcq(Register dst, Address src);
   861   void adcq(Register dst, Register src);
   863   void addl(Address dst, int32_t imm32);
   864   void addl(Address dst, Register src);
   865   void addl(Register dst, int32_t imm32);
   866   void addl(Register dst, Address src);
   867   void addl(Register dst, Register src);
   869   void addq(Address dst, int32_t imm32);
   870   void addq(Address dst, Register src);
   871   void addq(Register dst, int32_t imm32);
   872   void addq(Register dst, Address src);
   873   void addq(Register dst, Register src);
   875   void addr_nop_4();
   876   void addr_nop_5();
   877   void addr_nop_7();
   878   void addr_nop_8();
   880   // Add Scalar Double-Precision Floating-Point Values
   881   void addsd(XMMRegister dst, Address src);
   882   void addsd(XMMRegister dst, XMMRegister src);
   884   // Add Scalar Single-Precision Floating-Point Values
   885   void addss(XMMRegister dst, Address src);
   886   void addss(XMMRegister dst, XMMRegister src);
   888   void andl(Address  dst, int32_t imm32);
   889   void andl(Register dst, int32_t imm32);
   890   void andl(Register dst, Address src);
   891   void andl(Register dst, Register src);
   893   void andq(Address  dst, int32_t imm32);
   894   void andq(Register dst, int32_t imm32);
   895   void andq(Register dst, Address src);
   896   void andq(Register dst, Register src);
   898   void bsfl(Register dst, Register src);
   899   void bsrl(Register dst, Register src);
   901 #ifdef _LP64
   902   void bsfq(Register dst, Register src);
   903   void bsrq(Register dst, Register src);
   904 #endif
   906   void bswapl(Register reg);
   908   void bswapq(Register reg);
   910   void call(Label& L, relocInfo::relocType rtype);
   911   void call(Register reg);  // push pc; pc <- reg
   912   void call(Address adr);   // push pc; pc <- adr
   914   void cdql();
   916   void cdqq();
   918   void cld() { emit_byte(0xfc); }
   920   void clflush(Address adr);
   922   void cmovl(Condition cc, Register dst, Register src);
   923   void cmovl(Condition cc, Register dst, Address src);
   925   void cmovq(Condition cc, Register dst, Register src);
   926   void cmovq(Condition cc, Register dst, Address src);
   929   void cmpb(Address dst, int imm8);
   931   void cmpl(Address dst, int32_t imm32);
   933   void cmpl(Register dst, int32_t imm32);
   934   void cmpl(Register dst, Register src);
   935   void cmpl(Register dst, Address src);
   937   void cmpq(Address dst, int32_t imm32);
   938   void cmpq(Address dst, Register src);
   940   void cmpq(Register dst, int32_t imm32);
   941   void cmpq(Register dst, Register src);
   942   void cmpq(Register dst, Address src);
   944   // these are dummies used to catch attempting to convert NULL to Register
   945   void cmpl(Register dst, void* junk); // dummy
   946   void cmpq(Register dst, void* junk); // dummy
   948   void cmpw(Address dst, int imm16);
   950   void cmpxchg8 (Address adr);
   952   void cmpxchgl(Register reg, Address adr);
   954   void cmpxchgq(Register reg, Address adr);
   956   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
   957   void comisd(XMMRegister dst, Address src);
   958   void comisd(XMMRegister dst, XMMRegister src);
   960   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
   961   void comiss(XMMRegister dst, Address src);
   962   void comiss(XMMRegister dst, XMMRegister src);
   964   // Identify processor type and features
   965   void cpuid() {
   966     emit_byte(0x0F);
   967     emit_byte(0xA2);
   968   }
   970   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
   971   void cvtsd2ss(XMMRegister dst, XMMRegister src);
   972   void cvtsd2ss(XMMRegister dst, Address src);
   974   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
   975   void cvtsi2sdl(XMMRegister dst, Register src);
   976   void cvtsi2sdl(XMMRegister dst, Address src);
   977   void cvtsi2sdq(XMMRegister dst, Register src);
   978   void cvtsi2sdq(XMMRegister dst, Address src);
   980   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
   981   void cvtsi2ssl(XMMRegister dst, Register src);
   982   void cvtsi2ssl(XMMRegister dst, Address src);
   983   void cvtsi2ssq(XMMRegister dst, Register src);
   984   void cvtsi2ssq(XMMRegister dst, Address src);
   986   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
   987   void cvtdq2pd(XMMRegister dst, XMMRegister src);
   989   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
   990   void cvtdq2ps(XMMRegister dst, XMMRegister src);
   992   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
   993   void cvtss2sd(XMMRegister dst, XMMRegister src);
   994   void cvtss2sd(XMMRegister dst, Address src);
   996   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
   997   void cvttsd2sil(Register dst, Address src);
   998   void cvttsd2sil(Register dst, XMMRegister src);
   999   void cvttsd2siq(Register dst, XMMRegister src);
  1001   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
  1002   void cvttss2sil(Register dst, XMMRegister src);
  1003   void cvttss2siq(Register dst, XMMRegister src);
  1005   // Divide Scalar Double-Precision Floating-Point Values
  1006   void divsd(XMMRegister dst, Address src);
  1007   void divsd(XMMRegister dst, XMMRegister src);
  1009   // Divide Scalar Single-Precision Floating-Point Values
  1010   void divss(XMMRegister dst, Address src);
  1011   void divss(XMMRegister dst, XMMRegister src);
  1013   void emms();
  1015   void fabs();
  1017   void fadd(int i);
  1019   void fadd_d(Address src);
  1020   void fadd_s(Address src);
  1022   // "Alternate" versions of x87 instructions place result down in FPU
  1023   // stack instead of on TOS
  1025   void fadda(int i); // "alternate" fadd
  1026   void faddp(int i = 1);
  1028   void fchs();
  1030   void fcom(int i);
  1032   void fcomp(int i = 1);
  1033   void fcomp_d(Address src);
  1034   void fcomp_s(Address src);
  1036   void fcompp();
  1038   void fcos();
  1040   void fdecstp();
  1042   void fdiv(int i);
  1043   void fdiv_d(Address src);
  1044   void fdivr_s(Address src);
  1045   void fdiva(int i);  // "alternate" fdiv
  1046   void fdivp(int i = 1);
  1048   void fdivr(int i);
  1049   void fdivr_d(Address src);
  1050   void fdiv_s(Address src);
  1052   void fdivra(int i); // "alternate" reversed fdiv
  1054   void fdivrp(int i = 1);
  1056   void ffree(int i = 0);
  1058   void fild_d(Address adr);
  1059   void fild_s(Address adr);
  1061   void fincstp();
  1063   void finit();
  1065   void fist_s (Address adr);
  1066   void fistp_d(Address adr);
  1067   void fistp_s(Address adr);
  1069   void fld1();
  1071   void fld_d(Address adr);
  1072   void fld_s(Address adr);
  1073   void fld_s(int index);
  1074   void fld_x(Address adr);  // extended-precision (80-bit) format
  1076   void fldcw(Address src);
  1078   void fldenv(Address src);
  1080   void fldlg2();
  1082   void fldln2();
  1084   void fldz();
  1086   void flog();
  1087   void flog10();
  1089   void fmul(int i);
  1091   void fmul_d(Address src);
  1092   void fmul_s(Address src);
  1094   void fmula(int i);  // "alternate" fmul
  1096   void fmulp(int i = 1);
  1098   void fnsave(Address dst);
  1100   void fnstcw(Address src);
  1102   void fnstsw_ax();
  1104   void fprem();
  1105   void fprem1();
  1107   void frstor(Address src);
  1109   void fsin();
  1111   void fsqrt();
  1113   void fst_d(Address adr);
  1114   void fst_s(Address adr);
  1116   void fstp_d(Address adr);
  1117   void fstp_d(int index);
  1118   void fstp_s(Address adr);
  1119   void fstp_x(Address adr); // extended-precision (80-bit) format
  1121   void fsub(int i);
  1122   void fsub_d(Address src);
  1123   void fsub_s(Address src);
  1125   void fsuba(int i);  // "alternate" fsub
  1127   void fsubp(int i = 1);
  1129   void fsubr(int i);
  1130   void fsubr_d(Address src);
  1131   void fsubr_s(Address src);
  1133   void fsubra(int i); // "alternate" reversed fsub
  1135   void fsubrp(int i = 1);
  1137   void ftan();
  1139   void ftst();
  1141   void fucomi(int i = 1);
  1142   void fucomip(int i = 1);
  1144   void fwait();
  1146   void fxch(int i = 1);
  1148   void fxrstor(Address src);
  1150   void fxsave(Address dst);
  1152   void fyl2x();
  1153   void frndint();
  1154   void f2xm1();
  1155   void fldl2e();
  1157   void hlt();
  1159   void idivl(Register src);
  1160   void divl(Register src); // Unsigned division
  1162   void idivq(Register src);
  1164   void imull(Register dst, Register src);
  1165   void imull(Register dst, Register src, int value);
  1167   void imulq(Register dst, Register src);
  1168   void imulq(Register dst, Register src, int value);
  1171   // jcc is the generic conditional branch generator to run-
  1172   // time routines, jcc is used for branches to labels. jcc
  1173   // takes a branch opcode (cc) and a label (L) and generates
  1174   // either a backward branch or a forward branch and links it
  1175   // to the label fixup chain. Usage:
  1176   //
  1177   // Label L;      // unbound label
  1178   // jcc(cc, L);   // forward branch to unbound label
  1179   // bind(L);      // bind label to the current pc
  1180   // jcc(cc, L);   // backward branch to bound label
  1181   // bind(L);      // illegal: a label may be bound only once
  1182   //
  1183   // Note: The same Label can be used for forward and backward branches
  1184   // but it may be bound only once.
