src/share/vm/gc_implementation/g1/g1BlockOffsetTable.cpp

Thu, 19 Jun 2014 13:31:14 +0200

author
brutisso
date
Thu, 19 Jun 2014 13:31:14 +0200
changeset 6904
0982ec23da03
parent 6680
78bbf4d43a14
child 6876
710a3c8b516e
child 6987
9441d22e429a
permissions
-rw-r--r--

8043607: Add a GC id as a log decoration similar to PrintGCTimeStamps
Reviewed-by: jwilhelm, ehelin, tschatzl

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
    27 #include "memory/space.hpp"
    28 #include "oops/oop.inline.hpp"
    29 #include "runtime/java.hpp"
    30 #include "services/memTracker.hpp"
    32 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
    34 //////////////////////////////////////////////////////////////////////
    35 // G1BlockOffsetSharedArray
    36 //////////////////////////////////////////////////////////////////////
    38 G1BlockOffsetSharedArray::G1BlockOffsetSharedArray(MemRegion reserved,
    39                                                    size_t init_word_size) :
    40   _reserved(reserved), _end(NULL)
    41 {
    42   size_t size = compute_size(reserved.word_size());
    43   ReservedSpace rs(ReservedSpace::allocation_align_size_up(size));
    44   if (!rs.is_reserved()) {
    45     vm_exit_during_initialization("Could not reserve enough space for heap offset array");
    46   }
    47   if (!_vs.initialize(rs, 0)) {
    48     vm_exit_during_initialization("Could not reserve enough space for heap offset array");
    49   }
    51   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
    53   _offset_array = (u_char*)_vs.low_boundary();
    54   resize(init_word_size);
    55   if (TraceBlockOffsetTable) {
    56     gclog_or_tty->print_cr("G1BlockOffsetSharedArray::G1BlockOffsetSharedArray: ");
    57     gclog_or_tty->print_cr("  "
    58                   "  rs.base(): " INTPTR_FORMAT
    59                   "  rs.size(): " INTPTR_FORMAT
    60                   "  rs end(): " INTPTR_FORMAT,
    61                   rs.base(), rs.size(), rs.base() + rs.size());
    62     gclog_or_tty->print_cr("  "
    63                   "  _vs.low_boundary(): " INTPTR_FORMAT
    64                   "  _vs.high_boundary(): " INTPTR_FORMAT,
    65                   _vs.low_boundary(),
    66                   _vs.high_boundary());
    67   }
    68 }
    70 void G1BlockOffsetSharedArray::resize(size_t new_word_size) {
    71   assert(new_word_size <= _reserved.word_size(), "Resize larger than reserved");
    72   size_t new_size = compute_size(new_word_size);
    73   size_t old_size = _vs.committed_size();
    74   size_t delta;
    75   char* high = _vs.high();
    76   _end = _reserved.start() + new_word_size;
    77   if (new_size > old_size) {
    78     delta = ReservedSpace::page_align_size_up(new_size - old_size);
    79     assert(delta > 0, "just checking");
    80     if (!_vs.expand_by(delta)) {
    81       // Do better than this for Merlin
    82       vm_exit_out_of_memory(delta, OOM_MMAP_ERROR, "offset table expansion");
    83     }
    84     assert(_vs.high() == high + delta, "invalid expansion");
    85     // Initialization of the contents is left to the
    86     // G1BlockOffsetArray that uses it.
