src/share/vm/gc_implementation/g1/concurrentMark.hpp

Thu, 19 Jun 2014 13:31:14 +0200

author
brutisso
date
Thu, 19 Jun 2014 13:31:14 +0200
changeset 6904
0982ec23da03
parent 6693
8a140676873f
child 6906
581e70386ec9
permissions
-rw-r--r--

8043607: Add a GC id as a log decoration similar to PrintGCTimeStamps
Reviewed-by: jwilhelm, ehelin, tschatzl

     1 /*
     2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
    28 #include "gc_implementation/g1/heapRegionSet.hpp"
    29 #include "gc_implementation/shared/gcId.hpp"
    30 #include "utilities/taskqueue.hpp"
    32 class G1CollectedHeap;
    33 class CMTask;
    34 typedef GenericTaskQueue<oop, mtGC>            CMTaskQueue;
    35 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
    37 // Closure used by CM during concurrent reference discovery
    38 // and reference processing (during remarking) to determine
    39 // if a particular object is alive. It is primarily used
    40 // to determine if referents of discovered reference objects
    41 // are alive. An instance is also embedded into the
    42 // reference processor as the _is_alive_non_header field
    43 class G1CMIsAliveClosure: public BoolObjectClosure {
    44   G1CollectedHeap* _g1;
    45  public:
    46   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
    48   bool do_object_b(oop obj);
    49 };
    51 // A generic CM bit map.  This is essentially a wrapper around the BitMap
    52 // class, with one bit per (1<<_shifter) HeapWords.
    54 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
    55  protected:
    56   HeapWord* _bmStartWord;      // base address of range covered by map
    57   size_t    _bmWordSize;       // map size (in #HeapWords covered)
    58   const int _shifter;          // map to char or bit
    59   VirtualSpace _virtual_space; // underlying the bit map
    60   BitMap    _bm;               // the bit map itself
    62  public:
    63   // constructor
    64   CMBitMapRO(int shifter);
    66   enum { do_yield = true };
    68   // inquiries
    69   HeapWord* startWord()   const { return _bmStartWord; }
    70   size_t    sizeInWords() const { return _bmWordSize;  }
    71   // the following is one past the last word in space
    72   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
    74   // read marks
    76   bool isMarked(HeapWord* addr) const {
    77     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
    78            "outside underlying space?");
    79     return _bm.at(heapWordToOffset(addr));
    80   }
    82   // iteration
    83   inline bool iterate(BitMapClosure* cl, MemRegion mr);
    84   inline bool iterate(BitMapClosure* cl);
    86   // Return the address corresponding to the next marked bit at or after
    87   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    88   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    89   HeapWord* getNextMarkedWordAddress(HeapWord* addr,
    90                                      HeapWord* limit = NULL) const;
    91   // Return the address corresponding to the next unmarked bit at or after
    92   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
    93   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
    94   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
    95                                        HeapWord* limit = NULL) const;
    97   // conversion utilities
    98   HeapWord* offsetToHeapWord(size_t offset) const {
    99     return _bmStartWord + (offset << _shifter);
   100   }
   101   size_t heapWordToOffset(HeapWord* addr) const {
   102     return pointer_delta(addr, _bmStartWord) >> _shifter;
   103   }
   104   int heapWordDiffToOffsetDiff(size_t diff) const;
   106   // The argument addr should be the start address of a valid object
   107   HeapWord* nextObject(HeapWord* addr) {
   108     oop obj = (oop) addr;
   109     HeapWord* res =  addr + obj->size();
   110     assert(offsetToHeapWord(heapWordToOffset(res)) == res, "sanity");
   111     return res;
   112   }
   114   void print_on_error(outputStream* st, const char* prefix) const;
   116   // debugging
   117   NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
   118 };
   120 class CMBitMap : public CMBitMapRO {
   122  public:
   123   // constructor
   124   CMBitMap(int shifter) :
   125     CMBitMapRO(shifter) {}
   127   // Allocates the back store for the marking bitmap
   128   bool allocate(ReservedSpace heap_rs);
   130   // write marks
   131   void mark(HeapWord* addr) {
   132     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   133            "outside underlying space?");
   134     _bm.set_bit(heapWordToOffset(addr));
   135   }
   136   void clear(HeapWord* addr) {
   137     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   138            "outside underlying space?");
   139     _bm.clear_bit(heapWordToOffset(addr));
   140   }
   141   bool parMark(HeapWord* addr) {
   142     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   143            "outside underlying space?");
   144     return _bm.par_set_bit(heapWordToOffset(addr));
   145   }
   146   bool parClear(HeapWord* addr) {
   147     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
   148            "outside underlying space?");
   149     return _bm.par_clear_bit(heapWordToOffset(addr));
   150   }
   151   void markRange(MemRegion mr);
   152   void clearAll();
   153   void clearRange(MemRegion mr);
   155   // Starting at the bit corresponding to "addr" (inclusive), find the next
   156   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
   157   // the end of this run (stopping at "end_addr").  Return the MemRegion
   158   // covering from the start of the region corresponding to the first bit
   159   // of the run to the end of the region corresponding to the last bit of
   160   // the run.  If there is no "1" bit at or after "addr", return an empty
   161   // MemRegion.
   162   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
   163 };
   165 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
   166 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
   167   VirtualSpace _virtual_space;   // Underlying backing store for actual stack
   168   ConcurrentMark* _cm;
   169   oop* _base;        // bottom of stack
   170   jint _index;       // one more than last occupied index
   171   jint _capacity;    // max #elements
   172   jint _saved_index; // value of _index saved at start of GC
   173   NOT_PRODUCT(jint _max_depth;)   // max depth plumbed during run
   175   bool  _overflow;
   176   bool  _should_expand;
   177   DEBUG_ONLY(bool _drain_in_progress;)
   178   DEBUG_ONLY(bool _drain_in_progress_yields;)
   180  public:
   181   CMMarkStack(ConcurrentMark* cm);
   182   ~CMMarkStack();
   184 #ifndef PRODUCT
   185   jint max_depth() const {
   186     return _max_depth;
   187   }
   188 #endif
   190   bool allocate(size_t capacity);
   192   oop pop() {
   193     if (!isEmpty()) {
   194       return _base[--_index] ;
   195     }
   196     return NULL;
   197   }
   199   // If overflow happens, don't do the push, and record the overflow.