  1186   void jcc(Condition cc, Label& L, bool maybe_short = true);
  1188   // Conditional jump to a 8-bit offset to L.
  1189   // WARNING: be very careful using this for forward jumps.  If the label is
  1190   // not bound within an 8-bit offset of this instruction, a run-time error
  1191   // will occur.
  1192   void jccb(Condition cc, Label& L);
  1194   void jmp(Address entry);    // pc <- entry
  1196   // Label operations & relative jumps (PPUM Appendix D)
  1197   void jmp(Label& L, bool maybe_short = true);   // unconditional jump to L
  1199   void jmp(Register entry); // pc <- entry
  1201   // Unconditional 8-bit offset jump to L.
  1202   // WARNING: be very careful using this for forward jumps.  If the label is
  1203   // not bound within an 8-bit offset of this instruction, a run-time error
  1204   // will occur.
  1205   void jmpb(Label& L);
  1207   void ldmxcsr( Address src );
  1209   void leal(Register dst, Address src);
  1211   void leaq(Register dst, Address src);
  1213   void lfence() {
  1214     emit_byte(0x0F);
  1215     emit_byte(0xAE);
  1216     emit_byte(0xE8);
  1219   void lock();
  1221   void lzcntl(Register dst, Register src);
  1223 #ifdef _LP64
  1224   void lzcntq(Register dst, Register src);
  1225 #endif
  1227   enum Membar_mask_bits {
  1228     StoreStore = 1 << 3,
  1229     LoadStore  = 1 << 2,
  1230     StoreLoad  = 1 << 1,
  1231     LoadLoad   = 1 << 0
  1232   };
  1234   // Serializes memory and blows flags
  1235   void membar(Membar_mask_bits order_constraint) {
  1236     if (os::is_MP()) {
  1237       // We only have to handle StoreLoad
  1238       if (order_constraint & StoreLoad) {
  1239         // All usable chips support "locked" instructions which suffice
  1240         // as barriers, and are much faster than the alternative of
  1241         // using cpuid instruction. We use here a locked add [esp],0.
  1242         // This is conveniently otherwise a no-op except for blowing
  1243         // flags.
  1244         // Any change to this code may need to revisit other places in
  1245         // the code where this idiom is used, in particular the
  1246         // orderAccess code.
  1247         lock();
  1248         addl(Address(rsp, 0), 0);// Assert the lock# signal here
  1253   void mfence();
  1255   // Moves
  1257   void mov64(Register dst, int64_t imm64);
  1259   void movb(Address dst, Register src);
  1260   void movb(Address dst, int imm8);
  1261   void movb(Register dst, Address src);
  1263   void movdl(XMMRegister dst, Register src);
  1264   void movdl(Register dst, XMMRegister src);
  1265   void movdl(XMMRegister dst, Address src);
  1266   void movdl(Address dst, XMMRegister src);
  1268   // Move Double Quadword
  1269   void movdq(XMMRegister dst, Register src);
  1270   void movdq(Register dst, XMMRegister src);
  1272   // Move Aligned Double Quadword
  1273   void movdqa(XMMRegister dst, XMMRegister src);
  1275   // Move Unaligned Double Quadword
  1276   void movdqu(Address     dst, XMMRegister src);
  1277   void movdqu(XMMRegister dst, Address src);
  1278   void movdqu(XMMRegister dst, XMMRegister src);
  1280   // Move Unaligned 256bit Vector
  1281   void vmovdqu(Address dst, XMMRegister src);
  1282   void vmovdqu(XMMRegister dst, Address src);
  1283   void vmovdqu(XMMRegister dst, XMMRegister src);
  1285   // Move lower 64bit to high 64bit in 128bit register
  1286   void movlhps(XMMRegister dst, XMMRegister src);
  1288   void movl(Register dst, int32_t imm32);
  1289   void movl(Address dst, int32_t imm32);
  1290   void movl(Register dst, Register src);
  1291   void movl(Register dst, Address src);
  1292   void movl(Address dst, Register src);
  1294   // These dummies prevent using movl from converting a zero (like NULL) into Register
  1295   // by giving the compiler two choices it can't resolve
  1297   void movl(Address  dst, void* junk);
  1298   void movl(Register dst, void* junk);
  1300 #ifdef _LP64
  1301   void movq(Register dst, Register src);
  1302   void movq(Register dst, Address src);
  1303   void movq(Address  dst, Register src);
  1304 #endif
  1306   void movq(Address     dst, MMXRegister src );
  1307   void movq(MMXRegister dst, Address src );
  1309 #ifdef _LP64
  1310   // These dummies prevent using movq from converting a zero (like NULL) into Register
  1311   // by giving the compiler two choices it can't resolve
  1313   void movq(Address  dst, void* dummy);
  1314   void movq(Register dst, void* dummy);
  1315 #endif
  1317   // Move Quadword
  1318   void movq(Address     dst, XMMRegister src);
  1319   void movq(XMMRegister dst, Address src);
  1321   void movsbl(Register dst, Address src);
  1322   void movsbl(Register dst, Register src);
  1324 #ifdef _LP64
  1325   void movsbq(Register dst, Address src);
  1326   void movsbq(Register dst, Register src);
  1328   // Move signed 32bit immediate to 64bit extending sign
  1329   void movslq(Address  dst, int32_t imm64);
  1330   void movslq(Register dst, int32_t imm64);
  1332   void movslq(Register dst, Address src);
  1333   void movslq(Register dst, Register src);
  1334   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
  1335 #endif
  1337   void movswl(Register dst, Address src);
  1338   void movswl(Register dst, Register src);
  1340 #ifdef _LP64
  1341   void movswq(Register dst, Address src);
  1342   void movswq(Register dst, Register src);
  1343 #endif
  1345   void movw(Address dst, int imm16);
  1346   void movw(Register dst, Address src);
  1347   void movw(Address dst, Register src);
  1349   void movzbl(Register dst, Address src);
  1350   void movzbl(Register dst, Register src);
  1352 #ifdef _LP64
  1353   void movzbq(Register dst, Address src);
  1354   void movzbq(Register dst, Register src);
  1355 #endif
  1357   void movzwl(Register dst, Address src);
  1358   void movzwl(Register dst, Register src);
  1360 #ifdef _LP64
  1361   void movzwq(Register dst, Address src);
  1362   void movzwq(Register dst, Register src);
  1363 #endif
  1365   void mull(Address src);
  1366   void mull(Register src);
  1368   // Multiply Scalar Double-Precision Floating-Point Values
  1369   void mulsd(XMMRegister dst, Address src);
  1370   void mulsd(XMMRegister dst, XMMRegister src);
  1372   // Multiply Scalar Single-Precision Floating-Point Values
  1373   void mulss(XMMRegister dst, Address src);
  1374   void mulss(XMMRegister dst, XMMRegister src);
  1376   void negl(Register dst);
  1378 #ifdef _LP64
  1379   void negq(Register dst);
  1380 #endif
  1382   void nop(int i = 1);
  1384   void notl(Register dst);
  1386 #ifdef _LP64
  1387   void notq(Register dst);
  1388 #endif
  1390   void orl(Address dst, int32_t imm32);
  1391   void orl(Register dst, int32_t imm32);
  1392   void orl(Register dst, Address src);
  1393   void orl(Register dst, Register src);
  1395   void orq(Address dst, int32_t imm32);
  1396   void orq(Register dst, int32_t imm32);
  1397   void orq(Register dst, Address src);
  1398   void orq(Register dst, Register src);
  1400   // Pack with unsigned saturation
  1401   void packuswb(XMMRegister dst, XMMRegister src);
  1402   void packuswb(XMMRegister dst, Address src);
  1404   // SSE4.2 string instructions
  1405   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
  1406   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
  1408   // SSE4.1 packed move
  1409   void pmovzxbw(XMMRegister dst, XMMRegister src);
  1410   void pmovzxbw(XMMRegister dst, Address src);
  1412 #ifndef _LP64 // no 32bit push/pop on amd64
  1413   void popl(Address dst);
  1414 #endif
  1416 #ifdef _LP64
  1417   void popq(Address dst);
  1418 #endif
  1420   void popcntl(Register dst, Address src);
  1421   void popcntl(Register dst, Register src);
  1423 #ifdef _LP64
  1424   void popcntq(Register dst, Address src);
  1425   void popcntq(Register dst, Register src);
  1426 #endif
  1428   // Prefetches (SSE, SSE2, 3DNOW only)
  1430   void prefetchnta(Address src);
  1431   void prefetchr(Address src);
  1432   void prefetcht0(Address src);
  1433   void prefetcht1(Address src);