    87   } else {
    88     delta = ReservedSpace::page_align_size_down(old_size - new_size);
    89     if (delta == 0) return;
    90     _vs.shrink_by(delta);
    91     assert(_vs.high() == high - delta, "invalid expansion");
    92   }
    93 }
    95 bool G1BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const {
    96   assert(p >= _reserved.start(), "just checking");
    97   size_t delta = pointer_delta(p, _reserved.start());
    98   return (delta & right_n_bits(LogN_words)) == (size_t)NoBits;
    99 }
   102 //////////////////////////////////////////////////////////////////////
   103 // G1BlockOffsetArray
   104 //////////////////////////////////////////////////////////////////////
   106 G1BlockOffsetArray::G1BlockOffsetArray(G1BlockOffsetSharedArray* array,
   107                                        MemRegion mr, bool init_to_zero) :
   108   G1BlockOffsetTable(mr.start(), mr.end()),
   109   _unallocated_block(_bottom),
   110   _array(array), _csp(NULL),
   111   _init_to_zero(init_to_zero) {
   112   assert(_bottom <= _end, "arguments out of order");
   113   if (!_init_to_zero) {
   114     // initialize cards to point back to mr.start()
   115     set_remainder_to_point_to_start(mr.start() + N_words, mr.end());
   116     _array->set_offset_array(0, 0);  // set first card to 0
   117   }
   118 }
   120 void G1BlockOffsetArray::set_space(Space* sp) {
   121   _sp = sp;
   122   _csp = sp->toContiguousSpace();
   123 }
   125 // The arguments follow the normal convention of denoting
   126 // a right-open interval: [start, end)
   127 void
   128 G1BlockOffsetArray:: set_remainder_to_point_to_start(HeapWord* start, HeapWord* end) {
   130   if (start >= end) {
   131     // The start address is equal to the end address (or to
   132     // the right of the end address) so there are not cards
   133     // that need to be updated..
   134     return;
   135   }
   137   // Write the backskip value for each region.
   138   //
   139   //    offset
   140   //    card             2nd                       3rd
   141   //     | +- 1st        |                         |
   142   //     v v             v                         v
   143   //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+-+-+-
   144   //    |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ...
   145   //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+-+-+-
   146   //    11              19                        75
   147   //      12
   148   //
   149   //    offset card is the card that points to the start of an object
   150   //      x - offset value of offset card
   151   //    1st - start of first logarithmic region
   152   //      0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1
   153   //    2nd - start of second logarithmic region
   154   //      1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8
   155   //    3rd - start of third logarithmic region
   156   //      2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64
   157   //
   158   //    integer below the block offset entry is an example of
   159   //    the index of the entry
   160   //
   161   //    Given an address,
   162   //      Find the index for the address
   163   //      Find the block offset table entry
   164   //      Convert the entry to a back slide
   165   //        (e.g., with today's, offset = 0x81 =>
   166   //          back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8
   167   //      Move back N (e.g., 8) entries and repeat with the
   168   //        value of the new entry
   169   //
   170   size_t start_card = _array->index_for(start);
   171   size_t end_card = _array->index_for(end-1);
   172   assert(start ==_array->address_for_index(start_card), "Precondition");
   173   assert(end ==_array->address_for_index(end_card)+N_words, "Precondition");
   174   set_remainder_to_point_to_start_incl(start_card, end_card); // closed interval
   175 }
   177 // Unlike the normal convention in this code, the argument here denotes
   178 // a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start()
   179 // above.
   180 void
   181 G1BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card) {
   182   if (start_card > end_card) {
   183     return;
   184   }
   185   assert(start_card > _array->index_for(_bottom), "Cannot be first card");
   186   assert(_array->offset_array(start_card-1) <= N_words,
   187          "Offset card has an unexpected value");
   188   size_t start_card_for_region = start_card;
   189   u_char offset = max_jubyte;
   190   for (int i = 0; i < BlockOffsetArray::N_powers; i++) {
   191     // -1 so that the the card with the actual offset is counted.  Another -1
   192     // so that the reach ends in this region and not at the start
   193     // of the next.
   194     size_t reach = start_card - 1 + (BlockOffsetArray::power_to_cards_back(i+1) - 1);
   195     offset = N_words + i;
   196     if (reach >= end_card) {
   197       _array->set_offset_array(start_card_for_region, end_card, offset);
   198       start_card_for_region = reach + 1;
   199       break;
   200     }
   201     _array->set_offset_array(start_card_for_region, reach, offset);
   202     start_card_for_region = reach + 1;
   203   }
   204   assert(start_card_for_region > end_card, "Sanity check");
   205   DEBUG_ONLY(check_all_cards(start_card, end_card);)
   206 }
   208 // The block [blk_start, blk_end) has been allocated;
   209 // adjust the block offset table to represent this information;
   210 // right-open interval: [blk_start, blk_end)
   211 void
   212 G1BlockOffsetArray::alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
   213   mark_block(blk_start, blk_end);
   214   allocated(blk_start, blk_end);
   215 }
   217 // Adjust BOT to show that a previously whole block has been split
   218 // into two.