   200   // *Requires* that "ptr" is already marked.
   201   void push(oop ptr) {
   202     if (isFull()) {
   203       // Record overflow.
   204       _overflow = true;
   205       return;
   206     } else {
   207       _base[_index++] = ptr;
   208       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
   209     }
   210   }
   211   // Non-block impl.  Note: concurrency is allowed only with other
   212   // "par_push" operations, not with "pop" or "drain".  We would need
   213   // parallel versions of them if such concurrency was desired.
   214   void par_push(oop ptr);
   216   // Pushes the first "n" elements of "ptr_arr" on the stack.
   217   // Non-block impl.  Note: concurrency is allowed only with other
   218   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
   219   void par_adjoin_arr(oop* ptr_arr, int n);
   221   // Pushes the first "n" elements of "ptr_arr" on the stack.
   222   // Locking impl: concurrency is allowed only with
   223   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
   224   // locking strategy.
   225   void par_push_arr(oop* ptr_arr, int n);
   227   // If returns false, the array was empty.  Otherwise, removes up to "max"
   228   // elements from the stack, and transfers them to "ptr_arr" in an
   229   // unspecified order.  The actual number transferred is given in "n" ("n
   230   // == 0" is deliberately redundant with the return value.)  Locking impl:
   231   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
   232   // operations, which use the same locking strategy.
   233   bool par_pop_arr(oop* ptr_arr, int max, int* n);
   235   // Drain the mark stack, applying the given closure to all fields of
   236   // objects on the stack.  (That is, continue until the stack is empty,
   237   // even if closure applications add entries to the stack.)  The "bm"
   238   // argument, if non-null, may be used to verify that only marked objects
   239   // are on the mark stack.  If "yield_after" is "true", then the
   240   // concurrent marker performing the drain offers to yield after
   241   // processing each object.  If a yield occurs, stops the drain operation
   242   // and returns false.  Otherwise, returns true.
   243   template<class OopClosureClass>
   244   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
   246   bool isEmpty()    { return _index == 0; }
   247   bool isFull()     { return _index == _capacity; }
   248   int  maxElems()   { return _capacity; }
   250   bool overflow() { return _overflow; }
   251   void clear_overflow() { _overflow = false; }
   253   bool should_expand() const { return _should_expand; }
   254   void set_should_expand();
   256   // Expand the stack, typically in response to an overflow condition
   257   void expand();
   259   int  size() { return _index; }
   261   void setEmpty()   { _index = 0; clear_overflow(); }
   263   // Record the current index.
   264   void note_start_of_gc();
   266   // Make sure that we have not added any entries to the stack during GC.
   267   void note_end_of_gc();
   269   // iterate over the oops in the mark stack, up to the bound recorded via
   270   // the call above.
   271   void oops_do(OopClosure* f);
   272 };
   274 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
   275 private:
   276 #ifndef PRODUCT
   277   uintx _num_remaining;
   278   bool _force;
   279 #endif // !defined(PRODUCT)
   281 public:
   282   void init() PRODUCT_RETURN;
   283   void update() PRODUCT_RETURN;
   284   bool should_force() PRODUCT_RETURN_( return false; );
   285 };
   287 // this will enable a variety of different statistics per GC task
   288 #define _MARKING_STATS_       0
   289 // this will enable the higher verbose levels
   290 #define _MARKING_VERBOSE_     0
   292 #if _MARKING_STATS_
   293 #define statsOnly(statement)  \
   294 do {                          \
   295   statement ;                 \
   296 } while (0)
   297 #else // _MARKING_STATS_
   298 #define statsOnly(statement)  \
   299 do {                          \
   300 } while (0)
   301 #endif // _MARKING_STATS_
   303 typedef enum {
   304   no_verbose  = 0,   // verbose turned off
   305   stats_verbose,     // only prints stats at the end of marking
   306   low_verbose,       // low verbose, mostly per region and per major event
   307   medium_verbose,    // a bit more detailed than low
   308   high_verbose       // per object verbose
   309 } CMVerboseLevel;
   311 class YoungList;
   313 // Root Regions are regions that are not empty at the beginning of a
   314 // marking cycle and which we might collect during an evacuation pause
   315 // while the cycle is active. Given that, during evacuation pauses, we
   316 // do not copy objects that are explicitly marked, what we have to do
   317 // for the root regions is to scan them and mark all objects reachable
   318 // from them. According to the SATB assumptions, we only need to visit
   319 // each object once during marking. So, as long as we finish this scan
   320 // before the next evacuation pause, we can copy the objects from the
   321 // root regions without having to mark them or do anything else to them.
   322 //
   323 // Currently, we only support root region scanning once (at the start
   324 // of the marking cycle) and the root regions are all the survivor
   325 // regions populated during the initial-mark pause.
   326 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
   327 private:
   328   YoungList*           _young_list;
   329   ConcurrentMark*      _cm;
   331   volatile bool        _scan_in_progress;
   332   volatile bool        _should_abort;
   333   HeapRegion* volatile _next_survivor;
   335 public:
   336   CMRootRegions();
   337   // We actually do most of the initialization in this method.
   338   void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
   340   // Reset the claiming / scanning of the root regions.
   341   void prepare_for_scan();
   343   // Forces get_next() to return NULL so that the iteration aborts early.
   344   void abort() { _should_abort = true; }
   346   // Return true if the CM thread are actively scanning root regions,
   347   // false otherwise.
   348   bool scan_in_progress() { return _scan_in_progress; }
   350   // Claim the next root region to scan atomically, or return NULL if
   351   // all have been claimed.