  1434   void prefetcht2(Address src);
  1435   void prefetchw(Address src);
  1437   // Shuffle Packed Doublewords
  1438   void pshufd(XMMRegister dst, XMMRegister src, int mode);
  1439   void pshufd(XMMRegister dst, Address src,     int mode);
  1441   // Shuffle Packed Low Words
  1442   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
  1443   void pshuflw(XMMRegister dst, Address src,     int mode);
  1445   // Shift Right by bytes Logical DoubleQuadword Immediate
  1446   void psrldq(XMMRegister dst, int shift);
  1448   // Logical Compare Double Quadword
  1449   void ptest(XMMRegister dst, XMMRegister src);
  1450   void ptest(XMMRegister dst, Address src);
  1452   // Interleave Low Bytes
  1453   void punpcklbw(XMMRegister dst, XMMRegister src);
  1454   void punpcklbw(XMMRegister dst, Address src);
  1456   // Interleave Low Doublewords
  1457   void punpckldq(XMMRegister dst, XMMRegister src);
  1458   void punpckldq(XMMRegister dst, Address src);
  1460   // Interleave Low Quadwords
  1461   void punpcklqdq(XMMRegister dst, XMMRegister src);
  1463 #ifndef _LP64 // no 32bit push/pop on amd64
  1464   void pushl(Address src);
  1465 #endif
  1467   void pushq(Address src);
  1469   void rcll(Register dst, int imm8);
  1471   void rclq(Register dst, int imm8);
  1473   void ret(int imm16);
  1475   void sahf();
  1477   void sarl(Register dst, int imm8);
  1478   void sarl(Register dst);
  1480   void sarq(Register dst, int imm8);
  1481   void sarq(Register dst);
  1483   void sbbl(Address dst, int32_t imm32);
  1484   void sbbl(Register dst, int32_t imm32);
  1485   void sbbl(Register dst, Address src);
  1486   void sbbl(Register dst, Register src);
  1488   void sbbq(Address dst, int32_t imm32);
  1489   void sbbq(Register dst, int32_t imm32);
  1490   void sbbq(Register dst, Address src);
  1491   void sbbq(Register dst, Register src);
  1493   void setb(Condition cc, Register dst);
  1495   void shldl(Register dst, Register src);
  1497   void shll(Register dst, int imm8);
  1498   void shll(Register dst);
  1500   void shlq(Register dst, int imm8);
  1501   void shlq(Register dst);
  1503   void shrdl(Register dst, Register src);
  1505   void shrl(Register dst, int imm8);
  1506   void shrl(Register dst);
  1508   void shrq(Register dst, int imm8);
  1509   void shrq(Register dst);
  1511   void smovl(); // QQQ generic?
  1513   // Compute Square Root of Scalar Double-Precision Floating-Point Value
  1514   void sqrtsd(XMMRegister dst, Address src);
  1515   void sqrtsd(XMMRegister dst, XMMRegister src);
  1517   // Compute Square Root of Scalar Single-Precision Floating-Point Value
  1518   void sqrtss(XMMRegister dst, Address src);
  1519   void sqrtss(XMMRegister dst, XMMRegister src);
  1521   void std() { emit_byte(0xfd); }
  1523   void stmxcsr( Address dst );
  1525   void subl(Address dst, int32_t imm32);
  1526   void subl(Address dst, Register src);
  1527   void subl(Register dst, int32_t imm32);
  1528   void subl(Register dst, Address src);
  1529   void subl(Register dst, Register src);
  1531   void subq(Address dst, int32_t imm32);
  1532   void subq(Address dst, Register src);
  1533   void subq(Register dst, int32_t imm32);
  1534   void subq(Register dst, Address src);
  1535   void subq(Register dst, Register src);
  1537   // Force generation of a 4 byte immediate value even if it fits into 8bit
  1538   void subl_imm32(Register dst, int32_t imm32);
  1539   void subq_imm32(Register dst, int32_t imm32);
  1541   // Subtract Scalar Double-Precision Floating-Point Values
  1542   void subsd(XMMRegister dst, Address src);
  1543   void subsd(XMMRegister dst, XMMRegister src);
  1545   // Subtract Scalar Single-Precision Floating-Point Values
  1546   void subss(XMMRegister dst, Address src);
  1547   void subss(XMMRegister dst, XMMRegister src);
  1549   void testb(Register dst, int imm8);
  1551   void testl(Register dst, int32_t imm32);
  1552   void testl(Register dst, Register src);
  1553   void testl(Register dst, Address src);
  1555   void testq(Register dst, int32_t imm32);
  1556   void testq(Register dst, Register src);
  1559   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
  1560   void ucomisd(XMMRegister dst, Address src);
  1561   void ucomisd(XMMRegister dst, XMMRegister src);
  1563   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
  1564   void ucomiss(XMMRegister dst, Address src);
  1565   void ucomiss(XMMRegister dst, XMMRegister src);
  1567   void xaddl(Address dst, Register src);
  1569   void xaddq(Address dst, Register src);
  1571   void xchgl(Register reg, Address adr);
  1572   void xchgl(Register dst, Register src);
  1574   void xchgq(Register reg, Address adr);
  1575   void xchgq(Register dst, Register src);
  1577   // Get Value of Extended Control Register
  1578   void xgetbv() {
  1579     emit_byte(0x0F);
  1580     emit_byte(0x01);
  1581     emit_byte(0xD0);
  1584   void xorl(Register dst, int32_t imm32);
  1585   void xorl(Register dst, Address src);
  1586   void xorl(Register dst, Register src);
  1588   void xorq(Register dst, Address src);
  1589   void xorq(Register dst, Register src);
  1591   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
  1593   // AVX 3-operands scalar instructions (encoded with VEX prefix)
  1595   void vaddsd(XMMRegister dst, XMMRegister nds, Address src);
  1596   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1597   void vaddss(XMMRegister dst, XMMRegister nds, Address src);
  1598   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1599   void vdivsd(XMMRegister dst, XMMRegister nds, Address src);
  1600   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1601   void vdivss(XMMRegister dst, XMMRegister nds, Address src);
  1602   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1603   void vmulsd(XMMRegister dst, XMMRegister nds, Address src);
  1604   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1605   void vmulss(XMMRegister dst, XMMRegister nds, Address src);
  1606   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1607   void vsubsd(XMMRegister dst, XMMRegister nds, Address src);
  1608   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1609   void vsubss(XMMRegister dst, XMMRegister nds, Address src);
  1610   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1613   //====================VECTOR ARITHMETIC=====================================
  1615   // Add Packed Floating-Point Values
  1616   void addpd(XMMRegister dst, XMMRegister src);
  1617   void addps(XMMRegister dst, XMMRegister src);
  1618   void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1619   void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1620   void vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1621   void vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1623   // Subtract Packed Floating-Point Values
  1624   void subpd(XMMRegister dst, XMMRegister src);
  1625   void subps(XMMRegister dst, XMMRegister src);
  1626   void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1627   void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1628   void vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1629   void vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1631   // Multiply Packed Floating-Point Values
  1632   void mulpd(XMMRegister dst, XMMRegister src);
  1633   void mulps(XMMRegister dst, XMMRegister src);
  1634   void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1635   void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1636   void vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1637   void vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1639   // Divide Packed Floating-Point Values
  1640   void divpd(XMMRegister dst, XMMRegister src);
  1641   void divps(XMMRegister dst, XMMRegister src);
  1642   void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1643   void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1644   void vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1645   void vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1647   // Bitwise Logical AND of Packed Floating-Point Values