   219 void G1BlockOffsetArray::split_block(HeapWord* blk, size_t blk_size,
   220                                      size_t left_blk_size) {
   221   // Verify that the BOT shows [blk, blk + blk_size) to be one block.
   222   verify_single_block(blk, blk_size);
   223   // Update the BOT to indicate that [blk + left_blk_size, blk + blk_size)
   224   // is one single block.
   225   mark_block(blk + left_blk_size, blk + blk_size);
   226 }
   229 // Action_mark - update the BOT for the block [blk_start, blk_end).
   230 //               Current typical use is for splitting a block.
   231 // Action_single - update the BOT for an allocation.
   232 // Action_verify - BOT verification.
   233 void G1BlockOffsetArray::do_block_internal(HeapWord* blk_start,
   234                                            HeapWord* blk_end,
   235                                            Action action) {
   236   assert(Universe::heap()->is_in_reserved(blk_start),
   237          "reference must be into the heap");
   238   assert(Universe::heap()->is_in_reserved(blk_end-1),
   239          "limit must be within the heap");
   240   // This is optimized to make the test fast, assuming we only rarely
   241   // cross boundaries.
   242   uintptr_t end_ui = (uintptr_t)(blk_end - 1);
   243   uintptr_t start_ui = (uintptr_t)blk_start;
   244   // Calculate the last card boundary preceding end of blk
   245   intptr_t boundary_before_end = (intptr_t)end_ui;
   246   clear_bits(boundary_before_end, right_n_bits(LogN));
   247   if (start_ui <= (uintptr_t)boundary_before_end) {
   248     // blk starts at or crosses a boundary
   249     // Calculate index of card on which blk begins
   250     size_t    start_index = _array->index_for(blk_start);
   251     // Index of card on which blk ends
   252     size_t    end_index   = _array->index_for(blk_end - 1);
   253     // Start address of card on which blk begins
   254     HeapWord* boundary    = _array->address_for_index(start_index);
   255     assert(boundary <= blk_start, "blk should start at or after boundary");
   256     if (blk_start != boundary) {
   257       // blk starts strictly after boundary
   258       // adjust card boundary and start_index forward to next card
   259       boundary += N_words;
   260       start_index++;
   261     }
   262     assert(start_index <= end_index, "monotonicity of index_for()");
   263     assert(boundary <= (HeapWord*)boundary_before_end, "tautology");
   264     switch (action) {
   265       case Action_mark: {
   266         if (init_to_zero()) {
   267           _array->set_offset_array(start_index, boundary, blk_start);
   268           break;
   269         } // Else fall through to the next case
   270       }
   271       case Action_single: {
   272         _array->set_offset_array(start_index, boundary, blk_start);
   273         // We have finished marking the "offset card". We need to now
   274         // mark the subsequent cards that this blk spans.
   275         if (start_index < end_index) {
   276           HeapWord* rem_st = _array->address_for_index(start_index) + N_words;
   277           HeapWord* rem_end = _array->address_for_index(end_index) + N_words;
   278           set_remainder_to_point_to_start(rem_st, rem_end);
   279         }
   280         break;
   281       }
   282       case Action_check: {
   283         _array->check_offset_array(start_index, boundary, blk_start);
   284         // We have finished checking the "offset card". We need to now
   285         // check the subsequent cards that this blk spans.
   286         check_all_cards(start_index + 1, end_index);
   287         break;
   288       }
   289       default:
   290         ShouldNotReachHere();
   291     }
   292   }
   293 }
   295 // The card-interval [start_card, end_card] is a closed interval; this
   296 // is an expensive check -- use with care and only under protection of
   297 // suitable flag.