   352   HeapRegion* claim_next();
   354   // Flag that we're done with root region scanning and notify anyone
   355   // who's waiting on it. If aborted is false, assume that all regions
   356   // have been claimed.
   357   void scan_finished();
   359   // If CM threads are still scanning root regions, wait until they
   360   // are done. Return true if we had to wait, false otherwise.
   361   bool wait_until_scan_finished();
   362 };
   364 class ConcurrentMarkThread;
   366 class ConcurrentMark: public CHeapObj<mtGC> {
   367   friend class CMMarkStack;
   368   friend class ConcurrentMarkThread;
   369   friend class CMTask;
   370   friend class CMBitMapClosure;
   371   friend class CMGlobalObjectClosure;
   372   friend class CMRemarkTask;
   373   friend class CMConcurrentMarkingTask;
   374   friend class G1ParNoteEndTask;
   375   friend class CalcLiveObjectsClosure;
   376   friend class G1CMRefProcTaskProxy;
   377   friend class G1CMRefProcTaskExecutor;
   378   friend class G1CMKeepAliveAndDrainClosure;
   379   friend class G1CMDrainMarkingStackClosure;
   381 protected:
   382   ConcurrentMarkThread* _cmThread;   // the thread doing the work
   383   G1CollectedHeap*      _g1h;        // the heap.
   384   uint                  _parallel_marking_threads; // the number of marking
   385                                                    // threads we're use
   386   uint                  _max_parallel_marking_threads; // max number of marking
   387                                                    // threads we'll ever use
   388   double                _sleep_factor; // how much we have to sleep, with
   389                                        // respect to the work we just did, to
   390                                        // meet the marking overhead goal
   391   double                _marking_task_overhead; // marking target overhead for
   392                                                 // a single task
   394   // same as the two above, but for the cleanup task
   395   double                _cleanup_sleep_factor;
   396   double                _cleanup_task_overhead;
   398   FreeRegionList        _cleanup_list;
   400   // Concurrent marking support structures
   401   CMBitMap                _markBitMap1;
   402   CMBitMap                _markBitMap2;
   403   CMBitMapRO*             _prevMarkBitMap; // completed mark bitmap
   404   CMBitMap*               _nextMarkBitMap; // under-construction mark bitmap
   406   BitMap                  _region_bm;
   407   BitMap                  _card_bm;
   409   // Heap bounds
   410   HeapWord*               _heap_start;
   411   HeapWord*               _heap_end;
   413   // Root region tracking and claiming.
   414   CMRootRegions           _root_regions;
   416   // For gray objects
   417   CMMarkStack             _markStack; // Grey objects behind global finger.
   418   HeapWord* volatile      _finger;  // the global finger, region aligned,
   419                                     // always points to the end of the
   420                                     // last claimed region
   422   // marking tasks
   423   uint                    _max_worker_id;// maximum worker id
   424   uint                    _active_tasks; // task num currently active
   425   CMTask**                _tasks;        // task queue array (max_worker_id len)
   426   CMTaskQueueSet*         _task_queues;  // task queue set
   427   ParallelTaskTerminator  _terminator;   // for termination
   429   // Two sync barriers that are used to synchronise tasks when an
   430   // overflow occurs. The algorithm is the following. All tasks enter
   431   // the first one to ensure that they have all stopped manipulating
   432   // the global data structures. After they exit it, they re-initialise
   433   // their data structures and task 0 re-initialises the global data
   434   // structures. Then, they enter the second sync barrier. This
   435   // ensure, that no task starts doing work before all data
   436   // structures (local and global) have been re-initialised. When they
   437   // exit it, they are free to start working again.
   438   WorkGangBarrierSync     _first_overflow_barrier_sync;
   439   WorkGangBarrierSync     _second_overflow_barrier_sync;
   441   // this is set by any task, when an overflow on the global data
   442   // structures is detected.
   443   volatile bool           _has_overflown;
   444   // true: marking is concurrent, false: we're in remark
   445   volatile bool           _concurrent;
   446   // set at the end of a Full GC so that marking aborts
   447   volatile bool           _has_aborted;
   448   GCId                    _aborted_gc_id;
   450   // used when remark aborts due to an overflow to indicate that
   451   // another concurrent marking phase should start
   452   volatile bool           _restart_for_overflow;
   454   // This is true from the very start of concurrent marking until the
   455   // point when all the tasks complete their work. It is really used
   456   // to determine the points between the end of concurrent marking and
   457   // time of remark.
   458   volatile bool           _concurrent_marking_in_progress;
   460   // verbose level
   461   CMVerboseLevel          _verbose_level;
   463   // All of these times are in ms.
   464   NumberSeq _init_times;
   465   NumberSeq _remark_times;
   466   NumberSeq   _remark_mark_times;
   467   NumberSeq   _remark_weak_ref_times;
   468   NumberSeq _cleanup_times;
   469   double    _total_counting_time;
   470   double    _total_rs_scrub_time;
   472   double*   _accum_task_vtime;   // accumulated task vtime
   474   FlexibleWorkGang* _parallel_workers;
   476   ForceOverflowSettings _force_overflow_conc;
   477   ForceOverflowSettings _force_overflow_stw;
   479   void weakRefsWork(bool clear_all_soft_refs);
   481   void swapMarkBitMaps();
   483   // It resets the global marking data structures, as well as the
   484   // task local ones; should be called during initial mark.
   485   void reset();
   487   // Resets all the marking data structures. Called when we have to restart
   488   // marking or when marking completes (via set_non_marking_state below).
   489   void reset_marking_state(bool clear_overflow = true);
   491   // We do this after we're done with marking so that the marking data
   492   // structures are initialised to a sensible and predictable state.
   493   void set_non_marking_state();
   495   // Called to indicate how many threads are currently active.
   496   void set_concurrency(uint active_tasks);
   498   // It should be called to indicate which phase we're in (concurrent
   499   // mark or remark) and how many threads are currently active.