  1648   void andpd(XMMRegister dst, XMMRegister src);
  1649   void andps(XMMRegister dst, XMMRegister src);
  1650   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1651   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1652   void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1653   void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1655   // Bitwise Logical XOR of Packed Floating-Point Values
  1656   void xorpd(XMMRegister dst, XMMRegister src);
  1657   void xorps(XMMRegister dst, XMMRegister src);
  1658   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1659   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1660   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1661   void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1663   // Add packed integers
  1664   void paddb(XMMRegister dst, XMMRegister src);
  1665   void paddw(XMMRegister dst, XMMRegister src);
  1666   void paddd(XMMRegister dst, XMMRegister src);
  1667   void paddq(XMMRegister dst, XMMRegister src);
  1668   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1669   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1670   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1671   void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1672   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1673   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1674   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1675   void vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1677   // Sub packed integers
  1678   void psubb(XMMRegister dst, XMMRegister src);
  1679   void psubw(XMMRegister dst, XMMRegister src);
  1680   void psubd(XMMRegister dst, XMMRegister src);
  1681   void psubq(XMMRegister dst, XMMRegister src);
  1682   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1683   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1684   void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1685   void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1686   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1687   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1688   void vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1689   void vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1691   // Multiply packed integers (only shorts and ints)
  1692   void pmullw(XMMRegister dst, XMMRegister src);
  1693   void pmulld(XMMRegister dst, XMMRegister src);
  1694   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1695   void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1696   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1697   void vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1699   // Shift left packed integers
  1700   void psllw(XMMRegister dst, int shift);
  1701   void pslld(XMMRegister dst, int shift);
  1702   void psllq(XMMRegister dst, int shift);
  1703   void psllw(XMMRegister dst, XMMRegister shift);
  1704   void pslld(XMMRegister dst, XMMRegister shift);
  1705   void psllq(XMMRegister dst, XMMRegister shift);
  1706   void vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  1707   void vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  1708   void vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  1709   void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  1710   void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  1711   void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  1713   // Logical shift right packed integers
  1714   void psrlw(XMMRegister dst, int shift);
  1715   void psrld(XMMRegister dst, int shift);
  1716   void psrlq(XMMRegister dst, int shift);
  1717   void psrlw(XMMRegister dst, XMMRegister shift);
  1718   void psrld(XMMRegister dst, XMMRegister shift);
  1719   void psrlq(XMMRegister dst, XMMRegister shift);
  1720   void vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  1721   void vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  1722   void vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  1723   void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  1724   void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  1725   void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  1727   // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs)
  1728   void psraw(XMMRegister dst, int shift);
  1729   void psrad(XMMRegister dst, int shift);
  1730   void psraw(XMMRegister dst, XMMRegister shift);
  1731   void psrad(XMMRegister dst, XMMRegister shift);
  1732   void vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  1733   void vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256);
  1734   void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  1735   void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256);
  1737   // And packed integers
  1738   void pand(XMMRegister dst, XMMRegister src);
  1739   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1740   void vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1742   // Or packed integers
  1743   void por(XMMRegister dst, XMMRegister src);
  1744   void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1745   void vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1747   // Xor packed integers
  1748   void pxor(XMMRegister dst, XMMRegister src);
  1749   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256);
  1750   void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256);
  1752   // Copy low 128bit into high 128bit of YMM registers.
  1753   void vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1754   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src);
  1756   // AVX instruction which is used to clear upper 128 bits of YMM registers and
  1757   // to avoid transaction penalty between AVX and SSE states. There is no
  1758   // penalty if legacy SSE instructions are encoded using VEX prefix because
  1759   // they always clear upper 128 bits. It should be used before calling
  1760   // runtime code and native libraries.
  1761   void vzeroupper();
  1763  protected:
  1764   // Next instructions require address alignment 16 bytes SSE mode.
  1765   // They should be called only from corresponding MacroAssembler instructions.
  1766   void andpd(XMMRegister dst, Address src);
  1767   void andps(XMMRegister dst, Address src);
  1768   void xorpd(XMMRegister dst, Address src);
  1769   void xorps(XMMRegister dst, Address src);
  1771 };
  1774 // MacroAssembler extends Assembler by frequently used macros.
  1775 //
  1776 // Instructions for which a 'better' code sequence exists depending
  1777 // on arguments should also go in here.
  1779 class MacroAssembler: public Assembler {
  1780   friend class LIR_Assembler;
  1781   friend class Runtime1;      // as_Address()
  1783  protected:
  1785   Address as_Address(AddressLiteral adr);
  1786   Address as_Address(ArrayAddress adr);
  1788   // Support for VM calls
  1789   //
  1790   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  1791   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1792   // additional registers when doing a VM call).
  1793 #ifdef CC_INTERP
  1794   // c++ interpreter never wants to use interp_masm version of call_VM
  1795   #define VIRTUAL
  1796 #else
  1797   #define VIRTUAL virtual
  1798 #endif
  1800   VIRTUAL void call_VM_leaf_base(
  1801     address entry_point,               // the entry point
  1802     int     number_of_arguments        // the number of arguments to pop after the call
  1803   );
  1805   // This is the base routine called by the different versions of call_VM. The interpreter
  1806   // may customize this version by overriding it for its purposes (e.g., to save/restore
  1807   // additional registers when doing a VM call).
  1808   //
  1809   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  1810   // returns the register which contains the thread upon return. If a thread register has been
  1811   // specified, the return value will correspond to that register. If no last_java_sp is specified
  1812   // (noreg) than rsp will be used instead.