   298 void G1BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const {
   300   if (end_card < start_card) {
   301     return;
   302   }
   303   guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card");
   304   for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) {
   305     u_char entry = _array->offset_array(c);
   306     if (c - start_card > BlockOffsetArray::power_to_cards_back(1)) {
   307       guarantee(entry > N_words,
   308                 err_msg("Should be in logarithmic region - "
   309                         "entry: " UINT32_FORMAT ", "
   310                         "_array->offset_array(c): " UINT32_FORMAT ", "
   311                         "N_words: " UINT32_FORMAT,
   312                         entry, _array->offset_array(c), N_words));
   313     }
   314     size_t backskip = BlockOffsetArray::entry_to_cards_back(entry);
   315     size_t landing_card = c - backskip;
   316     guarantee(landing_card >= (start_card - 1), "Inv");
   317     if (landing_card >= start_card) {
   318       guarantee(_array->offset_array(landing_card) <= entry,
   319                 err_msg("Monotonicity - landing_card offset: " UINT32_FORMAT ", "
   320                         "entry: " UINT32_FORMAT,
   321                         _array->offset_array(landing_card), entry));
   322     } else {
   323       guarantee(landing_card == start_card - 1, "Tautology");
   324       // Note that N_words is the maximum offset value
   325       guarantee(_array->offset_array(landing_card) <= N_words,
   326                 err_msg("landing card offset: " UINT32_FORMAT ", "
   327                         "N_words: " UINT32_FORMAT,
   328                         _array->offset_array(landing_card), N_words));
   329     }
   330   }
   331 }
   333 // The range [blk_start, blk_end) represents a single contiguous block
   334 // of storage; modify the block offset table to represent this
   335 // information; Right-open interval: [blk_start, blk_end)
   336 // NOTE: this method does _not_ adjust _unallocated_block.
   337 void
   338 G1BlockOffsetArray::single_block(HeapWord* blk_start, HeapWord* blk_end) {
   339   do_block_internal(blk_start, blk_end, Action_single);
   340 }
   342 // Mark the BOT such that if [blk_start, blk_end) straddles a card
   343 // boundary, the card following the first such boundary is marked
   344 // with the appropriate offset.
   345 // NOTE: this method does _not_ adjust _unallocated_block or
   346 // any cards subsequent to the first one.
   347 void
   348 G1BlockOffsetArray::mark_block(HeapWord* blk_start, HeapWord* blk_end) {
   349   do_block_internal(blk_start, blk_end, Action_mark);
   350 }
   352 HeapWord* G1BlockOffsetArray::block_start_unsafe(const void* addr) {
   353   assert(_bottom <= addr && addr < _end,
   354          "addr must be covered by this Array");
   355   // Must read this exactly once because it can be modified by parallel
   356   // allocation.
   357   HeapWord* ub = _unallocated_block;
   358   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
   359     assert(ub < _end, "tautology (see above)");
   360     return ub;
   361   }
   362   // Otherwise, find the block start using the table.
   363   HeapWord* q = block_at_or_preceding(addr, false, 0);
   364   return forward_to_block_containing_addr(q, addr);
   365 }
   367 // This duplicates a little code from the above: unavoidable.
   368 HeapWord*
   369 G1BlockOffsetArray::block_start_unsafe_const(const void* addr) const {
   370   assert(_bottom <= addr && addr < _end,
   371          "addr must be covered by this Array");
   372   // Must read this exactly once because it can be modified by parallel
   373   // allocation.
   374   HeapWord* ub = _unallocated_block;
   375   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
   376     assert(ub < _end, "tautology (see above)");
   377     return ub;
   378   }
   379   // Otherwise, find the block start using the table.
   380   HeapWord* q = block_at_or_preceding(addr, false, 0);
   381   HeapWord* n = q + _sp->block_size(q);
   382   return forward_to_block_containing_addr_const(q, n, addr);
   383 }
   386 HeapWord*
   387 G1BlockOffsetArray::forward_to_block_containing_addr_slow(HeapWord* q,
   388                                                           HeapWord* n,
   389                                                           const void* addr) {
   390   // We're not in the normal case.  We need to handle an important subcase
   391   // here: LAB allocation.  An allocation previously recorded in the
   392   // offset table was actually a lab allocation, and was divided into
   393   // several objects subsequently.  Fix this situation as we answer the
   394   // query, by updating entries as we cross them.
   396   // If the fist object's end q is at the card boundary. Start refining
   397   // with the corresponding card (the value of the entry will be basically
   398   // set to 0). If the object crosses the boundary -- start from the next card.