   500   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
   502   // prints all gathered CM-related statistics
   503   void print_stats();
   505   bool cleanup_list_is_empty() {
   506     return _cleanup_list.is_empty();
   507   }
   509   // accessor methods
   510   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
   511   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
   512   double sleep_factor()                     { return _sleep_factor; }
   513   double marking_task_overhead()            { return _marking_task_overhead;}
   514   double cleanup_sleep_factor()             { return _cleanup_sleep_factor; }
   515   double cleanup_task_overhead()            { return _cleanup_task_overhead;}
   517   bool use_parallel_marking_threads() const {
   518     assert(parallel_marking_threads() <=
   519            max_parallel_marking_threads(), "sanity");
   520     assert((_parallel_workers == NULL && parallel_marking_threads() == 0) ||
   521            parallel_marking_threads() > 0,
   522            "parallel workers not set up correctly");
   523     return _parallel_workers != NULL;
   524   }
   526   HeapWord*               finger()          { return _finger;   }
   527   bool                    concurrent()      { return _concurrent; }
   528   uint                    active_tasks()    { return _active_tasks; }
   529   ParallelTaskTerminator* terminator()      { return &_terminator; }
   531   // It claims the next available region to be scanned by a marking
   532   // task/thread. It might return NULL if the next region is empty or
   533   // we have run out of regions. In the latter case, out_of_regions()
   534   // determines whether we've really run out of regions or the task
   535   // should call claim_region() again. This might seem a bit
   536   // awkward. Originally, the code was written so that claim_region()
   537   // either successfully returned with a non-empty region or there
   538   // were no more regions to be claimed. The problem with this was
   539   // that, in certain circumstances, it iterated over large chunks of
   540   // the heap finding only empty regions and, while it was working, it
   541   // was preventing the calling task to call its regular clock
   542   // method. So, this way, each task will spend very little time in
   543   // claim_region() and is allowed to call the regular clock method
   544   // frequently.
   545   HeapRegion* claim_region(uint worker_id);
   547   // It determines whether we've run out of regions to scan. Note that
   548   // the finger can point past the heap end in case the heap was expanded
   549   // to satisfy an allocation without doing a GC. This is fine, because all
   550   // objects in those regions will be considered live anyway because of
   551   // SATB guarantees (i.e. their TAMS will be equal to bottom).
   552   bool        out_of_regions() { return _finger >= _heap_end; }
   554   // Returns the task with the given id
   555   CMTask* task(int id) {
   556     assert(0 <= id && id < (int) _active_tasks,
   557            "task id not within active bounds");
   558     return _tasks[id];
   559   }
   561   // Returns the task queue with the given id
   562   CMTaskQueue* task_queue(int id) {
   563     assert(0 <= id && id < (int) _active_tasks,
   564            "task queue id not within active bounds");
   565     return (CMTaskQueue*) _task_queues->queue(id);
   566   }
   568   // Returns the task queue set
   569   CMTaskQueueSet* task_queues()  { return _task_queues; }
   571   // Access / manipulation of the overflow flag which is set to
   572   // indicate that the global stack has overflown
   573   bool has_overflown()           { return _has_overflown; }
   574   void set_has_overflown()       { _has_overflown = true; }
   575   void clear_has_overflown()     { _has_overflown = false; }
   576   bool restart_for_overflow()    { return _restart_for_overflow; }
   578   // Methods to enter the two overflow sync barriers
   579   void enter_first_sync_barrier(uint worker_id);
   580   void enter_second_sync_barrier(uint worker_id);
   582   ForceOverflowSettings* force_overflow_conc() {
   583     return &_force_overflow_conc;
   584   }
   586   ForceOverflowSettings* force_overflow_stw() {
   587     return &_force_overflow_stw;
   588   }
   590   ForceOverflowSettings* force_overflow() {
   591     if (concurrent()) {
   592       return force_overflow_conc();
   593     } else {
   594       return force_overflow_stw();
   595     }
   596   }
   598   // Live Data Counting data structures...
   599   // These data structures are initialized at the start of
   600   // marking. They are written to while marking is active.
   601   // They are aggregated during remark; the aggregated values
   602   // are then used to populate the _region_bm, _card_bm, and
   603   // the total live bytes, which are then subsequently updated
   604   // during cleanup.
   606   // An array of bitmaps (one bit map per task). Each bitmap
   607   // is used to record the cards spanned by the live objects
   608   // marked by that task/worker.
   609   BitMap*  _count_card_bitmaps;
   611   // Used to record the number of marked live bytes
   612   // (for each region, by worker thread).
   613   size_t** _count_marked_bytes;
   615   // Card index of the bottom of the G1 heap. Used for biasing indices into
   616   // the card bitmaps.
   617   intptr_t _heap_bottom_card_num;
   619   // Set to true when initialization is complete
   620   bool _completed_initialization;
   622 public:
   623   // Manipulation of the global mark stack.
   624   // Notice that the first mark_stack_push is CAS-based, whereas the
   625   // two below are Mutex-based. This is OK since the first one is only
   626   // called during evacuation pauses and doesn't compete with the
   627   // other two (which are called by the marking tasks during
   628   // concurrent marking or remark).