  1813   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
  1814     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  1815     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  1816     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  1817     address  entry_point,              // the entry point
  1818     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  1819     bool     check_exceptions          // whether to check for pending exceptions after return
  1820   );
  1822   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  1823   // The implementation is only non-empty for the InterpreterMacroAssembler,
  1824   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  1825   virtual void check_and_handle_popframe(Register java_thread);
  1826   virtual void check_and_handle_earlyret(Register java_thread);
  1828   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  1830   // helpers for FPU flag access
  1831   // tmp is a temporary register, if none is available use noreg
  1832   void save_rax   (Register tmp);
  1833   void restore_rax(Register tmp);
  1835  public:
  1836   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  1838   // Support for NULL-checks
  1839   //
  1840   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  1841   // If the accessed location is M[reg + offset] and the offset is known, provide the
  1842   // offset. No explicit code generation is needed if the offset is within a certain
  1843   // range (0 <= offset <= page_size).
  1845   void null_check(Register reg, int offset = -1);
  1846   static bool needs_explicit_null_check(intptr_t offset);
  1848   // Required platform-specific helpers for Label::patch_instructions.
  1849   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
  1850   void pd_patch_instruction(address branch, address target);
  1851 #ifndef PRODUCT
  1852   static void pd_print_patched_instruction(address branch);
  1853 #endif
  1855   // The following 4 methods return the offset of the appropriate move instruction
  1857   // Support for fast byte/short loading with zero extension (depending on particular CPU)
  1858   int load_unsigned_byte(Register dst, Address src);
  1859   int load_unsigned_short(Register dst, Address src);
  1861   // Support for fast byte/short loading with sign extension (depending on particular CPU)
  1862   int load_signed_byte(Register dst, Address src);
  1863   int load_signed_short(Register dst, Address src);
  1865   // Support for sign-extension (hi:lo = extend_sign(lo))
  1866   void extend_sign(Register hi, Register lo);
  1868   // Load and store values by size and signed-ness
  1869   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
  1870   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
  1872   // Support for inc/dec with optimal instruction selection depending on value
  1874   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
  1875   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
  1877   void decrementl(Address dst, int value = 1);
  1878   void decrementl(Register reg, int value = 1);
  1880   void decrementq(Register reg, int value = 1);
  1881   void decrementq(Address dst, int value = 1);
  1883   void incrementl(Address dst, int value = 1);
  1884   void incrementl(Register reg, int value = 1);
  1886   void incrementq(Register reg, int value = 1);
  1887   void incrementq(Address dst, int value = 1);
  1890   // Support optimal SSE move instructions.
  1891   void movflt(XMMRegister dst, XMMRegister src) {
  1892     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
  1893     else                       { movss (dst, src); return; }
  1895   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
  1896   void movflt(XMMRegister dst, AddressLiteral src);
  1897   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
  1899   void movdbl(XMMRegister dst, XMMRegister src) {
  1900     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
  1901     else                       { movsd (dst, src); return; }
  1904   void movdbl(XMMRegister dst, AddressLiteral src);
  1906   void movdbl(XMMRegister dst, Address src) {
  1907     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
  1908     else                         { movlpd(dst, src); return; }
  1910   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
  1912   void incrementl(AddressLiteral dst);
  1913   void incrementl(ArrayAddress dst);
  1915   // Alignment
  1916   void align(int modulus);
  1918   // A 5 byte nop that is safe for patching (see patch_verified_entry)
  1919   void fat_nop();
  1921   // Stack frame creation/removal
  1922   void enter();
  1923   void leave();
  1925   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
  1926   // The pointer will be loaded into the thread register.
  1927   void get_thread(Register thread);
  1930   // Support for VM calls
  1931   //
  1932   // It is imperative that all calls into the VM are handled via the call_VM macros.
  1933   // They make sure that the stack linkage is setup correctly. call_VM's correspond
  1934   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
  1937   void call_VM(Register oop_result,
  1938                address entry_point,
  1939                bool check_exceptions = true);
  1940   void call_VM(Register oop_result,
  1941                address entry_point,
  1942                Register arg_1,
  1943                bool check_exceptions = true);
  1944   void call_VM(Register oop_result,
  1945                address entry_point,
  1946                Register arg_1, Register arg_2,
  1947                bool check_exceptions = true);
  1948   void call_VM(Register oop_result,
  1949                address entry_point,
  1950                Register arg_1, Register arg_2, Register arg_3,
  1951                bool check_exceptions = true);
  1953   // Overloadings with last_Java_sp
  1954   void call_VM(Register oop_result,
  1955                Register last_java_sp,
  1956                address entry_point,
  1957                int number_of_arguments = 0,
  1958                bool check_exceptions = true);
  1959   void call_VM(Register oop_result,
  1960                Register last_java_sp,
  1961                address entry_point,
  1962                Register arg_1, bool
  1963                check_exceptions = true);
  1964   void call_VM(Register oop_result,
  1965                Register last_java_sp,
  1966                address entry_point,
  1967                Register arg_1, Register arg_2,
  1968                bool check_exceptions = true);
  1969   void call_VM(Register oop_result,
  1970                Register last_java_sp,
  1971                address entry_point,
  1972                Register arg_1, Register arg_2, Register arg_3,
  1973                bool check_exceptions = true);
  1975   // These always tightly bind to MacroAssembler::call_VM_base
  1976   // bypassing the virtual implementation
  1977   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
  1978   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
  1979   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
  1980   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
  1981   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
  1983   void call_VM_leaf(address entry_point,
  1984                     int number_of_arguments = 0);
  1985   void call_VM_leaf(address entry_point,
  1986                     Register arg_1);
  1987   void call_VM_leaf(address entry_point,
  1988                     Register arg_1, Register arg_2);
  1989   void call_VM_leaf(address entry_point,
  1990                     Register arg_1, Register arg_2, Register arg_3);
  1992   // These always tightly bind to MacroAssembler::call_VM_leaf_base
  1993   // bypassing the virtual implementation
  1994   void super_call_VM_leaf(address entry_point);
  1995   void super_call_VM_leaf(address entry_point, Register arg_1);
  1996   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
  1997   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
  1998   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
  2000   // last Java Frame (fills frame anchor)
  2001   void set_last_Java_frame(Register thread,
  2002                            Register last_java_sp,
  2003                            Register last_java_fp,
  2004                            address last_java_pc);
  2006   // thread in the default location (r15_thread on 64bit)
  2007   void set_last_Java_frame(Register last_java_sp,
  2008                            Register last_java_fp,
  2009                            address last_java_pc);
  2011   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
  2013   // thread in the default location (r15_thread on 64bit)
  2014   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
  2016   // Stores
  2017   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
  2018   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
  2020 #ifndef SERIALGC
  2022   void g1_write_barrier_pre(Register obj,
  2023                             Register pre_val,
  2024                             Register thread,
  2025                             Register tmp,
  2026                             bool tosca_live,
  2027                             bool expand_call);
  2029   void g1_write_barrier_post(Register store_addr,
  2030                              Register new_val,
  2031                              Register thread,
  2032                              Register tmp,
  2033                              Register tmp2);
  2035 #endif // SERIALGC
  2037   // split store_check(Register obj) to enhance instruction interleaving
  2038   void store_check_part_1(Register obj);
  2039   void store_check_part_2(Register obj);
  2041   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
  2042   void c2bool(Register x);
  2044   // C++ bool manipulation
  2046   void movbool(Register dst, Address src);
  2047   void movbool(Address dst, bool boolconst);
  2048   void movbool(Address dst, Register src);
  2049   void testbool(Register dst);
  2051   // oop manipulations
  2052   void load_klass(Register dst, Register src);
  2053   void store_klass(Register dst, Register src);
  2055   void load_heap_oop(Register dst, Address src);
  2056   void load_heap_oop_not_null(Register dst, Address src);
  2057   void store_heap_oop(Address dst, Register src);
  2058   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
  2060   // Used for storing NULL. All other oop constants should be
  2061   // stored using routines that take a jobject.