   399   size_t n_index = _array->index_for(n);
   400   size_t next_index = _array->index_for(n) + !_array->is_card_boundary(n);
   401   // Calculate a consistent next boundary.  If "n" is not at the boundary
   402   // already, step to the boundary.
   403   HeapWord* next_boundary = _array->address_for_index(n_index) +
   404                             (n_index == next_index ? 0 : N_words);
   405   assert(next_boundary <= _array->_end,
   406          err_msg("next_boundary is beyond the end of the covered region "
   407                  " next_boundary " PTR_FORMAT " _array->_end " PTR_FORMAT,
   408                  next_boundary, _array->_end));
   409   if (csp() != NULL) {
   410     if (addr >= csp()->top()) return csp()->top();
   411     while (next_boundary < addr) {
   412       while (n <= next_boundary) {
   413         q = n;
   414         oop obj = oop(q);
   415         if (obj->klass_or_null() == NULL) return q;
   416         n += obj->size();
   417       }
   418       assert(q <= next_boundary && n > next_boundary, "Consequence of loop");
   419       // [q, n) is the block that crosses the boundary.
   420       alloc_block_work2(&next_boundary, &next_index, q, n);
   421     }
   422   } else {
   423     while (next_boundary < addr) {
   424       while (n <= next_boundary) {
   425         q = n;
   426         oop obj = oop(q);
   427         if (obj->klass_or_null() == NULL) return q;
   428         n += _sp->block_size(q);
   429       }
   430       assert(q <= next_boundary && n > next_boundary, "Consequence of loop");
   431       // [q, n) is the block that crosses the boundary.
   432       alloc_block_work2(&next_boundary, &next_index, q, n);
   433     }
   434   }
   435   return forward_to_block_containing_addr_const(q, n, addr);
   436 }
   438 HeapWord* G1BlockOffsetArray::block_start_careful(const void* addr) const {
   439   assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
   441   assert(_bottom <= addr && addr < _end,
   442          "addr must be covered by this Array");
   443   // Must read this exactly once because it can be modified by parallel
   444   // allocation.
   445   HeapWord* ub = _unallocated_block;
   446   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
   447     assert(ub < _end, "tautology (see above)");
   448     return ub;
   449   }
   451   // Otherwise, find the block start using the table, but taking
   452   // care (cf block_start_unsafe() above) not to parse any objects/blocks
   453   // on the cards themsleves.
   454   size_t index = _array->index_for(addr);
   455   assert(_array->address_for_index(index) == addr,
   456          "arg should be start of card");
   458   HeapWord* q = (HeapWord*)addr;
   459   uint offset;
   460   do {
   461     offset = _array->offset_array(index--);
   462     q -= offset;
   463   } while (offset == N_words);
   464   assert(q <= addr, "block start should be to left of arg");
   465   return q;
   466 }
   468 // Note that the committed size of the covered space may have changed,
   469 // so the table size might also wish to change.
   470 void G1BlockOffsetArray::resize(size_t new_word_size) {
   471   HeapWord* new_end = _bottom + new_word_size;
   472   if (_end < new_end && !init_to_zero()) {
   473     // verify that the old and new boundaries are also card boundaries
   474     assert(_array->is_card_boundary(_end),
   475            "_end not a card boundary");
   476     assert(_array->is_card_boundary(new_end),
   477            "new _end would not be a card boundary");
   478     // set all the newly added cards
   479     _array->set_offset_array(_end, new_end, N_words);
   480   }
   481   _end = new_end;  // update _end
   482 }
   484 void G1BlockOffsetArray::set_region(MemRegion mr) {
   485   _bottom = mr.start();
   486   _end = mr.end();
   487 }
   489 //
   490 //              threshold_
   491 //              |   _index_
   492 //              v   v
   493 //      +-------+-------+-------+-------+-------+
   494 //      | i-1   |   i   | i+1   | i+2   | i+3   |
   495 //      +-------+-------+-------+-------+-------+
   496 //       ( ^    ]
   497 //         block-start
   498 //
   499 void G1BlockOffsetArray::alloc_block_work2(HeapWord** threshold_, size_t* index_,
   500                                            HeapWord* blk_start, HeapWord* blk_end) {
   501   // For efficiency, do copy-in/copy-out.
   502   HeapWord* threshold = *threshold_;
   503   size_t    index = *index_;
   505   assert(blk_start != NULL && blk_end > blk_start,
   506          "phantom block");
   507   assert(blk_end > threshold, "should be past threshold");
   508   assert(blk_start <= threshold, "blk_start should be at or before threshold");
   509   assert(pointer_delta(threshold, blk_start) <= N_words,
   510          "offset should be <= BlockOffsetSharedArray::N");
   511   assert(Universe::heap()->is_in_reserved(blk_start),
   512          "reference must be into the heap");
   513   assert(Universe::heap()->is_in_reserved(blk_end-1),
   514          "limit must be within the heap");
   515   assert(threshold == _array->_reserved.start() + index*N_words,
   516          "index must agree with threshold");
   518   DEBUG_ONLY(size_t orig_index = index;)
   520   // Mark the card that holds the offset into the block.  Note
   521   // that _next_offset_index and _next_offset_threshold are not
   522   // updated until the end of this method.
   523   _array->set_offset_array(index, threshold, blk_start);
   525   // We need to now mark the subsequent cards that this blk spans.
   527   // Index of card on which blk ends.
   528   size_t end_index   = _array->index_for(blk_end - 1);
   530   // Are there more cards left to be updated?
   531   if (index + 1 <= end_index) {
   532     HeapWord* rem_st  = _array->address_for_index(index + 1);
   533     // Calculate rem_end this way because end_index
   534     // may be the last valid index in the covered region.
   535     HeapWord* rem_end = _array->address_for_index(end_index) +  N_words;
   536     set_remainder_to_point_to_start(rem_st, rem_end);
   537   }
   539   index = end_index + 1;
   540   // Calculate threshold_ this way because end_index
   541   // may be the last valid index in the covered region.
   542   threshold = _array->address_for_index(end_index) + N_words;
   543   assert(threshold >= blk_end, "Incorrect offset threshold");
   545   // index_ and threshold_ updated here.
   546   *threshold_ = threshold;
   547   *index_ = index;
   549 #ifdef ASSERT
   550   // The offset can be 0 if the block starts on a boundary.  That
   551   // is checked by an assertion above.
   552   size_t start_index = _array->index_for(blk_start);
   553   HeapWord* boundary = _array->address_for_index(start_index);
   554   assert((_array->offset_array(orig_index) == 0 &&
   555           blk_start == boundary) ||
   556           (_array->offset_array(orig_index) > 0 &&
   557          _array->offset_array(orig_index) <= N_words),
   558          err_msg("offset array should have been set - "
   559                   "orig_index offset: " UINT32_FORMAT ", "
   560                   "blk_start: " PTR_FORMAT ", "
   561                   "boundary: " PTR_FORMAT,
   562                   _array->offset_array(orig_index),
   563                   blk_start, boundary));
   564   for (size_t j = orig_index + 1; j <= end_index; j++) {
   565     assert(_array->offset_array(j) > 0 &&
   566            _array->offset_array(j) <=
   567              (u_char) (N_words+BlockOffsetArray::N_powers-1),
   568            err_msg("offset array should have been set - "
   569                    UINT32_FORMAT " not > 0 OR "
   570                    UINT32_FORMAT " not <= " UINT32_FORMAT,
   571                    _array->offset_array(j),
   572                    _array->offset_array(j),
   573                    (u_char) (N_words+BlockOffsetArray::N_powers-1)));
   574   }
   575 #endif
   576 }
   578 bool
   579 G1BlockOffsetArray::verify_for_object(HeapWord* obj_start,
   580                                       size_t word_size) const {
   581   size_t first_card = _array->index_for(obj_start);
   582   size_t last_card = _array->index_for(obj_start + word_size - 1);
   583   if (!_array->is_card_boundary(obj_start)) {
   584     // If the object is not on a card boundary the BOT entry of the
   585     // first card should point to another object so we should not
   586     // check that one.
   587     first_card += 1;
   588   }
   589   for (size_t card = first_card; card <= last_card; card += 1) {
   590     HeapWord* card_addr = _array->address_for_index(card);
   591     HeapWord* block_start = block_start_const(card_addr);
   592     if (block_start != obj_start) {
   593       gclog_or_tty->print_cr("block start: "PTR_FORMAT" is incorrect - "
   594                              "card index: "SIZE_FORMAT" "
   595                              "card addr: "PTR_FORMAT" BOT entry: %u "
   596                              "obj: "PTR_FORMAT" word size: "SIZE_FORMAT" "
   597                              "cards: ["SIZE_FORMAT","SIZE_FORMAT"]",
   598                              block_start, card, card_addr,
   599                              _array->offset_array(card),
   600                              obj_start, word_size, first_card, last_card);
   601       return false;
   602     }
   603   }
   604   return true;
   605 }
   607 #ifndef PRODUCT
   608 void
   609 G1BlockOffsetArray::print_on(outputStream* out) {
   610   size_t from_index = _array->index_for(_bottom);
   611   size_t to_index = _array->index_for(_end);
   612   out->print_cr(">> BOT for area ["PTR_FORMAT","PTR_FORMAT") "
   613                 "cards ["SIZE_FORMAT","SIZE_FORMAT")",
   614                 _bottom, _end, from_index, to_index);
   615   for (size_t i = from_index; i < to_index; ++i) {
   616     out->print_cr("  entry "SIZE_FORMAT_W(8)" | "PTR_FORMAT" : %3u",
   617                   i, _array->address_for_index(i),
   618                   (uint) _array->offset_array(i));
   619   }
   620 }
   621 #endif // !PRODUCT
   623 //////////////////////////////////////////////////////////////////////
   624 // G1BlockOffsetArrayContigSpace
   625 //////////////////////////////////////////////////////////////////////
   627 HeapWord*
   628 G1BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) {
   629   assert(_bottom <= addr && addr < _end,
   630          "addr must be covered by this Array");
   631   HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1);
   632   return forward_to_block_containing_addr(q, addr);
   633 }
   635 HeapWord*
   636 G1BlockOffsetArrayContigSpace::
   637 block_start_unsafe_const(const void* addr) const {
   638   assert(_bottom <= addr && addr < _end,
   639          "addr must be covered by this Array");
   640   HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1);
   641   HeapWord* n = q + _sp->block_size(q);
   642   return forward_to_block_containing_addr_const(q, n, addr);
   643 }
   645 G1BlockOffsetArrayContigSpace::
   646 G1BlockOffsetArrayContigSpace(G1BlockOffsetSharedArray* array,
   647                               MemRegion mr) :
   648   G1BlockOffsetArray(array, mr, true)
   649 {
   650   _next_offset_threshold = NULL;
   651   _next_offset_index = 0;
   652 }
   654 HeapWord* G1BlockOffsetArrayContigSpace::initialize_threshold() {
   655   assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
   656          "just checking");
   657   _next_offset_index = _array->index_for(_bottom);
   658   _next_offset_index++;
   659   _next_offset_threshold =
   660     _array->address_for_index(_next_offset_index);
   661   return _next_offset_threshold;
   662 }
   664 void G1BlockOffsetArrayContigSpace::zero_bottom_entry() {
   665   assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
   666          "just checking");
   667   size_t bottom_index = _array->index_for(_bottom);
   668   assert(_array->address_for_index(bottom_index) == _bottom,
   669          "Precondition of call");
   670   _array->set_offset_array(bottom_index, 0);
   671 }
   673 void
   674 G1BlockOffsetArrayContigSpace::set_for_starts_humongous(HeapWord* new_top) {
   675   assert(new_top <= _end, "_end should have already been updated");
   677   // The first BOT entry should have offset 0.
   678   zero_bottom_entry();
   679   initialize_threshold();
   680   alloc_block(_bottom, new_top);
   681  }
   683 #ifndef PRODUCT
   684 void
   685 G1BlockOffsetArrayContigSpace::print_on(outputStream* out) {
   686   G1BlockOffsetArray::print_on(out);
   687   out->print_cr("  next offset threshold: "PTR_FORMAT, _next_offset_threshold);
   688   out->print_cr("  next offset index:     "SIZE_FORMAT, _next_offset_index);
   689 }
   690 #endif // !PRODUCT

mercurial