   629   bool mark_stack_push(oop p) {
   630     _markStack.par_push(p);
   631     if (_markStack.overflow()) {
   632       set_has_overflown();
   633       return false;
   634     }
   635     return true;
   636   }
   637   bool mark_stack_push(oop* arr, int n) {
   638     _markStack.par_push_arr(arr, n);
   639     if (_markStack.overflow()) {
   640       set_has_overflown();
   641       return false;
   642     }
   643     return true;
   644   }
   645   void mark_stack_pop(oop* arr, int max, int* n) {
   646     _markStack.par_pop_arr(arr, max, n);
   647   }
   648   size_t mark_stack_size()                { return _markStack.size(); }
   649   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
   650   bool mark_stack_overflow()              { return _markStack.overflow(); }
   651   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
   653   CMRootRegions* root_regions() { return &_root_regions; }
   655   bool concurrent_marking_in_progress() {
   656     return _concurrent_marking_in_progress;
   657   }
   658   void set_concurrent_marking_in_progress() {
   659     _concurrent_marking_in_progress = true;
   660   }
   661   void clear_concurrent_marking_in_progress() {
   662     _concurrent_marking_in_progress = false;
   663   }
   665   void update_accum_task_vtime(int i, double vtime) {
   666     _accum_task_vtime[i] += vtime;
   667   }
   669   double all_task_accum_vtime() {
   670     double ret = 0.0;
   671     for (uint i = 0; i < _max_worker_id; ++i)
   672       ret += _accum_task_vtime[i];
   673     return ret;
   674   }
   676   // Attempts to steal an object from the task queues of other tasks
   677   bool try_stealing(uint worker_id, int* hash_seed, oop& obj) {
   678     return _task_queues->steal(worker_id, hash_seed, obj);
   679   }
   681   ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs);
   682   ~ConcurrentMark();
   684   ConcurrentMarkThread* cmThread() { return _cmThread; }
   686   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
   687   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
   689   // Returns the number of GC threads to be used in a concurrent
   690   // phase based on the number of GC threads being used in a STW
   691   // phase.
   692   uint scale_parallel_threads(uint n_par_threads);
   694   // Calculates the number of GC threads to be used in a concurrent phase.
   695   uint calc_parallel_marking_threads();
   697   // The following three are interaction between CM and
   698   // G1CollectedHeap
   700   // This notifies CM that a root during initial-mark needs to be
   701   // grayed. It is MT-safe. word_size is the size of the object in
   702   // words. It is passed explicitly as sometimes we cannot calculate
   703   // it from the given object because it might be in an inconsistent
   704   // state (e.g., in to-space and being copied). So the caller is
   705   // responsible for dealing with this issue (e.g., get the size from
   706   // the from-space image when the to-space image might be
   707   // inconsistent) and always passing the size. hr is the region that
   708   // contains the object and it's passed optionally from callers who
   709   // might already have it (no point in recalculating it).
   710   inline void grayRoot(oop obj, size_t word_size,
   711                        uint worker_id, HeapRegion* hr = NULL);
   713   // It iterates over the heap and for each object it comes across it
   714   // will dump the contents of its reference fields, as well as
   715   // liveness information for the object and its referents. The dump
   716   // will be written to a file with the following name:
   717   // G1PrintReachableBaseFile + "." + str.
   718   // vo decides whether the prev (vo == UsePrevMarking), the next
   719   // (vo == UseNextMarking) marking information, or the mark word
   720   // (vo == UseMarkWord) will be used to determine the liveness of
   721   // each object / referent.
   722   // If all is true, all objects in the heap will be dumped, otherwise
   723   // only the live ones. In the dump the following symbols / breviations
   724   // are used:
   725   //   M : an explicitly live object (its bitmap bit is set)
   726   //   > : an implicitly live object (over tams)
   727   //   O : an object outside the G1 heap (typically: in the perm gen)
   728   //   NOT : a reference field whose referent is not live
   729   //   AND MARKED : indicates that an object is both explicitly and
   730   //   implicitly live (it should be one or the other, not both)
   731   void print_reachable(const char* str,
   732                        VerifyOption vo, bool all) PRODUCT_RETURN;
   734   // Clear the next marking bitmap (will be called concurrently).
   735   void clearNextBitmap();
   737   // These two do the work that needs to be done before and after the
   738   // initial root checkpoint. Since this checkpoint can be done at two
   739   // different points (i.e. an explicit pause or piggy-backed on a
   740   // young collection), then it's nice to be able to easily share the
   741   // pre/post code. It might be the case that we can put everything in
   742   // the post method. TP
   743   void checkpointRootsInitialPre();
   744   void checkpointRootsInitialPost();
   746   // Scan all the root regions and mark everything reachable from
   747   // them.
   748   void scanRootRegions();
   750   // Scan a single root region and mark everything reachable from it.
   751   void scanRootRegion(HeapRegion* hr, uint worker_id);
   753   // Do concurrent phase of marking, to a tentative transitive closure.
   754   void markFromRoots();
   756   void checkpointRootsFinal(bool clear_all_soft_refs);
   757   void checkpointRootsFinalWork();
   758   void cleanup();
   759   void completeCleanup();
   761   // Mark in the previous bitmap.  NB: this is usually read-only, so use
   762   // this carefully!
   763   inline void markPrev(oop p);
   765   // Clears marks for all objects in the given range, for the prev,
   766   // next, or both bitmaps.  NB: the previous bitmap is usually
   767   // read-only, so use this carefully!
   768   void clearRangePrevBitmap(MemRegion mr);
   769   void clearRangeNextBitmap(MemRegion mr);
   770   void clearRangeBothBitmaps(MemRegion mr);
   772   // Notify data structures that a GC has started.
   773   void note_start_of_gc() {
   774     _markStack.note_start_of_gc();
   775   }
   777   // Notify data structures that a GC is finished.
   778   void note_end_of_gc() {
   779     _markStack.note_end_of_gc();
   780   }
   782   // Verify that there are no CSet oops on the stacks (taskqueues /
   783   // global mark stack), enqueued SATB buffers, per-thread SATB
   784   // buffers, and fingers (global / per-task). The boolean parameters
   785   // decide which of the above data structures to verify. If marking
   786   // is not in progress, it's a no-op.
   787   void verify_no_cset_oops(bool verify_stacks,
   788                            bool verify_enqueued_buffers,
   789                            bool verify_thread_buffers,
   790                            bool verify_fingers) PRODUCT_RETURN;
   792   // It is called at the end of an evacuation pause during marking so
   793   // that CM is notified of where the new end of the heap is. It
   794   // doesn't do anything if concurrent_marking_in_progress() is false,
   795   // unless the force parameter is true.
