src/share/vm/opto/compile.cpp

Sat, 02 Apr 2011 10:54:15 -0700

author
kvn
date
Sat, 02 Apr 2011 10:54:15 -0700
changeset 2727
08eb13460b3a
parent 2683
7e88bdae86ec
child 2787
5d046bf49ce7
permissions
-rw-r--r--

7004535: Clone loop predicate during loop unswitch
Summary: Clone loop predicate for clonned loops
Reviewed-by: never

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "classfile/systemDictionary.hpp"
    28 #include "code/exceptionHandlerTable.hpp"
    29 #include "code/nmethod.hpp"
    30 #include "compiler/compileLog.hpp"
    31 #include "compiler/oopMap.hpp"
    32 #include "opto/addnode.hpp"
    33 #include "opto/block.hpp"
    34 #include "opto/c2compiler.hpp"
    35 #include "opto/callGenerator.hpp"
    36 #include "opto/callnode.hpp"
    37 #include "opto/cfgnode.hpp"
    38 #include "opto/chaitin.hpp"
    39 #include "opto/compile.hpp"
    40 #include "opto/connode.hpp"
    41 #include "opto/divnode.hpp"
    42 #include "opto/escape.hpp"
    43 #include "opto/idealGraphPrinter.hpp"
    44 #include "opto/loopnode.hpp"
    45 #include "opto/machnode.hpp"
    46 #include "opto/macro.hpp"
    47 #include "opto/matcher.hpp"
    48 #include "opto/memnode.hpp"
    49 #include "opto/mulnode.hpp"
    50 #include "opto/node.hpp"
    51 #include "opto/opcodes.hpp"
    52 #include "opto/output.hpp"
    53 #include "opto/parse.hpp"
    54 #include "opto/phaseX.hpp"
    55 #include "opto/rootnode.hpp"
    56 #include "opto/runtime.hpp"
    57 #include "opto/stringopts.hpp"
    58 #include "opto/type.hpp"
    59 #include "opto/vectornode.hpp"
    60 #include "runtime/arguments.hpp"
    61 #include "runtime/signature.hpp"
    62 #include "runtime/stubRoutines.hpp"
    63 #include "runtime/timer.hpp"
    64 #include "utilities/copy.hpp"
    65 #ifdef TARGET_ARCH_MODEL_x86_32
    66 # include "adfiles/ad_x86_32.hpp"
    67 #endif
    68 #ifdef TARGET_ARCH_MODEL_x86_64
    69 # include "adfiles/ad_x86_64.hpp"
    70 #endif
    71 #ifdef TARGET_ARCH_MODEL_sparc
    72 # include "adfiles/ad_sparc.hpp"
    73 #endif
    74 #ifdef TARGET_ARCH_MODEL_zero
    75 # include "adfiles/ad_zero.hpp"
    76 #endif
    77 #ifdef TARGET_ARCH_MODEL_arm
    78 # include "adfiles/ad_arm.hpp"
    79 #endif
    80 #ifdef TARGET_ARCH_MODEL_ppc
    81 # include "adfiles/ad_ppc.hpp"
    82 #endif
    85 // -------------------- Compile::mach_constant_base_node -----------------------
    86 // Constant table base node singleton.
    87 MachConstantBaseNode* Compile::mach_constant_base_node() {
    88   if (_mach_constant_base_node == NULL) {
    89     _mach_constant_base_node = new (C) MachConstantBaseNode();
    90     _mach_constant_base_node->add_req(C->root());
    91   }
    92   return _mach_constant_base_node;
    93 }
    96 /// Support for intrinsics.
    98 // Return the index at which m must be inserted (or already exists).
    99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
   100 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
   101 #ifdef ASSERT
   102   for (int i = 1; i < _intrinsics->length(); i++) {
   103     CallGenerator* cg1 = _intrinsics->at(i-1);
   104     CallGenerator* cg2 = _intrinsics->at(i);
   105     assert(cg1->method() != cg2->method()
   106            ? cg1->method()     < cg2->method()
   107            : cg1->is_virtual() < cg2->is_virtual(),
   108            "compiler intrinsics list must stay sorted");
   109   }
   110 #endif
   111   // Binary search sorted list, in decreasing intervals [lo, hi].
   112   int lo = 0, hi = _intrinsics->length()-1;
   113   while (lo <= hi) {
   114     int mid = (uint)(hi + lo) / 2;
   115     ciMethod* mid_m = _intrinsics->at(mid)->method();
   116     if (m < mid_m) {
   117       hi = mid-1;
   118     } else if (m > mid_m) {
   119       lo = mid+1;
   120     } else {
   121       // look at minor sort key
   122       bool mid_virt = _intrinsics->at(mid)->is_virtual();
   123       if (is_virtual < mid_virt) {
   124         hi = mid-1;
   125       } else if (is_virtual > mid_virt) {
   126         lo = mid+1;
   127       } else {
   128         return mid;  // exact match
   129       }
   130     }
   131   }
   132   return lo;  // inexact match
   133 }
   135 void Compile::register_intrinsic(CallGenerator* cg) {
   136   if (_intrinsics == NULL) {
   137     _intrinsics = new GrowableArray<CallGenerator*>(60);
   138   }
   139   // This code is stolen from ciObjectFactory::insert.
   140   // Really, GrowableArray should have methods for
   141   // insert_at, remove_at, and binary_search.
   142   int len = _intrinsics->length();
   143   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
   144   if (index == len) {
   145     _intrinsics->append(cg);
   146   } else {
   147 #ifdef ASSERT
   148     CallGenerator* oldcg = _intrinsics->at(index);
   149     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
   150 #endif
   151     _intrinsics->append(_intrinsics->at(len-1));
   152     int pos;
   153     for (pos = len-2; pos >= index; pos--) {
   154       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
   155     }
   156     _intrinsics->at_put(index, cg);
   157   }
   158   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
   159 }
   161 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
   162   assert(m->is_loaded(), "don't try this on unloaded methods");
   163   if (_intrinsics != NULL) {
   164     int index = intrinsic_insertion_index(m, is_virtual);
   165     if (index < _intrinsics->length()
   166         && _intrinsics->at(index)->method() == m
   167         && _intrinsics->at(index)->is_virtual() == is_virtual) {
   168       return _intrinsics->at(index);
   169     }
   170   }
   171   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
   172   if (m->intrinsic_id() != vmIntrinsics::_none &&
   173       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
   174     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
   175     if (cg != NULL) {
   176       // Save it for next time:
   177       register_intrinsic(cg);
   178       return cg;
   179     } else {
   180       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
   181     }
   182   }
   183   return NULL;
   184 }
   186 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
   187 // in library_call.cpp.
   190 #ifndef PRODUCT
   191 // statistics gathering...
   193 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
   194 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
   196 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
   197   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
   198   int oflags = _intrinsic_hist_flags[id];
   199   assert(flags != 0, "what happened?");
   200   if (is_virtual) {
   201     flags |= _intrinsic_virtual;
   202   }
   203   bool changed = (flags != oflags);
   204   if ((flags & _intrinsic_worked) != 0) {
   205     juint count = (_intrinsic_hist_count[id] += 1);
   206     if (count == 1) {
   207       changed = true;           // first time
   208     }
   209     // increment the overall count also:
   210     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
   211   }
   212   if (changed) {
   213     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
   214       // Something changed about the intrinsic's virtuality.
   215       if ((flags & _intrinsic_virtual) != 0) {
   216         // This is the first use of this intrinsic as a virtual call.
   217         if (oflags != 0) {
   218           // We already saw it as a non-virtual, so note both cases.
   219           flags |= _intrinsic_both;
   220         }
   221       } else if ((oflags & _intrinsic_both) == 0) {
   222         // This is the first use of this intrinsic as a non-virtual
   223         flags |= _intrinsic_both;
   224       }
   225     }
   226     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
   227   }
   228   // update the overall flags also:
   229   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
   230   return changed;
   231 }
   233 static char* format_flags(int flags, char* buf) {
   234   buf[0] = 0;
   235   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
   236   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
   237   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
   238   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
   239   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
   240   if (buf[0] == 0)  strcat(buf, ",");
   241   assert(buf[0] == ',', "must be");
   242   return &buf[1];
   243 }
   245 void Compile::print_intrinsic_statistics() {
   246   char flagsbuf[100];
   247   ttyLocker ttyl;
   248   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
   249   tty->print_cr("Compiler intrinsic usage:");
   250   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
   251   if (total == 0)  total = 1;  // avoid div0 in case of no successes
   252   #define PRINT_STAT_LINE(name, c, f) \
   253     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
   254   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
   255     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
   256     int   flags = _intrinsic_hist_flags[id];
   257     juint count = _intrinsic_hist_count[id];
   258     if ((flags | count) != 0) {
   259       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
   260     }
   261   }
   262   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
   263   if (xtty != NULL)  xtty->tail("statistics");
   264 }
   266 void Compile::print_statistics() {
   267   { ttyLocker ttyl;
   268     if (xtty != NULL)  xtty->head("statistics type='opto'");
   269     Parse::print_statistics();
   270     PhaseCCP::print_statistics();
   271     PhaseRegAlloc::print_statistics();
   272     Scheduling::print_statistics();
   273     PhasePeephole::print_statistics();
   274     PhaseIdealLoop::print_statistics();
   275     if (xtty != NULL)  xtty->tail("statistics");
   276   }
   277   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
   278     // put this under its own <statistics> element.
   279     print_intrinsic_statistics();
   280   }
   281 }
   282 #endif //PRODUCT
   284 // Support for bundling info
   285 Bundle* Compile::node_bundling(const Node *n) {
   286   assert(valid_bundle_info(n), "oob");
   287   return &_node_bundling_base[n->_idx];
   288 }
   290 bool Compile::valid_bundle_info(const Node *n) {
   291   return (_node_bundling_limit > n->_idx);
   292 }
   295 void Compile::gvn_replace_by(Node* n, Node* nn) {
   296   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
   297     Node* use = n->last_out(i);
   298     bool is_in_table = initial_gvn()->hash_delete(use);
   299     uint uses_found = 0;
   300     for (uint j = 0; j < use->len(); j++) {
   301       if (use->in(j) == n) {
   302         if (j < use->req())
   303           use->set_req(j, nn);
   304         else
   305           use->set_prec(j, nn);
   306         uses_found++;
   307       }
   308     }
   309     if (is_in_table) {
   310       // reinsert into table
   311       initial_gvn()->hash_find_insert(use);
   312     }
   313     record_for_igvn(use);
   314     i -= uses_found;    // we deleted 1 or more copies of this edge
   315   }
   316 }
   321 // Identify all nodes that are reachable from below, useful.
   322 // Use breadth-first pass that records state in a Unique_Node_List,
   323 // recursive traversal is slower.
   324 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
   325   int estimated_worklist_size = unique();
   326   useful.map( estimated_worklist_size, NULL );  // preallocate space
   328   // Initialize worklist
   329   if (root() != NULL)     { useful.push(root()); }
   330   // If 'top' is cached, declare it useful to preserve cached node
   331   if( cached_top_node() ) { useful.push(cached_top_node()); }
   333   // Push all useful nodes onto the list, breadthfirst
   334   for( uint next = 0; next < useful.size(); ++next ) {
   335     assert( next < unique(), "Unique useful nodes < total nodes");
   336     Node *n  = useful.at(next);
   337     uint max = n->len();
   338     for( uint i = 0; i < max; ++i ) {
   339       Node *m = n->in(i);
   340       if( m == NULL ) continue;
   341       useful.push(m);
   342     }
   343   }
   344 }
   346 // Disconnect all useless nodes by disconnecting those at the boundary.
   347 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
   348   uint next = 0;
   349   while( next < useful.size() ) {
   350     Node *n = useful.at(next++);
   351     // Use raw traversal of out edges since this code removes out edges
   352     int max = n->outcnt();
   353     for (int j = 0; j < max; ++j ) {
   354       Node* child = n->raw_out(j);
   355       if( ! useful.member(child) ) {
   356         assert( !child->is_top() || child != top(),
   357                 "If top is cached in Compile object it is in useful list");
   358         // Only need to remove this out-edge to the useless node
   359         n->raw_del_out(j);
   360         --j;
   361         --max;
   362       }
   363     }
   364     if (n->outcnt() == 1 && n->has_special_unique_user()) {
   365       record_for_igvn( n->unique_out() );
   366     }
   367   }
   368   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
   369 }
   371 //------------------------------frame_size_in_words-----------------------------
   372 // frame_slots in units of words
   373 int Compile::frame_size_in_words() const {
   374   // shift is 0 in LP32 and 1 in LP64
   375   const int shift = (LogBytesPerWord - LogBytesPerInt);
   376   int words = _frame_slots >> shift;
   377   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
   378   return words;
   379 }
   381 // ============================================================================
   382 //------------------------------CompileWrapper---------------------------------
   383 class CompileWrapper : public StackObj {
   384   Compile *const _compile;
   385  public:
   386   CompileWrapper(Compile* compile);
   388   ~CompileWrapper();
   389 };
   391 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
   392   // the Compile* pointer is stored in the current ciEnv:
   393   ciEnv* env = compile->env();
   394   assert(env == ciEnv::current(), "must already be a ciEnv active");
   395   assert(env->compiler_data() == NULL, "compile already active?");
   396   env->set_compiler_data(compile);
   397   assert(compile == Compile::current(), "sanity");
   399   compile->set_type_dict(NULL);
   400   compile->set_type_hwm(NULL);
   401   compile->set_type_last_size(0);
   402   compile->set_last_tf(NULL, NULL);
   403   compile->set_indexSet_arena(NULL);
   404   compile->set_indexSet_free_block_list(NULL);
   405   compile->init_type_arena();
   406   Type::Initialize(compile);
   407   _compile->set_scratch_buffer_blob(NULL);
   408   _compile->begin_method();
   409 }
   410 CompileWrapper::~CompileWrapper() {
   411   _compile->end_method();
   412   if (_compile->scratch_buffer_blob() != NULL)
   413     BufferBlob::free(_compile->scratch_buffer_blob());
   414   _compile->env()->set_compiler_data(NULL);
   415 }
   418 //----------------------------print_compile_messages---------------------------
   419 void Compile::print_compile_messages() {
   420 #ifndef PRODUCT
   421   // Check if recompiling
   422   if (_subsume_loads == false && PrintOpto) {
   423     // Recompiling without allowing machine instructions to subsume loads
   424     tty->print_cr("*********************************************************");
   425     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
   426     tty->print_cr("*********************************************************");
   427   }
   428   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
   429     // Recompiling without escape analysis
   430     tty->print_cr("*********************************************************");
   431     tty->print_cr("** Bailout: Recompile without escape analysis          **");
   432     tty->print_cr("*********************************************************");
   433   }
   434   if (env()->break_at_compile()) {
   435     // Open the debugger when compiling this method.