  2062   void store_heap_oop_null(Address dst);
  2064   void load_prototype_header(Register dst, Register src);
  2066 #ifdef _LP64
  2067   void store_klass_gap(Register dst, Register src);
  2069   // This dummy is to prevent a call to store_heap_oop from
  2070   // converting a zero (like NULL) into a Register by giving
  2071   // the compiler two choices it can't resolve
  2073   void store_heap_oop(Address dst, void* dummy);
  2075   void encode_heap_oop(Register r);
  2076   void decode_heap_oop(Register r);
  2077   void encode_heap_oop_not_null(Register r);
  2078   void decode_heap_oop_not_null(Register r);
  2079   void encode_heap_oop_not_null(Register dst, Register src);
  2080   void decode_heap_oop_not_null(Register dst, Register src);
  2082   void set_narrow_oop(Register dst, jobject obj);
  2083   void set_narrow_oop(Address dst, jobject obj);
  2084   void cmp_narrow_oop(Register dst, jobject obj);
  2085   void cmp_narrow_oop(Address dst, jobject obj);
  2087   // if heap base register is used - reinit it with the correct value
  2088   void reinit_heapbase();
  2090   DEBUG_ONLY(void verify_heapbase(const char* msg);)
  2092 #endif // _LP64
  2094   // Int division/remainder for Java
  2095   // (as idivl, but checks for special case as described in JVM spec.)
  2096   // returns idivl instruction offset for implicit exception handling
  2097   int corrected_idivl(Register reg);
  2099   // Long division/remainder for Java
  2100   // (as idivq, but checks for special case as described in JVM spec.)
  2101   // returns idivq instruction offset for implicit exception handling
  2102   int corrected_idivq(Register reg);
  2104   void int3();
  2106   // Long operation macros for a 32bit cpu
  2107   // Long negation for Java
  2108   void lneg(Register hi, Register lo);
  2110   // Long multiplication for Java
  2111   // (destroys contents of eax, ebx, ecx and edx)
  2112   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
  2114   // Long shifts for Java
  2115   // (semantics as described in JVM spec.)
  2116   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
  2117   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
  2119   // Long compare for Java
  2120   // (semantics as described in JVM spec.)
  2121   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
  2124   // misc
  2126   // Sign extension
  2127   void sign_extend_short(Register reg);
  2128   void sign_extend_byte(Register reg);
  2130   // Division by power of 2, rounding towards 0
  2131   void division_with_shift(Register reg, int shift_value);
  2133   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
  2134   //
  2135   // CF (corresponds to C0) if x < y
  2136   // PF (corresponds to C2) if unordered
  2137   // ZF (corresponds to C3) if x = y
  2138   //
  2139   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  2140   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
  2141   void fcmp(Register tmp);
  2142   // Variant of the above which allows y to be further down the stack
  2143   // and which only pops x and y if specified. If pop_right is
  2144   // specified then pop_left must also be specified.
  2145   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
  2147   // Floating-point comparison for Java
  2148   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
  2149   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
  2150   // (semantics as described in JVM spec.)
  2151   void fcmp2int(Register dst, bool unordered_is_less);
  2152   // Variant of the above which allows y to be further down the stack
  2153   // and which only pops x and y if specified. If pop_right is
  2154   // specified then pop_left must also be specified.
  2155   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
  2157   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
  2158   // tmp is a temporary register, if none is available use noreg
  2159   void fremr(Register tmp);
  2162   // same as fcmp2int, but using SSE2
  2163   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  2164   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
  2166   // Inlined sin/cos generator for Java; must not use CPU instruction
  2167   // directly on Intel as it does not have high enough precision
  2168   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
  2169   // number of FPU stack slots in use; all but the topmost will
  2170   // require saving if a slow case is necessary. Assumes argument is
  2171   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
  2172   // this code.
  2173   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
  2175   // branch to L if FPU flag C2 is set/not set
  2176   // tmp is a temporary register, if none is available use noreg
  2177   void jC2 (Register tmp, Label& L);
  2178   void jnC2(Register tmp, Label& L);
  2180   // Pop ST (ffree & fincstp combined)
  2181   void fpop();
  2183   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  2184   void push_fTOS();
  2186   // pops double TOS element from CPU stack and pushes on FPU stack
  2187   void pop_fTOS();
  2189   void empty_FPU_stack();
  2191   void push_IU_state();
  2192   void pop_IU_state();
  2194   void push_FPU_state();
  2195   void pop_FPU_state();
  2197   void push_CPU_state();
  2198   void pop_CPU_state();
  2200   // Round up to a power of two
  2201   void round_to(Register reg, int modulus);
  2203   // Callee saved registers handling
  2204   void push_callee_saved_registers();
  2205   void pop_callee_saved_registers();
  2207   // allocation
  2208   void eden_allocate(
  2209     Register obj,                      // result: pointer to object after successful allocation
  2210     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  2211     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  2212     Register t1,                       // temp register
  2213     Label&   slow_case                 // continuation point if fast allocation fails
  2214   );
  2215   void tlab_allocate(
  2216     Register obj,                      // result: pointer to object after successful allocation
  2217     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
  2218     int      con_size_in_bytes,        // object size in bytes if   known at compile time
  2219     Register t1,                       // temp register
  2220     Register t2,                       // temp register
  2221     Label&   slow_case                 // continuation point if fast allocation fails
  2222   );
  2223   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
  2224   void incr_allocated_bytes(Register thread,
  2225                             Register var_size_in_bytes, int con_size_in_bytes,
  2226                             Register t1 = noreg);
  2228   // interface method calling
  2229   void lookup_interface_method(Register recv_klass,
  2230                                Register intf_klass,
  2231                                RegisterOrConstant itable_index,
  2232                                Register method_result,
  2233                                Register scan_temp,
  2234                                Label& no_such_interface);
  2236   // virtual method calling
  2237   void lookup_virtual_method(Register recv_klass,
  2238                              RegisterOrConstant vtable_index,
  2239                              Register method_result);
  2241   // Test sub_klass against super_klass, with fast and slow paths.
  2243   // The fast path produces a tri-state answer: yes / no / maybe-slow.
  2244   // One of the three labels can be NULL, meaning take the fall-through.
  2245   // If super_check_offset is -1, the value is loaded up from super_klass.
  2246   // No registers are killed, except temp_reg.
  2247   void check_klass_subtype_fast_path(Register sub_klass,
  2248                                      Register super_klass,
  2249                                      Register temp_reg,
  2250                                      Label* L_success,
  2251                                      Label* L_failure,
  2252                                      Label* L_slow_path,
  2253                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
  2255   // The rest of the type check; must be wired to a corresponding fast path.
  2256   // It does not repeat the fast path logic, so don't use it standalone.
  2257   // The temp_reg and temp2_reg can be noreg, if no temps are available.
  2258   // Updates the sub's secondary super cache as necessary.
  2259   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
  2260   void check_klass_subtype_slow_path(Register sub_klass,
  2261                                      Register super_klass,
  2262                                      Register temp_reg,
  2263                                      Register temp2_reg,
  2264                                      Label* L_success,
  2265                                      Label* L_failure,
  2266                                      bool set_cond_codes = false);
  2268   // Simplified, combined version, good for typical uses.
  2269   // Falls through on failure.
  2270   void check_klass_subtype(Register sub_klass,
  2271                            Register super_klass,
  2272                            Register temp_reg,
  2273                            Label& L_success);
  2275   // method handles (JSR 292)
  2276   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
  2278   //----
  2279   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
  2281   // Debugging
  2283   // only if +VerifyOops
  2284   void verify_oop(Register reg, const char* s = "broken oop");
  2285   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
  2287   // only if +VerifyFPU
  2288   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
  2290   // prints msg, dumps registers and stops execution
  2291   void stop(const char* msg);
  2293   // prints msg and continues
  2294   void warn(const char* msg);
  2296   // dumps registers and other state
  2297   void print_state();
  2299   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
  2300   static void debug64(char* msg, int64_t pc, int64_t regs[]);
  2301   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
  2302   static void print_state64(int64_t pc, int64_t regs[]);
  2304   void os_breakpoint();
  2306   void untested()                                { stop("untested"); }
  2308   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
  2310   void should_not_reach_here()                   { stop("should not reach here"); }
  2312   void print_CPU_state();
  2314   // Stack overflow checking
  2315   void bang_stack_with_offset(int offset) {
  2316     // stack grows down, caller passes positive offset
  2317     assert(offset > 0, "must bang with negative offset");
  2318     movl(Address(rsp, (-offset)), rax);
  2321   // Writes to stack successive pages until offset reached to check for
  2322   // stack overflow + shadow pages.  Also, clobbers tmp
  2323   void bang_stack_size(Register size, Register tmp);
  2325   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
  2326                                                 Register tmp,
  2327                                                 int offset);
  2329   // Support for serializing memory accesses between threads
  2330   void serialize_memory(Register thread, Register tmp);
  2332   void verify_tlab();
  2334   // Biased locking support
  2335   // lock_reg and obj_reg must be loaded up with the appropriate values.
  2336   // swap_reg must be rax, and is killed.
  2337   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
  2338   // be killed; if not supplied, push/pop will be used internally to
  2339   // allocate a temporary (inefficient, avoid if possible).
  2340   // Optional slow case is for implementations (interpreter and C1) which branch to
  2341   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
  2342   // Returns offset of first potentially-faulting instruction for null
  2343   // check info (currently consumed only by C1). If
  2344   // swap_reg_contains_mark is true then returns -1 as it is assumed
  2345   // the calling code has already passed any potential faults.
  2346   int biased_locking_enter(Register lock_reg, Register obj_reg,
  2347                            Register swap_reg, Register tmp_reg,
  2348                            bool swap_reg_contains_mark,
  2349                            Label& done, Label* slow_case = NULL,
  2350                            BiasedLockingCounters* counters = NULL);
  2351   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
  2354   Condition negate_condition(Condition cond);
  2356   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
  2357   // operands. In general the names are modified to avoid hiding the instruction in Assembler
  2358   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
  2359   // here in MacroAssembler. The major exception to this rule is call
  2361   // Arithmetics
  2364   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
  2365   void addptr(Address dst, Register src);
  2367   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
  2368   void addptr(Register dst, int32_t src);
  2369   void addptr(Register dst, Register src);
  2370   void addptr(Register dst, RegisterOrConstant src) {
  2371     if (src.is_constant()) addptr(dst, (int) src.as_constant());
  2372     else                   addptr(dst,       src.as_register());
  2375   void andptr(Register dst, int32_t src);
  2376   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
  2378   void cmp8(AddressLiteral src1, int imm);
  2380   // renamed to drag out the casting of address to int32_t/intptr_t
  2381   void cmp32(Register src1, int32_t imm);
  2383   void cmp32(AddressLiteral src1, int32_t imm);
  2384   // compare reg - mem, or reg - &mem
  2385   void cmp32(Register src1, AddressLiteral src2);
  2387   void cmp32(Register src1, Address src2);
  2389 #ifndef _LP64
  2390   void cmpoop(Address dst, jobject obj);
  2391   void cmpoop(Register dst, jobject obj);
  2392 #endif // _LP64
  2394   // NOTE src2 must be the lval. This is NOT an mem-mem compare
  2395   void cmpptr(Address src1, AddressLiteral src2);
  2397   void cmpptr(Register src1, AddressLiteral src2);
  2399   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2400   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2401   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2403   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2404   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
  2406   // cmp64 to avoild hiding cmpq
  2407   void cmp64(Register src1, AddressLiteral src);
  2409   void cmpxchgptr(Register reg, Address adr);
  2411   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
  2414   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
  2417   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
  2419   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
  2421   void shlptr(Register dst, int32_t shift);
  2422   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
  2424   void shrptr(Register dst, int32_t shift);
  2425   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
  2427   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
  2428   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
  2430   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  2432   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
  2433   void subptr(Register dst, int32_t src);
  2434   // Force generation of a 4 byte immediate value even if it fits into 8bit
  2435   void subptr_imm32(Register dst, int32_t src);
  2436   void subptr(Register dst, Register src);
  2437   void subptr(Register dst, RegisterOrConstant src) {
  2438     if (src.is_constant()) subptr(dst, (int) src.as_constant());
  2439     else                   subptr(dst,       src.as_register());
  2442   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  2443   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
  2445   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  2446   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
  2448   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
  2452   // Helper functions for statistics gathering.
  2453   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
  2454   void cond_inc32(Condition cond, AddressLiteral counter_addr);
  2455   // Unconditional atomic increment.
  2456   void atomic_incl(AddressLiteral counter_addr);
  2458   void lea(Register dst, AddressLiteral adr);
  2459   void lea(Address dst, AddressLiteral adr);
  2460   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
  2462   void leal32(Register dst, Address src) { leal(dst, src); }
  2464   // Import other testl() methods from the parent class or else
  2465   // they will be hidden by the following overriding declaration.
  2466   using Assembler::testl;
  2467   void testl(Register dst, AddressLiteral src);
  2469   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  2470   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  2471   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
  2473   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
  2474   void testptr(Register src1, Register src2);
  2476   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  2477   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
  2479   // Calls
  2481   void call(Label& L, relocInfo::relocType rtype);
  2482   void call(Register entry);
  2484   // NOTE: this call tranfers to the effective address of entry NOT
  2485   // the address contained by entry. This is because this is more natural
  2486   // for jumps/calls.
  2487   void call(AddressLiteral entry);
  2489   // Jumps
  2491   // NOTE: these jumps tranfer to the effective address of dst NOT
  2492   // the address contained by dst. This is because this is more natural
  2493   // for jumps/calls.
  2494   void jump(AddressLiteral dst);
  2495   void jump_cc(Condition cc, AddressLiteral dst);
  2497   // 32bit can do a case table jump in one instruction but we no longer allow the base
  2498   // to be installed in the Address class. This jump will tranfers to the address
  2499   // contained in the location described by entry (not the address of entry)
  2500   void jump(ArrayAddress entry);
  2502   // Floating
  2504   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
  2505   void andpd(XMMRegister dst, AddressLiteral src);
  2507   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
  2508   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
  2509   void andps(XMMRegister dst, AddressLiteral src);
  2511   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
  2512   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
  2513   void comiss(XMMRegister dst, AddressLiteral src);
  2515   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
  2516   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
  2517   void comisd(XMMRegister dst, AddressLiteral src);
  2519   void fadd_s(Address src)        { Assembler::fadd_s(src); }
  2520   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
  2522   void fldcw(Address src) { Assembler::fldcw(src); }
  2523   void fldcw(AddressLiteral src);
  2525   void fld_s(int index)   { Assembler::fld_s(index); }
  2526   void fld_s(Address src) { Assembler::fld_s(src); }
  2527   void fld_s(AddressLiteral src);
  2529   void fld_d(Address src) { Assembler::fld_d(src); }
  2530   void fld_d(AddressLiteral src);
  2532   void fld_x(Address src) { Assembler::fld_x(src); }
  2533   void fld_x(AddressLiteral src);
  2535   void fmul_s(Address src)        { Assembler::fmul_s(src); }
  2536   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
  2538   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
  2539   void ldmxcsr(AddressLiteral src);
  2541   // compute pow(x,y) and exp(x) with x86 instructions. Don't cover
  2542   // all corner cases and may result in NaN and require fallback to a
  2543   // runtime call.
  2544   void fast_pow();
  2545   void fast_exp();
  2546   void increase_precision();
  2547   void restore_precision();
  2549   // computes exp(x). Fallback to runtime call included.
  2550   void exp_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(true, num_fpu_regs_in_use); }
  2551   // computes pow(x,y). Fallback to runtime call included.
  2552   void pow_with_fallback(int num_fpu_regs_in_use) { pow_or_exp(false, num_fpu_regs_in_use); }
  2554 private:
  2556   // call runtime as a fallback for trig functions and pow/exp.
  2557   void fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use);
  2559   // computes 2^(Ylog2X); Ylog2X in ST(0)
  2560   void pow_exp_core_encoding();
  2562   // computes pow(x,y) or exp(x). Fallback to runtime call included.