   796   void update_g1_committed(bool force = false);
   798   bool isMarked(oop p) const {
   799     assert(p != NULL && p->is_oop(), "expected an oop");
   800     HeapWord* addr = (HeapWord*)p;
   801     assert(addr >= _nextMarkBitMap->startWord() ||
   802            addr < _nextMarkBitMap->endWord(), "in a region");
   804     return _nextMarkBitMap->isMarked(addr);
   805   }
   807   inline bool not_yet_marked(oop p) const;
   809   // XXX Debug code
   810   bool containing_card_is_marked(void* p);
   811   bool containing_cards_are_marked(void* start, void* last);
   813   bool isPrevMarked(oop p) const {
   814     assert(p != NULL && p->is_oop(), "expected an oop");
   815     HeapWord* addr = (HeapWord*)p;
   816     assert(addr >= _prevMarkBitMap->startWord() ||
   817            addr < _prevMarkBitMap->endWord(), "in a region");
   819     return _prevMarkBitMap->isMarked(addr);
   820   }
   822   inline bool do_yield_check(uint worker_i = 0);
   823   inline bool should_yield();
   825   // Called to abort the marking cycle after a Full GC takes palce.
   826   void abort();
   828   bool has_aborted()      { return _has_aborted; }
   830   const GCId& concurrent_gc_id();
   832   // This prints the global/local fingers. It is used for debugging.
   833   NOT_PRODUCT(void print_finger();)
   835   void print_summary_info();
   837   void print_worker_threads_on(outputStream* st) const;
   839   void print_on_error(outputStream* st) const;
   841   // The following indicate whether a given verbose level has been
   842   // set. Notice that anything above stats is conditional to
   843   // _MARKING_VERBOSE_ having been set to 1
   844   bool verbose_stats() {
   845     return _verbose_level >= stats_verbose;
   846   }
   847   bool verbose_low() {
   848     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
   849   }
   850   bool verbose_medium() {
   851     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
   852   }
   853   bool verbose_high() {
   854     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
   855   }
   857   // Liveness counting
   859   // Utility routine to set an exclusive range of cards on the given
   860   // card liveness bitmap
   861   inline void set_card_bitmap_range(BitMap* card_bm,
   862                                     BitMap::idx_t start_idx,
   863                                     BitMap::idx_t end_idx,
   864                                     bool is_par);
   866   // Returns the card number of the bottom of the G1 heap.
   867   // Used in biasing indices into accounting card bitmaps.
   868   intptr_t heap_bottom_card_num() const {
   869     return _heap_bottom_card_num;
   870   }
   872   // Returns the card bitmap for a given task or worker id.
   873   BitMap* count_card_bitmap_for(uint worker_id) {
   874     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
   875     assert(_count_card_bitmaps != NULL, "uninitialized");
   876     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
   877     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
   878     return task_card_bm;
   879   }
   881   // Returns the array containing the marked bytes for each region,
   882   // for the given worker or task id.
   883   size_t* count_marked_bytes_array_for(uint worker_id) {
   884     assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
   885     assert(_count_marked_bytes != NULL, "uninitialized");
   886     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
   887     assert(marked_bytes_array != NULL, "uninitialized");
   888     return marked_bytes_array;
   889   }
   891   // Returns the index in the liveness accounting card table bitmap
   892   // for the given address
   893   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
   895   // Counts the size of the given memory region in the the given
   896   // marked_bytes array slot for the given HeapRegion.
   897   // Sets the bits in the given card bitmap that are associated with the
   898   // cards that are spanned by the memory region.
   899   inline void count_region(MemRegion mr, HeapRegion* hr,
   900                            size_t* marked_bytes_array,
   901                            BitMap* task_card_bm);
   903   // Counts the given memory region in the task/worker counting
   904   // data structures for the given worker id.
   905   inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
   907   // Counts the given memory region in the task/worker counting
   908   // data structures for the given worker id.
   909   inline void count_region(MemRegion mr, uint worker_id);
   911   // Counts the given object in the given task/worker counting
   912   // data structures.
   913   inline void count_object(oop obj, HeapRegion* hr,
   914                            size_t* marked_bytes_array,
   915                            BitMap* task_card_bm);
   917   // Counts the given object in the task/worker counting data
   918   // structures for the given worker id.
   919   inline void count_object(oop obj, HeapRegion* hr, uint worker_id);
   921   // Attempts to mark the given object and, if successful, counts
   922   // the object in the given task/worker counting structures.
   923   inline bool par_mark_and_count(oop obj, HeapRegion* hr,
   924                                  size_t* marked_bytes_array,
   925                                  BitMap* task_card_bm);
   927   // Attempts to mark the given object and, if successful, counts
   928   // the object in the task/worker counting structures for the
   929   // given worker id.
   930   inline bool par_mark_and_count(oop obj, size_t word_size,
   931                                  HeapRegion* hr, uint worker_id);
   933   // Attempts to mark the given object and, if successful, counts
   934   // the object in the task/worker counting structures for the
   935   // given worker id.
   936   inline bool par_mark_and_count(oop obj, HeapRegion* hr, uint worker_id);
   938   // Similar to the above routine but we don't know the heap region that
   939   // contains the object to be marked/counted, which this routine looks up.
   940   inline bool par_mark_and_count(oop obj, uint worker_id);
   942   // Similar to the above routine but there are times when we cannot
   943   // safely calculate the size of obj due to races and we, therefore,
   944   // pass the size in as a parameter. It is the caller's reponsibility
   945   // to ensure that the size passed in for obj is valid.
   946   inline bool par_mark_and_count(oop obj, size_t word_size, uint worker_id);
   948   // Unconditionally mark the given object, and unconditinally count
   949   // the object in the counting structures for worker id 0.
   950   // Should *not* be called from parallel code.
   951   inline bool mark_and_count(oop obj, HeapRegion* hr);
   953   // Similar to the above routine but we don't know the heap region that
   954   // contains the object to be marked/counted, which this routine looks up.
   955   // Should *not* be called from parallel code.
   956   inline bool mark_and_count(oop obj);
   958   // Returns true if initialization was successfully completed.
   959   bool completed_initialization() const {
   960     return _completed_initialization;
   961   }
   963 protected:
   964   // Clear all the per-task bitmaps and arrays used to store the
   965   // counting data.