   436     tty->print("### Breaking when compiling: ");
   437     method()->print_short_name();
   438     tty->cr();
   439     BREAKPOINT;
   440   }
   442   if( PrintOpto ) {
   443     if (is_osr_compilation()) {
   444       tty->print("[OSR]%3d", _compile_id);
   445     } else {
   446       tty->print("%3d", _compile_id);
   447     }
   448   }
   449 #endif
   450 }
   453 //-----------------------init_scratch_buffer_blob------------------------------
   454 // Construct a temporary BufferBlob and cache it for this compile.
   455 void Compile::init_scratch_buffer_blob(int const_size) {
   456   // If there is already a scratch buffer blob allocated and the
   457   // constant section is big enough, use it.  Otherwise free the
   458   // current and allocate a new one.
   459   BufferBlob* blob = scratch_buffer_blob();
   460   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
   461     // Use the current blob.
   462   } else {
   463     if (blob != NULL) {
   464       BufferBlob::free(blob);
   465     }
   467     ResourceMark rm;
   468     _scratch_const_size = const_size;
   469     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
   470     blob = BufferBlob::create("Compile::scratch_buffer", size);
   471     // Record the buffer blob for next time.
   472     set_scratch_buffer_blob(blob);
   473     // Have we run out of code space?
   474     if (scratch_buffer_blob() == NULL) {
   475       // Let CompilerBroker disable further compilations.
   476       record_failure("Not enough space for scratch buffer in CodeCache");
   477       return;
   478     }
   479   }
   481   // Initialize the relocation buffers
   482   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
   483   set_scratch_locs_memory(locs_buf);
   484 }
   487 //-----------------------scratch_emit_size-------------------------------------
   488 // Helper function that computes size by emitting code
   489 uint Compile::scratch_emit_size(const Node* n) {
   490   // Start scratch_emit_size section.
   491   set_in_scratch_emit_size(true);
   493   // Emit into a trash buffer and count bytes emitted.
   494   // This is a pretty expensive way to compute a size,
   495   // but it works well enough if seldom used.
   496   // All common fixed-size instructions are given a size
   497   // method by the AD file.
   498   // Note that the scratch buffer blob and locs memory are
   499   // allocated at the beginning of the compile task, and
   500   // may be shared by several calls to scratch_emit_size.
   501   // The allocation of the scratch buffer blob is particularly
   502   // expensive, since it has to grab the code cache lock.
   503   BufferBlob* blob = this->scratch_buffer_blob();
   504   assert(blob != NULL, "Initialize BufferBlob at start");
   505   assert(blob->size() > MAX_inst_size, "sanity");
   506   relocInfo* locs_buf = scratch_locs_memory();
   507   address blob_begin = blob->content_begin();
   508   address blob_end   = (address)locs_buf;
   509   assert(blob->content_contains(blob_end), "sanity");
   510   CodeBuffer buf(blob_begin, blob_end - blob_begin);
   511   buf.initialize_consts_size(_scratch_const_size);
   512   buf.initialize_stubs_size(MAX_stubs_size);
   513   assert(locs_buf != NULL, "sanity");
   514   int lsize = MAX_locs_size / 3;
   515   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
   516   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
   517   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
   519   // Do the emission.
   520   n->emit(buf, this->regalloc());
   522   // End scratch_emit_size section.
   523   set_in_scratch_emit_size(false);
   525   return buf.insts_size();
   526 }
   529 // ============================================================================
   530 //------------------------------Compile standard-------------------------------
   531 debug_only( int Compile::_debug_idx = 100000; )
   533 // Compile a method.  entry_bci is -1 for normal compilations and indicates
   534 // the continuation bci for on stack replacement.
   537 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
   538                 : Phase(Compiler),
   539                   _env(ci_env),
   540                   _log(ci_env->log()),
   541                   _compile_id(ci_env->compile_id()),
   542                   _save_argument_registers(false),
   543                   _stub_name(NULL),
   544                   _stub_function(NULL),
   545                   _stub_entry_point(NULL),
   546                   _method(target),
   547                   _entry_bci(osr_bci),
   548                   _initial_gvn(NULL),
   549                   _for_igvn(NULL),
   550                   _warm_calls(NULL),
   551                   _subsume_loads(subsume_loads),
   552                   _do_escape_analysis(do_escape_analysis),
   553                   _failure_reason(NULL),
   554                   _code_buffer("Compile::Fill_buffer"),
   555                   _orig_pc_slot(0),
   556                   _orig_pc_slot_offset_in_bytes(0),
   557                   _has_method_handle_invokes(false),
   558                   _mach_constant_base_node(NULL),
   559                   _node_bundling_limit(0),
   560                   _node_bundling_base(NULL),
   561                   _java_calls(0),
   562                   _inner_loops(0),
   563                   _scratch_const_size(-1),
   564                   _in_scratch_emit_size(false),
   565 #ifndef PRODUCT
   566                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
   567                   _printer(IdealGraphPrinter::printer()),
   568 #endif
   569                   _congraph(NULL) {
   570   C = this;
   572   CompileWrapper cw(this);
   573 #ifndef PRODUCT
   574   if (TimeCompiler2) {
   575     tty->print(" ");
   576     target->holder()->name()->print();
   577     tty->print(".");
   578     target->print_short_name();
   579     tty->print("  ");
   580   }
   581   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
   582   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
   583   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
   584   if (!print_opto_assembly) {
   585     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
   586     if (print_assembly && !Disassembler::can_decode()) {
   587       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
   588       print_opto_assembly = true;
   589     }
   590   }
   591   set_print_assembly(print_opto_assembly);
   592   set_parsed_irreducible_loop(false);
   593 #endif
   595   if (ProfileTraps) {
   596     // Make sure the method being compiled gets its own MDO,
   597     // so we can at least track the decompile_count().
   598     method()->ensure_method_data();
   599   }
   601   Init(::AliasLevel);
   604   print_compile_messages();
   606   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
   607     _ilt = InlineTree::build_inline_tree_root();
   608   else
   609     _ilt = NULL;
   611   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
   612   assert(num_alias_types() >= AliasIdxRaw, "");
   614 #define MINIMUM_NODE_HASH  1023
   615   // Node list that Iterative GVN will start with
   616   Unique_Node_List for_igvn(comp_arena());
   617   set_for_igvn(&for_igvn);
   619   // GVN that will be run immediately on new nodes
   620   uint estimated_size = method()->code_size()*4+64;
   621   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
   622   PhaseGVN gvn(node_arena(), estimated_size);
   623   set_initial_gvn(&gvn);
   625   { // Scope for timing the parser
   626     TracePhase t3("parse", &_t_parser, true);
   628     // Put top into the hash table ASAP.
   629     initial_gvn()->transform_no_reclaim(top());
   631     // Set up tf(), start(), and find a CallGenerator.
   632     CallGenerator* cg;
   633     if (is_osr_compilation()) {
   634       const TypeTuple *domain = StartOSRNode::osr_domain();
   635       const TypeTuple *range = TypeTuple::make_range(method()->signature());
   636       init_tf(TypeFunc::make(domain, range));
   637       StartNode* s = new (this, 2) StartOSRNode(root(), domain);
   638       initial_gvn()->set_type_bottom(s);
   639       init_start(s);
   640       cg = CallGenerator::for_osr(method(), entry_bci());
   641     } else {
   642       // Normal case.
   643       init_tf(TypeFunc::make(method()));
   644       StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
   645       initial_gvn()->set_type_bottom(s);
   646       init_start(s);
   647       float past_uses = method()->interpreter_invocation_count();
   648       float expected_uses = past_uses;
   649       cg = CallGenerator::for_inline(method(), expected_uses);
   650     }
   651     if (failing())  return;
   652     if (cg == NULL) {
   653       record_method_not_compilable_all_tiers("cannot parse method");
   654       return;
   655     }
   656     JVMState* jvms = build_start_state(start(), tf());
   657     if ((jvms = cg->generate(jvms)) == NULL) {
   658       record_method_not_compilable("method parse failed");
   659       return;
   660     }
   661     GraphKit kit(jvms);
   663     if (!kit.stopped()) {
   664       // Accept return values, and transfer control we know not where.
   665       // This is done by a special, unique ReturnNode bound to root.
   666       return_values(kit.jvms());
   667     }
   669     if (kit.has_exceptions()) {
   670       // Any exceptions that escape from this call must be rethrown
   671       // to whatever caller is dynamically above us on the stack.
   672       // This is done by a special, unique RethrowNode bound to root.
   673       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
   674     }
   676     if (!failing() && has_stringbuilder()) {
   677       {
   678         // remove useless nodes to make the usage analysis simpler
   679         ResourceMark rm;
   680         PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   681       }
   683       {
   684         ResourceMark rm;
   685         print_method("Before StringOpts", 3);
   686         PhaseStringOpts pso(initial_gvn(), &for_igvn);
   687         print_method("After StringOpts", 3);
   688       }
   690       // now inline anything that we skipped the first time around
   691       while (_late_inlines.length() > 0) {
   692         CallGenerator* cg = _late_inlines.pop();
   693         cg->do_late_inline();
   694       }
   695     }
   696     assert(_late_inlines.length() == 0, "should have been processed");
   698     print_method("Before RemoveUseless", 3);
   700     // Remove clutter produced by parsing.
   701     if (!failing()) {
   702       ResourceMark rm;
   703       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
   704     }
   705   }
   707   // Note:  Large methods are capped off in do_one_bytecode().
   708   if (failing())  return;
   710   // After parsing, node notes are no longer automagic.
   711   // They must be propagated by register_new_node_with_optimizer(),
   712   // clone(), or the like.
   713   set_default_node_notes(NULL);
   715   for (;;) {
   716     int successes = Inline_Warm();
   717     if (failing())  return;
   718     if (successes == 0)  break;
   719   }
   721   // Drain the list.
   722   Finish_Warm();
   723 #ifndef PRODUCT
   724   if (_printer) {
   725     _printer->print_inlining(this);
   726   }
   727 #endif
   729   if (failing())  return;
   730   NOT_PRODUCT( verify_graph_edges(); )
   732   // Now optimize
   733   Optimize();
   734   if (failing())  return;
   735   NOT_PRODUCT( verify_graph_edges(); )
   737 #ifndef PRODUCT
   738   if (PrintIdeal) {
   739     ttyLocker ttyl;  // keep the following output all in one block
   740     // This output goes directly to the tty, not the compiler log.
   741     // To enable tools to match it up with the compilation activity,
   742     // be sure to tag this tty output with the compile ID.
   743     if (xtty != NULL) {
   744       xtty->head("ideal compile_id='%d'%s", compile_id(),
   745                  is_osr_compilation()    ? " compile_kind='osr'" :
   746                  "");
   747     }
   748     root()->dump(9999);
   749     if (xtty != NULL) {
   750       xtty->tail("ideal");
   751     }
   752   }
   753 #endif
   755   // Now that we know the size of all the monitors we can add a fixed slot
   756   // for the original deopt pc.
   758   _orig_pc_slot =  fixed_slots();
   759   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
   760   set_fixed_slots(next_slot);
   762   // Now generate code
   763   Code_Gen();
   764   if (failing())  return;
   766   // Check if we want to skip execution of all compiled code.