  2563   void pow_or_exp(bool is_exp, int num_fpu_regs_in_use);
  2565   // these are private because users should be doing movflt/movdbl
  2567   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
  2568   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
  2569   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
  2570   void movss(XMMRegister dst, AddressLiteral src);
  2572   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
  2573   void movlpd(XMMRegister dst, AddressLiteral src);
  2575 public:
  2577   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
  2578   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
  2579   void addsd(XMMRegister dst, AddressLiteral src);
  2581   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
  2582   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
  2583   void addss(XMMRegister dst, AddressLiteral src);
  2585   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
  2586   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
  2587   void divsd(XMMRegister dst, AddressLiteral src);
  2589   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
  2590   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
  2591   void divss(XMMRegister dst, AddressLiteral src);
  2593   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
  2594   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
  2595   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
  2596   void movsd(XMMRegister dst, AddressLiteral src);
  2598   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
  2599   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
  2600   void mulsd(XMMRegister dst, AddressLiteral src);
  2602   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
  2603   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
  2604   void mulss(XMMRegister dst, AddressLiteral src);
  2606   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
  2607   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
  2608   void sqrtsd(XMMRegister dst, AddressLiteral src);
  2610   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
  2611   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
  2612   void sqrtss(XMMRegister dst, AddressLiteral src);
  2614   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
  2615   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
  2616   void subsd(XMMRegister dst, AddressLiteral src);
  2618   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
  2619   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
  2620   void subss(XMMRegister dst, AddressLiteral src);
  2622   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
  2623   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
  2624   void ucomiss(XMMRegister dst, AddressLiteral src);
  2626   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
  2627   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
  2628   void ucomisd(XMMRegister dst, AddressLiteral src);
  2630   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
  2631   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
  2632   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
  2633   void xorpd(XMMRegister dst, AddressLiteral src);
  2635   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
  2636   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
  2637   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
  2638   void xorps(XMMRegister dst, AddressLiteral src);
  2640   // AVX 3-operands instructions
  2642   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
  2643   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
  2644   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  2646   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
  2647   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
  2648   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  2650   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandpd(dst, nds, src, vector256); }
  2651   void vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandpd(dst, nds, src, vector256); }
  2652   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  2654   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vandps(dst, nds, src, vector256); }
  2655   void vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256)     { Assembler::vandps(dst, nds, src, vector256); }
  2656   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  2658   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
  2659   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
  2660   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  2662   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
  2663   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
  2664   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  2666   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
  2667   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
  2668   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  2670   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
  2671   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
  2672   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  2674   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
  2675   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
  2676   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  2678   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
  2679   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
  2680   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
  2682   // AVX Vector instructions
  2684   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
  2685   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorpd(dst, nds, src, vector256); }
  2686   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  2688   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
  2689   void vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) { Assembler::vxorps(dst, nds, src, vector256); }
  2690   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256);
  2692   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
  2693     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
  2694       Assembler::vpxor(dst, nds, src, vector256);
  2695     else
  2696       Assembler::vxorpd(dst, nds, src, vector256);
  2698   void vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
  2699     if (UseAVX > 1 || !vector256) // vpxor 256 bit is available only in AVX2
  2700       Assembler::vpxor(dst, nds, src, vector256);
  2701     else
  2702       Assembler::vxorpd(dst, nds, src, vector256);
  2705   // Move packed integer values from low 128 bit to hign 128 bit in 256 bit vector.
  2706   void vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
  2707     if (UseAVX > 1) // vinserti128h is available only in AVX2
  2708       Assembler::vinserti128h(dst, nds, src);
  2709     else
  2710       Assembler::vinsertf128h(dst, nds, src);
  2713   // Data
  2715   void cmov32( Condition cc, Register dst, Address  src);
  2716   void cmov32( Condition cc, Register dst, Register src);
  2718   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
  2720   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
  2721   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
  2723   void movoop(Register dst, jobject obj);
  2724   void movoop(Address dst, jobject obj);
  2726   void movptr(ArrayAddress dst, Register src);
  2727   // can this do an lea?
  2728   void movptr(Register dst, ArrayAddress src);
  2730   void movptr(Register dst, Address src);
  2732   void movptr(Register dst, AddressLiteral src);
  2734   void movptr(Register dst, intptr_t src);
  2735   void movptr(Register dst, Register src);
  2736   void movptr(Address dst, intptr_t src);
  2738   void movptr(Address dst, Register src);
  2740   void movptr(Register dst, RegisterOrConstant src) {
  2741     if (src.is_constant()) movptr(dst, src.as_constant());
  2742     else                   movptr(dst, src.as_register());
  2745 #ifdef _LP64
  2746   // Generally the next two are only used for moving NULL
  2747   // Although there are situations in initializing the mark word where
  2748   // they could be used. They are dangerous.
  2750   // They only exist on LP64 so that int32_t and intptr_t are not the same
  2751   // and we have ambiguous declarations.
  2753   void movptr(Address dst, int32_t imm32);
  2754   void movptr(Register dst, int32_t imm32);
  2755 #endif // _LP64
  2757   // to avoid hiding movl
  2758   void mov32(AddressLiteral dst, Register src);
  2759   void mov32(Register dst, AddressLiteral src);
  2761   // to avoid hiding movb
  2762   void movbyte(ArrayAddress dst, int src);
  2764   // Import other mov() methods from the parent class or else
  2765   // they will be hidden by the following overriding declaration.
  2766   using Assembler::movdl;
  2767   using Assembler::movq;
  2768   void movdl(XMMRegister dst, AddressLiteral src);
  2769   void movq(XMMRegister dst, AddressLiteral src);
  2771   // Can push value or effective address
  2772   void pushptr(AddressLiteral src);
  2774   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
  2775   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
  2777   void pushoop(jobject obj);
  2779   // sign extend as need a l to ptr sized element
  2780   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
  2781   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
  2783   // C2 compiled method's prolog code.
  2784   void verified_entry(int framesize, bool stack_bang, bool fp_mode_24b);
  2786   // IndexOf strings.
  2787   // Small strings are loaded through stack if they cross page boundary.
  2788   void string_indexof(Register str1, Register str2,
  2789                       Register cnt1, Register cnt2,
  2790                       int int_cnt2,  Register result,
  2791                       XMMRegister vec, Register tmp);
  2793   // IndexOf for constant substrings with size >= 8 elements
  2794   // which don't need to be loaded through stack.
  2795   void string_indexofC8(Register str1, Register str2,
  2796                       Register cnt1, Register cnt2,
  2797                       int int_cnt2,  Register result,
  2798                       XMMRegister vec, Register tmp);
  2800     // Smallest code: we don't need to load through stack,
  2801     // check string tail.
  2803   // Compare strings.
  2804   void string_compare(Register str1, Register str2,
  2805                       Register cnt1, Register cnt2, Register result,
  2806                       XMMRegister vec1);
  2808   // Compare char[] arrays.
  2809   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
  2810                           Register limit, Register result, Register chr,
  2811                           XMMRegister vec1, XMMRegister vec2);
  2813   // Fill primitive arrays
  2814   void generate_fill(BasicType t, bool aligned,
  2815                      Register to, Register value, Register count,
  2816                      Register rtmp, XMMRegister xtmp);
  2818 #undef VIRTUAL
  2820 };
  2822 /**
  2823  * class SkipIfEqual:
  2825  * Instantiating this class will result in assembly code being output that will
  2826  * jump around any code emitted between the creation of the instance and it's
  2827  * automatic destruction at the end of a scope block, depending on the value of
  2828  * the flag passed to the constructor, which will be checked at run-time.
  2829  */
  2830 class SkipIfEqual {
  2831  private:
  2832   MacroAssembler* _masm;
  2833   Label _label;
  2835  public:
  2836    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
  2837    ~SkipIfEqual();
  2838 };
  2840 #ifdef ASSERT
  2841 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  2842 #endif
  2844 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP

mercurial