   966   void clear_all_count_data();
   968   // Aggregates the counting data for each worker/task
   969   // that was constructed while marking. Also sets
   970   // the amount of marked bytes for each region and
   971   // the top at concurrent mark count.
   972   void aggregate_count_data();
   974   // Verification routine
   975   void verify_count_data();
   976 };
   978 // A class representing a marking task.
   979 class CMTask : public TerminatorTerminator {
   980 private:
   981   enum PrivateConstants {
   982     // the regular clock call is called once the scanned words reaches
   983     // this limit
   984     words_scanned_period          = 12*1024,
   985     // the regular clock call is called once the number of visited
   986     // references reaches this limit
   987     refs_reached_period           = 384,
   988     // initial value for the hash seed, used in the work stealing code
   989     init_hash_seed                = 17,
   990     // how many entries will be transferred between global stack and
   991     // local queues
   992     global_stack_transfer_size    = 16
   993   };
   995   uint                        _worker_id;
   996   G1CollectedHeap*            _g1h;
   997   ConcurrentMark*             _cm;
   998   CMBitMap*                   _nextMarkBitMap;
   999   // the task queue of this task
  1000   CMTaskQueue*                _task_queue;
  1001 private:
  1002   // the task queue set---needed for stealing
  1003   CMTaskQueueSet*             _task_queues;
  1004   // indicates whether the task has been claimed---this is only  for
  1005   // debugging purposes
  1006   bool                        _claimed;
  1008   // number of calls to this task
  1009   int                         _calls;
  1011   // when the virtual timer reaches this time, the marking step should
  1012   // exit
  1013   double                      _time_target_ms;
  1014   // the start time of the current marking step
  1015   double                      _start_time_ms;
  1017   // the oop closure used for iterations over oops
  1018   G1CMOopClosure*             _cm_oop_closure;
  1020   // the region this task is scanning, NULL if we're not scanning any
  1021   HeapRegion*                 _curr_region;
  1022   // the local finger of this task, NULL if we're not scanning a region
  1023   HeapWord*                   _finger;
  1024   // limit of the region this task is scanning, NULL if we're not scanning one
  1025   HeapWord*                   _region_limit;
  1027   // the number of words this task has scanned
  1028   size_t                      _words_scanned;
  1029   // When _words_scanned reaches this limit, the regular clock is
  1030   // called. Notice that this might be decreased under certain
  1031   // circumstances (i.e. when we believe that we did an expensive
  1032   // operation).
  1033   size_t                      _words_scanned_limit;
  1034   // the initial value of _words_scanned_limit (i.e. what it was
  1035   // before it was decreased).
  1036   size_t                      _real_words_scanned_limit;
  1038   // the number of references this task has visited
  1039   size_t                      _refs_reached;
  1040   // When _refs_reached reaches this limit, the regular clock is
  1041   // called. Notice this this might be decreased under certain
  1042   // circumstances (i.e. when we believe that we did an expensive
  1043   // operation).
  1044   size_t                      _refs_reached_limit;
  1045   // the initial value of _refs_reached_limit (i.e. what it was before
  1046   // it was decreased).
  1047   size_t                      _real_refs_reached_limit;
  1049   // used by the work stealing stuff
  1050   int                         _hash_seed;
  1051   // if this is true, then the task has aborted for some reason
  1052   bool                        _has_aborted;
  1053   // set when the task aborts because it has met its time quota
  1054   bool                        _has_timed_out;
  1055   // true when we're draining SATB buffers; this avoids the task
  1056   // aborting due to SATB buffers being available (as we're already
  1057   // dealing with them)
  1058   bool                        _draining_satb_buffers;
  1060   // number sequence of past step times
  1061   NumberSeq                   _step_times_ms;
  1062   // elapsed time of this task
  1063   double                      _elapsed_time_ms;
  1064   // termination time of this task
  1065   double                      _termination_time_ms;
  1066   // when this task got into the termination protocol
  1067   double                      _termination_start_time_ms;
  1069   // true when the task is during a concurrent phase, false when it is
  1070   // in the remark phase (so, in the latter case, we do not have to
  1071   // check all the things that we have to check during the concurrent
  1072   // phase, i.e. SATB buffer availability...)
  1073   bool                        _concurrent;
  1075   TruncatedSeq                _marking_step_diffs_ms;
  1077   // Counting data structures. Embedding the task's marked_bytes_array
  1078   // and card bitmap into the actual task saves having to go through
  1079   // the ConcurrentMark object.
  1080   size_t*                     _marked_bytes_array;
  1081   BitMap*                     _card_bm;
  1083   // LOTS of statistics related with this task
  1084 #if _MARKING_STATS_
  1085   NumberSeq                   _all_clock_intervals_ms;
  1086   double                      _interval_start_time_ms;
  1088   int                         _aborted;
  1089   int                         _aborted_overflow;
  1090   int                         _aborted_cm_aborted;
  1091   int                         _aborted_yield;
  1092   int                         _aborted_timed_out;
  1093   int                         _aborted_satb;
  1094   int                         _aborted_termination;
  1096   int                         _steal_attempts;
  1097   int                         _steals;
  1099   int                         _clock_due_to_marking;
  1100   int                         _clock_due_to_scanning;
  1102   int                         _local_pushes;
  1103   int                         _local_pops;
  1104   int                         _local_max_size;
  1105   int                         _objs_scanned;
  1107   int                         _global_pushes;
  1108   int                         _global_pops;
  1109   int                         _global_max_size;
  1111   int                         _global_transfers_to;
  1112   int                         _global_transfers_from;
  1114   int                         _regions_claimed;
  1115   int                         _objs_found_on_bitmap;
  1117   int                         _satb_buffers_processed;
  1118 #endif // _MARKING_STATS_
  1120   // it updates the local fields after this task has claimed
  1121   // a new region to scan
  1122   void setup_for_region(HeapRegion* hr);
  1123   // it brings up-to-date the limit of the region
  1124   void update_region_limit();
  1126   // called when either the words scanned or the refs visited limit
  1127   // has been reached
  1128   void reached_limit();
  1129   // recalculates the words scanned and refs visited limits
  1130   void recalculate_limits();
  1131   // decreases the words scanned and refs visited limits when we reach
  1132   // an expensive operation
  1133   void decrease_limits();
  1134   // it checks whether the words scanned or refs visited reached their
  1135   // respective limit and calls reached_limit() if they have
  1136   void check_limits() {
  1137     if (_words_scanned >= _words_scanned_limit ||
  1138         _refs_reached >= _refs_reached_limit) {
  1139       reached_limit();
  1142   // this is supposed to be called regularly during a marking step as
  1143   // it checks a bunch of conditions that might cause the marking step
  1144   // to abort
  1145   void regular_clock_call();
  1146   bool concurrent() { return _concurrent; }
  1148 public:
  1149   // It resets the task; it should be called right at the beginning of
  1150   // a marking phase.