   767   {
   768 #ifndef PRODUCT
   769     if (OptoNoExecute) {
   770       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
   771       return;
   772     }
   773     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
   774 #endif
   776     if (is_osr_compilation()) {
   777       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
   778       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
   779     } else {
   780       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
   781       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
   782     }
   784     env()->register_method(_method, _entry_bci,
   785                            &_code_offsets,
   786                            _orig_pc_slot_offset_in_bytes,
   787                            code_buffer(),
   788                            frame_size_in_words(), _oop_map_set,
   789                            &_handler_table, &_inc_table,
   790                            compiler,
   791                            env()->comp_level(),
   792                            true, /*has_debug_info*/
   793                            has_unsafe_access()
   794                            );
   795   }
   796 }
   798 //------------------------------Compile----------------------------------------
   799 // Compile a runtime stub
   800 Compile::Compile( ciEnv* ci_env,
   801                   TypeFunc_generator generator,
   802                   address stub_function,
   803                   const char *stub_name,
   804                   int is_fancy_jump,
   805                   bool pass_tls,
   806                   bool save_arg_registers,
   807                   bool return_pc )
   808   : Phase(Compiler),
   809     _env(ci_env),
   810     _log(ci_env->log()),
   811     _compile_id(-1),
   812     _save_argument_registers(save_arg_registers),
   813     _method(NULL),
   814     _stub_name(stub_name),
   815     _stub_function(stub_function),
   816     _stub_entry_point(NULL),
   817     _entry_bci(InvocationEntryBci),
   818     _initial_gvn(NULL),
   819     _for_igvn(NULL),
   820     _warm_calls(NULL),
   821     _orig_pc_slot(0),
   822     _orig_pc_slot_offset_in_bytes(0),
   823     _subsume_loads(true),
   824     _do_escape_analysis(false),
   825     _failure_reason(NULL),
   826     _code_buffer("Compile::Fill_buffer"),
   827     _has_method_handle_invokes(false),
   828     _mach_constant_base_node(NULL),
   829     _node_bundling_limit(0),
   830     _node_bundling_base(NULL),
   831     _java_calls(0),
   832     _inner_loops(0),
   833 #ifndef PRODUCT
   834     _trace_opto_output(TraceOptoOutput),
   835     _printer(NULL),
   836 #endif
   837     _congraph(NULL) {
   838   C = this;
   840 #ifndef PRODUCT
   841   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
   842   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
   843   set_print_assembly(PrintFrameConverterAssembly);
   844   set_parsed_irreducible_loop(false);
   845 #endif
   846   CompileWrapper cw(this);
   847   Init(/*AliasLevel=*/ 0);
   848   init_tf((*generator)());
   850   {
   851     // The following is a dummy for the sake of GraphKit::gen_stub
   852     Unique_Node_List for_igvn(comp_arena());
   853     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
   854     PhaseGVN gvn(Thread::current()->resource_area(),255);
   855     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
   856     gvn.transform_no_reclaim(top());
   858     GraphKit kit;
   859     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
   860   }
   862   NOT_PRODUCT( verify_graph_edges(); )
   863   Code_Gen();
   864   if (failing())  return;
   867   // Entry point will be accessed using compile->stub_entry_point();
   868   if (code_buffer() == NULL) {
   869     Matcher::soft_match_failure();
   870   } else {
   871     if (PrintAssembly && (WizardMode || Verbose))
   872       tty->print_cr("### Stub::%s", stub_name);
   874     if (!failing()) {
   875       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
   877       // Make the NMethod
   878       // For now we mark the frame as never safe for profile stackwalking
   879       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
   880                                                       code_buffer(),
   881                                                       CodeOffsets::frame_never_safe,
   882                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
   883                                                       frame_size_in_words(),
   884                                                       _oop_map_set,
   885                                                       save_arg_registers);
   886       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
   888       _stub_entry_point = rs->entry_point();
   889     }
   890   }
   891 }
   893 #ifndef PRODUCT
   894 void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
   895   if(PrintOpto && Verbose) {
   896     tty->print("%s   ", stub_name); j_sig->print_flattened(); tty->cr();
   897   }
   898 }
   899 #endif
   901 void Compile::print_codes() {
   902 }
   904 //------------------------------Init-------------------------------------------
   905 // Prepare for a single compilation
   906 void Compile::Init(int aliaslevel) {
   907   _unique  = 0;
   908   _regalloc = NULL;
   910   _tf      = NULL;  // filled in later
   911   _top     = NULL;  // cached later
   912   _matcher = NULL;  // filled in later
   913   _cfg     = NULL;  // filled in later
   915   set_24_bit_selection_and_mode(Use24BitFP, false);
   917   _node_note_array = NULL;
   918   _default_node_notes = NULL;
   920   _immutable_memory = NULL; // filled in at first inquiry
   922   // Globally visible Nodes
   923   // First set TOP to NULL to give safe behavior during creation of RootNode
   924   set_cached_top_node(NULL);
   925   set_root(new (this, 3) RootNode());
   926   // Now that you have a Root to point to, create the real TOP
   927   set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
   928   set_recent_alloc(NULL, NULL);
   930   // Create Debug Information Recorder to record scopes, oopmaps, etc.
   931   env()->set_oop_recorder(new OopRecorder(comp_arena()));
   932   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
   933   env()->set_dependencies(new Dependencies(env()));
   935   _fixed_slots = 0;
   936   set_has_split_ifs(false);
   937   set_has_loops(has_method() && method()->has_loops()); // first approximation
   938   set_has_stringbuilder(false);
   939   _trap_can_recompile = false;  // no traps emitted yet
   940   _major_progress = true; // start out assuming good things will happen
   941   set_has_unsafe_access(false);
   942   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
   943   set_decompile_count(0);
   945   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
   946   set_num_loop_opts(LoopOptsCount);
   947   set_do_inlining(Inline);
   948   set_max_inline_size(MaxInlineSize);
   949   set_freq_inline_size(FreqInlineSize);
   950   set_do_scheduling(OptoScheduling);
   951   set_do_count_invocations(false);
   952   set_do_method_data_update(false);
   954   if (debug_info()->recording_non_safepoints()) {
   955     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
   956                         (comp_arena(), 8, 0, NULL));
   957     set_default_node_notes(Node_Notes::make(this));
   958   }
   960   // // -- Initialize types before each compile --
   961   // // Update cached type information
   962   // if( _method && _method->constants() )
   963   //   Type::update_loaded_types(_method, _method->constants());
   965   // Init alias_type map.
   966   if (!_do_escape_analysis && aliaslevel == 3)
   967     aliaslevel = 2;  // No unique types without escape analysis
   968   _AliasLevel = aliaslevel;
   969   const int grow_ats = 16;
   970   _max_alias_types = grow_ats;
   971   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
   972   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
   973   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
   974   {
   975     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
   976   }
   977   // Initialize the first few types.
   978   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
   979   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
   980   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
   981   _num_alias_types = AliasIdxRaw+1;
   982   // Zero out the alias type cache.
   983   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
   984   // A NULL adr_type hits in the cache right away.  Preload the right answer.
   985   probe_alias_cache(NULL)->_index = AliasIdxTop;
   987   _intrinsics = NULL;
   988   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
   989   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
   990   register_library_intrinsics();
   991 }
   993 //---------------------------init_start----------------------------------------
   994 // Install the StartNode on this compile object.
   995 void Compile::init_start(StartNode* s) {
   996   if (failing())
   997     return; // already failing
   998   assert(s == start(), "");
   999 }
  1001 StartNode* Compile::start() const {
  1002   assert(!failing(), "");
  1003   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
  1004     Node* start = root()->fast_out(i);
  1005     if( start->is_Start() )
  1006       return start->as_Start();
  1008   ShouldNotReachHere();
  1009   return NULL;
  1012 //-------------------------------immutable_memory-------------------------------------
  1013 // Access immutable memory
  1014 Node* Compile::immutable_memory() {
  1015   if (_immutable_memory != NULL) {
  1016     return _immutable_memory;
  1018   StartNode* s = start();
  1019   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
  1020     Node *p = s->fast_out(i);
  1021     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
  1022       _immutable_memory = p;
  1023       return _immutable_memory;
  1026   ShouldNotReachHere();
  1027   return NULL;
  1030 //----------------------set_cached_top_node------------------------------------
  1031 // Install the cached top node, and make sure Node::is_top works correctly.
  1032 void Compile::set_cached_top_node(Node* tn) {
  1033   if (tn != NULL)  verify_top(tn);
  1034   Node* old_top = _top;
  1035   _top = tn;
  1036   // Calling Node::setup_is_top allows the nodes the chance to adjust
  1037   // their _out arrays.
  1038   if (_top != NULL)     _top->setup_is_top();
  1039   if (old_top != NULL)  old_top->setup_is_top();
  1040   assert(_top == NULL || top()->is_top(), "");
  1043 #ifndef PRODUCT
  1044 void Compile::verify_top(Node* tn) const {
  1045   if (tn != NULL) {
  1046     assert(tn->is_Con(), "top node must be a constant");
  1047     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
  1048     assert(tn->in(0) != NULL, "must have live top node");
  1051 #endif
  1054 ///-------------------Managing Per-Node Debug & Profile Info-------------------
  1056 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
  1057   guarantee(arr != NULL, "");
  1058   int num_blocks = arr->length();
  1059   if (grow_by < num_blocks)  grow_by = num_blocks;
  1060   int num_notes = grow_by * _node_notes_block_size;
  1061   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
  1062   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
  1063   while (num_notes > 0) {
  1064     arr->append(notes);
  1065     notes     += _node_notes_block_size;
  1066     num_notes -= _node_notes_block_size;
  1068   assert(num_notes == 0, "exact multiple, please");
  1071 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
  1072   if (source == NULL || dest == NULL)  return false;
  1074   if (dest->is_Con())
  1075     return false;               // Do not push debug info onto constants.
  1077 #ifdef ASSERT
  1078   // Leave a bread crumb trail pointing to the original node:
  1079   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
  1080     dest->set_debug_orig(source);
  1082 #endif
  1084   if (node_note_array() == NULL)
  1085     return false;               // Not collecting any notes now.
  1087   // This is a copy onto a pre-existing node, which may already have notes.
  1088   // If both nodes have notes, do not overwrite any pre-existing notes.
  1089   Node_Notes* source_notes = node_notes_at(source->_idx);
  1090   if (source_notes == NULL || source_notes->is_clear())  return false;
  1091   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
  1092   if (dest_notes == NULL || dest_notes->is_clear()) {
  1093     return set_node_notes_at(dest->_idx, source_notes);
  1096   Node_Notes merged_notes = (*source_notes);
  1097   // The order of operations here ensures that dest notes will win...
  1098   merged_notes.update_from(dest_notes);
  1099   return set_node_notes_at(dest->_idx, &merged_notes);
  1103 //--------------------------allow_range_check_smearing-------------------------
  1104 // Gating condition for coalescing similar range checks.
  1105 // Sometimes we try 'speculatively' replacing a series of a range checks by a
  1106 // single covering check that is at least as strong as any of them.
  1107 // If the optimization succeeds, the simplified (strengthened) range check
  1108 // will always succeed.  If it fails, we will deopt, and then give up
  1109 // on the optimization.
  1110 bool Compile::allow_range_check_smearing() const {
  1111   // If this method has already thrown a range-check,
  1112   // assume it was because we already tried range smearing
  1113   // and it failed.
  1114   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
  1115   return !already_trapped;
  1119 //------------------------------flatten_alias_type-----------------------------
  1120 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
  1121   int offset = tj->offset();
  1122   TypePtr::PTR ptr = tj->ptr();
  1124   // Known instance (scalarizable allocation) alias only with itself.
  1125   bool is_known_inst = tj->isa_oopptr() != NULL &&
  1126                        tj->is_oopptr()->is_known_instance();
  1128   // Process weird unsafe references.
  1129   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
  1130     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
  1131     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
  1132     tj = TypeOopPtr::BOTTOM;
  1133     ptr = tj->ptr();
  1134     offset = tj->offset();
  1137   // Array pointers need some flattening
  1138   const TypeAryPtr *ta = tj->isa_aryptr();
  1139   if( ta && is_known_inst ) {
  1140     if ( offset != Type::OffsetBot &&
  1141          offset > arrayOopDesc::length_offset_in_bytes() ) {
  1142       offset = Type::OffsetBot; // Flatten constant access into array body only
  1143       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
  1145   } else if( ta && _AliasLevel >= 2 ) {
  1146     // For arrays indexed by constant indices, we flatten the alias
  1147     // space to include all of the array body.  Only the header, klass
  1148     // and array length can be accessed un-aliased.
  1149     if( offset != Type::OffsetBot ) {
  1150       if( ta->const_oop() ) { // methodDataOop or methodOop
  1151         offset = Type::OffsetBot;   // Flatten constant access into array body
  1152         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
  1153       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
  1154         // range is OK as-is.
  1155         tj = ta = TypeAryPtr::RANGE;
  1156       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
  1157         tj = TypeInstPtr::KLASS; // all klass loads look alike
  1158         ta = TypeAryPtr::RANGE; // generic ignored junk
  1159         ptr = TypePtr::BotPTR;
  1160       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
  1161         tj = TypeInstPtr::MARK;
  1162         ta = TypeAryPtr::RANGE; // generic ignored junk
  1163         ptr = TypePtr::BotPTR;
  1164       } else {                  // Random constant offset into array body
  1165         offset = Type::OffsetBot;   // Flatten constant access into array body
  1166         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
  1169     // Arrays of fixed size alias with arrays of unknown size.
  1170     if (ta->size() != TypeInt::POS) {
  1171       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
  1172       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
  1174     // Arrays of known objects become arrays of unknown objects.
  1175     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
  1176       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
  1177       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1179     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
  1180       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
  1181       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
  1183     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
  1184     // cannot be distinguished by bytecode alone.
  1185     if (ta->elem() == TypeInt::BOOL) {
  1186       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
  1187       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
  1188       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
  1190     // During the 2nd round of IterGVN, NotNull castings are removed.
  1191     // Make sure the Bottom and NotNull variants alias the same.
  1192     // Also, make sure exact and non-exact variants alias the same.
  1193     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
  1194       if (ta->const_oop()) {
  1195         tj = ta = TypeAryPtr::make(TypePtr::Constant,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
  1196       } else {
  1197         tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
  1202   // Oop pointers need some flattening
  1203   const TypeInstPtr *to = tj->isa_instptr();
  1204   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
  1205     ciInstanceKlass *k = to->klass()->as_instance_klass();
  1206     if( ptr == TypePtr::Constant ) {
  1207       if (to->klass() != ciEnv::current()->Class_klass() ||
  1208           offset < k->size_helper() * wordSize) {
  1209         // No constant oop pointers (such as Strings); they alias with
  1210         // unknown strings.
  1211         assert(!is_known_inst, "not scalarizable allocation");
  1212         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1214     } else if( is_known_inst ) {
  1215       tj = to; // Keep NotNull and klass_is_exact for instance type
  1216     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
  1217       // During the 2nd round of IterGVN, NotNull castings are removed.
  1218       // Make sure the Bottom and NotNull variants alias the same.
  1219       // Also, make sure exact and non-exact variants alias the same.
  1220       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
  1222     // Canonicalize the holder of this field
  1223     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
  1224       // First handle header references such as a LoadKlassNode, even if the
  1225       // object's klass is unloaded at compile time (4965979).
  1226       if (!is_known_inst) { // Do it only for non-instance types
  1227         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
  1229     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
  1230       // Static fields are in the space above the normal instance
  1231       // fields in the java.lang.Class instance.
  1232       if (to->klass() != ciEnv::current()->Class_klass()) {
  1233         to = NULL;
  1234         tj = TypeOopPtr::BOTTOM;
  1235         offset = tj->offset();
  1237     } else {
  1238       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
  1239       if (!k->equals(canonical_holder) || tj->offset() != offset) {
  1240         if( is_known_inst ) {
  1241           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
  1242         } else {
  1243           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
  1249   // Klass pointers to object array klasses need some flattening
  1250   const TypeKlassPtr *tk = tj->isa_klassptr();
  1251   if( tk ) {
  1252     // If we are referencing a field within a Klass, we need
  1253     // to assume the worst case of an Object.  Both exact and
  1254     // inexact types must flatten to the same alias class.
  1255     // Since the flattened result for a klass is defined to be
  1256     // precisely java.lang.Object, use a constant ptr.
  1257     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
  1259       tj = tk = TypeKlassPtr::make(TypePtr::Constant,
  1260                                    TypeKlassPtr::OBJECT->klass(),
  1261                                    offset);
  1264     ciKlass* klass = tk->klass();
  1265     if( klass->is_obj_array_klass() ) {
  1266       ciKlass* k = TypeAryPtr::OOPS->klass();
  1267       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
  1268         k = TypeInstPtr::BOTTOM->klass();
  1269       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
  1272     // Check for precise loads from the primary supertype array and force them
  1273     // to the supertype cache alias index.  Check for generic array loads from
  1274     // the primary supertype array and also force them to the supertype cache
  1275     // alias index.  Since the same load can reach both, we need to merge
  1276     // these 2 disparate memories into the same alias class.  Since the
  1277     // primary supertype array is read-only, there's no chance of confusion
  1278     // where we bypass an array load and an array store.
  1279     uint off2 = offset - Klass::primary_supers_offset_in_bytes();
  1280     if( offset == Type::OffsetBot ||
  1281         off2 < Klass::primary_super_limit()*wordSize ) {
  1282       offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
  1283       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
  1287   // Flatten all Raw pointers together.
  1288   if (tj->base() == Type::RawPtr)
  1289     tj = TypeRawPtr::BOTTOM;
  1291   if (tj->base() == Type::AnyPtr)
  1292     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
  1294   // Flatten all to bottom for now
  1295   switch( _AliasLevel ) {
  1296   case 0:
  1297     tj = TypePtr::BOTTOM;
  1298     break;
  1299   case 1:                       // Flatten to: oop, static, field or array
  1300     switch (tj->base()) {
  1301     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
  1302     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
  1303     case Type::AryPtr:   // do not distinguish arrays at all
  1304     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
  1305     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
  1306     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
  1307     default: ShouldNotReachHere();
  1309     break;
  1310   case 2:                       // No collapsing at level 2; keep all splits
  1311   case 3:                       // No collapsing at level 3; keep all splits
  1312     break;
  1313   default:
  1314     Unimplemented();
  1317   offset = tj->offset();
  1318   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
  1320   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
  1321           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
  1322           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
  1323           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
  1324           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1325           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
  1326           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
  1327           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
  1328   assert( tj->ptr() != TypePtr::TopPTR &&
  1329           tj->ptr() != TypePtr::AnyNull &&
  1330           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
  1331 //    assert( tj->ptr() != TypePtr::Constant ||
  1332 //            tj->base() == Type::RawPtr ||
  1333 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
  1335   return tj;
  1338 void Compile::AliasType::Init(int i, const TypePtr* at) {
  1339   _index = i;
  1340   _adr_type = at;
  1341   _field = NULL;
  1342   _is_rewritable = true; // default
  1343   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
  1344   if (atoop != NULL && atoop->is_known_instance()) {
  1345     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
  1346     _general_index = Compile::current()->get_alias_index(gt);
  1347   } else {
  1348     _general_index = 0;
  1352 //---------------------------------print_on------------------------------------
  1353 #ifndef PRODUCT
  1354 void Compile::AliasType::print_on(outputStream* st) {
  1355   if (index() < 10)
  1356         st->print("@ <%d> ", index());
  1357   else  st->print("@ <%d>",  index());
  1358   st->print(is_rewritable() ? "   " : " RO");
  1359   int offset = adr_type()->offset();
  1360   if (offset == Type::OffsetBot)
  1361         st->print(" +any");
  1362   else  st->print(" +%-3d", offset);
  1363   st->print(" in ");
  1364   adr_type()->dump_on(st);
  1365   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
  1366   if (field() != NULL && tjp) {
  1367     if (tjp->klass()  != field()->holder() ||
  1368         tjp->offset() != field()->offset_in_bytes()) {
  1369       st->print(" != ");
  1370       field()->print();
  1371       st->print(" ***");
  1376 void print_alias_types() {
  1377   Compile* C = Compile::current();
  1378   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
  1379   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
  1380     C->alias_type(idx)->print_on(tty);
  1381     tty->cr();
  1384 #endif
  1387 //----------------------------probe_alias_cache--------------------------------
  1388 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
  1389   intptr_t key = (intptr_t) adr_type;
  1390   key ^= key >> logAliasCacheSize;
  1391   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
  1395 //-----------------------------grow_alias_types--------------------------------
  1396 void Compile::grow_alias_types() {
  1397   const int old_ats  = _max_alias_types; // how many before?
  1398   const int new_ats  = old_ats;          // how many more?
  1399   const int grow_ats = old_ats+new_ats;  // how many now?
  1400   _max_alias_types = grow_ats;
  1401   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
  1402   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
  1403   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
  1404   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
  1408 //--------------------------------find_alias_type------------------------------
  1409 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
  1410   if (_AliasLevel == 0)
  1411     return alias_type(AliasIdxBot);
  1413   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1414   if (ace->_adr_type == adr_type) {
  1415     return alias_type(ace->_index);
  1418   // Handle special cases.
  1419   if (adr_type == NULL)             return alias_type(AliasIdxTop);
  1420   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
  1422   // Do it the slow way.
  1423   const TypePtr* flat = flatten_alias_type(adr_type);
  1425 #ifdef ASSERT
  1426   assert(flat == flatten_alias_type(flat), "idempotent");
  1427   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
  1428   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
  1429     const TypeOopPtr* foop = flat->is_oopptr();
  1430     // Scalarizable allocations have exact klass always.
  1431     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
  1432     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
  1433     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
  1435   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
  1436 #endif
  1438   int idx = AliasIdxTop;
  1439   for (int i = 0; i < num_alias_types(); i++) {
  1440     if (alias_type(i)->adr_type() == flat) {
  1441       idx = i;
  1442       break;
  1446   if (idx == AliasIdxTop) {
  1447     if (no_create)  return NULL;
  1448     // Grow the array if necessary.
  1449     if (_num_alias_types == _max_alias_types)  grow_alias_types();
  1450     // Add a new alias type.
  1451     idx = _num_alias_types++;
  1452     _alias_types[idx]->Init(idx, flat);
  1453     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
  1454     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
  1455     if (flat->isa_instptr()) {
  1456       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
  1457           && flat->is_instptr()->klass() == env()->Class_klass())
  1458         alias_type(idx)->set_rewritable(false);
  1460     if (flat->isa_klassptr()) {
  1461       if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
  1462         alias_type(idx)->set_rewritable(false);
  1463       if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
  1464         alias_type(idx)->set_rewritable(false);
  1465       if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
  1466         alias_type(idx)->set_rewritable(false);
  1467       if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
  1468         alias_type(idx)->set_rewritable(false);
  1470     // %%% (We would like to finalize JavaThread::threadObj_offset(),
  1471     // but the base pointer type is not distinctive enough to identify
  1472     // references into JavaThread.)
  1474     // Check for final fields.
  1475     const TypeInstPtr* tinst = flat->isa_instptr();
  1476     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
  1477       ciField* field;
  1478       if (tinst->const_oop() != NULL &&
  1479           tinst->klass() == ciEnv::current()->Class_klass() &&
  1480           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
  1481         // static field
  1482         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
  1483         field = k->get_field_by_offset(tinst->offset(), true);
  1484       } else {
  1485         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
  1486         field = k->get_field_by_offset(tinst->offset(), false);
  1488       assert(field == NULL ||
  1489              original_field == NULL ||
  1490              (field->holder() == original_field->holder() &&
  1491               field->offset() == original_field->offset() &&
  1492               field->is_static() == original_field->is_static()), "wrong field?");
  1493       // Set field() and is_rewritable() attributes.
  1494       if (field != NULL)  alias_type(idx)->set_field(field);
  1498   // Fill the cache for next time.
  1499   ace->_adr_type = adr_type;
  1500   ace->_index    = idx;
  1501   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
  1503   // Might as well try to fill the cache for the flattened version, too.
  1504   AliasCacheEntry* face = probe_alias_cache(flat);
  1505   if (face->_adr_type == NULL) {
  1506     face->_adr_type = flat;
  1507     face->_index    = idx;
  1508     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
  1511   return alias_type(idx);
  1515 Compile::AliasType* Compile::alias_type(ciField* field) {
  1516   const TypeOopPtr* t;
  1517   if (field->is_static())
  1518     t = TypeInstPtr::make(field->holder()->java_mirror());
  1519   else
  1520     t = TypeOopPtr::make_from_klass_raw(field->holder());
  1521   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
  1522   assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
  1523   return atp;
  1527 //------------------------------have_alias_type--------------------------------
  1528 bool Compile::have_alias_type(const TypePtr* adr_type) {
  1529   AliasCacheEntry* ace = probe_alias_cache(adr_type);
  1530   if (ace->_adr_type == adr_type) {
  1531     return true;
  1534   // Handle special cases.
  1535   if (adr_type == NULL)             return true;
  1536   if (adr_type == TypePtr::BOTTOM)  return true;
  1538   return find_alias_type(adr_type, true, NULL) != NULL;
  1541 //-----------------------------must_alias--------------------------------------
  1542 // True if all values of the given address type are in the given alias category.
  1543 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
  1544   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1545   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
  1546   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1547   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
  1549   // the only remaining possible overlap is identity
  1550   int adr_idx = get_alias_index(adr_type);
  1551   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1552   assert(adr_idx == alias_idx ||
  1553          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
  1554           && adr_type                       != TypeOopPtr::BOTTOM),
  1555          "should not be testing for overlap with an unsafe pointer");
  1556   return adr_idx == alias_idx;
  1559 //------------------------------can_alias--------------------------------------
  1560 // True if any values of the given address type are in the given alias category.
  1561 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
  1562   if (alias_idx == AliasIdxTop)         return false; // the empty category
  1563   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
  1564   if (alias_idx == AliasIdxBot)         return true;  // the universal category
  1565   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
  1567   // the only remaining possible overlap is identity
  1568   int adr_idx = get_alias_index(adr_type);
  1569   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
  1570   return adr_idx == alias_idx;
  1575 //---------------------------pop_warm_call-------------------------------------
  1576 WarmCallInfo* Compile::pop_warm_call() {
  1577   WarmCallInfo* wci = _warm_calls;
  1578   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
  1579   return wci;
  1582 //----------------------------Inline_Warm--------------------------------------
  1583 int Compile::Inline_Warm() {
  1584   // If there is room, try to inline some more warm call sites.
  1585   // %%% Do a graph index compaction pass when we think we're out of space?
  1586   if (!InlineWarmCalls)  return 0;
  1588   int calls_made_hot = 0;
  1589   int room_to_grow   = NodeCountInliningCutoff - unique();
  1590   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
  1591   int amount_grown   = 0;
  1592   WarmCallInfo* call;
  1593   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
  1594     int est_size = (int)call->size();
  1595     if (est_size > (room_to_grow - amount_grown)) {
  1596       // This one won't fit anyway.  Get rid of it.
  1597       call->make_cold();
  1598       continue;
  1600     call->make_hot();
  1601     calls_made_hot++;
  1602     amount_grown   += est_size;
  1603     amount_to_grow -= est_size;
  1606   if (calls_made_hot > 0)  set_major_progress();
  1607   return calls_made_hot;
  1611 //----------------------------Finish_Warm--------------------------------------
  1612 void Compile::Finish_Warm() {
  1613   if (!InlineWarmCalls)  return;
  1614   if (failing())  return;
  1615   if (warm_calls() == NULL)  return;
  1617   // Clean up loose ends, if we are out of space for inlining.
  1618   WarmCallInfo* call;
  1619   while ((call = pop_warm_call()) != NULL) {
  1620     call->make_cold();
  1624 //---------------------cleanup_loop_predicates-----------------------
  1625 // Remove the opaque nodes that protect the predicates so that all unused
  1626 // checks and uncommon_traps will be eliminated from the ideal graph
  1627 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
  1628   if (predicate_count()==0) return;
  1629   for (int i = predicate_count(); i > 0; i--) {
  1630     Node * n = predicate_opaque1_node(i-1);
  1631     assert(n->Opcode() == Op_Opaque1, "must be");
  1632     igvn.replace_node(n, n->in(1));
  1634   assert(predicate_count()==0, "should be clean!");
  1637 //------------------------------Optimize---------------------------------------
  1638 // Given a graph, optimize it.
  1639 void Compile::Optimize() {
  1640   TracePhase t1("optimizer", &_t_optimizer, true);
  1642 #ifndef PRODUCT
  1643   if (env()->break_at_compile()) {
  1644     BREAKPOINT;
  1647 #endif
  1649   ResourceMark rm;
  1650   int          loop_opts_cnt;
  1652   NOT_PRODUCT( verify_graph_edges(); )
  1654   print_method("After Parsing");
  1657   // Iterative Global Value Numbering, including ideal transforms
  1658   // Initialize IterGVN with types and values from parse-time GVN
  1659   PhaseIterGVN igvn(initial_gvn());
  1661     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
  1662     igvn.optimize();
  1665   print_method("Iter GVN 1", 2);
  1667   if (failing())  return;
  1669   // Perform escape analysis
  1670   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
  1671     TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, true);
  1672     ConnectionGraph::do_analysis(this, &igvn);
  1674     if (failing())  return;
  1676     igvn.optimize();
  1677     print_method("Iter GVN 3", 2);
  1679     if (failing())  return;
  1683   // Loop transforms on the ideal graph.  Range Check Elimination,
  1684   // peeling, unrolling, etc.
  1686   // Set loop opts counter
  1687   loop_opts_cnt = num_loop_opts();
  1688   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
  1690       TracePhase t2("idealLoop", &_t_idealLoop, true);
  1691       PhaseIdealLoop ideal_loop( igvn, true );
  1692       loop_opts_cnt--;
  1693       if (major_progress()) print_method("PhaseIdealLoop 1", 2);
  1694       if (failing())  return;
  1696     // Loop opts pass if partial peeling occurred in previous pass
  1697     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
  1698       TracePhase t3("idealLoop", &_t_idealLoop, true);
  1699       PhaseIdealLoop ideal_loop( igvn, false );
  1700       loop_opts_cnt--;
  1701       if (major_progress()) print_method("PhaseIdealLoop 2", 2);
  1702       if (failing())  return;
  1704     // Loop opts pass for loop-unrolling before CCP
  1705     if(major_progress() && (loop_opts_cnt > 0)) {
  1706       TracePhase t4("idealLoop", &_t_idealLoop, true);
  1707       PhaseIdealLoop ideal_loop( igvn, false );
  1708       loop_opts_cnt--;
  1709       if (major_progress()) print_method("PhaseIdealLoop 3", 2);
  1711     if (!failing()) {
  1712       // Verify that last round of loop opts produced a valid graph
  1713       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  1714       PhaseIdealLoop::verify(igvn);
  1717   if (failing())  return;
  1719   // Conditional Constant Propagation;
  1720   PhaseCCP ccp( &igvn );
  1721   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
  1723     TracePhase t2("ccp", &_t_ccp, true);
  1724     ccp.do_transform();
  1726   print_method("PhaseCPP 1", 2);
  1728   assert( true, "Break here to ccp.dump_old2new_map()");
  1730   // Iterative Global Value Numbering, including ideal transforms
  1732     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
  1733     igvn = ccp;
  1734     igvn.optimize();
  1737   print_method("Iter GVN 2", 2);
  1739   if (failing())  return;
  1741   // Loop transforms on the ideal graph.  Range Check Elimination,
  1742   // peeling, unrolling, etc.
  1743   if(loop_opts_cnt > 0) {
  1744     debug_only( int cnt = 0; );
  1745     while(major_progress() && (loop_opts_cnt > 0)) {
  1746       TracePhase t2("idealLoop", &_t_idealLoop, true);
  1747       assert( cnt++ < 40, "infinite cycle in loop optimization" );
  1748       PhaseIdealLoop ideal_loop( igvn, true);
  1749       loop_opts_cnt--;
  1750       if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
  1751       if (failing())  return;
  1756     // Verify that all previous optimizations produced a valid graph
  1757     // at least to this point, even if no loop optimizations were done.
  1758     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
  1759     PhaseIdealLoop::verify(igvn);
  1763     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
  1764     PhaseMacroExpand  mex(igvn);
  1765     if (mex.expand_macro_nodes()) {
  1766       assert(failing(), "must bail out w/ explicit message");
  1767       return;
  1771  } // (End scope of igvn; run destructor if necessary for asserts.)
  1773   // A method with only infinite loops has no edges entering loops from root
  1775     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
  1776     if (final_graph_reshaping()) {
  1777       assert(failing(), "must bail out w/ explicit message");
  1778       return;
  1782   print_method("Optimize finished", 2);
  1786 //------------------------------Code_Gen---------------------------------------
  1787 // Given a graph, generate code for it
  1788 void Compile::Code_Gen() {
  1789   if (failing())  return;
  1791   // Perform instruction selection.  You might think we could reclaim Matcher
  1792   // memory PDQ, but actually the Matcher is used in generating spill code.
  1793   // Internals of the Matcher (including some VectorSets) must remain live
  1794   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
  1795   // set a bit in reclaimed memory.
  1797   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  1798   // nodes.  Mapping is only valid at the root of each matched subtree.
  1799   NOT_PRODUCT( verify_graph_edges(); )
  1801   Node_List proj_list;
  1802   Matcher m(proj_list);
  1803   _matcher = &m;
  1805     TracePhase t2("matcher", &_t_matcher, true);
  1806     m.match();
  1808   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
  1809   // nodes.  Mapping is only valid at the root of each matched subtree.
  1810   NOT_PRODUCT( verify_graph_edges(); )
  1812   // If you have too many nodes, or if matching has failed, bail out
  1813   check_node_count(0, "out of nodes matching instructions");
  1814   if (failing())  return;
  1816   // Build a proper-looking CFG
  1817   PhaseCFG cfg(node_arena(), root(), m);
  1818   _cfg = &cfg;
  1820     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
  1821     cfg.Dominators();
  1822     if (failing())  return;
  1824     NOT_PRODUCT( verify_graph_edges(); )
  1826     cfg.Estimate_Block_Frequency();
  1827     cfg.GlobalCodeMotion(m,unique(),proj_list);
  1829     print_method("Global code motion", 2);
  1831     if (failing())  return;
  1832     NOT_PRODUCT( verify_graph_edges(); )
  1834     debug_only( cfg.verify(); )
  1836   NOT_PRODUCT( verify_graph_edges(); )
  1838   PhaseChaitin regalloc(unique(),cfg,m);
  1839   _regalloc = &regalloc;
  1841     TracePhase t2("regalloc", &_t_registerAllocation, true);
  1842     // Perform any platform dependent preallocation actions.  This is used,
  1843     // for example, to avoid taking an implicit null pointer exception
  1844     // using the frame pointer on win95.
  1845     _regalloc->pd_preallocate_hook();
  1847     // Perform register allocation.  After Chaitin, use-def chains are
  1848     // no longer accurate (at spill code) and so must be ignored.
  1849     // Node->LRG->reg mappings are still accurate.
  1850     _regalloc->Register_Allocate();
  1852     // Bail out if the allocator builds too many nodes
  1853     if (failing())  return;
  1856   // Prior to register allocation we kept empty basic blocks in case the
  1857   // the allocator needed a place to spill.  After register allocation we
  1858   // are not adding any new instructions.  If any basic block is empty, we
  1859   // can now safely remove it.
  1861     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
  1862     cfg.remove_empty();
  1863     if (do_freq_based_layout()) {
  1864       PhaseBlockLayout layout(cfg);
  1865     } else {
  1866       cfg.set_loop_alignment();
  1868     cfg.fixup_flow();
  1871   // Perform any platform dependent postallocation verifications.
  1872   debug_only( _regalloc->pd_postallocate_verify_hook(); )
  1874   // Apply peephole optimizations
  1875   if( OptoPeephole ) {
  1876     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
  1877     PhasePeephole peep( _regalloc, cfg);
  1878     peep.do_transform();
  1881   // Convert Nodes to instruction bits in a buffer
  1883     // %%%% workspace merge brought two timers together for one job
  1884     TracePhase t2a("output", &_t_output, true);
  1885     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
  1886     Output();
  1889   print_method("Final Code");
  1891   // He's dead, Jim.
  1892   _cfg     = (PhaseCFG*)0xdeadbeef;
  1893   _regalloc = (PhaseChaitin*)0xdeadbeef;
  1897 //------------------------------dump_asm---------------------------------------
  1898 // Dump formatted assembly
  1899 #ifndef PRODUCT
  1900 void Compile::dump_asm(int *pcs, uint pc_limit) {
  1901   bool cut_short = false;
  1902   tty->print_cr("#");
  1903   tty->print("#  ");  _tf->dump();  tty->cr();
  1904   tty->print_cr("#");
  1906   // For all blocks
  1907   int pc = 0x0;                 // Program counter
  1908   char starts_bundle = ' ';
  1909   _regalloc->dump_frame();
  1911   Node *n = NULL;
  1912   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
  1913     if (VMThread::should_terminate()) { cut_short = true; break; }
  1914     Block *b = _cfg->_blocks[i];
  1915     if (b->is_connector() && !Verbose) continue;
  1916     n = b->_nodes[0];
  1917     if (pcs && n->_idx < pc_limit)
  1918       tty->print("%3.3x   ", pcs[n->_idx]);
  1919     else
  1920       tty->print("      ");
  1921     b->dump_head( &_cfg->_bbs );
  1922     if (b->is_connector()) {
  1923       tty->print_cr("        # Empty connector block");
  1924     } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
  1925       tty->print_cr("        # Block is sole successor of call");
  1928     // For all instructions
  1929     Node *delay = NULL;
  1930     for( uint j = 0; j<b->_nodes.size(); j++ ) {
  1931       if (VMThread::should_terminate()) { cut_short = true; break; }
  1932       n = b->_nodes[j];
  1933       if (valid_bundle_info(n)) {
  1934         Bundle *bundle = node_bundling(n);
  1935         if (bundle->used_in_unconditional_delay()) {
  1936           delay = n;
  1937           continue;
  1939         if (bundle->starts_bundle())
  1940           starts_bundle = '+';
  1943       if (WizardMode) n->dump();
  1945       if( !n->is_Region() &&    // Dont print in the Assembly
  1946           !n->is_Phi() &&       // a few noisely useless nodes
  1947           !n->is_Proj() &&
  1948           !n->is_MachTemp() &&
  1949           !n->is_SafePointScalarObject() &&
  1950           !n->is_Catch() &&     // Would be nice to print exception table targets
  1951           !n->is_MergeMem() &&  // Not very interesting
  1952           !n->is_top() &&       // Debug info table constants
  1953           !(n->is_Con() && !n->is_Mach())// Debug info table constants
  1954           ) {
  1955         if (pcs && n->_idx < pc_limit)
  1956           tty->print("%3.3x", pcs[n->_idx]);
  1957         else
  1958           tty->print("   ");
  1959         tty->print(" %c ", starts_bundle);
  1960         starts_bundle = ' ';
  1961         tty->print("\t");
  1962         n->format(_regalloc, tty);
  1963         tty->cr();
  1966       // If we have an instruction with a delay slot, and have seen a delay,
  1967       // then back up and print it
  1968       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
  1969         assert(delay != NULL, "no unconditional delay instruction");
  1970         if (WizardMode) delay->dump();
  1972         if (node_bundling(delay)->starts_bundle())
  1973           starts_bundle = '+';
  1974         if (pcs && n->_idx < pc_limit)
  1975           tty->print("%3.3x", pcs[n->_idx]);
  1976         else
  1977           tty->print("   ");
  1978         tty->print(" %c ", starts_bundle);
  1979         starts_bundle = ' ';
  1980         tty->print("\t");
  1981         delay->format(_regalloc, tty);
  1982         tty->print_cr("");
  1983         delay = NULL;
  1986       // Dump the exception table as well
  1987       if( n->is_Catch() && (Verbose || WizardMode) ) {
  1988         // Print the exception table for this offset
  1989         _handler_table.print_subtable_for(pc);
  1993     if (pcs && n->_idx < pc_limit)
  1994       tty->print_cr("%3.3x", pcs[n->_idx]);
  1995     else
  1996       tty->print_cr("");
  1998     assert(cut_short || delay == NULL, "no unconditional delay branch");
  2000   } // End of per-block dump
  2001   tty->print_cr("");
  2003   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
  2005 #endif
  2007 //------------------------------Final_Reshape_Counts---------------------------
  2008 // This class defines counters to help identify when a method
  2009 // may/must be executed using hardware with only 24-bit precision.
  2010 struct Final_Reshape_Counts : public StackObj {
  2011   int  _call_count;             // count non-inlined 'common' calls
  2012   int  _float_count;            // count float ops requiring 24-bit precision
  2013   int  _double_count;           // count double ops requiring more precision
  2014   int  _java_call_count;        // count non-inlined 'java' calls
  2015   int  _inner_loop_count;       // count loops which need alignment
  2016   VectorSet _visited;           // Visitation flags
  2017   Node_List _tests;             // Set of IfNodes & PCTableNodes
  2019   Final_Reshape_Counts() :
  2020     _call_count(0), _float_count(0), _double_count(0),
  2021     _java_call_count(0), _inner_loop_count(0),
  2022     _visited( Thread::current()->resource_area() ) { }
  2024   void inc_call_count  () { _call_count  ++; }
  2025   void inc_float_count () { _float_count ++; }
  2026   void inc_double_count() { _double_count++; }
  2027   void inc_java_call_count() { _java_call_count++; }
  2028   void inc_inner_loop_count() { _inner_loop_count++; }
  2030   int  get_call_count  () const { return _call_count  ; }
  2031   int  get_float_count () const { return _float_count ; }
  2032   int  get_double_count() const { return _double_count; }
  2033   int  get_java_call_count() const { return _java_call_count; }
  2034   int  get_inner_loop_count() const { return _inner_loop_count; }
  2035 };
  2037 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
  2038   ciInstanceKlass *k = tp->klass()->as_instance_klass();
  2039   // Make sure the offset goes inside the instance layout.
  2040   return k->contains_field_offset(tp->offset());
  2041   // Note that OffsetBot and OffsetTop are very negative.
  2044 //------------------------------final_graph_reshaping_impl----------------------
  2045 // Implement items 1-5 from final_graph_reshaping below.
  2046 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc ) {
  2048   if ( n->outcnt() == 0 ) return; // dead node
  2049   uint nop = n->Opcode();
  2051   // Check for 2-input instruction with "last use" on right input.
  2052   // Swap to left input.  Implements item (2).
  2053   if( n->req() == 3 &&          // two-input instruction
  2054       n->in(1)->outcnt() > 1 && // left use is NOT a last use
  2055       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
  2056       n->in(2)->outcnt() == 1 &&// right use IS a last use
  2057       !n->in(2)->is_Con() ) {   // right use is not a constant
  2058     // Check for commutative opcode
  2059     switch( nop ) {
  2060     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
  2061     case Op_MaxI:  case Op_MinI:
  2062     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
  2063     case Op_AndL:  case Op_XorL:  case Op_OrL:
  2064     case Op_AndI:  case Op_XorI:  case Op_OrI: {
  2065       // Move "last use" input to left by swapping inputs
  2066       n->swap_edges(1, 2);
  2067       break;
  2069     default:
  2070       break;
  2074 #ifdef ASSERT
  2075   if( n->is_Mem() ) {
  2076     Compile* C = Compile::current();
  2077     int alias_idx = C->get_alias_index(n->as_Mem()->adr_type());
  2078     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
  2079             // oop will be recorded in oop map if load crosses safepoint
  2080             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
  2081                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
  2082             "raw memory operations should have control edge");
  2084 #endif
  2085   // Count FPU ops and common calls, implements item (3)
  2086   switch( nop ) {
  2087   // Count all float operations that may use FPU
  2088   case Op_AddF:
  2089   case Op_SubF:
  2090   case Op_MulF:
  2091   case Op_DivF:
  2092   case Op_NegF:
  2093   case Op_ModF:
  2094   case Op_ConvI2F:
  2095   case Op_ConF:
  2096   case Op_CmpF:
  2097   case Op_CmpF3:
  2098   // case Op_ConvL2F: // longs are split into 32-bit halves
  2099     frc.inc_float_count();
  2100     break;
  2102   case Op_ConvF2D:
  2103   case Op_ConvD2F:
  2104     frc.inc_float_count();
  2105     frc.inc_double_count();
  2106     break;
  2108   // Count all double operations that may use FPU
  2109   case Op_AddD:
  2110   case Op_SubD:
  2111   case Op_MulD:
  2112   case Op_DivD:
  2113   case Op_NegD:
  2114   case Op_ModD:
  2115   case Op_ConvI2D:
  2116   case Op_ConvD2I:
  2117   // case Op_ConvL2D: // handled by leaf call
  2118   // case Op_ConvD2L: // handled by leaf call
  2119   case Op_ConD:
  2120   case Op_CmpD:
  2121   case Op_CmpD3:
  2122     frc.inc_double_count();
  2123     break;
  2124   case Op_Opaque1:              // Remove Opaque Nodes before matching
  2125   case Op_Opaque2:              // Remove Opaque Nodes before matching
  2126     n->subsume_by(n->in(1));
  2127     break;
  2128   case Op_CallStaticJava:
  2129   case Op_CallJava:
  2130   case Op_CallDynamicJava:
  2131     frc.inc_java_call_count(); // Count java call site;
  2132   case Op_CallRuntime:
  2133   case Op_CallLeaf:
  2134   case Op_CallLeafNoFP: {
  2135     assert( n->is_Call(), "" );
  2136     CallNode *call = n->as_Call();
  2137     // Count call sites where the FP mode bit would have to be flipped.
  2138     // Do not count uncommon runtime calls:
  2139     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
  2140     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
  2141     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
  2142       frc.inc_call_count();   // Count the call site
  2143     } else {                  // See if uncommon argument is shared
  2144       Node *n = call->in(TypeFunc::Parms);
  2145       int nop = n->Opcode();
  2146       // Clone shared simple arguments to uncommon calls, item (1).
  2147       if( n->outcnt() > 1 &&
  2148           !n->is_Proj() &&
  2149           nop != Op_CreateEx &&
  2150           nop != Op_CheckCastPP &&
  2151           nop != Op_DecodeN &&
  2152           !n->is_Mem() ) {
  2153         Node *x = n->clone();
  2154         call->set_req( TypeFunc::Parms, x );
  2157     break;
  2160   case Op_StoreD:
  2161   case Op_LoadD:
  2162   case Op_LoadD_unaligned:
  2163     frc.inc_double_count();
  2164     goto handle_mem;
  2165   case Op_StoreF:
  2166   case Op_LoadF:
  2167     frc.inc_float_count();
  2168     goto handle_mem;
  2170   case Op_StoreB:
  2171   case Op_StoreC:
  2172   case Op_StoreCM:
  2173   case Op_StorePConditional:
  2174   case Op_StoreI:
  2175   case Op_StoreL:
  2176   case Op_StoreIConditional:
  2177   case Op_StoreLConditional:
  2178   case Op_CompareAndSwapI:
  2179   case Op_CompareAndSwapL:
  2180   case Op_CompareAndSwapP:
  2181   case Op_CompareAndSwapN:
  2182   case Op_StoreP:
  2183   case Op_StoreN:
  2184   case Op_LoadB:
  2185   case Op_LoadUB:
  2186   case Op_LoadUS:
  2187   case Op_LoadI:
  2188   case Op_LoadUI2L:
  2189   case Op_LoadKlass:
  2190   case Op_LoadNKlass:
  2191   case Op_LoadL:
  2192   case Op_LoadL_unaligned:
  2193   case Op_LoadPLocked:
  2194   case Op_LoadLLocked:
  2195   case Op_LoadP:
  2196   case Op_LoadN:
  2197   case Op_LoadRange:
  2198   case Op_LoadS: {
  2199   handle_mem:
  2200 #ifdef ASSERT
  2201     if( VerifyOptoOopOffsets ) {
  2202       assert( n->is_Mem(), "" );
  2203       MemNode *mem  = (MemNode*)n;
  2204       // Check to see if address types have grounded out somehow.
  2205       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
  2206       assert( !tp || oop_offset_is_sane(tp), "" );
  2208 #endif
  2209     break;
  2212   case Op_AddP: {               // Assert sane base pointers
  2213     Node *addp = n->in(AddPNode::Address);
  2214     assert( !addp->is_AddP() ||
  2215             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
  2216             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
  2217             "Base pointers must match" );
  2218 #ifdef _LP64
  2219     if (UseCompressedOops &&
  2220         addp->Opcode() == Op_ConP &&
  2221         addp == n->in(AddPNode::Base) &&
  2222         n->in(AddPNode::Offset)->is_Con()) {
  2223       // Use addressing with narrow klass to load with offset on x86.
  2224       // On sparc loading 32-bits constant and decoding it have less
  2225       // instructions (4) then load 64-bits constant (7).
  2226       // Do this transformation here since IGVN will convert ConN back to ConP.
  2227       const Type* t = addp->bottom_type();
  2228       if (t->isa_oopptr()) {
  2229         Node* nn = NULL;
  2231         // Look for existing ConN node of the same exact type.
  2232         Compile* C = Compile::current();
  2233         Node* r  = C->root();
  2234         uint cnt = r->outcnt();
  2235         for (uint i = 0; i < cnt; i++) {
  2236           Node* m = r->raw_out(i);
  2237           if (m!= NULL && m->Opcode() == Op_ConN &&
  2238               m->bottom_type()->make_ptr() == t) {
  2239             nn = m;
  2240             break;
  2243         if (nn != NULL) {
  2244           // Decode a narrow oop to match address
  2245           // [R12 + narrow_oop_reg<<3 + offset]
  2246           nn = new (C,  2) DecodeNNode(nn, t);
  2247           n->set_req(AddPNode::Base, nn);
  2248           n->set_req(AddPNode::Address, nn);
  2249           if (addp->outcnt() == 0) {
  2250             addp->disconnect_inputs(NULL);
  2255 #endif
  2256     break;
  2259 #ifdef _LP64
  2260   case Op_CastPP:
  2261     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
  2262       Compile* C = Compile::current();
  2263       Node* in1 = n->in(1);
  2264       const Type* t = n->bottom_type();
  2265       Node* new_in1 = in1->clone();
  2266       new_in1->as_DecodeN()->set_type(t);
  2268       if (!Matcher::narrow_oop_use_complex_address()) {
  2269         //
  2270         // x86, ARM and friends can handle 2 adds in addressing mode
  2271         // and Matcher can fold a DecodeN node into address by using
  2272         // a narrow oop directly and do implicit NULL check in address:
  2273         //
  2274         // [R12 + narrow_oop_reg<<3 + offset]
  2275         // NullCheck narrow_oop_reg
  2276         //
  2277         // On other platforms (Sparc) we have to keep new DecodeN node and
  2278         // use it to do implicit NULL check in address:
  2279         //
  2280         // decode_not_null narrow_oop_reg, base_reg
  2281         // [base_reg + offset]
  2282         // NullCheck base_reg
  2283         //
  2284         // Pin the new DecodeN node to non-null path on these platform (Sparc)
  2285         // to keep the information to which NULL check the new DecodeN node
  2286         // corresponds to use it as value in implicit_null_check().
  2287         //
  2288         new_in1->set_req(0, n->in(0));
  2291       n->subsume_by(new_in1);
  2292       if (in1->outcnt() == 0) {
  2293         in1->disconnect_inputs(NULL);
  2296     break;
  2298   case Op_CmpP:
  2299     // Do this transformation here to preserve CmpPNode::sub() and
  2300     // other TypePtr related Ideal optimizations (for example, ptr nullness).
  2301     if (n->in(1)->is_DecodeN() || n->in(2)->is_DecodeN()) {
  2302       Node* in1 = n->in(1);
  2303       Node* in2 = n->in(2);
  2304       if (!in1->is_DecodeN()) {
  2305         in2 = in1;
  2306         in1 = n->in(2);
  2308       assert(in1->is_DecodeN(), "sanity");
  2310       Compile* C = Compile::current();
  2311       Node* new_in2 = NULL;
  2312       if (in2->is_DecodeN()) {
  2313         new_in2 = in2->in(1);
  2314       } else if (in2->Opcode() == Op_ConP) {
  2315         const Type* t = in2->bottom_type();
  2316         if (t == TypePtr::NULL_PTR) {
  2317           // Don't convert CmpP null check into CmpN if compressed
  2318           // oops implicit null check is not generated.
  2319           // This will allow to generate normal oop implicit null check.
  2320           if (Matcher::gen_narrow_oop_implicit_null_checks())
  2321             new_in2 = ConNode::make(C, TypeNarrowOop::NULL_PTR);
  2322           //
  2323           // This transformation together with CastPP transformation above
  2324           // will generated code for implicit NULL checks for compressed oops.
  2325           //
  2326           // The original code after Optimize()
  2327           //
  2328           //    LoadN memory, narrow_oop_reg
  2329           //    decode narrow_oop_reg, base_reg
  2330           //    CmpP base_reg, NULL
  2331           //    CastPP base_reg // NotNull
  2332           //    Load [base_reg + offset], val_reg
  2333           //
  2334           // after these transformations will be
  2335           //
  2336           //    LoadN memory, narrow_oop_reg
  2337           //    CmpN narrow_oop_reg, NULL
  2338           //    decode_not_null narrow_oop_reg, base_reg
  2339           //    Load [base_reg + offset], val_reg
  2340           //
  2341           // and the uncommon path (== NULL) will use narrow_oop_reg directly
  2342           // since narrow oops can be used in debug info now (see the code in
  2343           // final_graph_reshaping_walk()).
  2344           //
  2345           // At the end the code will be matched to
  2346           // on x86:
  2347           //
  2348           //    Load_narrow_oop memory, narrow_oop_reg
  2349           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
  2350           //    NullCheck narrow_oop_reg
  2351           //
  2352           // and on sparc:
  2353           //
  2354           //    Load_narrow_oop memory, narrow_oop_reg
  2355           //    decode_not_null narrow_oop_reg, base_reg
  2356           //    Load [base_reg + offset], val_reg
  2357           //    NullCheck base_reg
  2358           //
  2359         } else if (t->isa_oopptr()) {
  2360           new_in2 = ConNode::make(C, t->make_narrowoop());
  2363       if (new_in2 != NULL) {
  2364         Node* cmpN = new (C, 3) CmpNNode(in1->in(1), new_in2);
  2365         n->subsume_by( cmpN );
  2366         if (in1->outcnt() == 0) {
  2367           in1->disconnect_inputs(NULL);
  2369         if (in2->outcnt() == 0) {
  2370           in2->disconnect_inputs(NULL);
  2374     break;
  2376   case Op_DecodeN:
  2377     assert(!n->in(1)->is_EncodeP(), "should be optimized out");
  2378     // DecodeN could be pinned when it can't be fold into
  2379     // an address expression, see the code for Op_CastPP above.
  2380     assert(n->in(0) == NULL || !Matcher::narrow_oop_use_complex_address(), "no control");
  2381     break;
  2383   case Op_EncodeP: {
  2384     Node* in1 = n->in(1);
  2385     if (in1->is_DecodeN()) {
  2386       n->subsume_by(in1->in(1));
  2387     } else if (in1->Opcode() == Op_ConP) {
  2388       Compile* C = Compile::current();
  2389       const Type* t = in1->bottom_type();
  2390       if (t == TypePtr::NULL_PTR) {
  2391         n->subsume_by(ConNode::make(C, TypeNarrowOop::NULL_PTR));
  2392       } else if (t->isa_oopptr()) {
  2393         n->subsume_by(ConNode::make(C, t->make_narrowoop()));
  2396     if (in1->outcnt() == 0) {
  2397       in1->disconnect_inputs(NULL);
  2399     break;
  2402   case Op_Proj: {
  2403     if (OptimizeStringConcat) {
  2404       ProjNode* p = n->as_Proj();
  2405       if (p->_is_io_use) {
  2406         // Separate projections were used for the exception path which
  2407         // are normally removed by a late inline.  If it wasn't inlined
  2408         // then they will hang around and should just be replaced with
  2409         // the original one.
  2410         Node* proj = NULL;
  2411         // Replace with just one
  2412         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
  2413           Node *use = i.get();
  2414           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
  2415             proj = use;
  2416             break;
  2419         assert(p != NULL, "must be found");
  2420         p->subsume_by(proj);
  2423     break;
  2426   case Op_Phi:
  2427     if (n->as_Phi()->bottom_type()->isa_narrowoop()) {
  2428       // The EncodeP optimization may create Phi with the same edges
  2429       // for all paths. It is not handled well by Register Allocator.
  2430       Node* unique_in = n->in(1);
  2431       assert(unique_in != NULL, "");
  2432       uint cnt = n->req();
  2433       for (uint i = 2; i < cnt; i++) {
  2434         Node* m = n->in(i);
  2435         assert(m != NULL, "");
  2436         if (unique_in != m)
  2437           unique_in = NULL;
  2439       if (unique_in != NULL) {
  2440         n->subsume_by(unique_in);
  2443     break;
  2445 #endif
  2447   case Op_ModI:
  2448     if (UseDivMod) {
  2449       // Check if a%b and a/b both exist
  2450       Node* d = n->find_similar(Op_DivI);
  2451       if (d) {
  2452         // Replace them with a fused divmod if supported
  2453         Compile* C = Compile::current();
  2454         if (Matcher::has_match_rule(Op_DivModI)) {
  2455           DivModINode* divmod = DivModINode::make(C, n);
  2456           d->subsume_by(divmod->div_proj());
  2457           n->subsume_by(divmod->mod_proj());
  2458         } else {
  2459           // replace a%b with a-((a/b)*b)
  2460           Node* mult = new (C, 3) MulINode(d, d->in(2));
  2461           Node* sub  = new (C, 3) SubINode(d->in(1), mult);
  2462           n->subsume_by( sub );
  2466     break;
  2468   case Op_ModL:
  2469     if (UseDivMod) {
  2470       // Check if a%b and a/b both exist
  2471       Node* d = n->find_similar(Op_DivL);
  2472       if (d) {
  2473         // Replace them with a fused divmod if supported
  2474         Compile* C = Compile::current();
  2475         if (Matcher::has_match_rule(Op_DivModL)) {
  2476           DivModLNode* divmod = DivModLNode::make(C, n);
  2477           d->subsume_by(divmod->div_proj());
  2478           n->subsume_by(divmod->mod_proj());
  2479         } else {
  2480           // replace a%b with a-((a/b)*b)
  2481           Node* mult = new (C, 3) MulLNode(d, d->in(2));
  2482           Node* sub  = new (C, 3) SubLNode(d->in(1), mult);
  2483           n->subsume_by( sub );
  2487     break;
  2489   case Op_Load16B:
  2490   case Op_Load8B:
  2491   case Op_Load4B:
  2492   case Op_Load8S:
  2493   case Op_Load4S:
  2494   case Op_Load2S:
  2495   case Op_Load8C:
  2496   case Op_Load4C:
  2497   case Op_Load2C:
  2498   case Op_Load4I:
  2499   case Op_Load2I:
  2500   case Op_Load2L:
  2501   case Op_Load4F:
  2502   case Op_Load2F:
  2503   case Op_Load2D:
  2504   case Op_Store16B:
  2505   case Op_Store8B:
  2506   case Op_Store4B:
  2507   case Op_Store8C:
  2508   case Op_Store4C:
  2509   case Op_Store2C:
  2510   case Op_Store4I:
  2511   case Op_Store2I:
  2512   case Op_Store2L:
  2513   case Op_Store4F:
  2514   case Op_Store2F:
  2515   case Op_Store2D:
  2516     break;
  2518   case Op_PackB:
  2519   case Op_PackS:
  2520   case Op_PackC:
  2521   case Op_PackI:
  2522   case Op_PackF:
  2523   case Op_PackL:
  2524   case Op_PackD:
  2525     if (n->req()-1 > 2) {
  2526       // Replace many operand PackNodes with a binary tree for matching
  2527       PackNode* p = (PackNode*) n;
  2528       Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
  2529       n->subsume_by(btp);
  2531     break;
  2532   case Op_Loop:
  2533   case Op_CountedLoop:
  2534     if (n->as_Loop()->is_inner_loop()) {
  2535       frc.inc_inner_loop_count();
  2537     break;
  2538   case Op_LShiftI:
  2539   case Op_RShiftI:
  2540   case Op_URShiftI:
  2541   case Op_LShiftL:
  2542   case Op_RShiftL:
  2543   case Op_URShiftL:
  2544     if (Matcher::need_masked_shift_count) {
  2545       // The cpu's shift instructions don't restrict the count to the
  2546       // lower 5/6 bits. We need to do the masking ourselves.
  2547       Node* in2 = n->in(2);
  2548       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
  2549       const TypeInt* t = in2->find_int_type();
  2550       if (t != NULL && t->is_con()) {
  2551         juint shift = t->get_con();
  2552         if (shift > mask) { // Unsigned cmp
  2553           Compile* C = Compile::current();
  2554           n->set_req(2, ConNode::make(C, TypeInt::make(shift & mask)));
  2556       } else {
  2557         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
  2558           Compile* C = Compile::current();
  2559           Node* shift = new (C, 3) AndINode(in2, ConNode::make(C, TypeInt::make(mask)));
  2560           n->set_req(2, shift);
  2563       if (in2->outcnt() == 0) { // Remove dead node
  2564         in2->disconnect_inputs(NULL);
  2567     break;
  2568   default:
  2569     assert( !n->is_Call(), "" );
  2570     assert( !n->is_Mem(), "" );
  2571     break;
  2574   // Collect CFG split points
  2575   if (n->is_MultiBranch())
  2576     frc._tests.push(n);
  2579 //------------------------------final_graph_reshaping_walk---------------------
  2580 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
  2581 // requires that the walk visits a node's inputs before visiting the node.
  2582 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
  2583   ResourceArea *area = Thread::current()->resource_area();
  2584   Unique_Node_List sfpt(area);
  2586   frc._visited.set(root->_idx); // first, mark node as visited
  2587   uint cnt = root->req();
  2588   Node *n = root;
  2589   uint  i = 0;
  2590   while (true) {
  2591     if (i < cnt) {
  2592       // Place all non-visited non-null inputs onto stack
  2593       Node* m = n->in(i);
  2594       ++i;
  2595       if (m != NULL && !frc._visited.test_set(m->_idx)) {
  2596         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
  2597           sfpt.push(m);
  2598         cnt = m->req();
  2599         nstack.push(n, i); // put on stack parent and next input's index
  2600         n = m;
  2601         i = 0;
  2603     } else {
  2604       // Now do post-visit work
  2605       final_graph_reshaping_impl( n, frc );
  2606       if (nstack.is_empty())
  2607         break;             // finished
  2608       n = nstack.node();   // Get node from stack
  2609       cnt = n->req();
  2610       i = nstack.index();
  2611       nstack.pop();        // Shift to the next node on stack
  2615   // Skip next transformation if compressed oops are not used.
  2616   if (!UseCompressedOops || !Matcher::gen_narrow_oop_implicit_null_checks())
  2617     return;
  2619   // Go over safepoints nodes to skip DecodeN nodes for debug edges.
  2620   // It could be done for an uncommon traps or any safepoints/calls
  2621   // if the DecodeN node is referenced only in a debug info.
  2622   while (sfpt.size() > 0) {
  2623     n = sfpt.pop();
  2624     JVMState *jvms = n->as_SafePoint()->jvms();
  2625     assert(jvms != NULL, "sanity");
  2626     int start = jvms->debug_start();
  2627     int end   = n->req();
  2628     bool is_uncommon = (n->is_CallStaticJava() &&
  2629                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
  2630     for (int j = start; j < end; j++) {
  2631       Node* in = n->in(j);
  2632       if (in->is_DecodeN()) {
  2633         bool safe_to_skip = true;
  2634         if (!is_uncommon ) {
  2635           // Is it safe to skip?
  2636           for (uint i = 0; i < in->outcnt(); i++) {
  2637             Node* u = in->raw_out(i);
  2638             if (!u->is_SafePoint() ||
  2639                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
  2640               safe_to_skip = false;
  2644         if (safe_to_skip) {
  2645           n->set_req(j, in->in(1));
  2647         if (in->outcnt() == 0) {
  2648           in->disconnect_inputs(NULL);
  2655 //------------------------------final_graph_reshaping--------------------------
  2656 // Final Graph Reshaping.
  2657 //
  2658 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
  2659 //     and not commoned up and forced early.  Must come after regular
  2660 //     optimizations to avoid GVN undoing the cloning.  Clone constant
  2661 //     inputs to Loop Phis; these will be split by the allocator anyways.
  2662 //     Remove Opaque nodes.
  2663 // (2) Move last-uses by commutative operations to the left input to encourage
  2664 //     Intel update-in-place two-address operations and better register usage
  2665 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
  2666 //     calls canonicalizing them back.
  2667 // (3) Count the number of double-precision FP ops, single-precision FP ops
  2668 //     and call sites.  On Intel, we can get correct rounding either by
  2669 //     forcing singles to memory (requires extra stores and loads after each
  2670 //     FP bytecode) or we can set a rounding mode bit (requires setting and
  2671 //     clearing the mode bit around call sites).  The mode bit is only used
  2672 //     if the relative frequency of single FP ops to calls is low enough.
  2673 //     This is a key transform for SPEC mpeg_audio.
  2674 // (4) Detect infinite loops; blobs of code reachable from above but not
  2675 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
  2676 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
  2677 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
  2678 //     Detection is by looking for IfNodes where only 1 projection is
  2679 //     reachable from below or CatchNodes missing some targets.
  2680 // (5) Assert for insane oop offsets in debug mode.
  2682 bool Compile::final_graph_reshaping() {
  2683   // an infinite loop may have been eliminated by the optimizer,
  2684   // in which case the graph will be empty.
  2685   if (root()->req() == 1) {
  2686     record_method_not_compilable("trivial infinite loop");
  2687     return true;
  2690   Final_Reshape_Counts frc;
  2692   // Visit everybody reachable!
  2693   // Allocate stack of size C->unique()/2 to avoid frequent realloc
  2694   Node_Stack nstack(unique() >> 1);
  2695   final_graph_reshaping_walk(nstack, root(), frc);
  2697   // Check for unreachable (from below) code (i.e., infinite loops).
  2698   for( uint i = 0; i < frc._tests.size(); i++ ) {
  2699     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
  2700     // Get number of CFG targets.
  2701     // Note that PCTables include exception targets after calls.
  2702     uint required_outcnt = n->required_outcnt();
  2703     if (n->outcnt() != required_outcnt) {
  2704       // Check for a few special cases.  Rethrow Nodes never take the
  2705       // 'fall-thru' path, so expected kids is 1 less.
  2706       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
  2707         if (n->in(0)->in(0)->is_Call()) {
  2708           CallNode *call = n->in(0)->in(0)->as_Call();
  2709           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
  2710             required_outcnt--;      // Rethrow always has 1 less kid
  2711           } else if (call->req() > TypeFunc::Parms &&
  2712                      call->is_CallDynamicJava()) {
  2713             // Check for null receiver. In such case, the optimizer has
  2714             // detected that the virtual call will always result in a null
  2715             // pointer exception. The fall-through projection of this CatchNode
  2716             // will not be populated.
  2717             Node *arg0 = call->in(TypeFunc::Parms);
  2718             if (arg0->is_Type() &&
  2719                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
  2720               required_outcnt--;
  2722           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
  2723                      call->req() > TypeFunc::Parms+1 &&
  2724                      call->is_CallStaticJava()) {
  2725             // Check for negative array length. In such case, the optimizer has
  2726             // detected that the allocation attempt will always result in an
  2727             // exception. There is no fall-through projection of this CatchNode .
  2728             Node *arg1 = call->in(TypeFunc::Parms+1);
  2729             if (arg1->is_Type() &&
  2730                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
  2731               required_outcnt--;
  2736       // Recheck with a better notion of 'required_outcnt'
  2737       if (n->outcnt() != required_outcnt) {
  2738         record_method_not_compilable("malformed control flow");
  2739         return true;            // Not all targets reachable!
  2742     // Check that I actually visited all kids.  Unreached kids
  2743     // must be infinite loops.
  2744     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
  2745       if (!frc._visited.test(n->fast_out(j)->_idx)) {
  2746         record_method_not_compilable("infinite loop");
  2747         return true;            // Found unvisited kid; must be unreach
  2751   // If original bytecodes contained a mixture of floats and doubles
  2752   // check if the optimizer has made it homogenous, item (3).
  2753   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
  2754       frc.get_float_count() > 32 &&
  2755       frc.get_double_count() == 0 &&
  2756       (10 * frc.get_call_count() < frc.get_float_count()) ) {
  2757     set_24_bit_selection_and_mode( false,  true );
  2760   set_java_calls(frc.get_java_call_count());
  2761   set_inner_loops(frc.get_inner_loop_count());
  2763   // No infinite loops, no reason to bail out.
  2764   return false;
  2767 //-----------------------------too_many_traps----------------------------------
  2768 // Report if there are too many traps at the current method and bci.
  2769 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
  2770 bool Compile::too_many_traps(ciMethod* method,
  2771                              int bci,
  2772                              Deoptimization::DeoptReason reason) {
  2773   ciMethodData* md = method->method_data();
  2774   if (md->is_empty()) {
  2775     // Assume the trap has not occurred, or that it occurred only
  2776     // because of a transient condition during start-up in the interpreter.
  2777     return false;
  2779   if (md->has_trap_at(bci, reason) != 0) {
  2780     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
  2781     // Also, if there are multiple reasons, or if there is no per-BCI record,
  2782     // assume the worst.
  2783     if (log())
  2784       log()->elem("observe trap='%s' count='%d'",
  2785                   Deoptimization::trap_reason_name(reason),
  2786                   md->trap_count(reason));
  2787     return true;
  2788   } else {
  2789     // Ignore method/bci and see if there have been too many globally.
  2790     return too_many_traps(reason, md);
  2794 // Less-accurate variant which does not require a method and bci.
  2795 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
  2796                              ciMethodData* logmd) {
  2797  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
  2798     // Too many traps globally.
  2799     // Note that we use cumulative trap_count, not just md->trap_count.
  2800     if (log()) {
  2801       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
  2802       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
  2803                   Deoptimization::trap_reason_name(reason),
  2804                   mcount, trap_count(reason));
  2806     return true;
  2807   } else {
  2808     // The coast is clear.
  2809     return false;
  2813 //--------------------------too_many_recompiles--------------------------------
  2814 // Report if there are too many recompiles at the current method and bci.
  2815 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
  2816 // Is not eager to return true, since this will cause the compiler to use
  2817 // Action_none for a trap point, to avoid too many recompilations.
  2818 bool Compile::too_many_recompiles(ciMethod* method,
  2819                                   int bci,
  2820                                   Deoptimization::DeoptReason reason) {
  2821   ciMethodData* md = method->method_data();
  2822   if (md->is_empty()) {
  2823     // Assume the trap has not occurred, or that it occurred only
  2824     // because of a transient condition during start-up in the interpreter.
  2825     return false;
  2827   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
  2828   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
  2829   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
  2830   Deoptimization::DeoptReason per_bc_reason
  2831     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
  2832   if ((per_bc_reason == Deoptimization::Reason_none
  2833        || md->has_trap_at(bci, reason) != 0)
  2834       // The trap frequency measure we care about is the recompile count:
  2835       && md->trap_recompiled_at(bci)
  2836       && md->overflow_recompile_count() >= bc_cutoff) {
  2837     // Do not emit a trap here if it has already caused recompilations.
  2838     // Also, if there are multiple reasons, or if there is no per-BCI record,
  2839     // assume the worst.
  2840     if (log())
  2841       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
  2842                   Deoptimization::trap_reason_name(reason),
  2843                   md->trap_count(reason),
  2844                   md->overflow_recompile_count());
  2845     return true;
  2846   } else if (trap_count(reason) != 0
  2847              && decompile_count() >= m_cutoff) {
  2848     // Too many recompiles globally, and we have seen this sort of trap.
  2849     // Use cumulative decompile_count, not just md->decompile_count.
  2850     if (log())
  2851       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
  2852                   Deoptimization::trap_reason_name(reason),
  2853                   md->trap_count(reason), trap_count(reason),
  2854                   md->decompile_count(), decompile_count());
  2855     return true;
  2856   } else {
  2857     // The coast is clear.
  2858     return false;
  2863 #ifndef PRODUCT
  2864 //------------------------------verify_graph_edges---------------------------
  2865 // Walk the Graph and verify that there is a one-to-one correspondence
  2866 // between Use-Def edges and Def-Use edges in the graph.
  2867 void Compile::verify_graph_edges(bool no_dead_code) {
  2868   if (VerifyGraphEdges) {
  2869     ResourceArea *area = Thread::current()->resource_area();
  2870     Unique_Node_List visited(area);
  2871     // Call recursive graph walk to check edges
  2872     _root->verify_edges(visited);
  2873     if (no_dead_code) {
  2874       // Now make sure that no visited node is used by an unvisited node.
  2875       bool dead_nodes = 0;
  2876       Unique_Node_List checked(area);
  2877       while (visited.size() > 0) {
  2878         Node* n = visited.pop();
  2879         checked.push(n);
  2880         for (uint i = 0; i < n->outcnt(); i++) {
  2881           Node* use = n->raw_out(i);
  2882           if (checked.member(use))  continue;  // already checked
  2883           if (visited.member(use))  continue;  // already in the graph
  2884           if (use->is_Con())        continue;  // a dead ConNode is OK
  2885           // At this point, we have found a dead node which is DU-reachable.
  2886           if (dead_nodes++ == 0)
  2887             tty->print_cr("*** Dead nodes reachable via DU edges:");
  2888           use->dump(2);
  2889           tty->print_cr("---");
  2890           checked.push(use);  // No repeats; pretend it is now checked.
  2893       assert(dead_nodes == 0, "using nodes must be reachable from root");
  2897 #endif
  2899 // The Compile object keeps track of failure reasons separately from the ciEnv.
  2900 // This is required because there is not quite a 1-1 relation between the
  2901 // ciEnv and its compilation task and the Compile object.  Note that one
  2902 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
  2903 // to backtrack and retry without subsuming loads.  Other than this backtracking
  2904 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
  2905 // by the logic in C2Compiler.
  2906 void Compile::record_failure(const char* reason) {
  2907   if (log() != NULL) {
  2908     log()->elem("failure reason='%s' phase='compile'", reason);
  2910   if (_failure_reason == NULL) {
  2911     // Record the first failure reason.
  2912     _failure_reason = reason;
  2914   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
  2915     C->print_method(_failure_reason);
  2917   _root = NULL;  // flush the graph, too
  2920 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
  2921   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
  2923   if (dolog) {
  2924     C = Compile::current();
  2925     _log = C->log();
  2926   } else {
  2927     C = NULL;
  2928     _log = NULL;
  2930   if (_log != NULL) {
  2931     _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
  2932     _log->stamp();
  2933     _log->end_head();
  2937 Compile::TracePhase::~TracePhase() {
  2938   if (_log != NULL) {
  2939     _log->done("phase nodes='%d'", C->unique());
  2943 //=============================================================================
  2944 // Two Constant's are equal when the type and the value are equal.
  2945 bool Compile::Constant::operator==(const Constant& other) {
  2946   if (type()          != other.type()         )  return false;
  2947   if (can_be_reused() != other.can_be_reused())  return false;
  2948   // For floating point values we compare the bit pattern.
  2949   switch (type()) {
  2950   case T_FLOAT:   return (_value.i == other._value.i);
  2951   case T_LONG:
  2952   case T_DOUBLE:  return (_value.j == other._value.j);
  2953   case T_OBJECT:
  2954   case T_ADDRESS: return (_value.l == other._value.l);
  2955   case T_VOID:    return (_value.l == other._value.l);  // jump-table entries
  2956   default: ShouldNotReachHere();
  2958   return false;
  2961 // Emit constants grouped in the following order:
  2962 static BasicType type_order[] = {
  2963   T_FLOAT,    // 32-bit
  2964   T_OBJECT,   // 32 or 64-bit
  2965   T_ADDRESS,  // 32 or 64-bit
  2966   T_DOUBLE,   // 64-bit
  2967   T_LONG,     // 64-bit
  2968   T_VOID,     // 32 or 64-bit (jump-tables are at the end of the constant table for code emission reasons)
  2969   T_ILLEGAL
  2970 };
  2972 static int type_to_size_in_bytes(BasicType t) {
  2973   switch (t) {
  2974   case T_LONG:    return sizeof(jlong  );
  2975   case T_FLOAT:   return sizeof(jfloat );
  2976   case T_DOUBLE:  return sizeof(jdouble);
  2977     // We use T_VOID as marker for jump-table entries (labels) which
  2978     // need an interal word relocation.
  2979   case T_VOID:
  2980   case T_ADDRESS:
  2981   case T_OBJECT:  return sizeof(jobject);
  2984   ShouldNotReachHere();
  2985   return -1;
  2988 void Compile::ConstantTable::calculate_offsets_and_size() {
  2989   int size = 0;
  2990   for (int t = 0; type_order[t] != T_ILLEGAL; t++) {
  2991     BasicType type = type_order[t];
  2993     for (int i = 0; i < _constants.length(); i++) {
  2994       Constant con = _constants.at(i);
  2995       if (con.type() != type)  continue;  // Skip other types.
  2997       // Align size for type.
  2998       int typesize = type_to_size_in_bytes(con.type());
  2999       size = align_size_up(size, typesize);
  3001       // Set offset.
  3002       con.set_offset(size);
  3003       _constants.at_put(i, con);
  3005       // Add type size.
  3006       size = size + typesize;
  3010   // Align size up to the next section start (which is insts; see
  3011   // CodeBuffer::align_at_start).
  3012   assert(_size == -1, "already set?");
  3013   _size = align_size_up(size, CodeEntryAlignment);
  3015   if (Matcher::constant_table_absolute_addressing) {
  3016     set_table_base_offset(0);  // No table base offset required
  3017   } else {
  3018     if (UseRDPCForConstantTableBase) {
  3019       // table base offset is set in MachConstantBaseNode::emit
  3020     } else {
  3021       // When RDPC is not used, the table base is set into the middle of
  3022       // the constant table.
  3023       int half_size = _size / 2;
  3024       assert(half_size * 2 == _size, "sanity");
  3025       set_table_base_offset(-half_size);
  3030 void Compile::ConstantTable::emit(CodeBuffer& cb) {
  3031   MacroAssembler _masm(&cb);
  3032   for (int t = 0; type_order[t] != T_ILLEGAL; t++) {
  3033     BasicType type = type_order[t];
  3035     for (int i = 0; i < _constants.length(); i++) {
  3036       Constant con = _constants.at(i);
  3037       if (con.type() != type)  continue;  // Skip other types.
  3039       address constant_addr;
  3040       switch (con.type()) {
  3041       case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
  3042       case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
  3043       case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
  3044       case T_OBJECT: {
  3045         jobject obj = con.get_jobject();
  3046         int oop_index = _masm.oop_recorder()->find_index(obj);
  3047         constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
  3048         break;
  3050       case T_ADDRESS: {
  3051         address addr = (address) con.get_jobject();
  3052         constant_addr = _masm.address_constant(addr);
  3053         break;
  3055       // We use T_VOID as marker for jump-table entries (labels) which
  3056       // need an interal word relocation.
  3057       case T_VOID: {
  3058         // Write a dummy word.  The real value is filled in later
  3059         // in fill_jump_table_in_constant_table.
  3060         address addr = (address) con.get_jobject();
  3061         constant_addr = _masm.address_constant(addr);
  3062         break;
  3064       default: ShouldNotReachHere();
  3066       assert(constant_addr != NULL, "consts section too small");
  3067       assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
  3072 int Compile::ConstantTable::find_offset(Constant& con) const {
  3073   int idx = _constants.find(con);
  3074   assert(idx != -1, "constant must be in constant table");
  3075   int offset = _constants.at(idx).offset();
  3076   assert(offset != -1, "constant table not emitted yet?");
  3077   return offset;
  3080 void Compile::ConstantTable::add(Constant& con) {
  3081   if (con.can_be_reused()) {
  3082     int idx = _constants.find(con);
  3083     if (idx != -1 && _constants.at(idx).can_be_reused()) {
  3084       return;
  3087   (void) _constants.append(con);
  3090 Compile::Constant Compile::ConstantTable::add(BasicType type, jvalue value) {
  3091   Constant con(type, value);
  3092   add(con);
  3093   return con;
  3096 Compile::Constant Compile::ConstantTable::add(MachOper* oper) {
  3097   jvalue value;
  3098   BasicType type = oper->type()->basic_type();
  3099   switch (type) {
  3100   case T_LONG:    value.j = oper->constantL(); break;
  3101   case T_FLOAT:   value.f = oper->constantF(); break;
  3102   case T_DOUBLE:  value.d = oper->constantD(); break;
  3103   case T_OBJECT:
  3104   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
  3105   default: ShouldNotReachHere();
  3107   return add(type, value);
  3110 Compile::Constant Compile::ConstantTable::allocate_jump_table(MachConstantNode* n) {
  3111   jvalue value;
  3112   // We can use the node pointer here to identify the right jump-table
  3113   // as this method is called from Compile::Fill_buffer right before
  3114   // the MachNodes are emitted and the jump-table is filled (means the
  3115   // MachNode pointers do not change anymore).
  3116   value.l = (jobject) n;
  3117   Constant con(T_VOID, value, false);  // Labels of a jump-table cannot be reused.
  3118   for (uint i = 0; i < n->outcnt(); i++) {
  3119     add(con);
  3121   return con;
  3124 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
  3125   // If called from Compile::scratch_emit_size do nothing.
  3126   if (Compile::current()->in_scratch_emit_size())  return;
  3128   assert(labels.is_nonempty(), "must be");
  3129   assert((uint) labels.length() == n->outcnt(), err_msg("must be equal: %d == %d", labels.length(), n->outcnt()));
  3131   // Since MachConstantNode::constant_offset() also contains
  3132   // table_base_offset() we need to subtract the table_base_offset()
  3133   // to get the plain offset into the constant table.
  3134   int offset = n->constant_offset() - table_base_offset();
  3136   MacroAssembler _masm(&cb);
  3137   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
  3139   for (int i = 0; i < labels.length(); i++) {
  3140     address* constant_addr = &jump_table_base[i];
  3141     assert(*constant_addr == (address) n, "all jump-table entries must contain node pointer");
  3142     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
  3143     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);

mercurial