  1151   void reset(CMBitMap* _nextMarkBitMap);
  1152   // it clears all the fields that correspond to a claimed region.
  1153   void clear_region_fields();
  1155   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
  1157   // The main method of this class which performs a marking step
  1158   // trying not to exceed the given duration. However, it might exit
  1159   // prematurely, according to some conditions (i.e. SATB buffers are
  1160   // available for processing).
  1161   void do_marking_step(double target_ms,
  1162                        bool do_termination,
  1163                        bool is_serial);
  1165   // These two calls start and stop the timer
  1166   void record_start_time() {
  1167     _elapsed_time_ms = os::elapsedTime() * 1000.0;
  1169   void record_end_time() {
  1170     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
  1173   // returns the worker ID associated with this task.
  1174   uint worker_id() { return _worker_id; }
  1176   // From TerminatorTerminator. It determines whether this task should
  1177   // exit the termination protocol after it's entered it.
  1178   virtual bool should_exit_termination();
  1180   // Resets the local region fields after a task has finished scanning a
  1181   // region; or when they have become stale as a result of the region
  1182   // being evacuated.
  1183   void giveup_current_region();
  1185   HeapWord* finger()            { return _finger; }
  1187   bool has_aborted()            { return _has_aborted; }
  1188   void set_has_aborted()        { _has_aborted = true; }
  1189   void clear_has_aborted()      { _has_aborted = false; }
  1190   bool has_timed_out()          { return _has_timed_out; }
  1191   bool claimed()                { return _claimed; }
  1193   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
  1195   // It grays the object by marking it and, if necessary, pushing it
  1196   // on the local queue
  1197   inline void deal_with_reference(oop obj);
  1199   // It scans an object and visits its children.
  1200   void scan_object(oop obj);
  1202   // It pushes an object on the local queue.
  1203   inline void push(oop obj);
  1205   // These two move entries to/from the global stack.
  1206   void move_entries_to_global_stack();
  1207   void get_entries_from_global_stack();
  1209   // It pops and scans objects from the local queue. If partially is
  1210   // true, then it stops when the queue size is of a given limit. If
  1211   // partially is false, then it stops when the queue is empty.
  1212   void drain_local_queue(bool partially);
  1213   // It moves entries from the global stack to the local queue and
  1214   // drains the local queue. If partially is true, then it stops when
  1215   // both the global stack and the local queue reach a given size. If
  1216   // partially if false, it tries to empty them totally.
  1217   void drain_global_stack(bool partially);
  1218   // It keeps picking SATB buffers and processing them until no SATB
  1219   // buffers are available.
  1220   void drain_satb_buffers();
  1222   // moves the local finger to a new location
  1223   inline void move_finger_to(HeapWord* new_finger) {
  1224     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
  1225     _finger = new_finger;
  1228   CMTask(uint worker_id, ConcurrentMark *cm,
  1229          size_t* marked_bytes, BitMap* card_bm,
  1230          CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
  1232   // it prints statistics associated with this task
  1233   void print_stats();
  1235 #if _MARKING_STATS_
  1236   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
  1237 #endif // _MARKING_STATS_
  1238 };
  1240 // Class that's used to to print out per-region liveness
  1241 // information. It's currently used at the end of marking and also
  1242 // after we sort the old regions at the end of the cleanup operation.
  1243 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
  1244 private:
  1245   outputStream* _out;
  1247   // Accumulators for these values.
  1248   size_t _total_used_bytes;
  1249   size_t _total_capacity_bytes;
  1250   size_t _total_prev_live_bytes;
  1251   size_t _total_next_live_bytes;
  1253   // These are set up when we come across a "stars humongous" region
  1254   // (as this is where most of this information is stored, not in the
  1255   // subsequent "continues humongous" regions). After that, for every
  1256   // region in a given humongous region series we deduce the right
  1257   // values for it by simply subtracting the appropriate amount from
  1258   // these fields. All these values should reach 0 after we've visited
  1259   // the last region in the series.
  1260   size_t _hum_used_bytes;
  1261   size_t _hum_capacity_bytes;
  1262   size_t _hum_prev_live_bytes;
  1263   size_t _hum_next_live_bytes;
  1265   // Accumulator for the remembered set size
  1266   size_t _total_remset_bytes;
  1268   // Accumulator for strong code roots memory size
  1269   size_t _total_strong_code_roots_bytes;
  1271   static double perc(size_t val, size_t total) {
  1272     if (total == 0) {
  1273       return 0.0;
  1274     } else {
  1275       return 100.0 * ((double) val / (double) total);
  1279   static double bytes_to_mb(size_t val) {
  1280     return (double) val / (double) M;
  1283   // See the .cpp file.
  1284   size_t get_hum_bytes(size_t* hum_bytes);
  1285   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
  1286                      size_t* prev_live_bytes, size_t* next_live_bytes);
  1288 public:
  1289   // The header and footer are printed in the constructor and
  1290   // destructor respectively.
  1291   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
  1292   virtual bool doHeapRegion(HeapRegion* r);
  1293   ~G1PrintRegionLivenessInfoClosure();
  1294 };
  1296 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial