src/share/vm/opto/library_call.cpp

Thu, 23 Jan 2014 12:08:28 +0100

author
rbackman
date
Thu, 23 Jan 2014 12:08:28 +0100
changeset 6375
085b304a1cc5
parent 6358
cdb71841f4bc
child 6425
9ab9f254cfe2
permissions
-rw-r--r--

8027754: Enable loop optimizations for loops with MathExact inside
Reviewed-by: kvn, iveresov

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "classfile/systemDictionary.hpp"
    27 #include "classfile/vmSymbols.hpp"
    28 #include "compiler/compileBroker.hpp"
    29 #include "compiler/compileLog.hpp"
    30 #include "oops/objArrayKlass.hpp"
    31 #include "opto/addnode.hpp"
    32 #include "opto/callGenerator.hpp"
    33 #include "opto/cfgnode.hpp"
    34 #include "opto/idealKit.hpp"
    35 #include "opto/mathexactnode.hpp"
    36 #include "opto/mulnode.hpp"
    37 #include "opto/parse.hpp"
    38 #include "opto/runtime.hpp"
    39 #include "opto/subnode.hpp"
    40 #include "prims/nativeLookup.hpp"
    41 #include "runtime/sharedRuntime.hpp"
    42 #include "trace/traceMacros.hpp"
    44 class LibraryIntrinsic : public InlineCallGenerator {
    45   // Extend the set of intrinsics known to the runtime:
    46  public:
    47  private:
    48   bool             _is_virtual;
    49   bool             _is_predicted;
    50   bool             _does_virtual_dispatch;
    51   vmIntrinsics::ID _intrinsic_id;
    53  public:
    54   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
    55     : InlineCallGenerator(m),
    56       _is_virtual(is_virtual),
    57       _is_predicted(is_predicted),
    58       _does_virtual_dispatch(does_virtual_dispatch),
    59       _intrinsic_id(id)
    60   {
    61   }
    62   virtual bool is_intrinsic() const { return true; }
    63   virtual bool is_virtual()   const { return _is_virtual; }
    64   virtual bool is_predicted()   const { return _is_predicted; }
    65   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
    66   virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
    67   virtual Node* generate_predicate(JVMState* jvms);
    68   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
    69 };
    72 // Local helper class for LibraryIntrinsic:
    73 class LibraryCallKit : public GraphKit {
    74  private:
    75   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
    76   Node*             _result;        // the result node, if any
    77   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
    79   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
    81  public:
    82   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
    83     : GraphKit(jvms),
    84       _intrinsic(intrinsic),
    85       _result(NULL)
    86   {
    87     // Check if this is a root compile.  In that case we don't have a caller.
    88     if (!jvms->has_method()) {
    89       _reexecute_sp = sp();
    90     } else {
    91       // Find out how many arguments the interpreter needs when deoptimizing
    92       // and save the stack pointer value so it can used by uncommon_trap.
    93       // We find the argument count by looking at the declared signature.
    94       bool ignored_will_link;
    95       ciSignature* declared_signature = NULL;
    96       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
    97       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
    98       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
    99     }
   100   }
   102   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
   104   ciMethod*         caller()    const    { return jvms()->method(); }
   105   int               bci()       const    { return jvms()->bci(); }
   106   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
   107   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
   108   ciMethod*         callee()    const    { return _intrinsic->method(); }
   110   bool try_to_inline();
   111   Node* try_to_predicate();
   113   void push_result() {
   114     // Push the result onto the stack.
   115     if (!stopped() && result() != NULL) {
   116       BasicType bt = result()->bottom_type()->basic_type();
   117       push_node(bt, result());
   118     }
   119   }
   121  private:
   122   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
   123     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
   124   }
   126   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
   127   void  set_result(RegionNode* region, PhiNode* value);
   128   Node*     result() { return _result; }
   130   virtual int reexecute_sp() { return _reexecute_sp; }
   132   // Helper functions to inline natives
   133   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
   134   Node* generate_slow_guard(Node* test, RegionNode* region);
   135   Node* generate_fair_guard(Node* test, RegionNode* region);
   136   Node* generate_negative_guard(Node* index, RegionNode* region,
   137                                 // resulting CastII of index:
   138                                 Node* *pos_index = NULL);
   139   Node* generate_nonpositive_guard(Node* index, bool never_negative,
   140                                    // resulting CastII of index:
   141                                    Node* *pos_index = NULL);
   142   Node* generate_limit_guard(Node* offset, Node* subseq_length,
   143                              Node* array_length,
   144                              RegionNode* region);
   145   Node* generate_current_thread(Node* &tls_output);
   146   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
   147                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
   148   Node* load_mirror_from_klass(Node* klass);
   149   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
   150                                       RegionNode* region, int null_path,
   151                                       int offset);
   152   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
   153                                RegionNode* region, int null_path) {
   154     int offset = java_lang_Class::klass_offset_in_bytes();
   155     return load_klass_from_mirror_common(mirror, never_see_null,
   156                                          region, null_path,
   157                                          offset);
   158   }
   159   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
   160                                      RegionNode* region, int null_path) {
   161     int offset = java_lang_Class::array_klass_offset_in_bytes();
   162     return load_klass_from_mirror_common(mirror, never_see_null,
   163                                          region, null_path,
   164                                          offset);
   165   }
   166   Node* generate_access_flags_guard(Node* kls,
   167                                     int modifier_mask, int modifier_bits,
   168                                     RegionNode* region);
   169   Node* generate_interface_guard(Node* kls, RegionNode* region);
   170   Node* generate_array_guard(Node* kls, RegionNode* region) {
   171     return generate_array_guard_common(kls, region, false, false);
   172   }
   173   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
   174     return generate_array_guard_common(kls, region, false, true);
   175   }
   176   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
   177     return generate_array_guard_common(kls, region, true, false);
   178   }
   179   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
   180     return generate_array_guard_common(kls, region, true, true);
   181   }
   182   Node* generate_array_guard_common(Node* kls, RegionNode* region,
   183                                     bool obj_array, bool not_array);
   184   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
   185   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
   186                                      bool is_virtual = false, bool is_static = false);
   187   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
   188     return generate_method_call(method_id, false, true);
   189   }
   190   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
   191     return generate_method_call(method_id, true, false);
   192   }
   193   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
   195   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
   196   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
   197   bool inline_string_compareTo();
   198   bool inline_string_indexOf();
   199   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
   200   bool inline_string_equals();
   201   Node* round_double_node(Node* n);
   202   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
   203   bool inline_math_native(vmIntrinsics::ID id);
   204   bool inline_trig(vmIntrinsics::ID id);
   205   bool inline_math(vmIntrinsics::ID id);
   206   template <typename OverflowOp>
   207   bool inline_math_overflow(Node* arg1, Node* arg2);
   208   void inline_math_mathExact(Node* math, Node* test);
   209   bool inline_math_addExactI(bool is_increment);
   210   bool inline_math_addExactL(bool is_increment);
   211   bool inline_math_multiplyExactI();
   212   bool inline_math_multiplyExactL();
   213   bool inline_math_negateExactI();
   214   bool inline_math_negateExactL();
   215   bool inline_math_subtractExactI(bool is_decrement);
   216   bool inline_math_subtractExactL(bool is_decrement);
   217   bool inline_exp();
   218   bool inline_pow();
   219   void finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
   220   bool inline_min_max(vmIntrinsics::ID id);
   221   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
   222   // This returns Type::AnyPtr, RawPtr, or OopPtr.
   223   int classify_unsafe_addr(Node* &base, Node* &offset);
   224   Node* make_unsafe_address(Node* base, Node* offset);
   225   // Helper for inline_unsafe_access.
   226   // Generates the guards that check whether the result of
   227   // Unsafe.getObject should be recorded in an SATB log buffer.
   228   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
   229   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
   230   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
   231   static bool klass_needs_init_guard(Node* kls);
   232   bool inline_unsafe_allocate();
   233   bool inline_unsafe_copyMemory();
   234   bool inline_native_currentThread();
   235 #ifdef TRACE_HAVE_INTRINSICS
   236   bool inline_native_classID();
   237   bool inline_native_threadID();
   238 #endif
   239   bool inline_native_time_funcs(address method, const char* funcName);
   240   bool inline_native_isInterrupted();
   241   bool inline_native_Class_query(vmIntrinsics::ID id);
   242   bool inline_native_subtype_check();
   244   bool inline_native_newArray();
   245   bool inline_native_getLength();
   246   bool inline_array_copyOf(bool is_copyOfRange);
   247   bool inline_array_equals();
   248   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
   249   bool inline_native_clone(bool is_virtual);
   250   bool inline_native_Reflection_getCallerClass();
   251   // Helper function for inlining native object hash method
   252   bool inline_native_hashcode(bool is_virtual, bool is_static);
   253   bool inline_native_getClass();
   255   // Helper functions for inlining arraycopy
   256   bool inline_arraycopy();
   257   void generate_arraycopy(const TypePtr* adr_type,
   258                           BasicType basic_elem_type,
   259                           Node* src,  Node* src_offset,
   260                           Node* dest, Node* dest_offset,
   261                           Node* copy_length,
   262                           bool disjoint_bases = false,
   263                           bool length_never_negative = false,
   264                           RegionNode* slow_region = NULL);
   265   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
   266                                                 RegionNode* slow_region);
   267   void generate_clear_array(const TypePtr* adr_type,
   268                             Node* dest,
   269                             BasicType basic_elem_type,
   270                             Node* slice_off,
   271                             Node* slice_len,
   272                             Node* slice_end);
   273   bool generate_block_arraycopy(const TypePtr* adr_type,
   274                                 BasicType basic_elem_type,
   275                                 AllocateNode* alloc,
   276                                 Node* src,  Node* src_offset,
   277                                 Node* dest, Node* dest_offset,
   278                                 Node* dest_size, bool dest_uninitialized);
   279   void generate_slow_arraycopy(const TypePtr* adr_type,
   280                                Node* src,  Node* src_offset,
   281                                Node* dest, Node* dest_offset,
   282                                Node* copy_length, bool dest_uninitialized);
   283   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
   284                                      Node* dest_elem_klass,
   285                                      Node* src,  Node* src_offset,
   286                                      Node* dest, Node* dest_offset,
   287                                      Node* copy_length, bool dest_uninitialized);
   288   Node* generate_generic_arraycopy(const TypePtr* adr_type,
   289                                    Node* src,  Node* src_offset,
   290                                    Node* dest, Node* dest_offset,
   291                                    Node* copy_length, bool dest_uninitialized);
   292   void generate_unchecked_arraycopy(const TypePtr* adr_type,
   293                                     BasicType basic_elem_type,
   294                                     bool disjoint_bases,
   295                                     Node* src,  Node* src_offset,
   296                                     Node* dest, Node* dest_offset,
   297                                     Node* copy_length, bool dest_uninitialized);
   298   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
   299   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
   300   bool inline_unsafe_ordered_store(BasicType type);
   301   bool inline_unsafe_fence(vmIntrinsics::ID id);
   302   bool inline_fp_conversions(vmIntrinsics::ID id);
   303   bool inline_number_methods(vmIntrinsics::ID id);
   304   bool inline_reference_get();
   305   bool inline_aescrypt_Block(vmIntrinsics::ID id);
   306   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
   307   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
   308   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
   309   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
   310   bool inline_encodeISOArray();
   311   bool inline_updateCRC32();
   312   bool inline_updateBytesCRC32();
   313   bool inline_updateByteBufferCRC32();
   314 };
   317 //---------------------------make_vm_intrinsic----------------------------
   318 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
   319   vmIntrinsics::ID id = m->intrinsic_id();
   320   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
   322   if (DisableIntrinsic[0] != '\0'
   323       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
   324     // disabled by a user request on the command line:
   325     // example: -XX:DisableIntrinsic=_hashCode,_getClass
   326     return NULL;
   327   }
   329   if (!m->is_loaded()) {
   330     // do not attempt to inline unloaded methods
   331     return NULL;
   332   }
   334   // Only a few intrinsics implement a virtual dispatch.
   335   // They are expensive calls which are also frequently overridden.
   336   if (is_virtual) {
   337     switch (id) {
   338     case vmIntrinsics::_hashCode:
   339     case vmIntrinsics::_clone:
   340       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
   341       break;
   342     default:
   343       return NULL;
   344     }
   345   }
   347   // -XX:-InlineNatives disables nearly all intrinsics:
   348   if (!InlineNatives) {
   349     switch (id) {
   350     case vmIntrinsics::_indexOf:
   351     case vmIntrinsics::_compareTo:
   352     case vmIntrinsics::_equals:
   353     case vmIntrinsics::_equalsC:
   354     case vmIntrinsics::_getAndAddInt:
   355     case vmIntrinsics::_getAndAddLong:
   356     case vmIntrinsics::_getAndSetInt:
   357     case vmIntrinsics::_getAndSetLong:
   358     case vmIntrinsics::_getAndSetObject:
   359     case vmIntrinsics::_loadFence:
   360     case vmIntrinsics::_storeFence:
   361     case vmIntrinsics::_fullFence:
   362       break;  // InlineNatives does not control String.compareTo
   363     case vmIntrinsics::_Reference_get:
   364       break;  // InlineNatives does not control Reference.get
   365     default:
   366       return NULL;
   367     }
   368   }
   370   bool is_predicted = false;
   371   bool does_virtual_dispatch = false;
   373   switch (id) {
   374   case vmIntrinsics::_compareTo:
   375     if (!SpecialStringCompareTo)  return NULL;
   376     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
   377     break;
   378   case vmIntrinsics::_indexOf:
   379     if (!SpecialStringIndexOf)  return NULL;
   380     break;
   381   case vmIntrinsics::_equals:
   382     if (!SpecialStringEquals)  return NULL;
   383     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
   384     break;
   385   case vmIntrinsics::_equalsC:
   386     if (!SpecialArraysEquals)  return NULL;
   387     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
   388     break;
   389   case vmIntrinsics::_arraycopy:
   390     if (!InlineArrayCopy)  return NULL;
   391     break;
   392   case vmIntrinsics::_copyMemory:
   393     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
   394     if (!InlineArrayCopy)  return NULL;
   395     break;
   396   case vmIntrinsics::_hashCode:
   397     if (!InlineObjectHash)  return NULL;
   398     does_virtual_dispatch = true;
   399     break;
   400   case vmIntrinsics::_clone:
   401     does_virtual_dispatch = true;
   402   case vmIntrinsics::_copyOf:
   403   case vmIntrinsics::_copyOfRange:
   404     if (!InlineObjectCopy)  return NULL;
   405     // These also use the arraycopy intrinsic mechanism:
   406     if (!InlineArrayCopy)  return NULL;
   407     break;
   408   case vmIntrinsics::_encodeISOArray:
   409     if (!SpecialEncodeISOArray)  return NULL;
   410     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
   411     break;
   412   case vmIntrinsics::_checkIndex:
   413     // We do not intrinsify this.  The optimizer does fine with it.
   414     return NULL;
   416   case vmIntrinsics::_getCallerClass:
   417     if (!UseNewReflection)  return NULL;
   418     if (!InlineReflectionGetCallerClass)  return NULL;
   419     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
   420     break;
   422   case vmIntrinsics::_bitCount_i:
   423     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
   424     break;
   426   case vmIntrinsics::_bitCount_l:
   427     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
   428     break;
   430   case vmIntrinsics::_numberOfLeadingZeros_i:
   431     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
   432     break;
   434   case vmIntrinsics::_numberOfLeadingZeros_l:
   435     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
   436     break;
   438   case vmIntrinsics::_numberOfTrailingZeros_i:
   439     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
   440     break;
   442   case vmIntrinsics::_numberOfTrailingZeros_l:
   443     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
   444     break;
   446   case vmIntrinsics::_reverseBytes_c:
   447     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
   448     break;
   449   case vmIntrinsics::_reverseBytes_s:
   450     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
   451     break;
   452   case vmIntrinsics::_reverseBytes_i:
   453     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
   454     break;
   455   case vmIntrinsics::_reverseBytes_l:
   456     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
   457     break;
   459   case vmIntrinsics::_Reference_get:
   460     // Use the intrinsic version of Reference.get() so that the value in
   461     // the referent field can be registered by the G1 pre-barrier code.
   462     // Also add memory barrier to prevent commoning reads from this field
   463     // across safepoint since GC can change it value.
   464     break;
   466   case vmIntrinsics::_compareAndSwapObject:
   467 #ifdef _LP64
   468     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
   469 #endif
   470     break;
   472   case vmIntrinsics::_compareAndSwapLong:
   473     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
   474     break;
   476   case vmIntrinsics::_getAndAddInt:
   477     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
   478     break;
   480   case vmIntrinsics::_getAndAddLong:
   481     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
   482     break;
   484   case vmIntrinsics::_getAndSetInt:
   485     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
   486     break;
   488   case vmIntrinsics::_getAndSetLong:
   489     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
   490     break;
   492   case vmIntrinsics::_getAndSetObject:
   493 #ifdef _LP64
   494     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   495     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
   496     break;
   497 #else
   498     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
   499     break;
   500 #endif
   502   case vmIntrinsics::_aescrypt_encryptBlock:
   503   case vmIntrinsics::_aescrypt_decryptBlock:
   504     if (!UseAESIntrinsics) return NULL;
   505     break;
   507   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   508   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   509     if (!UseAESIntrinsics) return NULL;
   510     // these two require the predicated logic
   511     is_predicted = true;
   512     break;
   514   case vmIntrinsics::_updateCRC32:
   515   case vmIntrinsics::_updateBytesCRC32:
   516   case vmIntrinsics::_updateByteBufferCRC32:
   517     if (!UseCRC32Intrinsics) return NULL;
   518     break;
   520   case vmIntrinsics::_incrementExactI:
   521   case vmIntrinsics::_addExactI:
   522     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
   523     break;
   524   case vmIntrinsics::_incrementExactL:
   525   case vmIntrinsics::_addExactL:
   526     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
   527     break;
   528   case vmIntrinsics::_decrementExactI:
   529   case vmIntrinsics::_subtractExactI:
   530     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
   531     break;
   532   case vmIntrinsics::_decrementExactL:
   533   case vmIntrinsics::_subtractExactL:
   534     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
   535     break;
   536   case vmIntrinsics::_negateExactI:
   537     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
   538     break;
   539   case vmIntrinsics::_negateExactL:
   540     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
   541     break;
   542   case vmIntrinsics::_multiplyExactI:
   543     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
   544     break;
   545   case vmIntrinsics::_multiplyExactL:
   546     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
   547     break;
   549  default:
   550     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
   551     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
   552     break;
   553   }
   555   // -XX:-InlineClassNatives disables natives from the Class class.
   556   // The flag applies to all reflective calls, notably Array.newArray
   557   // (visible to Java programmers as Array.newInstance).
   558   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
   559       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
   560     if (!InlineClassNatives)  return NULL;
   561   }
   563   // -XX:-InlineThreadNatives disables natives from the Thread class.
   564   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
   565     if (!InlineThreadNatives)  return NULL;
   566   }
   568   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
   569   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
   570       m->holder()->name() == ciSymbol::java_lang_Float() ||
   571       m->holder()->name() == ciSymbol::java_lang_Double()) {
   572     if (!InlineMathNatives)  return NULL;
   573   }
   575   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
   576   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
   577     if (!InlineUnsafeOps)  return NULL;
   578   }
   580   return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
   581 }
   583 //----------------------register_library_intrinsics-----------------------
   584 // Initialize this file's data structures, for each Compile instance.
   585 void Compile::register_library_intrinsics() {
   586   // Nothing to do here.
   587 }
   589 JVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
   590   LibraryCallKit kit(jvms, this);
   591   Compile* C = kit.C;
   592   int nodes = C->unique();
   593 #ifndef PRODUCT
   594   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   595     char buf[1000];
   596     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   597     tty->print_cr("Intrinsic %s", str);
   598   }
   599 #endif
   600   ciMethod* callee = kit.callee();
   601   const int bci    = kit.bci();
   603   // Try to inline the intrinsic.
   604   if (kit.try_to_inline()) {
   605     if (C->print_intrinsics() || C->print_inlining()) {
   606       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   607     }
   608     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   609     if (C->log()) {
   610       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
   611                      vmIntrinsics::name_at(intrinsic_id()),
   612                      (is_virtual() ? " virtual='1'" : ""),
   613                      C->unique() - nodes);
   614     }
   615     // Push the result from the inlined method onto the stack.
   616     kit.push_result();
   617     return kit.transfer_exceptions_into_jvms();
   618   }
   620   // The intrinsic bailed out
   621   if (C->print_intrinsics() || C->print_inlining()) {
   622     if (jvms->has_method()) {
   623       // Not a root compile.
   624       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
   625       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
   626     } else {
   627       // Root compile
   628       tty->print("Did not generate intrinsic %s%s at bci:%d in",
   629                vmIntrinsics::name_at(intrinsic_id()),
   630                (is_virtual() ? " (virtual)" : ""), bci);
   631     }
   632   }
   633   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   634   return NULL;
   635 }
   637 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
   638   LibraryCallKit kit(jvms, this);
   639   Compile* C = kit.C;
   640   int nodes = C->unique();
   641 #ifndef PRODUCT
   642   assert(is_predicted(), "sanity");
   643   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
   644     char buf[1000];
   645     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
   646     tty->print_cr("Predicate for intrinsic %s", str);
   647   }
   648 #endif
   649   ciMethod* callee = kit.callee();
   650   const int bci    = kit.bci();
   652   Node* slow_ctl = kit.try_to_predicate();
   653   if (!kit.failing()) {
   654     if (C->print_intrinsics() || C->print_inlining()) {
   655       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
   656     }
   657     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
   658     if (C->log()) {
   659       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
   660                      vmIntrinsics::name_at(intrinsic_id()),
   661                      (is_virtual() ? " virtual='1'" : ""),
   662                      C->unique() - nodes);
   663     }
   664     return slow_ctl; // Could be NULL if the check folds.
   665   }
   667   // The intrinsic bailed out
   668   if (C->print_intrinsics() || C->print_inlining()) {
   669     if (jvms->has_method()) {
   670       // Not a root compile.
   671       const char* msg = "failed to generate predicate for intrinsic";
   672       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
   673     } else {
   674       // Root compile
   675       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
   676                                         vmIntrinsics::name_at(intrinsic_id()),
   677                                         (is_virtual() ? " (virtual)" : ""), bci);
   678     }
   679   }
   680   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
   681   return NULL;
   682 }
   684 bool LibraryCallKit::try_to_inline() {
   685   // Handle symbolic names for otherwise undistinguished boolean switches:
   686   const bool is_store       = true;
   687   const bool is_native_ptr  = true;
   688   const bool is_static      = true;
   689   const bool is_volatile    = true;
   691   if (!jvms()->has_method()) {
   692     // Root JVMState has a null method.
   693     assert(map()->memory()->Opcode() == Op_Parm, "");
   694     // Insert the memory aliasing node
   695     set_all_memory(reset_memory());
   696   }
   697   assert(merged_memory(), "");
   700   switch (intrinsic_id()) {
   701   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
   702   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
   703   case vmIntrinsics::_getClass:                 return inline_native_getClass();
   705   case vmIntrinsics::_dsin:
   706   case vmIntrinsics::_dcos:
   707   case vmIntrinsics::_dtan:
   708   case vmIntrinsics::_dabs:
   709   case vmIntrinsics::_datan2:
   710   case vmIntrinsics::_dsqrt:
   711   case vmIntrinsics::_dexp:
   712   case vmIntrinsics::_dlog:
   713   case vmIntrinsics::_dlog10:
   714   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
   716   case vmIntrinsics::_min:
   717   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
   719   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
   720   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
   721   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
   722   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
   723   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
   724   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
   725   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
   726   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
   727   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
   728   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
   729   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
   730   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
   732   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
   734   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
   735   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
   736   case vmIntrinsics::_equals:                   return inline_string_equals();
   738   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
   739   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
   740   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   741   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   742   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   743   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
   744   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
   745   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   746   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   748   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
   749   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
   750   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   751   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   752   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   753   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
   754   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
   755   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   756   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   758   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
   759   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
   760   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
   761   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
   762   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
   763   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
   764   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
   765   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
   767   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
   768   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
   769   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
   770   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
   771   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
   772   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
   773   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
   774   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
   776   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
   777   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
   778   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
   779   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
   780   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
   781   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
   782   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
   783   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
   784   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
   786   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
   787   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
   788   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
   789   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
   790   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
   791   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
   792   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
   793   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
   794   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
   796   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
   797   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
   798   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
   799   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
   801   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
   802   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
   803   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
   805   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
   806   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
   807   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
   809   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
   810   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
   811   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
   812   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
   813   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
   815   case vmIntrinsics::_loadFence:
   816   case vmIntrinsics::_storeFence:
   817   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
   819   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
   820   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
   822 #ifdef TRACE_HAVE_INTRINSICS
   823   case vmIntrinsics::_classID:                  return inline_native_classID();
   824   case vmIntrinsics::_threadID:                 return inline_native_threadID();
   825   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
   826 #endif
   827   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
   828   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
   829   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
   830   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
   831   case vmIntrinsics::_newArray:                 return inline_native_newArray();
   832   case vmIntrinsics::_getLength:                return inline_native_getLength();
   833   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
   834   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
   835   case vmIntrinsics::_equalsC:                  return inline_array_equals();
   836   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
   838   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
   840   case vmIntrinsics::_isInstance:
   841   case vmIntrinsics::_getModifiers:
   842   case vmIntrinsics::_isInterface:
   843   case vmIntrinsics::_isArray:
   844   case vmIntrinsics::_isPrimitive:
   845   case vmIntrinsics::_getSuperclass:
   846   case vmIntrinsics::_getComponentType:
   847   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
   849   case vmIntrinsics::_floatToRawIntBits:
   850   case vmIntrinsics::_floatToIntBits:
   851   case vmIntrinsics::_intBitsToFloat:
   852   case vmIntrinsics::_doubleToRawLongBits:
   853   case vmIntrinsics::_doubleToLongBits:
   854   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
   856   case vmIntrinsics::_numberOfLeadingZeros_i:
   857   case vmIntrinsics::_numberOfLeadingZeros_l:
   858   case vmIntrinsics::_numberOfTrailingZeros_i:
   859   case vmIntrinsics::_numberOfTrailingZeros_l:
   860   case vmIntrinsics::_bitCount_i:
   861   case vmIntrinsics::_bitCount_l:
   862   case vmIntrinsics::_reverseBytes_i:
   863   case vmIntrinsics::_reverseBytes_l:
   864   case vmIntrinsics::_reverseBytes_s:
   865   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
   867   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
   869   case vmIntrinsics::_Reference_get:            return inline_reference_get();
   871   case vmIntrinsics::_aescrypt_encryptBlock:
   872   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
   874   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   875   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   876     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
   878   case vmIntrinsics::_encodeISOArray:
   879     return inline_encodeISOArray();
   881   case vmIntrinsics::_updateCRC32:
   882     return inline_updateCRC32();
   883   case vmIntrinsics::_updateBytesCRC32:
   884     return inline_updateBytesCRC32();
   885   case vmIntrinsics::_updateByteBufferCRC32:
   886     return inline_updateByteBufferCRC32();
   888   default:
   889     // If you get here, it may be that someone has added a new intrinsic
   890     // to the list in vmSymbols.hpp without implementing it here.
   891 #ifndef PRODUCT
   892     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   893       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
   894                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   895     }
   896 #endif
   897     return false;
   898   }
   899 }
   901 Node* LibraryCallKit::try_to_predicate() {
   902   if (!jvms()->has_method()) {
   903     // Root JVMState has a null method.
   904     assert(map()->memory()->Opcode() == Op_Parm, "");
   905     // Insert the memory aliasing node
   906     set_all_memory(reset_memory());
   907   }
   908   assert(merged_memory(), "");
   910   switch (intrinsic_id()) {
   911   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
   912     return inline_cipherBlockChaining_AESCrypt_predicate(false);
   913   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
   914     return inline_cipherBlockChaining_AESCrypt_predicate(true);
   916   default:
   917     // If you get here, it may be that someone has added a new intrinsic
   918     // to the list in vmSymbols.hpp without implementing it here.
   919 #ifndef PRODUCT
   920     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
   921       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
   922                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
   923     }
   924 #endif
   925     Node* slow_ctl = control();
   926     set_control(top()); // No fast path instrinsic
   927     return slow_ctl;
   928   }
   929 }
   931 //------------------------------set_result-------------------------------
   932 // Helper function for finishing intrinsics.
   933 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
   934   record_for_igvn(region);
   935   set_control(_gvn.transform(region));
   936   set_result( _gvn.transform(value));
   937   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
   938 }
   940 //------------------------------generate_guard---------------------------
   941 // Helper function for generating guarded fast-slow graph structures.
   942 // The given 'test', if true, guards a slow path.  If the test fails
   943 // then a fast path can be taken.  (We generally hope it fails.)
   944 // In all cases, GraphKit::control() is updated to the fast path.
   945 // The returned value represents the control for the slow path.
   946 // The return value is never 'top'; it is either a valid control
   947 // or NULL if it is obvious that the slow path can never be taken.
   948 // Also, if region and the slow control are not NULL, the slow edge
   949 // is appended to the region.
   950 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
   951   if (stopped()) {
   952     // Already short circuited.
   953     return NULL;
   954   }
   956   // Build an if node and its projections.
   957   // If test is true we take the slow path, which we assume is uncommon.
   958   if (_gvn.type(test) == TypeInt::ZERO) {
   959     // The slow branch is never taken.  No need to build this guard.
   960     return NULL;
   961   }
   963   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
   965   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
   966   if (if_slow == top()) {
   967     // The slow branch is never taken.  No need to build this guard.
   968     return NULL;
   969   }
   971   if (region != NULL)
   972     region->add_req(if_slow);
   974   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
   975   set_control(if_fast);
   977   return if_slow;
   978 }
   980 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
   981   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
   982 }
   983 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
   984   return generate_guard(test, region, PROB_FAIR);
   985 }
   987 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
   988                                                      Node* *pos_index) {
   989   if (stopped())
   990     return NULL;                // already stopped
   991   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
   992     return NULL;                // index is already adequately typed
   993   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
   994   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
   995   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
   996   if (is_neg != NULL && pos_index != NULL) {
   997     // Emulate effect of Parse::adjust_map_after_if.
   998     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
   999     ccast->set_req(0, control());
  1000     (*pos_index) = _gvn.transform(ccast);
  1002   return is_neg;
  1005 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
  1006                                                         Node* *pos_index) {
  1007   if (stopped())
  1008     return NULL;                // already stopped
  1009   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
  1010     return NULL;                // index is already adequately typed
  1011   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
  1012   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
  1013   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
  1014   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
  1015   if (is_notp != NULL && pos_index != NULL) {
  1016     // Emulate effect of Parse::adjust_map_after_if.
  1017     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
  1018     ccast->set_req(0, control());
  1019     (*pos_index) = _gvn.transform(ccast);
  1021   return is_notp;
  1024 // Make sure that 'position' is a valid limit index, in [0..length].
  1025 // There are two equivalent plans for checking this:
  1026 //   A. (offset + copyLength)  unsigned<=  arrayLength
  1027 //   B. offset  <=  (arrayLength - copyLength)
  1028 // We require that all of the values above, except for the sum and
  1029 // difference, are already known to be non-negative.
  1030 // Plan A is robust in the face of overflow, if offset and copyLength
  1031 // are both hugely positive.
  1032 //
  1033 // Plan B is less direct and intuitive, but it does not overflow at
  1034 // all, since the difference of two non-negatives is always
  1035 // representable.  Whenever Java methods must perform the equivalent
  1036 // check they generally use Plan B instead of Plan A.
  1037 // For the moment we use Plan A.
  1038 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
  1039                                                   Node* subseq_length,
  1040                                                   Node* array_length,
  1041                                                   RegionNode* region) {
  1042   if (stopped())
  1043     return NULL;                // already stopped
  1044   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
  1045   if (zero_offset && subseq_length->eqv_uncast(array_length))
  1046     return NULL;                // common case of whole-array copy
  1047   Node* last = subseq_length;
  1048   if (!zero_offset)             // last += offset
  1049     last = _gvn.transform(new (C) AddINode(last, offset));
  1050   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
  1051   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
  1052   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
  1053   return is_over;
  1057 //--------------------------generate_current_thread--------------------
  1058 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
  1059   ciKlass*    thread_klass = env()->Thread_klass();
  1060   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
  1061   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
  1062   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
  1063   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
  1064   tls_output = thread;
  1065   return threadObj;
  1069 //------------------------------make_string_method_node------------------------
  1070 // Helper method for String intrinsic functions. This version is called
  1071 // with str1 and str2 pointing to String object nodes.
  1072 //
  1073 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
  1074   Node* no_ctrl = NULL;
  1076   // Get start addr of string
  1077   Node* str1_value   = load_String_value(no_ctrl, str1);
  1078   Node* str1_offset  = load_String_offset(no_ctrl, str1);
  1079   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
  1081   // Get length of string 1
  1082   Node* str1_len  = load_String_length(no_ctrl, str1);
  1084   Node* str2_value   = load_String_value(no_ctrl, str2);
  1085   Node* str2_offset  = load_String_offset(no_ctrl, str2);
  1086   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
  1088   Node* str2_len = NULL;
  1089   Node* result = NULL;
  1091   switch (opcode) {
  1092   case Op_StrIndexOf:
  1093     // Get length of string 2
  1094     str2_len = load_String_length(no_ctrl, str2);
  1096     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1097                                  str1_start, str1_len, str2_start, str2_len);
  1098     break;
  1099   case Op_StrComp:
  1100     // Get length of string 2
  1101     str2_len = load_String_length(no_ctrl, str2);
  1103     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1104                                  str1_start, str1_len, str2_start, str2_len);
  1105     break;
  1106   case Op_StrEquals:
  1107     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1108                                str1_start, str2_start, str1_len);
  1109     break;
  1110   default:
  1111     ShouldNotReachHere();
  1112     return NULL;
  1115   // All these intrinsics have checks.
  1116   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1118   return _gvn.transform(result);
  1121 // Helper method for String intrinsic functions. This version is called
  1122 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
  1123 // to Int nodes containing the lenghts of str1 and str2.
  1124 //
  1125 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
  1126   Node* result = NULL;
  1127   switch (opcode) {
  1128   case Op_StrIndexOf:
  1129     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
  1130                                  str1_start, cnt1, str2_start, cnt2);
  1131     break;
  1132   case Op_StrComp:
  1133     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
  1134                                  str1_start, cnt1, str2_start, cnt2);
  1135     break;
  1136   case Op_StrEquals:
  1137     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
  1138                                  str1_start, str2_start, cnt1);
  1139     break;
  1140   default:
  1141     ShouldNotReachHere();
  1142     return NULL;
  1145   // All these intrinsics have checks.
  1146   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1148   return _gvn.transform(result);
  1151 //------------------------------inline_string_compareTo------------------------
  1152 // public int java.lang.String.compareTo(String anotherString);
  1153 bool LibraryCallKit::inline_string_compareTo() {
  1154   Node* receiver = null_check(argument(0));
  1155   Node* arg      = null_check(argument(1));
  1156   if (stopped()) {
  1157     return true;
  1159   set_result(make_string_method_node(Op_StrComp, receiver, arg));
  1160   return true;
  1163 //------------------------------inline_string_equals------------------------
  1164 bool LibraryCallKit::inline_string_equals() {
  1165   Node* receiver = null_check_receiver();
  1166   // NOTE: Do not null check argument for String.equals() because spec
  1167   // allows to specify NULL as argument.
  1168   Node* argument = this->argument(1);
  1169   if (stopped()) {
  1170     return true;
  1173   // paths (plus control) merge
  1174   RegionNode* region = new (C) RegionNode(5);
  1175   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
  1177   // does source == target string?
  1178   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
  1179   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
  1181   Node* if_eq = generate_slow_guard(bol, NULL);
  1182   if (if_eq != NULL) {
  1183     // receiver == argument
  1184     phi->init_req(2, intcon(1));
  1185     region->init_req(2, if_eq);
  1188   // get String klass for instanceOf
  1189   ciInstanceKlass* klass = env()->String_klass();
  1191   if (!stopped()) {
  1192     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
  1193     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
  1194     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  1196     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
  1197     //instanceOf == true, fallthrough
  1199     if (inst_false != NULL) {
  1200       phi->init_req(3, intcon(0));
  1201       region->init_req(3, inst_false);
  1205   if (!stopped()) {
  1206     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
  1208     // Properly cast the argument to String
  1209     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
  1210     // This path is taken only when argument's type is String:NotNull.
  1211     argument = cast_not_null(argument, false);
  1213     Node* no_ctrl = NULL;
  1215     // Get start addr of receiver
  1216     Node* receiver_val    = load_String_value(no_ctrl, receiver);
  1217     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
  1218     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
  1220     // Get length of receiver
  1221     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
  1223     // Get start addr of argument
  1224     Node* argument_val    = load_String_value(no_ctrl, argument);
  1225     Node* argument_offset = load_String_offset(no_ctrl, argument);
  1226     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
  1228     // Get length of argument
  1229     Node* argument_cnt  = load_String_length(no_ctrl, argument);
  1231     // Check for receiver count != argument count
  1232     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
  1233     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
  1234     Node* if_ne = generate_slow_guard(bol, NULL);
  1235     if (if_ne != NULL) {
  1236       phi->init_req(4, intcon(0));
  1237       region->init_req(4, if_ne);
  1240     // Check for count == 0 is done by assembler code for StrEquals.
  1242     if (!stopped()) {
  1243       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
  1244       phi->init_req(1, equals);
  1245       region->init_req(1, control());
  1249   // post merge
  1250   set_control(_gvn.transform(region));
  1251   record_for_igvn(region);
  1253   set_result(_gvn.transform(phi));
  1254   return true;
  1257 //------------------------------inline_array_equals----------------------------
  1258 bool LibraryCallKit::inline_array_equals() {
  1259   Node* arg1 = argument(0);
  1260   Node* arg2 = argument(1);
  1261   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
  1262   return true;
  1265 // Java version of String.indexOf(constant string)
  1266 // class StringDecl {
  1267 //   StringDecl(char[] ca) {
  1268 //     offset = 0;
  1269 //     count = ca.length;
  1270 //     value = ca;
  1271 //   }
  1272 //   int offset;
  1273 //   int count;
  1274 //   char[] value;
  1275 // }
  1276 //
  1277 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
  1278 //                             int targetOffset, int cache_i, int md2) {
  1279 //   int cache = cache_i;
  1280 //   int sourceOffset = string_object.offset;
  1281 //   int sourceCount = string_object.count;
  1282 //   int targetCount = target_object.length;
  1283 //
  1284 //   int targetCountLess1 = targetCount - 1;
  1285 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
  1286 //
  1287 //   char[] source = string_object.value;
  1288 //   char[] target = target_object;
  1289 //   int lastChar = target[targetCountLess1];
  1290 //
  1291 //  outer_loop:
  1292 //   for (int i = sourceOffset; i < sourceEnd; ) {
  1293 //     int src = source[i + targetCountLess1];
  1294 //     if (src == lastChar) {
  1295 //       // With random strings and a 4-character alphabet,
  1296 //       // reverse matching at this point sets up 0.8% fewer
  1297 //       // frames, but (paradoxically) makes 0.3% more probes.
  1298 //       // Since those probes are nearer the lastChar probe,
  1299 //       // there is may be a net D$ win with reverse matching.
  1300 //       // But, reversing loop inhibits unroll of inner loop
  1301 //       // for unknown reason.  So, does running outer loop from
  1302 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
  1303 //       for (int j = 0; j < targetCountLess1; j++) {
  1304 //         if (target[targetOffset + j] != source[i+j]) {
  1305 //           if ((cache & (1 << source[i+j])) == 0) {
  1306 //             if (md2 < j+1) {
  1307 //               i += j+1;
  1308 //               continue outer_loop;
  1309 //             }
  1310 //           }
  1311 //           i += md2;
  1312 //           continue outer_loop;
  1313 //         }
  1314 //       }
  1315 //       return i - sourceOffset;
  1316 //     }
  1317 //     if ((cache & (1 << src)) == 0) {
  1318 //       i += targetCountLess1;
  1319 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
  1320 //     i++;
  1321 //   }
  1322 //   return -1;
  1323 // }
  1325 //------------------------------string_indexOf------------------------
  1326 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
  1327                                      jint cache_i, jint md2_i) {
  1329   Node* no_ctrl  = NULL;
  1330   float likely   = PROB_LIKELY(0.9);
  1331   float unlikely = PROB_UNLIKELY(0.9);
  1333   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
  1335   Node* source        = load_String_value(no_ctrl, string_object);
  1336   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
  1337   Node* sourceCount   = load_String_length(no_ctrl, string_object);
  1339   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
  1340   jint target_length = target_array->length();
  1341   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
  1342   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
  1344   // String.value field is known to be @Stable.
  1345   if (UseImplicitStableValues) {
  1346     target = cast_array_to_stable(target, target_type);
  1349   IdealKit kit(this, false, true);
  1350 #define __ kit.
  1351   Node* zero             = __ ConI(0);
  1352   Node* one              = __ ConI(1);
  1353   Node* cache            = __ ConI(cache_i);
  1354   Node* md2              = __ ConI(md2_i);
  1355   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
  1356   Node* targetCount      = __ ConI(target_length);
  1357   Node* targetCountLess1 = __ ConI(target_length - 1);
  1358   Node* targetOffset     = __ ConI(targetOffset_i);
  1359   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
  1361   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
  1362   Node* outer_loop = __ make_label(2 /* goto */);
  1363   Node* return_    = __ make_label(1);
  1365   __ set(rtn,__ ConI(-1));
  1366   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
  1367        Node* i2  = __ AddI(__ value(i), targetCountLess1);
  1368        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
  1369        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
  1370        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
  1371          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
  1372               Node* tpj = __ AddI(targetOffset, __ value(j));
  1373               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
  1374               Node* ipj  = __ AddI(__ value(i), __ value(j));
  1375               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
  1376               __ if_then(targ, BoolTest::ne, src2); {
  1377                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
  1378                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
  1379                     __ increment(i, __ AddI(__ value(j), one));
  1380                     __ goto_(outer_loop);
  1381                   } __ end_if(); __ dead(j);
  1382                 }__ end_if(); __ dead(j);
  1383                 __ increment(i, md2);
  1384                 __ goto_(outer_loop);
  1385               }__ end_if();
  1386               __ increment(j, one);
  1387          }__ end_loop(); __ dead(j);
  1388          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
  1389          __ goto_(return_);
  1390        }__ end_if();
  1391        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
  1392          __ increment(i, targetCountLess1);
  1393        }__ end_if();
  1394        __ increment(i, one);
  1395        __ bind(outer_loop);
  1396   }__ end_loop(); __ dead(i);
  1397   __ bind(return_);
  1399   // Final sync IdealKit and GraphKit.
  1400   final_sync(kit);
  1401   Node* result = __ value(rtn);
  1402 #undef __
  1403   C->set_has_loops(true);
  1404   return result;
  1407 //------------------------------inline_string_indexOf------------------------
  1408 bool LibraryCallKit::inline_string_indexOf() {
  1409   Node* receiver = argument(0);
  1410   Node* arg      = argument(1);
  1412   Node* result;
  1413   // Disable the use of pcmpestri until it can be guaranteed that
  1414   // the load doesn't cross into the uncommited space.
  1415   if (Matcher::has_match_rule(Op_StrIndexOf) &&
  1416       UseSSE42Intrinsics) {
  1417     // Generate SSE4.2 version of indexOf
  1418     // We currently only have match rules that use SSE4.2
  1420     receiver = null_check(receiver);
  1421     arg      = null_check(arg);
  1422     if (stopped()) {
  1423       return true;
  1426     ciInstanceKlass* str_klass = env()->String_klass();
  1427     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
  1429     // Make the merge point
  1430     RegionNode* result_rgn = new (C) RegionNode(4);
  1431     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
  1432     Node* no_ctrl  = NULL;
  1434     // Get start addr of source string
  1435     Node* source = load_String_value(no_ctrl, receiver);
  1436     Node* source_offset = load_String_offset(no_ctrl, receiver);
  1437     Node* source_start = array_element_address(source, source_offset, T_CHAR);
  1439     // Get length of source string
  1440     Node* source_cnt  = load_String_length(no_ctrl, receiver);
  1442     // Get start addr of substring
  1443     Node* substr = load_String_value(no_ctrl, arg);
  1444     Node* substr_offset = load_String_offset(no_ctrl, arg);
  1445     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
  1447     // Get length of source string
  1448     Node* substr_cnt  = load_String_length(no_ctrl, arg);
  1450     // Check for substr count > string count
  1451     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
  1452     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
  1453     Node* if_gt = generate_slow_guard(bol, NULL);
  1454     if (if_gt != NULL) {
  1455       result_phi->init_req(2, intcon(-1));
  1456       result_rgn->init_req(2, if_gt);
  1459     if (!stopped()) {
  1460       // Check for substr count == 0
  1461       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
  1462       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  1463       Node* if_zero = generate_slow_guard(bol, NULL);
  1464       if (if_zero != NULL) {
  1465         result_phi->init_req(3, intcon(0));
  1466         result_rgn->init_req(3, if_zero);
  1470     if (!stopped()) {
  1471       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
  1472       result_phi->init_req(1, result);
  1473       result_rgn->init_req(1, control());
  1475     set_control(_gvn.transform(result_rgn));
  1476     record_for_igvn(result_rgn);
  1477     result = _gvn.transform(result_phi);
  1479   } else { // Use LibraryCallKit::string_indexOf
  1480     // don't intrinsify if argument isn't a constant string.
  1481     if (!arg->is_Con()) {
  1482      return false;
  1484     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
  1485     if (str_type == NULL) {
  1486       return false;
  1488     ciInstanceKlass* klass = env()->String_klass();
  1489     ciObject* str_const = str_type->const_oop();
  1490     if (str_const == NULL || str_const->klass() != klass) {
  1491       return false;
  1493     ciInstance* str = str_const->as_instance();
  1494     assert(str != NULL, "must be instance");
  1496     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
  1497     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
  1499     int o;
  1500     int c;
  1501     if (java_lang_String::has_offset_field()) {
  1502       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
  1503       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
  1504     } else {
  1505       o = 0;
  1506       c = pat->length();
  1509     // constant strings have no offset and count == length which
  1510     // simplifies the resulting code somewhat so lets optimize for that.
  1511     if (o != 0 || c != pat->length()) {
  1512      return false;
  1515     receiver = null_check(receiver, T_OBJECT);
  1516     // NOTE: No null check on the argument is needed since it's a constant String oop.
  1517     if (stopped()) {
  1518       return true;
  1521     // The null string as a pattern always returns 0 (match at beginning of string)
  1522     if (c == 0) {
  1523       set_result(intcon(0));
  1524       return true;
  1527     // Generate default indexOf
  1528     jchar lastChar = pat->char_at(o + (c - 1));
  1529     int cache = 0;
  1530     int i;
  1531     for (i = 0; i < c - 1; i++) {
  1532       assert(i < pat->length(), "out of range");
  1533       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
  1536     int md2 = c;
  1537     for (i = 0; i < c - 1; i++) {
  1538       assert(i < pat->length(), "out of range");
  1539       if (pat->char_at(o + i) == lastChar) {
  1540         md2 = (c - 1) - i;
  1544     result = string_indexOf(receiver, pat, o, cache, md2);
  1546   set_result(result);
  1547   return true;
  1550 //--------------------------round_double_node--------------------------------
  1551 // Round a double node if necessary.
  1552 Node* LibraryCallKit::round_double_node(Node* n) {
  1553   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
  1554     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
  1555   return n;
  1558 //------------------------------inline_math-----------------------------------
  1559 // public static double Math.abs(double)
  1560 // public static double Math.sqrt(double)
  1561 // public static double Math.log(double)
  1562 // public static double Math.log10(double)
  1563 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
  1564   Node* arg = round_double_node(argument(0));
  1565   Node* n;
  1566   switch (id) {
  1567   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
  1568   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
  1569   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
  1570   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
  1571   default:  fatal_unexpected_iid(id);  break;
  1573   set_result(_gvn.transform(n));
  1574   return true;
  1577 //------------------------------inline_trig----------------------------------
  1578 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
  1579 // argument reduction which will turn into a fast/slow diamond.
  1580 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
  1581   Node* arg = round_double_node(argument(0));
  1582   Node* n = NULL;
  1584   switch (id) {
  1585   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
  1586   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
  1587   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
  1588   default:  fatal_unexpected_iid(id);  break;
  1590   n = _gvn.transform(n);
  1592   // Rounding required?  Check for argument reduction!
  1593   if (Matcher::strict_fp_requires_explicit_rounding) {
  1594     static const double     pi_4 =  0.7853981633974483;
  1595     static const double neg_pi_4 = -0.7853981633974483;
  1596     // pi/2 in 80-bit extended precision
  1597     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
  1598     // -pi/2 in 80-bit extended precision
  1599     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
  1600     // Cutoff value for using this argument reduction technique
  1601     //static const double    pi_2_minus_epsilon =  1.564660403643354;
  1602     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
  1604     // Pseudocode for sin:
  1605     // if (x <= Math.PI / 4.0) {
  1606     //   if (x >= -Math.PI / 4.0) return  fsin(x);
  1607     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
  1608     // } else {
  1609     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
  1610     // }
  1611     // return StrictMath.sin(x);
  1613     // Pseudocode for cos:
  1614     // if (x <= Math.PI / 4.0) {
  1615     //   if (x >= -Math.PI / 4.0) return  fcos(x);
  1616     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
  1617     // } else {
  1618     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
  1619     // }
  1620     // return StrictMath.cos(x);
  1622     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
  1623     // requires a special machine instruction to load it.  Instead we'll try
  1624     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
  1625     // probably do the math inside the SIN encoding.
  1627     // Make the merge point
  1628     RegionNode* r = new (C) RegionNode(3);
  1629     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
  1631     // Flatten arg so we need only 1 test
  1632     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
  1633     // Node for PI/4 constant
  1634     Node *pi4 = makecon(TypeD::make(pi_4));
  1635     // Check PI/4 : abs(arg)
  1636     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
  1637     // Check: If PI/4 < abs(arg) then go slow
  1638     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
  1639     // Branch either way
  1640     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1641     set_control(opt_iff(r,iff));
  1643     // Set fast path result
  1644     phi->init_req(2, n);
  1646     // Slow path - non-blocking leaf call
  1647     Node* call = NULL;
  1648     switch (id) {
  1649     case vmIntrinsics::_dsin:
  1650       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1651                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
  1652                                "Sin", NULL, arg, top());
  1653       break;
  1654     case vmIntrinsics::_dcos:
  1655       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1656                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
  1657                                "Cos", NULL, arg, top());
  1658       break;
  1659     case vmIntrinsics::_dtan:
  1660       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
  1661                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
  1662                                "Tan", NULL, arg, top());
  1663       break;
  1665     assert(control()->in(0) == call, "");
  1666     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  1667     r->init_req(1, control());
  1668     phi->init_req(1, slow_result);
  1670     // Post-merge
  1671     set_control(_gvn.transform(r));
  1672     record_for_igvn(r);
  1673     n = _gvn.transform(phi);
  1675     C->set_has_split_ifs(true); // Has chance for split-if optimization
  1677   set_result(n);
  1678   return true;
  1681 void LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1682   //-------------------
  1683   //result=(result.isNaN())? funcAddr():result;
  1684   // Check: If isNaN() by checking result!=result? then either trap
  1685   // or go to runtime
  1686   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
  1687   // Build the boolean node
  1688   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
  1690   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1691     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
  1692       // The pow or exp intrinsic returned a NaN, which requires a call
  1693       // to the runtime.  Recompile with the runtime call.
  1694       uncommon_trap(Deoptimization::Reason_intrinsic,
  1695                     Deoptimization::Action_make_not_entrant);
  1697     set_result(result);
  1698   } else {
  1699     // If this inlining ever returned NaN in the past, we compile a call
  1700     // to the runtime to properly handle corner cases
  1702     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  1703     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
  1704     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
  1706     if (!if_slow->is_top()) {
  1707       RegionNode* result_region = new (C) RegionNode(3);
  1708       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
  1710       result_region->init_req(1, if_fast);
  1711       result_val->init_req(1, result);
  1713       set_control(if_slow);
  1715       const TypePtr* no_memory_effects = NULL;
  1716       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1717                                    no_memory_effects,
  1718                                    x, top(), y, y ? top() : NULL);
  1719       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
  1720 #ifdef ASSERT
  1721       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
  1722       assert(value_top == top(), "second value must be top");
  1723 #endif
  1725       result_region->init_req(2, control());
  1726       result_val->init_req(2, value);
  1727       set_result(result_region, result_val);
  1728     } else {
  1729       set_result(result);
  1734 //------------------------------inline_exp-------------------------------------
  1735 // Inline exp instructions, if possible.  The Intel hardware only misses
  1736 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
  1737 bool LibraryCallKit::inline_exp() {
  1738   Node* arg = round_double_node(argument(0));
  1739   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
  1741   finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
  1743   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1744   return true;
  1747 //------------------------------inline_pow-------------------------------------
  1748 // Inline power instructions, if possible.
  1749 bool LibraryCallKit::inline_pow() {
  1750   // Pseudocode for pow
  1751   // if (x <= 0.0) {
  1752   //   long longy = (long)y;
  1753   //   if ((double)longy == y) { // if y is long
  1754   //     if (y + 1 == y) longy = 0; // huge number: even
  1755   //     result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
  1756   //   } else {
  1757   //     result = NaN;
  1758   //   }
  1759   // } else {
  1760   //   result = DPow(x,y);
  1761   // }
  1762   // if (result != result)?  {
  1763   //   result = uncommon_trap() or runtime_call();
  1764   // }
  1765   // return result;
  1767   Node* x = round_double_node(argument(0));
  1768   Node* y = round_double_node(argument(2));
  1770   Node* result = NULL;
  1772   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
  1773     // Short form: skip the fancy tests and just check for NaN result.
  1774     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1775   } else {
  1776     // If this inlining ever returned NaN in the past, include all
  1777     // checks + call to the runtime.
  1779     // Set the merge point for If node with condition of (x <= 0.0)
  1780     // There are four possible paths to region node and phi node
  1781     RegionNode *r = new (C) RegionNode(4);
  1782     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1784     // Build the first if node: if (x <= 0.0)
  1785     // Node for 0 constant
  1786     Node *zeronode = makecon(TypeD::ZERO);
  1787     // Check x:0
  1788     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
  1789     // Check: If (x<=0) then go complex path
  1790     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
  1791     // Branch either way
  1792     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1793     // Fast path taken; set region slot 3
  1794     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
  1795     r->init_req(3,fast_taken); // Capture fast-control
  1797     // Fast path not-taken, i.e. slow path
  1798     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
  1800     // Set fast path result
  1801     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
  1802     phi->init_req(3, fast_result);
  1804     // Complex path
  1805     // Build the second if node (if y is long)
  1806     // Node for (long)y
  1807     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
  1808     // Node for (double)((long) y)
  1809     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
  1810     // Check (double)((long) y) : y
  1811     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
  1812     // Check if (y isn't long) then go to slow path
  1814     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
  1815     // Branch either way
  1816     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
  1817     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
  1819     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
  1821     // Calculate DPow(abs(x), y)*(1 & (long)y)
  1822     // Node for constant 1
  1823     Node *conone = longcon(1);
  1824     // 1& (long)y
  1825     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
  1827     // A huge number is always even. Detect a huge number by checking
  1828     // if y + 1 == y and set integer to be tested for parity to 0.
  1829     // Required for corner case:
  1830     // (long)9.223372036854776E18 = max_jlong
  1831     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
  1832     // max_jlong is odd but 9.223372036854776E18 is even
  1833     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
  1834     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
  1835     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
  1836     Node* correctedsign = NULL;
  1837     if (ConditionalMoveLimit != 0) {
  1838       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
  1839     } else {
  1840       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
  1841       RegionNode *r = new (C) RegionNode(3);
  1842       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  1843       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
  1844       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
  1845       phi->init_req(1, signnode);
  1846       phi->init_req(2, longcon(0));
  1847       correctedsign = _gvn.transform(phi);
  1848       ylong_path = _gvn.transform(r);
  1849       record_for_igvn(r);
  1852     // zero node
  1853     Node *conzero = longcon(0);
  1854     // Check (1&(long)y)==0?
  1855     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
  1856     // Check if (1&(long)y)!=0?, if so the result is negative
  1857     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
  1858     // abs(x)
  1859     Node *absx=_gvn.transform(new (C) AbsDNode(x));
  1860     // abs(x)^y
  1861     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
  1862     // -abs(x)^y
  1863     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
  1864     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
  1865     Node *signresult = NULL;
  1866     if (ConditionalMoveLimit != 0) {
  1867       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
  1868     } else {
  1869       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
  1870       RegionNode *r = new (C) RegionNode(3);
  1871       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
  1872       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
  1873       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
  1874       phi->init_req(1, absxpowy);
  1875       phi->init_req(2, negabsxpowy);
  1876       signresult = _gvn.transform(phi);
  1877       ylong_path = _gvn.transform(r);
  1878       record_for_igvn(r);
  1880     // Set complex path fast result
  1881     r->init_req(2, ylong_path);
  1882     phi->init_req(2, signresult);
  1884     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  1885     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
  1886     r->init_req(1,slow_path);
  1887     phi->init_req(1,slow_result);
  1889     // Post merge
  1890     set_control(_gvn.transform(r));
  1891     record_for_igvn(r);
  1892     result = _gvn.transform(phi);
  1895   finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
  1897   C->set_has_split_ifs(true); // Has chance for split-if optimization
  1898   return true;
  1901 //------------------------------runtime_math-----------------------------
  1902 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
  1903   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
  1904          "must be (DD)D or (D)D type");
  1906   // Inputs
  1907   Node* a = round_double_node(argument(0));
  1908   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
  1910   const TypePtr* no_memory_effects = NULL;
  1911   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
  1912                                  no_memory_effects,
  1913                                  a, top(), b, b ? top() : NULL);
  1914   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
  1915 #ifdef ASSERT
  1916   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
  1917   assert(value_top == top(), "second value must be top");
  1918 #endif
  1920   set_result(value);
  1921   return true;
  1924 //------------------------------inline_math_native-----------------------------
  1925 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
  1926 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
  1927   switch (id) {
  1928     // These intrinsics are not properly supported on all hardware
  1929   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
  1930     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
  1931   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
  1932     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
  1933   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
  1934     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
  1936   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
  1937     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
  1938   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
  1939     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
  1941     // These intrinsics are supported on all hardware
  1942   case vmIntrinsics::_dsqrt:  return Matcher::has_match_rule(Op_SqrtD)  ? inline_math(id) : false;
  1943   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
  1945   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
  1946     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
  1947   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
  1948     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
  1949 #undef FN_PTR
  1951    // These intrinsics are not yet correctly implemented
  1952   case vmIntrinsics::_datan2:
  1953     return false;
  1955   default:
  1956     fatal_unexpected_iid(id);
  1957     return false;
  1961 static bool is_simple_name(Node* n) {
  1962   return (n->req() == 1         // constant
  1963           || (n->is_Type() && n->as_Type()->type()->singleton())
  1964           || n->is_Proj()       // parameter or return value
  1965           || n->is_Phi()        // local of some sort
  1966           );
  1969 //----------------------------inline_min_max-----------------------------------
  1970 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
  1971   set_result(generate_min_max(id, argument(0), argument(1)));
  1972   return true;
  1975 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
  1976   Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
  1977   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  1978   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
  1979   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
  1982     PreserveJVMState pjvms(this);
  1983     PreserveReexecuteState preexecs(this);
  1984     jvms()->set_should_reexecute(true);
  1986     set_control(slow_path);
  1987     set_i_o(i_o());
  1989     uncommon_trap(Deoptimization::Reason_intrinsic,
  1990                   Deoptimization::Action_none);
  1993   set_control(fast_path);
  1994   set_result(math);
  1997 template <typename OverflowOp>
  1998 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
  1999   typedef typename OverflowOp::MathOp MathOp;
  2001   MathOp* mathOp = new(C) MathOp(arg1, arg2);
  2002   Node* operation = _gvn.transform( mathOp );
  2003   Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
  2004   inline_math_mathExact(operation, ofcheck);
  2005   return true;
  2008 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
  2009   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
  2012 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
  2013   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
  2016 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
  2017   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
  2020 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
  2021   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
  2024 bool LibraryCallKit::inline_math_negateExactI() {
  2025   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
  2028 bool LibraryCallKit::inline_math_negateExactL() {
  2029   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
  2032 bool LibraryCallKit::inline_math_multiplyExactI() {
  2033   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
  2036 bool LibraryCallKit::inline_math_multiplyExactL() {
  2037   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
  2040 Node*
  2041 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
  2042   // These are the candidate return value:
  2043   Node* xvalue = x0;
  2044   Node* yvalue = y0;
  2046   if (xvalue == yvalue) {
  2047     return xvalue;
  2050   bool want_max = (id == vmIntrinsics::_max);
  2052   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
  2053   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
  2054   if (txvalue == NULL || tyvalue == NULL)  return top();
  2055   // This is not really necessary, but it is consistent with a
  2056   // hypothetical MaxINode::Value method:
  2057   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
  2059   // %%% This folding logic should (ideally) be in a different place.
  2060   // Some should be inside IfNode, and there to be a more reliable
  2061   // transformation of ?: style patterns into cmoves.  We also want
  2062   // more powerful optimizations around cmove and min/max.
  2064   // Try to find a dominating comparison of these guys.
  2065   // It can simplify the index computation for Arrays.copyOf
  2066   // and similar uses of System.arraycopy.
  2067   // First, compute the normalized version of CmpI(x, y).
  2068   int   cmp_op = Op_CmpI;
  2069   Node* xkey = xvalue;
  2070   Node* ykey = yvalue;
  2071   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
  2072   if (ideal_cmpxy->is_Cmp()) {
  2073     // E.g., if we have CmpI(length - offset, count),
  2074     // it might idealize to CmpI(length, count + offset)
  2075     cmp_op = ideal_cmpxy->Opcode();
  2076     xkey = ideal_cmpxy->in(1);
  2077     ykey = ideal_cmpxy->in(2);
  2080   // Start by locating any relevant comparisons.
  2081   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
  2082   Node* cmpxy = NULL;
  2083   Node* cmpyx = NULL;
  2084   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
  2085     Node* cmp = start_from->fast_out(k);
  2086     if (cmp->outcnt() > 0 &&            // must have prior uses
  2087         cmp->in(0) == NULL &&           // must be context-independent
  2088         cmp->Opcode() == cmp_op) {      // right kind of compare
  2089       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
  2090       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
  2094   const int NCMPS = 2;
  2095   Node* cmps[NCMPS] = { cmpxy, cmpyx };
  2096   int cmpn;
  2097   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2098     if (cmps[cmpn] != NULL)  break;     // find a result
  2100   if (cmpn < NCMPS) {
  2101     // Look for a dominating test that tells us the min and max.
  2102     int depth = 0;                // Limit search depth for speed
  2103     Node* dom = control();
  2104     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
  2105       if (++depth >= 100)  break;
  2106       Node* ifproj = dom;
  2107       if (!ifproj->is_Proj())  continue;
  2108       Node* iff = ifproj->in(0);
  2109       if (!iff->is_If())  continue;
  2110       Node* bol = iff->in(1);
  2111       if (!bol->is_Bool())  continue;
  2112       Node* cmp = bol->in(1);
  2113       if (cmp == NULL)  continue;
  2114       for (cmpn = 0; cmpn < NCMPS; cmpn++)
  2115         if (cmps[cmpn] == cmp)  break;
  2116       if (cmpn == NCMPS)  continue;
  2117       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2118       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
  2119       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
  2120       // At this point, we know that 'x btest y' is true.
  2121       switch (btest) {
  2122       case BoolTest::eq:
  2123         // They are proven equal, so we can collapse the min/max.
  2124         // Either value is the answer.  Choose the simpler.
  2125         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
  2126           return yvalue;
  2127         return xvalue;
  2128       case BoolTest::lt:          // x < y
  2129       case BoolTest::le:          // x <= y
  2130         return (want_max ? yvalue : xvalue);
  2131       case BoolTest::gt:          // x > y
  2132       case BoolTest::ge:          // x >= y
  2133         return (want_max ? xvalue : yvalue);
  2138   // We failed to find a dominating test.
  2139   // Let's pick a test that might GVN with prior tests.
  2140   Node*          best_bol   = NULL;
  2141   BoolTest::mask best_btest = BoolTest::illegal;
  2142   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
  2143     Node* cmp = cmps[cmpn];
  2144     if (cmp == NULL)  continue;
  2145     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
  2146       Node* bol = cmp->fast_out(j);
  2147       if (!bol->is_Bool())  continue;
  2148       BoolTest::mask btest = bol->as_Bool()->_test._test;
  2149       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
  2150       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
  2151       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
  2152         best_bol   = bol->as_Bool();
  2153         best_btest = btest;
  2158   Node* answer_if_true  = NULL;
  2159   Node* answer_if_false = NULL;
  2160   switch (best_btest) {
  2161   default:
  2162     if (cmpxy == NULL)
  2163       cmpxy = ideal_cmpxy;
  2164     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
  2165     // and fall through:
  2166   case BoolTest::lt:          // x < y
  2167   case BoolTest::le:          // x <= y
  2168     answer_if_true  = (want_max ? yvalue : xvalue);
  2169     answer_if_false = (want_max ? xvalue : yvalue);
  2170     break;
  2171   case BoolTest::gt:          // x > y
  2172   case BoolTest::ge:          // x >= y
  2173     answer_if_true  = (want_max ? xvalue : yvalue);
  2174     answer_if_false = (want_max ? yvalue : xvalue);
  2175     break;
  2178   jint hi, lo;
  2179   if (want_max) {
  2180     // We can sharpen the minimum.
  2181     hi = MAX2(txvalue->_hi, tyvalue->_hi);
  2182     lo = MAX2(txvalue->_lo, tyvalue->_lo);
  2183   } else {
  2184     // We can sharpen the maximum.
  2185     hi = MIN2(txvalue->_hi, tyvalue->_hi);
  2186     lo = MIN2(txvalue->_lo, tyvalue->_lo);
  2189   // Use a flow-free graph structure, to avoid creating excess control edges
  2190   // which could hinder other optimizations.
  2191   // Since Math.min/max is often used with arraycopy, we want
  2192   // tightly_coupled_allocation to be able to see beyond min/max expressions.
  2193   Node* cmov = CMoveNode::make(C, NULL, best_bol,
  2194                                answer_if_false, answer_if_true,
  2195                                TypeInt::make(lo, hi, widen));
  2197   return _gvn.transform(cmov);
  2199   /*
  2200   // This is not as desirable as it may seem, since Min and Max
  2201   // nodes do not have a full set of optimizations.
  2202   // And they would interfere, anyway, with 'if' optimizations
  2203   // and with CMoveI canonical forms.
  2204   switch (id) {
  2205   case vmIntrinsics::_min:
  2206     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
  2207   case vmIntrinsics::_max:
  2208     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
  2209   default:
  2210     ShouldNotReachHere();
  2212   */
  2215 inline int
  2216 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
  2217   const TypePtr* base_type = TypePtr::NULL_PTR;
  2218   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
  2219   if (base_type == NULL) {
  2220     // Unknown type.
  2221     return Type::AnyPtr;
  2222   } else if (base_type == TypePtr::NULL_PTR) {
  2223     // Since this is a NULL+long form, we have to switch to a rawptr.
  2224     base   = _gvn.transform(new (C) CastX2PNode(offset));
  2225     offset = MakeConX(0);
  2226     return Type::RawPtr;
  2227   } else if (base_type->base() == Type::RawPtr) {
  2228     return Type::RawPtr;
  2229   } else if (base_type->isa_oopptr()) {
  2230     // Base is never null => always a heap address.
  2231     if (base_type->ptr() == TypePtr::NotNull) {
  2232       return Type::OopPtr;
  2234     // Offset is small => always a heap address.
  2235     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
  2236     if (offset_type != NULL &&
  2237         base_type->offset() == 0 &&     // (should always be?)
  2238         offset_type->_lo >= 0 &&
  2239         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
  2240       return Type::OopPtr;
  2242     // Otherwise, it might either be oop+off or NULL+addr.
  2243     return Type::AnyPtr;
  2244   } else {
  2245     // No information:
  2246     return Type::AnyPtr;
  2250 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
  2251   int kind = classify_unsafe_addr(base, offset);
  2252   if (kind == Type::RawPtr) {
  2253     return basic_plus_adr(top(), base, offset);
  2254   } else {
  2255     return basic_plus_adr(base, offset);
  2259 //--------------------------inline_number_methods-----------------------------
  2260 // inline int     Integer.numberOfLeadingZeros(int)
  2261 // inline int        Long.numberOfLeadingZeros(long)
  2262 //
  2263 // inline int     Integer.numberOfTrailingZeros(int)
  2264 // inline int        Long.numberOfTrailingZeros(long)
  2265 //
  2266 // inline int     Integer.bitCount(int)
  2267 // inline int        Long.bitCount(long)
  2268 //
  2269 // inline char  Character.reverseBytes(char)
  2270 // inline short     Short.reverseBytes(short)
  2271 // inline int     Integer.reverseBytes(int)
  2272 // inline long       Long.reverseBytes(long)
  2273 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
  2274   Node* arg = argument(0);
  2275   Node* n;
  2276   switch (id) {
  2277   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
  2278   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
  2279   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
  2280   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
  2281   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
  2282   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
  2283   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
  2284   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
  2285   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
  2286   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
  2287   default:  fatal_unexpected_iid(id);  break;
  2289   set_result(_gvn.transform(n));
  2290   return true;
  2293 //----------------------------inline_unsafe_access----------------------------
  2295 const static BasicType T_ADDRESS_HOLDER = T_LONG;
  2297 // Helper that guards and inserts a pre-barrier.
  2298 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
  2299                                         Node* pre_val, bool need_mem_bar) {
  2300   // We could be accessing the referent field of a reference object. If so, when G1
  2301   // is enabled, we need to log the value in the referent field in an SATB buffer.
  2302   // This routine performs some compile time filters and generates suitable
  2303   // runtime filters that guard the pre-barrier code.
  2304   // Also add memory barrier for non volatile load from the referent field
  2305   // to prevent commoning of loads across safepoint.
  2306   if (!UseG1GC && !need_mem_bar)
  2307     return;
  2309   // Some compile time checks.
  2311   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
  2312   const TypeX* otype = offset->find_intptr_t_type();
  2313   if (otype != NULL && otype->is_con() &&
  2314       otype->get_con() != java_lang_ref_Reference::referent_offset) {
  2315     // Constant offset but not the reference_offset so just return
  2316     return;
  2319   // We only need to generate the runtime guards for instances.
  2320   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
  2321   if (btype != NULL) {
  2322     if (btype->isa_aryptr()) {
  2323       // Array type so nothing to do
  2324       return;
  2327     const TypeInstPtr* itype = btype->isa_instptr();
  2328     if (itype != NULL) {
  2329       // Can the klass of base_oop be statically determined to be
  2330       // _not_ a sub-class of Reference and _not_ Object?
  2331       ciKlass* klass = itype->klass();
  2332       if ( klass->is_loaded() &&
  2333           !klass->is_subtype_of(env()->Reference_klass()) &&
  2334           !env()->Object_klass()->is_subtype_of(klass)) {
  2335         return;
  2340   // The compile time filters did not reject base_oop/offset so
  2341   // we need to generate the following runtime filters
  2342   //
  2343   // if (offset == java_lang_ref_Reference::_reference_offset) {
  2344   //   if (instance_of(base, java.lang.ref.Reference)) {
  2345   //     pre_barrier(_, pre_val, ...);
  2346   //   }
  2347   // }
  2349   float likely   = PROB_LIKELY(  0.999);
  2350   float unlikely = PROB_UNLIKELY(0.999);
  2352   IdealKit ideal(this);
  2353 #define __ ideal.
  2355   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
  2357   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
  2358       // Update graphKit memory and control from IdealKit.
  2359       sync_kit(ideal);
  2361       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
  2362       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
  2364       // Update IdealKit memory and control from graphKit.
  2365       __ sync_kit(this);
  2367       Node* one = __ ConI(1);
  2368       // is_instof == 0 if base_oop == NULL
  2369       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
  2371         // Update graphKit from IdeakKit.
  2372         sync_kit(ideal);
  2374         // Use the pre-barrier to record the value in the referent field
  2375         pre_barrier(false /* do_load */,
  2376                     __ ctrl(),
  2377                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  2378                     pre_val /* pre_val */,
  2379                     T_OBJECT);
  2380         if (need_mem_bar) {
  2381           // Add memory barrier to prevent commoning reads from this field
  2382           // across safepoint since GC can change its value.
  2383           insert_mem_bar(Op_MemBarCPUOrder);
  2385         // Update IdealKit from graphKit.
  2386         __ sync_kit(this);
  2388       } __ end_if(); // _ref_type != ref_none
  2389   } __ end_if(); // offset == referent_offset
  2391   // Final sync IdealKit and GraphKit.
  2392   final_sync(ideal);
  2393 #undef __
  2397 // Interpret Unsafe.fieldOffset cookies correctly:
  2398 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
  2400 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
  2401   // Attempt to infer a sharper value type from the offset and base type.
  2402   ciKlass* sharpened_klass = NULL;
  2404   // See if it is an instance field, with an object type.
  2405   if (alias_type->field() != NULL) {
  2406     assert(!is_native_ptr, "native pointer op cannot use a java address");
  2407     if (alias_type->field()->type()->is_klass()) {
  2408       sharpened_klass = alias_type->field()->type()->as_klass();
  2412   // See if it is a narrow oop array.
  2413   if (adr_type->isa_aryptr()) {
  2414     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
  2415       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
  2416       if (elem_type != NULL) {
  2417         sharpened_klass = elem_type->klass();
  2422   // The sharpened class might be unloaded if there is no class loader
  2423   // contraint in place.
  2424   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
  2425     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
  2427 #ifndef PRODUCT
  2428     if (C->print_intrinsics() || C->print_inlining()) {
  2429       tty->print("  from base type: ");  adr_type->dump();
  2430       tty->print("  sharpened value: ");  tjp->dump();
  2432 #endif
  2433     // Sharpen the value type.
  2434     return tjp;
  2436   return NULL;
  2439 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
  2440   if (callee()->is_static())  return false;  // caller must have the capability!
  2442 #ifndef PRODUCT
  2444     ResourceMark rm;
  2445     // Check the signatures.
  2446     ciSignature* sig = callee()->signature();
  2447 #ifdef ASSERT
  2448     if (!is_store) {
  2449       // Object getObject(Object base, int/long offset), etc.
  2450       BasicType rtype = sig->return_type()->basic_type();
  2451       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
  2452           rtype = T_ADDRESS;  // it is really a C void*
  2453       assert(rtype == type, "getter must return the expected value");
  2454       if (!is_native_ptr) {
  2455         assert(sig->count() == 2, "oop getter has 2 arguments");
  2456         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
  2457         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
  2458       } else {
  2459         assert(sig->count() == 1, "native getter has 1 argument");
  2460         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
  2462     } else {
  2463       // void putObject(Object base, int/long offset, Object x), etc.
  2464       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
  2465       if (!is_native_ptr) {
  2466         assert(sig->count() == 3, "oop putter has 3 arguments");
  2467         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
  2468         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
  2469       } else {
  2470         assert(sig->count() == 2, "native putter has 2 arguments");
  2471         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
  2473       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
  2474       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
  2475         vtype = T_ADDRESS;  // it is really a C void*
  2476       assert(vtype == type, "putter must accept the expected value");
  2478 #endif // ASSERT
  2480 #endif //PRODUCT
  2482   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2484   Node* receiver = argument(0);  // type: oop
  2486   // Build address expression.  See the code in inline_unsafe_prefetch.
  2487   Node* adr;
  2488   Node* heap_base_oop = top();
  2489   Node* offset = top();
  2490   Node* val;
  2492   if (!is_native_ptr) {
  2493     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2494     Node* base = argument(1);  // type: oop
  2495     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2496     offset = argument(2);  // type: long
  2497     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2498     // to be plain byte offsets, which are also the same as those accepted
  2499     // by oopDesc::field_base.
  2500     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2501            "fieldOffset must be byte-scaled");
  2502     // 32-bit machines ignore the high half!
  2503     offset = ConvL2X(offset);
  2504     adr = make_unsafe_address(base, offset);
  2505     heap_base_oop = base;
  2506     val = is_store ? argument(4) : NULL;
  2507   } else {
  2508     Node* ptr = argument(1);  // type: long
  2509     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2510     adr = make_unsafe_address(NULL, ptr);
  2511     val = is_store ? argument(3) : NULL;
  2514   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2516   // First guess at the value type.
  2517   const Type *value_type = Type::get_const_basic_type(type);
  2519   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
  2520   // there was not enough information to nail it down.
  2521   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2522   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2524   // We will need memory barriers unless we can determine a unique
  2525   // alias category for this reference.  (Note:  If for some reason
  2526   // the barriers get omitted and the unsafe reference begins to "pollute"
  2527   // the alias analysis of the rest of the graph, either Compile::can_alias
  2528   // or Compile::must_alias will throw a diagnostic assert.)
  2529   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
  2531   // If we are reading the value of the referent field of a Reference
  2532   // object (either by using Unsafe directly or through reflection)
  2533   // then, if G1 is enabled, we need to record the referent in an
  2534   // SATB log buffer using the pre-barrier mechanism.
  2535   // Also we need to add memory barrier to prevent commoning reads
  2536   // from this field across safepoint since GC can change its value.
  2537   bool need_read_barrier = !is_native_ptr && !is_store &&
  2538                            offset != top() && heap_base_oop != top();
  2540   if (!is_store && type == T_OBJECT) {
  2541     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
  2542     if (tjp != NULL) {
  2543       value_type = tjp;
  2547   receiver = null_check(receiver);
  2548   if (stopped()) {
  2549     return true;
  2551   // Heap pointers get a null-check from the interpreter,
  2552   // as a courtesy.  However, this is not guaranteed by Unsafe,
  2553   // and it is not possible to fully distinguish unintended nulls
  2554   // from intended ones in this API.
  2556   if (is_volatile) {
  2557     // We need to emit leading and trailing CPU membars (see below) in
  2558     // addition to memory membars when is_volatile. This is a little
  2559     // too strong, but avoids the need to insert per-alias-type
  2560     // volatile membars (for stores; compare Parse::do_put_xxx), which
  2561     // we cannot do effectively here because we probably only have a
  2562     // rough approximation of type.
  2563     need_mem_bar = true;
  2564     // For Stores, place a memory ordering barrier now.
  2565     if (is_store)
  2566       insert_mem_bar(Op_MemBarRelease);
  2569   // Memory barrier to prevent normal and 'unsafe' accesses from
  2570   // bypassing each other.  Happens after null checks, so the
  2571   // exception paths do not take memory state from the memory barrier,
  2572   // so there's no problems making a strong assert about mixing users
  2573   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
  2574   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
  2575   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2577   if (!is_store) {
  2578     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
  2579     // load value
  2580     switch (type) {
  2581     case T_BOOLEAN:
  2582     case T_CHAR:
  2583     case T_BYTE:
  2584     case T_SHORT:
  2585     case T_INT:
  2586     case T_LONG:
  2587     case T_FLOAT:
  2588     case T_DOUBLE:
  2589       break;
  2590     case T_OBJECT:
  2591       if (need_read_barrier) {
  2592         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
  2594       break;
  2595     case T_ADDRESS:
  2596       // Cast to an int type.
  2597       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
  2598       p = ConvX2L(p);
  2599       break;
  2600     default:
  2601       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2602       break;
  2604     // The load node has the control of the preceding MemBarCPUOrder.  All
  2605     // following nodes will have the control of the MemBarCPUOrder inserted at
  2606     // the end of this method.  So, pushing the load onto the stack at a later
  2607     // point is fine.
  2608     set_result(p);
  2609   } else {
  2610     // place effect of store into memory
  2611     switch (type) {
  2612     case T_DOUBLE:
  2613       val = dstore_rounding(val);
  2614       break;
  2615     case T_ADDRESS:
  2616       // Repackage the long as a pointer.
  2617       val = ConvL2X(val);
  2618       val = _gvn.transform(new (C) CastX2PNode(val));
  2619       break;
  2622     if (type != T_OBJECT ) {
  2623       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
  2624     } else {
  2625       // Possibly an oop being stored to Java heap or native memory
  2626       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
  2627         // oop to Java heap.
  2628         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2629       } else {
  2630         // We can't tell at compile time if we are storing in the Java heap or outside
  2631         // of it. So we need to emit code to conditionally do the proper type of
  2632         // store.
  2634         IdealKit ideal(this);
  2635 #define __ ideal.
  2636         // QQQ who knows what probability is here??
  2637         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
  2638           // Sync IdealKit and graphKit.
  2639           sync_kit(ideal);
  2640           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
  2641           // Update IdealKit memory.
  2642           __ sync_kit(this);
  2643         } __ else_(); {
  2644           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
  2645         } __ end_if();
  2646         // Final sync IdealKit and GraphKit.
  2647         final_sync(ideal);
  2648 #undef __
  2653   if (is_volatile) {
  2654     if (!is_store)
  2655       insert_mem_bar(Op_MemBarAcquire);
  2656     else
  2657       insert_mem_bar(Op_MemBarVolatile);
  2660   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
  2662   return true;
  2665 //----------------------------inline_unsafe_prefetch----------------------------
  2667 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
  2668 #ifndef PRODUCT
  2670     ResourceMark rm;
  2671     // Check the signatures.
  2672     ciSignature* sig = callee()->signature();
  2673 #ifdef ASSERT
  2674     // Object getObject(Object base, int/long offset), etc.
  2675     BasicType rtype = sig->return_type()->basic_type();
  2676     if (!is_native_ptr) {
  2677       assert(sig->count() == 2, "oop prefetch has 2 arguments");
  2678       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
  2679       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
  2680     } else {
  2681       assert(sig->count() == 1, "native prefetch has 1 argument");
  2682       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
  2684 #endif // ASSERT
  2686 #endif // !PRODUCT
  2688   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2690   const int idx = is_static ? 0 : 1;
  2691   if (!is_static) {
  2692     null_check_receiver();
  2693     if (stopped()) {
  2694       return true;
  2698   // Build address expression.  See the code in inline_unsafe_access.
  2699   Node *adr;
  2700   if (!is_native_ptr) {
  2701     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
  2702     Node* base   = argument(idx + 0);  // type: oop
  2703     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
  2704     Node* offset = argument(idx + 1);  // type: long
  2705     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2706     // to be plain byte offsets, which are also the same as those accepted
  2707     // by oopDesc::field_base.
  2708     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  2709            "fieldOffset must be byte-scaled");
  2710     // 32-bit machines ignore the high half!
  2711     offset = ConvL2X(offset);
  2712     adr = make_unsafe_address(base, offset);
  2713   } else {
  2714     Node* ptr = argument(idx + 0);  // type: long
  2715     ptr = ConvL2X(ptr);  // adjust Java long to machine word
  2716     adr = make_unsafe_address(NULL, ptr);
  2719   // Generate the read or write prefetch
  2720   Node *prefetch;
  2721   if (is_store) {
  2722     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
  2723   } else {
  2724     prefetch = new (C) PrefetchReadNode(i_o(), adr);
  2726   prefetch->init_req(0, control());
  2727   set_i_o(_gvn.transform(prefetch));
  2729   return true;
  2732 //----------------------------inline_unsafe_load_store----------------------------
  2733 // This method serves a couple of different customers (depending on LoadStoreKind):
  2734 //
  2735 // LS_cmpxchg:
  2736 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
  2737 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
  2738 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
  2739 //
  2740 // LS_xadd:
  2741 //   public int  getAndAddInt( Object o, long offset, int  delta)
  2742 //   public long getAndAddLong(Object o, long offset, long delta)
  2743 //
  2744 // LS_xchg:
  2745 //   int    getAndSet(Object o, long offset, int    newValue)
  2746 //   long   getAndSet(Object o, long offset, long   newValue)
  2747 //   Object getAndSet(Object o, long offset, Object newValue)
  2748 //
  2749 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
  2750   // This basic scheme here is the same as inline_unsafe_access, but
  2751   // differs in enough details that combining them would make the code
  2752   // overly confusing.  (This is a true fact! I originally combined
  2753   // them, but even I was confused by it!) As much code/comments as
  2754   // possible are retained from inline_unsafe_access though to make
  2755   // the correspondences clearer. - dl
  2757   if (callee()->is_static())  return false;  // caller must have the capability!
  2759 #ifndef PRODUCT
  2760   BasicType rtype;
  2762     ResourceMark rm;
  2763     // Check the signatures.
  2764     ciSignature* sig = callee()->signature();
  2765     rtype = sig->return_type()->basic_type();
  2766     if (kind == LS_xadd || kind == LS_xchg) {
  2767       // Check the signatures.
  2768 #ifdef ASSERT
  2769       assert(rtype == type, "get and set must return the expected type");
  2770       assert(sig->count() == 3, "get and set has 3 arguments");
  2771       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
  2772       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
  2773       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
  2774 #endif // ASSERT
  2775     } else if (kind == LS_cmpxchg) {
  2776       // Check the signatures.
  2777 #ifdef ASSERT
  2778       assert(rtype == T_BOOLEAN, "CAS must return boolean");
  2779       assert(sig->count() == 4, "CAS has 4 arguments");
  2780       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
  2781       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
  2782 #endif // ASSERT
  2783     } else {
  2784       ShouldNotReachHere();
  2787 #endif //PRODUCT
  2789   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  2791   // Get arguments:
  2792   Node* receiver = NULL;
  2793   Node* base     = NULL;
  2794   Node* offset   = NULL;
  2795   Node* oldval   = NULL;
  2796   Node* newval   = NULL;
  2797   if (kind == LS_cmpxchg) {
  2798     const bool two_slot_type = type2size[type] == 2;
  2799     receiver = argument(0);  // type: oop
  2800     base     = argument(1);  // type: oop
  2801     offset   = argument(2);  // type: long
  2802     oldval   = argument(4);  // type: oop, int, or long
  2803     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
  2804   } else if (kind == LS_xadd || kind == LS_xchg){
  2805     receiver = argument(0);  // type: oop
  2806     base     = argument(1);  // type: oop
  2807     offset   = argument(2);  // type: long
  2808     oldval   = NULL;
  2809     newval   = argument(4);  // type: oop, int, or long
  2812   // Null check receiver.
  2813   receiver = null_check(receiver);
  2814   if (stopped()) {
  2815     return true;
  2818   // Build field offset expression.
  2819   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
  2820   // to be plain byte offsets, which are also the same as those accepted
  2821   // by oopDesc::field_base.
  2822   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  2823   // 32-bit machines ignore the high half of long offsets
  2824   offset = ConvL2X(offset);
  2825   Node* adr = make_unsafe_address(base, offset);
  2826   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  2828   // For CAS, unlike inline_unsafe_access, there seems no point in
  2829   // trying to refine types. Just use the coarse types here.
  2830   const Type *value_type = Type::get_const_basic_type(type);
  2831   Compile::AliasType* alias_type = C->alias_type(adr_type);
  2832   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
  2834   if (kind == LS_xchg && type == T_OBJECT) {
  2835     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
  2836     if (tjp != NULL) {
  2837       value_type = tjp;
  2841   int alias_idx = C->get_alias_index(adr_type);
  2843   // Memory-model-wise, a LoadStore acts like a little synchronized
  2844   // block, so needs barriers on each side.  These don't translate
  2845   // into actual barriers on most machines, but we still need rest of
  2846   // compiler to respect ordering.
  2848   insert_mem_bar(Op_MemBarRelease);
  2849   insert_mem_bar(Op_MemBarCPUOrder);
  2851   // 4984716: MemBars must be inserted before this
  2852   //          memory node in order to avoid a false
  2853   //          dependency which will confuse the scheduler.
  2854   Node *mem = memory(alias_idx);
  2856   // For now, we handle only those cases that actually exist: ints,
  2857   // longs, and Object. Adding others should be straightforward.
  2858   Node* load_store;
  2859   switch(type) {
  2860   case T_INT:
  2861     if (kind == LS_xadd) {
  2862       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
  2863     } else if (kind == LS_xchg) {
  2864       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
  2865     } else if (kind == LS_cmpxchg) {
  2866       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
  2867     } else {
  2868       ShouldNotReachHere();
  2870     break;
  2871   case T_LONG:
  2872     if (kind == LS_xadd) {
  2873       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
  2874     } else if (kind == LS_xchg) {
  2875       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
  2876     } else if (kind == LS_cmpxchg) {
  2877       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
  2878     } else {
  2879       ShouldNotReachHere();
  2881     break;
  2882   case T_OBJECT:
  2883     // Transformation of a value which could be NULL pointer (CastPP #NULL)
  2884     // could be delayed during Parse (for example, in adjust_map_after_if()).
  2885     // Execute transformation here to avoid barrier generation in such case.
  2886     if (_gvn.type(newval) == TypePtr::NULL_PTR)
  2887       newval = _gvn.makecon(TypePtr::NULL_PTR);
  2889     // Reference stores need a store barrier.
  2890     if (kind == LS_xchg) {
  2891       // If pre-barrier must execute before the oop store, old value will require do_load here.
  2892       if (!can_move_pre_barrier()) {
  2893         pre_barrier(true /* do_load*/,
  2894                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
  2895                     NULL /* pre_val*/,
  2896                     T_OBJECT);
  2897       } // Else move pre_barrier to use load_store value, see below.
  2898     } else if (kind == LS_cmpxchg) {
  2899       // Same as for newval above:
  2900       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
  2901         oldval = _gvn.makecon(TypePtr::NULL_PTR);
  2903       // The only known value which might get overwritten is oldval.
  2904       pre_barrier(false /* do_load */,
  2905                   control(), NULL, NULL, max_juint, NULL, NULL,
  2906                   oldval /* pre_val */,
  2907                   T_OBJECT);
  2908     } else {
  2909       ShouldNotReachHere();
  2912 #ifdef _LP64
  2913     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2914       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
  2915       if (kind == LS_xchg) {
  2916         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
  2917                                                               newval_enc, adr_type, value_type->make_narrowoop()));
  2918       } else {
  2919         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2920         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
  2921         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
  2922                                                                    newval_enc, oldval_enc));
  2924     } else
  2925 #endif
  2927       if (kind == LS_xchg) {
  2928         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
  2929       } else {
  2930         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
  2931         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
  2934     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
  2935     break;
  2936   default:
  2937     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
  2938     break;
  2941   // SCMemProjNodes represent the memory state of a LoadStore. Their
  2942   // main role is to prevent LoadStore nodes from being optimized away
  2943   // when their results aren't used.
  2944   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
  2945   set_memory(proj, alias_idx);
  2947   if (type == T_OBJECT && kind == LS_xchg) {
  2948 #ifdef _LP64
  2949     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
  2950       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
  2952 #endif
  2953     if (can_move_pre_barrier()) {
  2954       // Don't need to load pre_val. The old value is returned by load_store.
  2955       // The pre_barrier can execute after the xchg as long as no safepoint
  2956       // gets inserted between them.
  2957       pre_barrier(false /* do_load */,
  2958                   control(), NULL, NULL, max_juint, NULL, NULL,
  2959                   load_store /* pre_val */,
  2960                   T_OBJECT);
  2964   // Add the trailing membar surrounding the access
  2965   insert_mem_bar(Op_MemBarCPUOrder);
  2966   insert_mem_bar(Op_MemBarAcquire);
  2968   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
  2969   set_result(load_store);
  2970   return true;
  2973 //----------------------------inline_unsafe_ordered_store----------------------
  2974 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
  2975 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
  2976 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
  2977 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
  2978   // This is another variant of inline_unsafe_access, differing in
  2979   // that it always issues store-store ("release") barrier and ensures
  2980   // store-atomicity (which only matters for "long").
  2982   if (callee()->is_static())  return false;  // caller must have the capability!
  2984 #ifndef PRODUCT
  2986     ResourceMark rm;
  2987     // Check the signatures.
  2988     ciSignature* sig = callee()->signature();
  2989 #ifdef ASSERT
  2990     BasicType rtype = sig->return_type()->basic_type();
  2991     assert(rtype == T_VOID, "must return void");
  2992     assert(sig->count() == 3, "has 3 arguments");
  2993     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
  2994     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
  2995 #endif // ASSERT
  2997 #endif //PRODUCT
  2999   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  3001   // Get arguments:
  3002   Node* receiver = argument(0);  // type: oop
  3003   Node* base     = argument(1);  // type: oop
  3004   Node* offset   = argument(2);  // type: long
  3005   Node* val      = argument(4);  // type: oop, int, or long
  3007   // Null check receiver.
  3008   receiver = null_check(receiver);
  3009   if (stopped()) {
  3010     return true;
  3013   // Build field offset expression.
  3014   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
  3015   // 32-bit machines ignore the high half of long offsets
  3016   offset = ConvL2X(offset);
  3017   Node* adr = make_unsafe_address(base, offset);
  3018   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
  3019   const Type *value_type = Type::get_const_basic_type(type);
  3020   Compile::AliasType* alias_type = C->alias_type(adr_type);
  3022   insert_mem_bar(Op_MemBarRelease);
  3023   insert_mem_bar(Op_MemBarCPUOrder);
  3024   // Ensure that the store is atomic for longs:
  3025   const bool require_atomic_access = true;
  3026   Node* store;
  3027   if (type == T_OBJECT) // reference stores need a store barrier.
  3028     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
  3029   else {
  3030     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
  3032   insert_mem_bar(Op_MemBarCPUOrder);
  3033   return true;
  3036 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
  3037   // Regardless of form, don't allow previous ld/st to move down,
  3038   // then issue acquire, release, or volatile mem_bar.
  3039   insert_mem_bar(Op_MemBarCPUOrder);
  3040   switch(id) {
  3041     case vmIntrinsics::_loadFence:
  3042       insert_mem_bar(Op_MemBarAcquire);
  3043       return true;
  3044     case vmIntrinsics::_storeFence:
  3045       insert_mem_bar(Op_MemBarRelease);
  3046       return true;
  3047     case vmIntrinsics::_fullFence:
  3048       insert_mem_bar(Op_MemBarVolatile);
  3049       return true;
  3050     default:
  3051       fatal_unexpected_iid(id);
  3052       return false;
  3056 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
  3057   if (!kls->is_Con()) {
  3058     return true;
  3060   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
  3061   if (klsptr == NULL) {
  3062     return true;
  3064   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
  3065   // don't need a guard for a klass that is already initialized
  3066   return !ik->is_initialized();
  3069 //----------------------------inline_unsafe_allocate---------------------------
  3070 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
  3071 bool LibraryCallKit::inline_unsafe_allocate() {
  3072   if (callee()->is_static())  return false;  // caller must have the capability!
  3074   null_check_receiver();  // null-check, then ignore
  3075   Node* cls = null_check(argument(1));
  3076   if (stopped())  return true;
  3078   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3079   kls = null_check(kls);
  3080   if (stopped())  return true;  // argument was like int.class
  3082   Node* test = NULL;
  3083   if (LibraryCallKit::klass_needs_init_guard(kls)) {
  3084     // Note:  The argument might still be an illegal value like
  3085     // Serializable.class or Object[].class.   The runtime will handle it.
  3086     // But we must make an explicit check for initialization.
  3087     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
  3088     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
  3089     // can generate code to load it as unsigned byte.
  3090     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
  3091     Node* bits = intcon(InstanceKlass::fully_initialized);
  3092     test = _gvn.transform(new (C) SubINode(inst, bits));
  3093     // The 'test' is non-zero if we need to take a slow path.
  3096   Node* obj = new_instance(kls, test);
  3097   set_result(obj);
  3098   return true;
  3101 #ifdef TRACE_HAVE_INTRINSICS
  3102 /*
  3103  * oop -> myklass
  3104  * myklass->trace_id |= USED
  3105  * return myklass->trace_id & ~0x3
  3106  */
  3107 bool LibraryCallKit::inline_native_classID() {
  3108   null_check_receiver();  // null-check, then ignore
  3109   Node* cls = null_check(argument(1), T_OBJECT);
  3110   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
  3111   kls = null_check(kls, T_OBJECT);
  3112   ByteSize offset = TRACE_ID_OFFSET;
  3113   Node* insp = basic_plus_adr(kls, in_bytes(offset));
  3114   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
  3115   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
  3116   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
  3117   Node* clsused = longcon(0x01l); // set the class bit
  3118   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
  3120   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
  3121   store_to_memory(control(), insp, orl, T_LONG, adr_type);
  3122   set_result(andl);
  3123   return true;
  3126 bool LibraryCallKit::inline_native_threadID() {
  3127   Node* tls_ptr = NULL;
  3128   Node* cur_thr = generate_current_thread(tls_ptr);
  3129   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3130   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  3131   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
  3133   Node* threadid = NULL;
  3134   size_t thread_id_size = OSThread::thread_id_size();
  3135   if (thread_id_size == (size_t) BytesPerLong) {
  3136     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
  3137   } else if (thread_id_size == (size_t) BytesPerInt) {
  3138     threadid = make_load(control(), p, TypeInt::INT, T_INT);
  3139   } else {
  3140     ShouldNotReachHere();
  3142   set_result(threadid);
  3143   return true;
  3145 #endif
  3147 //------------------------inline_native_time_funcs--------------
  3148 // inline code for System.currentTimeMillis() and System.nanoTime()
  3149 // these have the same type and signature
  3150 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
  3151   const TypeFunc* tf = OptoRuntime::void_long_Type();
  3152   const TypePtr* no_memory_effects = NULL;
  3153   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
  3154   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
  3155 #ifdef ASSERT
  3156   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
  3157   assert(value_top == top(), "second value must be top");
  3158 #endif
  3159   set_result(value);
  3160   return true;
  3163 //------------------------inline_native_currentThread------------------
  3164 bool LibraryCallKit::inline_native_currentThread() {
  3165   Node* junk = NULL;
  3166   set_result(generate_current_thread(junk));
  3167   return true;
  3170 //------------------------inline_native_isInterrupted------------------
  3171 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
  3172 bool LibraryCallKit::inline_native_isInterrupted() {
  3173   // Add a fast path to t.isInterrupted(clear_int):
  3174   //   (t == Thread.current() &&
  3175   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
  3176   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
  3177   // So, in the common case that the interrupt bit is false,
  3178   // we avoid making a call into the VM.  Even if the interrupt bit
  3179   // is true, if the clear_int argument is false, we avoid the VM call.
  3180   // However, if the receiver is not currentThread, we must call the VM,
  3181   // because there must be some locking done around the operation.
  3183   // We only go to the fast case code if we pass two guards.
  3184   // Paths which do not pass are accumulated in the slow_region.
  3186   enum {
  3187     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
  3188     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
  3189     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
  3190     PATH_LIMIT
  3191   };
  3193   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
  3194   // out of the function.
  3195   insert_mem_bar(Op_MemBarCPUOrder);
  3197   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
  3198   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
  3200   RegionNode* slow_region = new (C) RegionNode(1);
  3201   record_for_igvn(slow_region);
  3203   // (a) Receiving thread must be the current thread.
  3204   Node* rec_thr = argument(0);
  3205   Node* tls_ptr = NULL;
  3206   Node* cur_thr = generate_current_thread(tls_ptr);
  3207   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
  3208   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
  3210   generate_slow_guard(bol_thr, slow_region);
  3212   // (b) Interrupt bit on TLS must be false.
  3213   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
  3214   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
  3215   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
  3217   // Set the control input on the field _interrupted read to prevent it floating up.
  3218   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
  3219   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
  3220   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
  3222   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
  3224   // First fast path:  if (!TLS._interrupted) return false;
  3225   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
  3226   result_rgn->init_req(no_int_result_path, false_bit);
  3227   result_val->init_req(no_int_result_path, intcon(0));
  3229   // drop through to next case
  3230   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
  3232 #ifndef TARGET_OS_FAMILY_windows
  3233   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
  3234   Node* clr_arg = argument(1);
  3235   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
  3236   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
  3237   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
  3239   // Second fast path:  ... else if (!clear_int) return true;
  3240   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
  3241   result_rgn->init_req(no_clear_result_path, false_arg);
  3242   result_val->init_req(no_clear_result_path, intcon(1));
  3244   // drop through to next case
  3245   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
  3246 #else
  3247   // To return true on Windows you must read the _interrupted field
  3248   // and check the the event state i.e. take the slow path.
  3249 #endif // TARGET_OS_FAMILY_windows
  3251   // (d) Otherwise, go to the slow path.
  3252   slow_region->add_req(control());
  3253   set_control( _gvn.transform(slow_region));
  3255   if (stopped()) {
  3256     // There is no slow path.
  3257     result_rgn->init_req(slow_result_path, top());
  3258     result_val->init_req(slow_result_path, top());
  3259   } else {
  3260     // non-virtual because it is a private non-static
  3261     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
  3263     Node* slow_val = set_results_for_java_call(slow_call);
  3264     // this->control() comes from set_results_for_java_call
  3266     Node* fast_io  = slow_call->in(TypeFunc::I_O);
  3267     Node* fast_mem = slow_call->in(TypeFunc::Memory);
  3269     // These two phis are pre-filled with copies of of the fast IO and Memory
  3270     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
  3271     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
  3273     result_rgn->init_req(slow_result_path, control());
  3274     result_io ->init_req(slow_result_path, i_o());
  3275     result_mem->init_req(slow_result_path, reset_memory());
  3276     result_val->init_req(slow_result_path, slow_val);
  3278     set_all_memory(_gvn.transform(result_mem));
  3279     set_i_o(       _gvn.transform(result_io));
  3282   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3283   set_result(result_rgn, result_val);
  3284   return true;
  3287 //---------------------------load_mirror_from_klass----------------------------
  3288 // Given a klass oop, load its java mirror (a java.lang.Class oop).
  3289 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
  3290   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
  3291   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
  3294 //-----------------------load_klass_from_mirror_common-------------------------
  3295 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
  3296 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
  3297 // and branch to the given path on the region.
  3298 // If never_see_null, take an uncommon trap on null, so we can optimistically
  3299 // compile for the non-null case.
  3300 // If the region is NULL, force never_see_null = true.
  3301 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
  3302                                                     bool never_see_null,
  3303                                                     RegionNode* region,
  3304                                                     int null_path,
  3305                                                     int offset) {
  3306   if (region == NULL)  never_see_null = true;
  3307   Node* p = basic_plus_adr(mirror, offset);
  3308   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3309   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
  3310   Node* null_ctl = top();
  3311   kls = null_check_oop(kls, &null_ctl, never_see_null);
  3312   if (region != NULL) {
  3313     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
  3314     region->init_req(null_path, null_ctl);
  3315   } else {
  3316     assert(null_ctl == top(), "no loose ends");
  3318   return kls;
  3321 //--------------------(inline_native_Class_query helpers)---------------------
  3322 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
  3323 // Fall through if (mods & mask) == bits, take the guard otherwise.
  3324 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
  3325   // Branch around if the given klass has the given modifier bit set.
  3326   // Like generate_guard, adds a new path onto the region.
  3327   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3328   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
  3329   Node* mask = intcon(modifier_mask);
  3330   Node* bits = intcon(modifier_bits);
  3331   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
  3332   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
  3333   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
  3334   return generate_fair_guard(bol, region);
  3336 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
  3337   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
  3340 //-------------------------inline_native_Class_query-------------------
  3341 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
  3342   const Type* return_type = TypeInt::BOOL;
  3343   Node* prim_return_value = top();  // what happens if it's a primitive class?
  3344   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3345   bool expect_prim = false;     // most of these guys expect to work on refs
  3347   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
  3349   Node* mirror = argument(0);
  3350   Node* obj    = top();
  3352   switch (id) {
  3353   case vmIntrinsics::_isInstance:
  3354     // nothing is an instance of a primitive type
  3355     prim_return_value = intcon(0);
  3356     obj = argument(1);
  3357     break;
  3358   case vmIntrinsics::_getModifiers:
  3359     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3360     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
  3361     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
  3362     break;
  3363   case vmIntrinsics::_isInterface:
  3364     prim_return_value = intcon(0);
  3365     break;
  3366   case vmIntrinsics::_isArray:
  3367     prim_return_value = intcon(0);
  3368     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
  3369     break;
  3370   case vmIntrinsics::_isPrimitive:
  3371     prim_return_value = intcon(1);
  3372     expect_prim = true;  // obviously
  3373     break;
  3374   case vmIntrinsics::_getSuperclass:
  3375     prim_return_value = null();
  3376     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3377     break;
  3378   case vmIntrinsics::_getComponentType:
  3379     prim_return_value = null();
  3380     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
  3381     break;
  3382   case vmIntrinsics::_getClassAccessFlags:
  3383     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
  3384     return_type = TypeInt::INT;  // not bool!  6297094
  3385     break;
  3386   default:
  3387     fatal_unexpected_iid(id);
  3388     break;
  3391   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
  3392   if (mirror_con == NULL)  return false;  // cannot happen?
  3394 #ifndef PRODUCT
  3395   if (C->print_intrinsics() || C->print_inlining()) {
  3396     ciType* k = mirror_con->java_mirror_type();
  3397     if (k) {
  3398       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
  3399       k->print_name();
  3400       tty->cr();
  3403 #endif
  3405   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
  3406   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3407   record_for_igvn(region);
  3408   PhiNode* phi = new (C) PhiNode(region, return_type);
  3410   // The mirror will never be null of Reflection.getClassAccessFlags, however
  3411   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
  3412   // if it is. See bug 4774291.
  3414   // For Reflection.getClassAccessFlags(), the null check occurs in
  3415   // the wrong place; see inline_unsafe_access(), above, for a similar
  3416   // situation.
  3417   mirror = null_check(mirror);
  3418   // If mirror or obj is dead, only null-path is taken.
  3419   if (stopped())  return true;
  3421   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
  3423   // Now load the mirror's klass metaobject, and null-check it.
  3424   // Side-effects region with the control path if the klass is null.
  3425   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
  3426   // If kls is null, we have a primitive mirror.
  3427   phi->init_req(_prim_path, prim_return_value);
  3428   if (stopped()) { set_result(region, phi); return true; }
  3429   bool safe_for_replace = (region->in(_prim_path) == top());
  3431   Node* p;  // handy temp
  3432   Node* null_ctl;
  3434   // Now that we have the non-null klass, we can perform the real query.
  3435   // For constant classes, the query will constant-fold in LoadNode::Value.
  3436   Node* query_value = top();
  3437   switch (id) {
  3438   case vmIntrinsics::_isInstance:
  3439     // nothing is an instance of a primitive type
  3440     query_value = gen_instanceof(obj, kls, safe_for_replace);
  3441     break;
  3443   case vmIntrinsics::_getModifiers:
  3444     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
  3445     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3446     break;
  3448   case vmIntrinsics::_isInterface:
  3449     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3450     if (generate_interface_guard(kls, region) != NULL)
  3451       // A guard was added.  If the guard is taken, it was an interface.
  3452       phi->add_req(intcon(1));
  3453     // If we fall through, it's a plain class.
  3454     query_value = intcon(0);
  3455     break;
  3457   case vmIntrinsics::_isArray:
  3458     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
  3459     if (generate_array_guard(kls, region) != NULL)
  3460       // A guard was added.  If the guard is taken, it was an array.
  3461       phi->add_req(intcon(1));
  3462     // If we fall through, it's a plain class.
  3463     query_value = intcon(0);
  3464     break;
  3466   case vmIntrinsics::_isPrimitive:
  3467     query_value = intcon(0); // "normal" path produces false
  3468     break;
  3470   case vmIntrinsics::_getSuperclass:
  3471     // The rules here are somewhat unfortunate, but we can still do better
  3472     // with random logic than with a JNI call.
  3473     // Interfaces store null or Object as _super, but must report null.
  3474     // Arrays store an intermediate super as _super, but must report Object.
  3475     // Other types can report the actual _super.
  3476     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
  3477     if (generate_interface_guard(kls, region) != NULL)
  3478       // A guard was added.  If the guard is taken, it was an interface.
  3479       phi->add_req(null());
  3480     if (generate_array_guard(kls, region) != NULL)
  3481       // A guard was added.  If the guard is taken, it was an array.
  3482       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
  3483     // If we fall through, it's a plain class.  Get its _super.
  3484     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
  3485     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
  3486     null_ctl = top();
  3487     kls = null_check_oop(kls, &null_ctl);
  3488     if (null_ctl != top()) {
  3489       // If the guard is taken, Object.superClass is null (both klass and mirror).
  3490       region->add_req(null_ctl);
  3491       phi   ->add_req(null());
  3493     if (!stopped()) {
  3494       query_value = load_mirror_from_klass(kls);
  3496     break;
  3498   case vmIntrinsics::_getComponentType:
  3499     if (generate_array_guard(kls, region) != NULL) {
  3500       // Be sure to pin the oop load to the guard edge just created:
  3501       Node* is_array_ctrl = region->in(region->req()-1);
  3502       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
  3503       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
  3504       phi->add_req(cmo);
  3506     query_value = null();  // non-array case is null
  3507     break;
  3509   case vmIntrinsics::_getClassAccessFlags:
  3510     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
  3511     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
  3512     break;
  3514   default:
  3515     fatal_unexpected_iid(id);
  3516     break;
  3519   // Fall-through is the normal case of a query to a real class.
  3520   phi->init_req(1, query_value);
  3521   region->init_req(1, control());
  3523   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3524   set_result(region, phi);
  3525   return true;
  3528 //--------------------------inline_native_subtype_check------------------------
  3529 // This intrinsic takes the JNI calls out of the heart of
  3530 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
  3531 bool LibraryCallKit::inline_native_subtype_check() {
  3532   // Pull both arguments off the stack.
  3533   Node* args[2];                // two java.lang.Class mirrors: superc, subc
  3534   args[0] = argument(0);
  3535   args[1] = argument(1);
  3536   Node* klasses[2];             // corresponding Klasses: superk, subk
  3537   klasses[0] = klasses[1] = top();
  3539   enum {
  3540     // A full decision tree on {superc is prim, subc is prim}:
  3541     _prim_0_path = 1,           // {P,N} => false
  3542                                 // {P,P} & superc!=subc => false
  3543     _prim_same_path,            // {P,P} & superc==subc => true
  3544     _prim_1_path,               // {N,P} => false
  3545     _ref_subtype_path,          // {N,N} & subtype check wins => true
  3546     _both_ref_path,             // {N,N} & subtype check loses => false
  3547     PATH_LIMIT
  3548   };
  3550   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
  3551   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
  3552   record_for_igvn(region);
  3554   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
  3555   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
  3556   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
  3558   // First null-check both mirrors and load each mirror's klass metaobject.
  3559   int which_arg;
  3560   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3561     Node* arg = args[which_arg];
  3562     arg = null_check(arg);
  3563     if (stopped())  break;
  3564     args[which_arg] = arg;
  3566     Node* p = basic_plus_adr(arg, class_klass_offset);
  3567     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
  3568     klasses[which_arg] = _gvn.transform(kls);
  3571   // Having loaded both klasses, test each for null.
  3572   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3573   for (which_arg = 0; which_arg <= 1; which_arg++) {
  3574     Node* kls = klasses[which_arg];
  3575     Node* null_ctl = top();
  3576     kls = null_check_oop(kls, &null_ctl, never_see_null);
  3577     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
  3578     region->init_req(prim_path, null_ctl);
  3579     if (stopped())  break;
  3580     klasses[which_arg] = kls;
  3583   if (!stopped()) {
  3584     // now we have two reference types, in klasses[0..1]
  3585     Node* subk   = klasses[1];  // the argument to isAssignableFrom
  3586     Node* superk = klasses[0];  // the receiver
  3587     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
  3588     // now we have a successful reference subtype check
  3589     region->set_req(_ref_subtype_path, control());
  3592   // If both operands are primitive (both klasses null), then
  3593   // we must return true when they are identical primitives.
  3594   // It is convenient to test this after the first null klass check.
  3595   set_control(region->in(_prim_0_path)); // go back to first null check
  3596   if (!stopped()) {
  3597     // Since superc is primitive, make a guard for the superc==subc case.
  3598     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
  3599     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
  3600     generate_guard(bol_eq, region, PROB_FAIR);
  3601     if (region->req() == PATH_LIMIT+1) {
  3602       // A guard was added.  If the added guard is taken, superc==subc.
  3603       region->swap_edges(PATH_LIMIT, _prim_same_path);
  3604       region->del_req(PATH_LIMIT);
  3606     region->set_req(_prim_0_path, control()); // Not equal after all.
  3609   // these are the only paths that produce 'true':
  3610   phi->set_req(_prim_same_path,   intcon(1));
  3611   phi->set_req(_ref_subtype_path, intcon(1));
  3613   // pull together the cases:
  3614   assert(region->req() == PATH_LIMIT, "sane region");
  3615   for (uint i = 1; i < region->req(); i++) {
  3616     Node* ctl = region->in(i);
  3617     if (ctl == NULL || ctl == top()) {
  3618       region->set_req(i, top());
  3619       phi   ->set_req(i, top());
  3620     } else if (phi->in(i) == NULL) {
  3621       phi->set_req(i, intcon(0)); // all other paths produce 'false'
  3625   set_control(_gvn.transform(region));
  3626   set_result(_gvn.transform(phi));
  3627   return true;
  3630 //---------------------generate_array_guard_common------------------------
  3631 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
  3632                                                   bool obj_array, bool not_array) {
  3633   // If obj_array/non_array==false/false:
  3634   // Branch around if the given klass is in fact an array (either obj or prim).
  3635   // If obj_array/non_array==false/true:
  3636   // Branch around if the given klass is not an array klass of any kind.
  3637   // If obj_array/non_array==true/true:
  3638   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
  3639   // If obj_array/non_array==true/false:
  3640   // Branch around if the kls is an oop array (Object[] or subtype)
  3641   //
  3642   // Like generate_guard, adds a new path onto the region.
  3643   jint  layout_con = 0;
  3644   Node* layout_val = get_layout_helper(kls, layout_con);
  3645   if (layout_val == NULL) {
  3646     bool query = (obj_array
  3647                   ? Klass::layout_helper_is_objArray(layout_con)
  3648                   : Klass::layout_helper_is_array(layout_con));
  3649     if (query == not_array) {
  3650       return NULL;                       // never a branch
  3651     } else {                             // always a branch
  3652       Node* always_branch = control();
  3653       if (region != NULL)
  3654         region->add_req(always_branch);
  3655       set_control(top());
  3656       return always_branch;
  3659   // Now test the correct condition.
  3660   jint  nval = (obj_array
  3661                 ? ((jint)Klass::_lh_array_tag_type_value
  3662                    <<    Klass::_lh_array_tag_shift)
  3663                 : Klass::_lh_neutral_value);
  3664   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
  3665   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
  3666   // invert the test if we are looking for a non-array
  3667   if (not_array)  btest = BoolTest(btest).negate();
  3668   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
  3669   return generate_fair_guard(bol, region);
  3673 //-----------------------inline_native_newArray--------------------------
  3674 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
  3675 bool LibraryCallKit::inline_native_newArray() {
  3676   Node* mirror    = argument(0);
  3677   Node* count_val = argument(1);
  3679   mirror = null_check(mirror);
  3680   // If mirror or obj is dead, only null-path is taken.
  3681   if (stopped())  return true;
  3683   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
  3684   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3685   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3686                                           TypeInstPtr::NOTNULL);
  3687   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3688   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3689                                           TypePtr::BOTTOM);
  3691   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
  3692   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
  3693                                                   result_reg, _slow_path);
  3694   Node* normal_ctl   = control();
  3695   Node* no_array_ctl = result_reg->in(_slow_path);
  3697   // Generate code for the slow case.  We make a call to newArray().
  3698   set_control(no_array_ctl);
  3699   if (!stopped()) {
  3700     // Either the input type is void.class, or else the
  3701     // array klass has not yet been cached.  Either the
  3702     // ensuing call will throw an exception, or else it
  3703     // will cache the array klass for next time.
  3704     PreserveJVMState pjvms(this);
  3705     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
  3706     Node* slow_result = set_results_for_java_call(slow_call);
  3707     // this->control() comes from set_results_for_java_call
  3708     result_reg->set_req(_slow_path, control());
  3709     result_val->set_req(_slow_path, slow_result);
  3710     result_io ->set_req(_slow_path, i_o());
  3711     result_mem->set_req(_slow_path, reset_memory());
  3714   set_control(normal_ctl);
  3715   if (!stopped()) {
  3716     // Normal case:  The array type has been cached in the java.lang.Class.
  3717     // The following call works fine even if the array type is polymorphic.
  3718     // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3719     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
  3720     result_reg->init_req(_normal_path, control());
  3721     result_val->init_req(_normal_path, obj);
  3722     result_io ->init_req(_normal_path, i_o());
  3723     result_mem->init_req(_normal_path, reset_memory());
  3726   // Return the combined state.
  3727   set_i_o(        _gvn.transform(result_io)  );
  3728   set_all_memory( _gvn.transform(result_mem));
  3730   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3731   set_result(result_reg, result_val);
  3732   return true;
  3735 //----------------------inline_native_getLength--------------------------
  3736 // public static native int java.lang.reflect.Array.getLength(Object array);
  3737 bool LibraryCallKit::inline_native_getLength() {
  3738   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3740   Node* array = null_check(argument(0));
  3741   // If array is dead, only null-path is taken.
  3742   if (stopped())  return true;
  3744   // Deoptimize if it is a non-array.
  3745   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
  3747   if (non_array != NULL) {
  3748     PreserveJVMState pjvms(this);
  3749     set_control(non_array);
  3750     uncommon_trap(Deoptimization::Reason_intrinsic,
  3751                   Deoptimization::Action_maybe_recompile);
  3754   // If control is dead, only non-array-path is taken.
  3755   if (stopped())  return true;
  3757   // The works fine even if the array type is polymorphic.
  3758   // It could be a dynamic mix of int[], boolean[], Object[], etc.
  3759   Node* result = load_array_length(array);
  3761   C->set_has_split_ifs(true);  // Has chance for split-if optimization
  3762   set_result(result);
  3763   return true;
  3766 //------------------------inline_array_copyOf----------------------------
  3767 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
  3768 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
  3769 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
  3770   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
  3772   // Get the arguments.
  3773   Node* original          = argument(0);
  3774   Node* start             = is_copyOfRange? argument(1): intcon(0);
  3775   Node* end               = is_copyOfRange? argument(2): argument(1);
  3776   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
  3778   Node* newcopy;
  3780   // Set the original stack and the reexecute bit for the interpreter to reexecute
  3781   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
  3782   { PreserveReexecuteState preexecs(this);
  3783     jvms()->set_should_reexecute(true);
  3785     array_type_mirror = null_check(array_type_mirror);
  3786     original          = null_check(original);
  3788     // Check if a null path was taken unconditionally.
  3789     if (stopped())  return true;
  3791     Node* orig_length = load_array_length(original);
  3793     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
  3794     klass_node = null_check(klass_node);
  3796     RegionNode* bailout = new (C) RegionNode(1);
  3797     record_for_igvn(bailout);
  3799     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
  3800     // Bail out if that is so.
  3801     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
  3802     if (not_objArray != NULL) {
  3803       // Improve the klass node's type from the new optimistic assumption:
  3804       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
  3805       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
  3806       Node* cast = new (C) CastPPNode(klass_node, akls);
  3807       cast->init_req(0, control());
  3808       klass_node = _gvn.transform(cast);
  3811     // Bail out if either start or end is negative.
  3812     generate_negative_guard(start, bailout, &start);
  3813     generate_negative_guard(end,   bailout, &end);
  3815     Node* length = end;
  3816     if (_gvn.type(start) != TypeInt::ZERO) {
  3817       length = _gvn.transform(new (C) SubINode(end, start));
  3820     // Bail out if length is negative.
  3821     // Without this the new_array would throw
  3822     // NegativeArraySizeException but IllegalArgumentException is what
  3823     // should be thrown
  3824     generate_negative_guard(length, bailout, &length);
  3826     if (bailout->req() > 1) {
  3827       PreserveJVMState pjvms(this);
  3828       set_control(_gvn.transform(bailout));
  3829       uncommon_trap(Deoptimization::Reason_intrinsic,
  3830                     Deoptimization::Action_maybe_recompile);
  3833     if (!stopped()) {
  3834       // How many elements will we copy from the original?
  3835       // The answer is MinI(orig_length - start, length).
  3836       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
  3837       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
  3839       newcopy = new_array(klass_node, length, 0);  // no argments to push
  3841       // Generate a direct call to the right arraycopy function(s).
  3842       // We know the copy is disjoint but we might not know if the
  3843       // oop stores need checking.
  3844       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
  3845       // This will fail a store-check if x contains any non-nulls.
  3846       bool disjoint_bases = true;
  3847       // if start > orig_length then the length of the copy may be
  3848       // negative.
  3849       bool length_never_negative = !is_copyOfRange;
  3850       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  3851                          original, start, newcopy, intcon(0), moved,
  3852                          disjoint_bases, length_never_negative);
  3854   } // original reexecute is set back here
  3856   C->set_has_split_ifs(true); // Has chance for split-if optimization
  3857   if (!stopped()) {
  3858     set_result(newcopy);
  3860   return true;
  3864 //----------------------generate_virtual_guard---------------------------
  3865 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
  3866 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
  3867                                              RegionNode* slow_region) {
  3868   ciMethod* method = callee();
  3869   int vtable_index = method->vtable_index();
  3870   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  3871          err_msg_res("bad index %d", vtable_index));
  3872   // Get the Method* out of the appropriate vtable entry.
  3873   int entry_offset  = (InstanceKlass::vtable_start_offset() +
  3874                      vtable_index*vtableEntry::size()) * wordSize +
  3875                      vtableEntry::method_offset_in_bytes();
  3876   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
  3877   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS);
  3879   // Compare the target method with the expected method (e.g., Object.hashCode).
  3880   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
  3882   Node* native_call = makecon(native_call_addr);
  3883   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
  3884   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
  3886   return generate_slow_guard(test_native, slow_region);
  3889 //-----------------------generate_method_call----------------------------
  3890 // Use generate_method_call to make a slow-call to the real
  3891 // method if the fast path fails.  An alternative would be to
  3892 // use a stub like OptoRuntime::slow_arraycopy_Java.
  3893 // This only works for expanding the current library call,
  3894 // not another intrinsic.  (E.g., don't use this for making an
  3895 // arraycopy call inside of the copyOf intrinsic.)
  3896 CallJavaNode*
  3897 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
  3898   // When compiling the intrinsic method itself, do not use this technique.
  3899   guarantee(callee() != C->method(), "cannot make slow-call to self");
  3901   ciMethod* method = callee();
  3902   // ensure the JVMS we have will be correct for this call
  3903   guarantee(method_id == method->intrinsic_id(), "must match");
  3905   const TypeFunc* tf = TypeFunc::make(method);
  3906   CallJavaNode* slow_call;
  3907   if (is_static) {
  3908     assert(!is_virtual, "");
  3909     slow_call = new(C) CallStaticJavaNode(C, tf,
  3910                            SharedRuntime::get_resolve_static_call_stub(),
  3911                            method, bci());
  3912   } else if (is_virtual) {
  3913     null_check_receiver();
  3914     int vtable_index = Method::invalid_vtable_index;
  3915     if (UseInlineCaches) {
  3916       // Suppress the vtable call
  3917     } else {
  3918       // hashCode and clone are not a miranda methods,
  3919       // so the vtable index is fixed.
  3920       // No need to use the linkResolver to get it.
  3921        vtable_index = method->vtable_index();
  3922        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
  3923               err_msg_res("bad index %d", vtable_index));
  3925     slow_call = new(C) CallDynamicJavaNode(tf,
  3926                           SharedRuntime::get_resolve_virtual_call_stub(),
  3927                           method, vtable_index, bci());
  3928   } else {  // neither virtual nor static:  opt_virtual
  3929     null_check_receiver();
  3930     slow_call = new(C) CallStaticJavaNode(C, tf,
  3931                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
  3932                                 method, bci());
  3933     slow_call->set_optimized_virtual(true);
  3935   set_arguments_for_java_call(slow_call);
  3936   set_edges_for_java_call(slow_call);
  3937   return slow_call;
  3941 //------------------------------inline_native_hashcode--------------------
  3942 // Build special case code for calls to hashCode on an object.
  3943 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
  3944   assert(is_static == callee()->is_static(), "correct intrinsic selection");
  3945   assert(!(is_virtual && is_static), "either virtual, special, or static");
  3947   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
  3949   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  3950   PhiNode*    result_val = new(C) PhiNode(result_reg,
  3951                                           TypeInt::INT);
  3952   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
  3953   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  3954                                           TypePtr::BOTTOM);
  3955   Node* obj = NULL;
  3956   if (!is_static) {
  3957     // Check for hashing null object
  3958     obj = null_check_receiver();
  3959     if (stopped())  return true;        // unconditionally null
  3960     result_reg->init_req(_null_path, top());
  3961     result_val->init_req(_null_path, top());
  3962   } else {
  3963     // Do a null check, and return zero if null.
  3964     // System.identityHashCode(null) == 0
  3965     obj = argument(0);
  3966     Node* null_ctl = top();
  3967     obj = null_check_oop(obj, &null_ctl);
  3968     result_reg->init_req(_null_path, null_ctl);
  3969     result_val->init_req(_null_path, _gvn.intcon(0));
  3972   // Unconditionally null?  Then return right away.
  3973   if (stopped()) {
  3974     set_control( result_reg->in(_null_path));
  3975     if (!stopped())
  3976       set_result(result_val->in(_null_path));
  3977     return true;
  3980   // After null check, get the object's klass.
  3981   Node* obj_klass = load_object_klass(obj);
  3983   // This call may be virtual (invokevirtual) or bound (invokespecial).
  3984   // For each case we generate slightly different code.
  3986   // We only go to the fast case code if we pass a number of guards.  The
  3987   // paths which do not pass are accumulated in the slow_region.
  3988   RegionNode* slow_region = new (C) RegionNode(1);
  3989   record_for_igvn(slow_region);
  3991   // If this is a virtual call, we generate a funny guard.  We pull out
  3992   // the vtable entry corresponding to hashCode() from the target object.
  3993   // If the target method which we are calling happens to be the native
  3994   // Object hashCode() method, we pass the guard.  We do not need this
  3995   // guard for non-virtual calls -- the caller is known to be the native
  3996   // Object hashCode().
  3997   if (is_virtual) {
  3998     generate_virtual_guard(obj_klass, slow_region);
  4001   // Get the header out of the object, use LoadMarkNode when available
  4002   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
  4003   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type());
  4005   // Test the header to see if it is unlocked.
  4006   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
  4007   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
  4008   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
  4009   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
  4010   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
  4012   generate_slow_guard(test_unlocked, slow_region);
  4014   // Get the hash value and check to see that it has been properly assigned.
  4015   // We depend on hash_mask being at most 32 bits and avoid the use of
  4016   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
  4017   // vm: see markOop.hpp.
  4018   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
  4019   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
  4020   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
  4021   // This hack lets the hash bits live anywhere in the mark object now, as long
  4022   // as the shift drops the relevant bits into the low 32 bits.  Note that
  4023   // Java spec says that HashCode is an int so there's no point in capturing
  4024   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
  4025   hshifted_header      = ConvX2I(hshifted_header);
  4026   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
  4028   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
  4029   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
  4030   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
  4032   generate_slow_guard(test_assigned, slow_region);
  4034   Node* init_mem = reset_memory();
  4035   // fill in the rest of the null path:
  4036   result_io ->init_req(_null_path, i_o());
  4037   result_mem->init_req(_null_path, init_mem);
  4039   result_val->init_req(_fast_path, hash_val);
  4040   result_reg->init_req(_fast_path, control());
  4041   result_io ->init_req(_fast_path, i_o());
  4042   result_mem->init_req(_fast_path, init_mem);
  4044   // Generate code for the slow case.  We make a call to hashCode().
  4045   set_control(_gvn.transform(slow_region));
  4046   if (!stopped()) {
  4047     // No need for PreserveJVMState, because we're using up the present state.
  4048     set_all_memory(init_mem);
  4049     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
  4050     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
  4051     Node* slow_result = set_results_for_java_call(slow_call);
  4052     // this->control() comes from set_results_for_java_call
  4053     result_reg->init_req(_slow_path, control());
  4054     result_val->init_req(_slow_path, slow_result);
  4055     result_io  ->set_req(_slow_path, i_o());
  4056     result_mem ->set_req(_slow_path, reset_memory());
  4059   // Return the combined state.
  4060   set_i_o(        _gvn.transform(result_io)  );
  4061   set_all_memory( _gvn.transform(result_mem));
  4063   set_result(result_reg, result_val);
  4064   return true;
  4067 //---------------------------inline_native_getClass----------------------------
  4068 // public final native Class<?> java.lang.Object.getClass();
  4069 //
  4070 // Build special case code for calls to getClass on an object.
  4071 bool LibraryCallKit::inline_native_getClass() {
  4072   Node* obj = null_check_receiver();
  4073   if (stopped())  return true;
  4074   set_result(load_mirror_from_klass(load_object_klass(obj)));
  4075   return true;
  4078 //-----------------inline_native_Reflection_getCallerClass---------------------
  4079 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
  4080 //
  4081 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
  4082 //
  4083 // NOTE: This code must perform the same logic as JVM_GetCallerClass
  4084 // in that it must skip particular security frames and checks for
  4085 // caller sensitive methods.
  4086 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
  4087 #ifndef PRODUCT
  4088   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4089     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
  4091 #endif
  4093   if (!jvms()->has_method()) {
  4094 #ifndef PRODUCT
  4095     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4096       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
  4098 #endif
  4099     return false;
  4102   // Walk back up the JVM state to find the caller at the required
  4103   // depth.
  4104   JVMState* caller_jvms = jvms();
  4106   // Cf. JVM_GetCallerClass
  4107   // NOTE: Start the loop at depth 1 because the current JVM state does
  4108   // not include the Reflection.getCallerClass() frame.
  4109   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
  4110     ciMethod* m = caller_jvms->method();
  4111     switch (n) {
  4112     case 0:
  4113       fatal("current JVM state does not include the Reflection.getCallerClass frame");
  4114       break;
  4115     case 1:
  4116       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
  4117       if (!m->caller_sensitive()) {
  4118 #ifndef PRODUCT
  4119         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4120           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
  4122 #endif
  4123         return false;  // bail-out; let JVM_GetCallerClass do the work
  4125       break;
  4126     default:
  4127       if (!m->is_ignored_by_security_stack_walk()) {
  4128         // We have reached the desired frame; return the holder class.
  4129         // Acquire method holder as java.lang.Class and push as constant.
  4130         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
  4131         ciInstance* caller_mirror = caller_klass->java_mirror();
  4132         set_result(makecon(TypeInstPtr::make(caller_mirror)));
  4134 #ifndef PRODUCT
  4135         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4136           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
  4137           tty->print_cr("  JVM state at this point:");
  4138           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4139             ciMethod* m = jvms()->of_depth(i)->method();
  4140             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4143 #endif
  4144         return true;
  4146       break;
  4150 #ifndef PRODUCT
  4151   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
  4152     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
  4153     tty->print_cr("  JVM state at this point:");
  4154     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
  4155       ciMethod* m = jvms()->of_depth(i)->method();
  4156       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
  4159 #endif
  4161   return false;  // bail-out; let JVM_GetCallerClass do the work
  4164 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
  4165   Node* arg = argument(0);
  4166   Node* result;
  4168   switch (id) {
  4169   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
  4170   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
  4171   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
  4172   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
  4174   case vmIntrinsics::_doubleToLongBits: {
  4175     // two paths (plus control) merge in a wood
  4176     RegionNode *r = new (C) RegionNode(3);
  4177     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
  4179     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
  4180     // Build the boolean node
  4181     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4183     // Branch either way.
  4184     // NaN case is less traveled, which makes all the difference.
  4185     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4186     Node *opt_isnan = _gvn.transform(ifisnan);
  4187     assert( opt_isnan->is_If(), "Expect an IfNode");
  4188     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4189     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4191     set_control(iftrue);
  4193     static const jlong nan_bits = CONST64(0x7ff8000000000000);
  4194     Node *slow_result = longcon(nan_bits); // return NaN
  4195     phi->init_req(1, _gvn.transform( slow_result ));
  4196     r->init_req(1, iftrue);
  4198     // Else fall through
  4199     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4200     set_control(iffalse);
  4202     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
  4203     r->init_req(2, iffalse);
  4205     // Post merge
  4206     set_control(_gvn.transform(r));
  4207     record_for_igvn(r);
  4209     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4210     result = phi;
  4211     assert(result->bottom_type()->isa_long(), "must be");
  4212     break;
  4215   case vmIntrinsics::_floatToIntBits: {
  4216     // two paths (plus control) merge in a wood
  4217     RegionNode *r = new (C) RegionNode(3);
  4218     Node *phi = new (C) PhiNode(r, TypeInt::INT);
  4220     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
  4221     // Build the boolean node
  4222     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
  4224     // Branch either way.
  4225     // NaN case is less traveled, which makes all the difference.
  4226     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
  4227     Node *opt_isnan = _gvn.transform(ifisnan);
  4228     assert( opt_isnan->is_If(), "Expect an IfNode");
  4229     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
  4230     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
  4232     set_control(iftrue);
  4234     static const jint nan_bits = 0x7fc00000;
  4235     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
  4236     phi->init_req(1, _gvn.transform( slow_result ));
  4237     r->init_req(1, iftrue);
  4239     // Else fall through
  4240     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
  4241     set_control(iffalse);
  4243     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
  4244     r->init_req(2, iffalse);
  4246     // Post merge
  4247     set_control(_gvn.transform(r));
  4248     record_for_igvn(r);
  4250     C->set_has_split_ifs(true); // Has chance for split-if optimization
  4251     result = phi;
  4252     assert(result->bottom_type()->isa_int(), "must be");
  4253     break;
  4256   default:
  4257     fatal_unexpected_iid(id);
  4258     break;
  4260   set_result(_gvn.transform(result));
  4261   return true;
  4264 #ifdef _LP64
  4265 #define XTOP ,top() /*additional argument*/
  4266 #else  //_LP64
  4267 #define XTOP        /*no additional argument*/
  4268 #endif //_LP64
  4270 //----------------------inline_unsafe_copyMemory-------------------------
  4271 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
  4272 bool LibraryCallKit::inline_unsafe_copyMemory() {
  4273   if (callee()->is_static())  return false;  // caller must have the capability!
  4274   null_check_receiver();  // null-check receiver
  4275   if (stopped())  return true;
  4277   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
  4279   Node* src_ptr =         argument(1);   // type: oop
  4280   Node* src_off = ConvL2X(argument(2));  // type: long
  4281   Node* dst_ptr =         argument(4);   // type: oop
  4282   Node* dst_off = ConvL2X(argument(5));  // type: long
  4283   Node* size    = ConvL2X(argument(7));  // type: long
  4285   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
  4286          "fieldOffset must be byte-scaled");
  4288   Node* src = make_unsafe_address(src_ptr, src_off);
  4289   Node* dst = make_unsafe_address(dst_ptr, dst_off);
  4291   // Conservatively insert a memory barrier on all memory slices.
  4292   // Do not let writes of the copy source or destination float below the copy.
  4293   insert_mem_bar(Op_MemBarCPUOrder);
  4295   // Call it.  Note that the length argument is not scaled.
  4296   make_runtime_call(RC_LEAF|RC_NO_FP,
  4297                     OptoRuntime::fast_arraycopy_Type(),
  4298                     StubRoutines::unsafe_arraycopy(),
  4299                     "unsafe_arraycopy",
  4300                     TypeRawPtr::BOTTOM,
  4301                     src, dst, size XTOP);
  4303   // Do not let reads of the copy destination float above the copy.
  4304   insert_mem_bar(Op_MemBarCPUOrder);
  4306   return true;
  4309 //------------------------clone_coping-----------------------------------
  4310 // Helper function for inline_native_clone.
  4311 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
  4312   assert(obj_size != NULL, "");
  4313   Node* raw_obj = alloc_obj->in(1);
  4314   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
  4316   AllocateNode* alloc = NULL;
  4317   if (ReduceBulkZeroing) {
  4318     // We will be completely responsible for initializing this object -
  4319     // mark Initialize node as complete.
  4320     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
  4321     // The object was just allocated - there should be no any stores!
  4322     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
  4323     // Mark as complete_with_arraycopy so that on AllocateNode
  4324     // expansion, we know this AllocateNode is initialized by an array
  4325     // copy and a StoreStore barrier exists after the array copy.
  4326     alloc->initialization()->set_complete_with_arraycopy();
  4329   // Copy the fastest available way.
  4330   // TODO: generate fields copies for small objects instead.
  4331   Node* src  = obj;
  4332   Node* dest = alloc_obj;
  4333   Node* size = _gvn.transform(obj_size);
  4335   // Exclude the header but include array length to copy by 8 bytes words.
  4336   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
  4337   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
  4338                             instanceOopDesc::base_offset_in_bytes();
  4339   // base_off:
  4340   // 8  - 32-bit VM
  4341   // 12 - 64-bit VM, compressed klass
  4342   // 16 - 64-bit VM, normal klass
  4343   if (base_off % BytesPerLong != 0) {
  4344     assert(UseCompressedClassPointers, "");
  4345     if (is_array) {
  4346       // Exclude length to copy by 8 bytes words.
  4347       base_off += sizeof(int);
  4348     } else {
  4349       // Include klass to copy by 8 bytes words.
  4350       base_off = instanceOopDesc::klass_offset_in_bytes();
  4352     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
  4354   src  = basic_plus_adr(src,  base_off);
  4355   dest = basic_plus_adr(dest, base_off);
  4357   // Compute the length also, if needed:
  4358   Node* countx = size;
  4359   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
  4360   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
  4362   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4363   bool disjoint_bases = true;
  4364   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
  4365                                src, NULL, dest, NULL, countx,
  4366                                /*dest_uninitialized*/true);
  4368   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
  4369   if (card_mark) {
  4370     assert(!is_array, "");
  4371     // Put in store barrier for any and all oops we are sticking
  4372     // into this object.  (We could avoid this if we could prove
  4373     // that the object type contains no oop fields at all.)
  4374     Node* no_particular_value = NULL;
  4375     Node* no_particular_field = NULL;
  4376     int raw_adr_idx = Compile::AliasIdxRaw;
  4377     post_barrier(control(),
  4378                  memory(raw_adr_type),
  4379                  alloc_obj,
  4380                  no_particular_field,
  4381                  raw_adr_idx,
  4382                  no_particular_value,
  4383                  T_OBJECT,
  4384                  false);
  4387   // Do not let reads from the cloned object float above the arraycopy.
  4388   if (alloc != NULL) {
  4389     // Do not let stores that initialize this object be reordered with
  4390     // a subsequent store that would make this object accessible by
  4391     // other threads.
  4392     // Record what AllocateNode this StoreStore protects so that
  4393     // escape analysis can go from the MemBarStoreStoreNode to the
  4394     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  4395     // based on the escape status of the AllocateNode.
  4396     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  4397   } else {
  4398     insert_mem_bar(Op_MemBarCPUOrder);
  4402 //------------------------inline_native_clone----------------------------
  4403 // protected native Object java.lang.Object.clone();
  4404 //
  4405 // Here are the simple edge cases:
  4406 //  null receiver => normal trap
  4407 //  virtual and clone was overridden => slow path to out-of-line clone
  4408 //  not cloneable or finalizer => slow path to out-of-line Object.clone
  4409 //
  4410 // The general case has two steps, allocation and copying.
  4411 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
  4412 //
  4413 // Copying also has two cases, oop arrays and everything else.
  4414 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
  4415 // Everything else uses the tight inline loop supplied by CopyArrayNode.
  4416 //
  4417 // These steps fold up nicely if and when the cloned object's klass
  4418 // can be sharply typed as an object array, a type array, or an instance.
  4419 //
  4420 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
  4421   PhiNode* result_val;
  4423   // Set the reexecute bit for the interpreter to reexecute
  4424   // the bytecode that invokes Object.clone if deoptimization happens.
  4425   { PreserveReexecuteState preexecs(this);
  4426     jvms()->set_should_reexecute(true);
  4428     Node* obj = null_check_receiver();
  4429     if (stopped())  return true;
  4431     Node* obj_klass = load_object_klass(obj);
  4432     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
  4433     const TypeOopPtr*   toop   = ((tklass != NULL)
  4434                                 ? tklass->as_instance_type()
  4435                                 : TypeInstPtr::NOTNULL);
  4437     // Conservatively insert a memory barrier on all memory slices.
  4438     // Do not let writes into the original float below the clone.
  4439     insert_mem_bar(Op_MemBarCPUOrder);
  4441     // paths into result_reg:
  4442     enum {
  4443       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
  4444       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
  4445       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
  4446       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
  4447       PATH_LIMIT
  4448     };
  4449     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
  4450     result_val             = new(C) PhiNode(result_reg,
  4451                                             TypeInstPtr::NOTNULL);
  4452     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
  4453     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
  4454                                             TypePtr::BOTTOM);
  4455     record_for_igvn(result_reg);
  4457     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
  4458     int raw_adr_idx = Compile::AliasIdxRaw;
  4460     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
  4461     if (array_ctl != NULL) {
  4462       // It's an array.
  4463       PreserveJVMState pjvms(this);
  4464       set_control(array_ctl);
  4465       Node* obj_length = load_array_length(obj);
  4466       Node* obj_size  = NULL;
  4467       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
  4469       if (!use_ReduceInitialCardMarks()) {
  4470         // If it is an oop array, it requires very special treatment,
  4471         // because card marking is required on each card of the array.
  4472         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
  4473         if (is_obja != NULL) {
  4474           PreserveJVMState pjvms2(this);
  4475           set_control(is_obja);
  4476           // Generate a direct call to the right arraycopy function(s).
  4477           bool disjoint_bases = true;
  4478           bool length_never_negative = true;
  4479           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
  4480                              obj, intcon(0), alloc_obj, intcon(0),
  4481                              obj_length,
  4482                              disjoint_bases, length_never_negative);
  4483           result_reg->init_req(_objArray_path, control());
  4484           result_val->init_req(_objArray_path, alloc_obj);
  4485           result_i_o ->set_req(_objArray_path, i_o());
  4486           result_mem ->set_req(_objArray_path, reset_memory());
  4489       // Otherwise, there are no card marks to worry about.
  4490       // (We can dispense with card marks if we know the allocation
  4491       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
  4492       //  causes the non-eden paths to take compensating steps to
  4493       //  simulate a fresh allocation, so that no further
  4494       //  card marks are required in compiled code to initialize
  4495       //  the object.)
  4497       if (!stopped()) {
  4498         copy_to_clone(obj, alloc_obj, obj_size, true, false);
  4500         // Present the results of the copy.
  4501         result_reg->init_req(_array_path, control());
  4502         result_val->init_req(_array_path, alloc_obj);
  4503         result_i_o ->set_req(_array_path, i_o());
  4504         result_mem ->set_req(_array_path, reset_memory());
  4508     // We only go to the instance fast case code if we pass a number of guards.
  4509     // The paths which do not pass are accumulated in the slow_region.
  4510     RegionNode* slow_region = new (C) RegionNode(1);
  4511     record_for_igvn(slow_region);
  4512     if (!stopped()) {
  4513       // It's an instance (we did array above).  Make the slow-path tests.
  4514       // If this is a virtual call, we generate a funny guard.  We grab
  4515       // the vtable entry corresponding to clone() from the target object.
  4516       // If the target method which we are calling happens to be the
  4517       // Object clone() method, we pass the guard.  We do not need this
  4518       // guard for non-virtual calls; the caller is known to be the native
  4519       // Object clone().
  4520       if (is_virtual) {
  4521         generate_virtual_guard(obj_klass, slow_region);
  4524       // The object must be cloneable and must not have a finalizer.
  4525       // Both of these conditions may be checked in a single test.
  4526       // We could optimize the cloneable test further, but we don't care.
  4527       generate_access_flags_guard(obj_klass,
  4528                                   // Test both conditions:
  4529                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
  4530                                   // Must be cloneable but not finalizer:
  4531                                   JVM_ACC_IS_CLONEABLE,
  4532                                   slow_region);
  4535     if (!stopped()) {
  4536       // It's an instance, and it passed the slow-path tests.
  4537       PreserveJVMState pjvms(this);
  4538       Node* obj_size  = NULL;
  4539       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
  4541       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
  4543       // Present the results of the slow call.
  4544       result_reg->init_req(_instance_path, control());
  4545       result_val->init_req(_instance_path, alloc_obj);
  4546       result_i_o ->set_req(_instance_path, i_o());
  4547       result_mem ->set_req(_instance_path, reset_memory());
  4550     // Generate code for the slow case.  We make a call to clone().
  4551     set_control(_gvn.transform(slow_region));
  4552     if (!stopped()) {
  4553       PreserveJVMState pjvms(this);
  4554       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
  4555       Node* slow_result = set_results_for_java_call(slow_call);
  4556       // this->control() comes from set_results_for_java_call
  4557       result_reg->init_req(_slow_path, control());
  4558       result_val->init_req(_slow_path, slow_result);
  4559       result_i_o ->set_req(_slow_path, i_o());
  4560       result_mem ->set_req(_slow_path, reset_memory());
  4563     // Return the combined state.
  4564     set_control(    _gvn.transform(result_reg));
  4565     set_i_o(        _gvn.transform(result_i_o));
  4566     set_all_memory( _gvn.transform(result_mem));
  4567   } // original reexecute is set back here
  4569   set_result(_gvn.transform(result_val));
  4570   return true;
  4573 //------------------------------basictype2arraycopy----------------------------
  4574 address LibraryCallKit::basictype2arraycopy(BasicType t,
  4575                                             Node* src_offset,
  4576                                             Node* dest_offset,
  4577                                             bool disjoint_bases,
  4578                                             const char* &name,
  4579                                             bool dest_uninitialized) {
  4580   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
  4581   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
  4583   bool aligned = false;
  4584   bool disjoint = disjoint_bases;
  4586   // if the offsets are the same, we can treat the memory regions as
  4587   // disjoint, because either the memory regions are in different arrays,
  4588   // or they are identical (which we can treat as disjoint.)  We can also
  4589   // treat a copy with a destination index  less that the source index
  4590   // as disjoint since a low->high copy will work correctly in this case.
  4591   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
  4592       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
  4593     // both indices are constants
  4594     int s_offs = src_offset_inttype->get_con();
  4595     int d_offs = dest_offset_inttype->get_con();
  4596     int element_size = type2aelembytes(t);
  4597     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
  4598               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
  4599     if (s_offs >= d_offs)  disjoint = true;
  4600   } else if (src_offset == dest_offset && src_offset != NULL) {
  4601     // This can occur if the offsets are identical non-constants.
  4602     disjoint = true;
  4605   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
  4609 //------------------------------inline_arraycopy-----------------------
  4610 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
  4611 //                                                      Object dest, int destPos,
  4612 //                                                      int length);
  4613 bool LibraryCallKit::inline_arraycopy() {
  4614   // Get the arguments.
  4615   Node* src         = argument(0);  // type: oop
  4616   Node* src_offset  = argument(1);  // type: int
  4617   Node* dest        = argument(2);  // type: oop
  4618   Node* dest_offset = argument(3);  // type: int
  4619   Node* length      = argument(4);  // type: int
  4621   // Compile time checks.  If any of these checks cannot be verified at compile time,
  4622   // we do not make a fast path for this call.  Instead, we let the call remain as it
  4623   // is.  The checks we choose to mandate at compile time are:
  4624   //
  4625   // (1) src and dest are arrays.
  4626   const Type* src_type  = src->Value(&_gvn);
  4627   const Type* dest_type = dest->Value(&_gvn);
  4628   const TypeAryPtr* top_src  = src_type->isa_aryptr();
  4629   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  4631   // Do we have the type of src?
  4632   bool has_src = (top_src != NULL && top_src->klass() != NULL);
  4633   // Do we have the type of dest?
  4634   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  4635   // Is the type for src from speculation?
  4636   bool src_spec = false;
  4637   // Is the type for dest from speculation?
  4638   bool dest_spec = false;
  4640   if (!has_src || !has_dest) {
  4641     // We don't have sufficient type information, let's see if
  4642     // speculative types can help. We need to have types for both src
  4643     // and dest so that it pays off.
  4645     // Do we already have or could we have type information for src
  4646     bool could_have_src = has_src;
  4647     // Do we already have or could we have type information for dest
  4648     bool could_have_dest = has_dest;
  4650     ciKlass* src_k = NULL;
  4651     if (!has_src) {
  4652       src_k = src_type->speculative_type();
  4653       if (src_k != NULL && src_k->is_array_klass()) {
  4654         could_have_src = true;
  4658     ciKlass* dest_k = NULL;
  4659     if (!has_dest) {
  4660       dest_k = dest_type->speculative_type();
  4661       if (dest_k != NULL && dest_k->is_array_klass()) {
  4662         could_have_dest = true;
  4666     if (could_have_src && could_have_dest) {
  4667       // This is going to pay off so emit the required guards
  4668       if (!has_src) {
  4669         src = maybe_cast_profiled_obj(src, src_k);
  4670         src_type  = _gvn.type(src);
  4671         top_src  = src_type->isa_aryptr();
  4672         has_src = (top_src != NULL && top_src->klass() != NULL);
  4673         src_spec = true;
  4675       if (!has_dest) {
  4676         dest = maybe_cast_profiled_obj(dest, dest_k);
  4677         dest_type  = _gvn.type(dest);
  4678         top_dest  = dest_type->isa_aryptr();
  4679         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
  4680         dest_spec = true;
  4685   if (!has_src || !has_dest) {
  4686     // Conservatively insert a memory barrier on all memory slices.
  4687     // Do not let writes into the source float below the arraycopy.
  4688     insert_mem_bar(Op_MemBarCPUOrder);
  4690     // Call StubRoutines::generic_arraycopy stub.
  4691     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
  4692                        src, src_offset, dest, dest_offset, length);
  4694     // Do not let reads from the destination float above the arraycopy.
  4695     // Since we cannot type the arrays, we don't know which slices
  4696     // might be affected.  We could restrict this barrier only to those
  4697     // memory slices which pertain to array elements--but don't bother.
  4698     if (!InsertMemBarAfterArraycopy)
  4699       // (If InsertMemBarAfterArraycopy, there is already one in place.)
  4700       insert_mem_bar(Op_MemBarCPUOrder);
  4701     return true;
  4704   // (2) src and dest arrays must have elements of the same BasicType
  4705   // Figure out the size and type of the elements we will be copying.
  4706   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
  4707   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
  4708   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
  4709   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
  4711   if (src_elem != dest_elem || dest_elem == T_VOID) {
  4712     // The component types are not the same or are not recognized.  Punt.
  4713     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
  4714     generate_slow_arraycopy(TypePtr::BOTTOM,
  4715                             src, src_offset, dest, dest_offset, length,
  4716                             /*dest_uninitialized*/false);
  4717     return true;
  4720   if (src_elem == T_OBJECT) {
  4721     // If both arrays are object arrays then having the exact types
  4722     // for both will remove the need for a subtype check at runtime
  4723     // before the call and may make it possible to pick a faster copy
  4724     // routine (without a subtype check on every element)
  4725     // Do we have the exact type of src?
  4726     bool could_have_src = src_spec;
  4727     // Do we have the exact type of dest?
  4728     bool could_have_dest = dest_spec;
  4729     ciKlass* src_k = top_src->klass();
  4730     ciKlass* dest_k = top_dest->klass();
  4731     if (!src_spec) {
  4732       src_k = src_type->speculative_type();
  4733       if (src_k != NULL && src_k->is_array_klass()) {
  4734           could_have_src = true;
  4737     if (!dest_spec) {
  4738       dest_k = dest_type->speculative_type();
  4739       if (dest_k != NULL && dest_k->is_array_klass()) {
  4740         could_have_dest = true;
  4743     if (could_have_src && could_have_dest) {
  4744       // If we can have both exact types, emit the missing guards
  4745       if (could_have_src && !src_spec) {
  4746         src = maybe_cast_profiled_obj(src, src_k);
  4748       if (could_have_dest && !dest_spec) {
  4749         dest = maybe_cast_profiled_obj(dest, dest_k);
  4754   //---------------------------------------------------------------------------
  4755   // We will make a fast path for this call to arraycopy.
  4757   // We have the following tests left to perform:
  4758   //
  4759   // (3) src and dest must not be null.
  4760   // (4) src_offset must not be negative.
  4761   // (5) dest_offset must not be negative.
  4762   // (6) length must not be negative.
  4763   // (7) src_offset + length must not exceed length of src.
  4764   // (8) dest_offset + length must not exceed length of dest.
  4765   // (9) each element of an oop array must be assignable
  4767   RegionNode* slow_region = new (C) RegionNode(1);
  4768   record_for_igvn(slow_region);
  4770   // (3) operands must not be null
  4771   // We currently perform our null checks with the null_check routine.
  4772   // This means that the null exceptions will be reported in the caller
  4773   // rather than (correctly) reported inside of the native arraycopy call.
  4774   // This should be corrected, given time.  We do our null check with the
  4775   // stack pointer restored.
  4776   src  = null_check(src,  T_ARRAY);
  4777   dest = null_check(dest, T_ARRAY);
  4779   // (4) src_offset must not be negative.
  4780   generate_negative_guard(src_offset, slow_region);
  4782   // (5) dest_offset must not be negative.
  4783   generate_negative_guard(dest_offset, slow_region);
  4785   // (6) length must not be negative (moved to generate_arraycopy()).
  4786   // generate_negative_guard(length, slow_region);
  4788   // (7) src_offset + length must not exceed length of src.
  4789   generate_limit_guard(src_offset, length,
  4790                        load_array_length(src),
  4791                        slow_region);
  4793   // (8) dest_offset + length must not exceed length of dest.
  4794   generate_limit_guard(dest_offset, length,
  4795                        load_array_length(dest),
  4796                        slow_region);
  4798   // (9) each element of an oop array must be assignable
  4799   // The generate_arraycopy subroutine checks this.
  4801   // This is where the memory effects are placed:
  4802   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
  4803   generate_arraycopy(adr_type, dest_elem,
  4804                      src, src_offset, dest, dest_offset, length,
  4805                      false, false, slow_region);
  4807   return true;
  4810 //-----------------------------generate_arraycopy----------------------
  4811 // Generate an optimized call to arraycopy.
  4812 // Caller must guard against non-arrays.
  4813 // Caller must determine a common array basic-type for both arrays.
  4814 // Caller must validate offsets against array bounds.
  4815 // The slow_region has already collected guard failure paths
  4816 // (such as out of bounds length or non-conformable array types).
  4817 // The generated code has this shape, in general:
  4818 //
  4819 //     if (length == 0)  return   // via zero_path
  4820 //     slowval = -1
  4821 //     if (types unknown) {
  4822 //       slowval = call generic copy loop
  4823 //       if (slowval == 0)  return  // via checked_path
  4824 //     } else if (indexes in bounds) {
  4825 //       if ((is object array) && !(array type check)) {
  4826 //         slowval = call checked copy loop
  4827 //         if (slowval == 0)  return  // via checked_path
  4828 //       } else {
  4829 //         call bulk copy loop
  4830 //         return  // via fast_path
  4831 //       }
  4832 //     }
  4833 //     // adjust params for remaining work:
  4834 //     if (slowval != -1) {
  4835 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
  4836 //     }
  4837 //   slow_region:
  4838 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
  4839 //     return  // via slow_call_path
  4840 //
  4841 // This routine is used from several intrinsics:  System.arraycopy,
  4842 // Object.clone (the array subcase), and Arrays.copyOf[Range].
  4843 //
  4844 void
  4845 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
  4846                                    BasicType basic_elem_type,
  4847                                    Node* src,  Node* src_offset,
  4848                                    Node* dest, Node* dest_offset,
  4849                                    Node* copy_length,
  4850                                    bool disjoint_bases,
  4851                                    bool length_never_negative,
  4852                                    RegionNode* slow_region) {
  4854   if (slow_region == NULL) {
  4855     slow_region = new(C) RegionNode(1);
  4856     record_for_igvn(slow_region);
  4859   Node* original_dest      = dest;
  4860   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
  4861   bool  dest_uninitialized = false;
  4863   // See if this is the initialization of a newly-allocated array.
  4864   // If so, we will take responsibility here for initializing it to zero.
  4865   // (Note:  Because tightly_coupled_allocation performs checks on the
  4866   // out-edges of the dest, we need to avoid making derived pointers
  4867   // from it until we have checked its uses.)
  4868   if (ReduceBulkZeroing
  4869       && !ZeroTLAB              // pointless if already zeroed
  4870       && basic_elem_type != T_CONFLICT // avoid corner case
  4871       && !src->eqv_uncast(dest)
  4872       && ((alloc = tightly_coupled_allocation(dest, slow_region))
  4873           != NULL)
  4874       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
  4875       && alloc->maybe_set_complete(&_gvn)) {
  4876     // "You break it, you buy it."
  4877     InitializeNode* init = alloc->initialization();
  4878     assert(init->is_complete(), "we just did this");
  4879     init->set_complete_with_arraycopy();
  4880     assert(dest->is_CheckCastPP(), "sanity");
  4881     assert(dest->in(0)->in(0) == init, "dest pinned");
  4882     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
  4883     // From this point on, every exit path is responsible for
  4884     // initializing any non-copied parts of the object to zero.
  4885     // Also, if this flag is set we make sure that arraycopy interacts properly
  4886     // with G1, eliding pre-barriers. See CR 6627983.
  4887     dest_uninitialized = true;
  4888   } else {
  4889     // No zeroing elimination here.
  4890     alloc             = NULL;
  4891     //original_dest   = dest;
  4892     //dest_uninitialized = false;
  4895   // Results are placed here:
  4896   enum { fast_path        = 1,  // normal void-returning assembly stub
  4897          checked_path     = 2,  // special assembly stub with cleanup
  4898          slow_call_path   = 3,  // something went wrong; call the VM
  4899          zero_path        = 4,  // bypass when length of copy is zero
  4900          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
  4901          PATH_LIMIT       = 6
  4902   };
  4903   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
  4904   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
  4905   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
  4906   record_for_igvn(result_region);
  4907   _gvn.set_type_bottom(result_i_o);
  4908   _gvn.set_type_bottom(result_memory);
  4909   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
  4911   // The slow_control path:
  4912   Node* slow_control;
  4913   Node* slow_i_o = i_o();
  4914   Node* slow_mem = memory(adr_type);
  4915   debug_only(slow_control = (Node*) badAddress);
  4917   // Checked control path:
  4918   Node* checked_control = top();
  4919   Node* checked_mem     = NULL;
  4920   Node* checked_i_o     = NULL;
  4921   Node* checked_value   = NULL;
  4923   if (basic_elem_type == T_CONFLICT) {
  4924     assert(!dest_uninitialized, "");
  4925     Node* cv = generate_generic_arraycopy(adr_type,
  4926                                           src, src_offset, dest, dest_offset,
  4927                                           copy_length, dest_uninitialized);
  4928     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  4929     checked_control = control();
  4930     checked_i_o     = i_o();
  4931     checked_mem     = memory(adr_type);
  4932     checked_value   = cv;
  4933     set_control(top());         // no fast path
  4936   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
  4937   if (not_pos != NULL) {
  4938     PreserveJVMState pjvms(this);
  4939     set_control(not_pos);
  4941     // (6) length must not be negative.
  4942     if (!length_never_negative) {
  4943       generate_negative_guard(copy_length, slow_region);
  4946     // copy_length is 0.
  4947     if (!stopped() && dest_uninitialized) {
  4948       Node* dest_length = alloc->in(AllocateNode::ALength);
  4949       if (copy_length->eqv_uncast(dest_length)
  4950           || _gvn.find_int_con(dest_length, 1) <= 0) {
  4951         // There is no zeroing to do. No need for a secondary raw memory barrier.
  4952       } else {
  4953         // Clear the whole thing since there are no source elements to copy.
  4954         generate_clear_array(adr_type, dest, basic_elem_type,
  4955                              intcon(0), NULL,
  4956                              alloc->in(AllocateNode::AllocSize));
  4957         // Use a secondary InitializeNode as raw memory barrier.
  4958         // Currently it is needed only on this path since other
  4959         // paths have stub or runtime calls as raw memory barriers.
  4960         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
  4961                                                        Compile::AliasIdxRaw,
  4962                                                        top())->as_Initialize();
  4963         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
  4967     // Present the results of the fast call.
  4968     result_region->init_req(zero_path, control());
  4969     result_i_o   ->init_req(zero_path, i_o());
  4970     result_memory->init_req(zero_path, memory(adr_type));
  4973   if (!stopped() && dest_uninitialized) {
  4974     // We have to initialize the *uncopied* part of the array to zero.
  4975     // The copy destination is the slice dest[off..off+len].  The other slices
  4976     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
  4977     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
  4978     Node* dest_length = alloc->in(AllocateNode::ALength);
  4979     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
  4980                                                           copy_length));
  4982     // If there is a head section that needs zeroing, do it now.
  4983     if (find_int_con(dest_offset, -1) != 0) {
  4984       generate_clear_array(adr_type, dest, basic_elem_type,
  4985                            intcon(0), dest_offset,
  4986                            NULL);
  4989     // Next, perform a dynamic check on the tail length.
  4990     // It is often zero, and we can win big if we prove this.
  4991     // There are two wins:  Avoid generating the ClearArray
  4992     // with its attendant messy index arithmetic, and upgrade
  4993     // the copy to a more hardware-friendly word size of 64 bits.
  4994     Node* tail_ctl = NULL;
  4995     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
  4996       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
  4997       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
  4998       tail_ctl = generate_slow_guard(bol_lt, NULL);
  4999       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
  5002     // At this point, let's assume there is no tail.
  5003     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
  5004       // There is no tail.  Try an upgrade to a 64-bit copy.
  5005       bool didit = false;
  5006       { PreserveJVMState pjvms(this);
  5007         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
  5008                                          src, src_offset, dest, dest_offset,
  5009                                          dest_size, dest_uninitialized);
  5010         if (didit) {
  5011           // Present the results of the block-copying fast call.
  5012           result_region->init_req(bcopy_path, control());
  5013           result_i_o   ->init_req(bcopy_path, i_o());
  5014           result_memory->init_req(bcopy_path, memory(adr_type));
  5017       if (didit)
  5018         set_control(top());     // no regular fast path
  5021     // Clear the tail, if any.
  5022     if (tail_ctl != NULL) {
  5023       Node* notail_ctl = stopped() ? NULL : control();
  5024       set_control(tail_ctl);
  5025       if (notail_ctl == NULL) {
  5026         generate_clear_array(adr_type, dest, basic_elem_type,
  5027                              dest_tail, NULL,
  5028                              dest_size);
  5029       } else {
  5030         // Make a local merge.
  5031         Node* done_ctl = new(C) RegionNode(3);
  5032         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
  5033         done_ctl->init_req(1, notail_ctl);
  5034         done_mem->init_req(1, memory(adr_type));
  5035         generate_clear_array(adr_type, dest, basic_elem_type,
  5036                              dest_tail, NULL,
  5037                              dest_size);
  5038         done_ctl->init_req(2, control());
  5039         done_mem->init_req(2, memory(adr_type));
  5040         set_control( _gvn.transform(done_ctl));
  5041         set_memory(  _gvn.transform(done_mem), adr_type );
  5046   BasicType copy_type = basic_elem_type;
  5047   assert(basic_elem_type != T_ARRAY, "caller must fix this");
  5048   if (!stopped() && copy_type == T_OBJECT) {
  5049     // If src and dest have compatible element types, we can copy bits.
  5050     // Types S[] and D[] are compatible if D is a supertype of S.
  5051     //
  5052     // If they are not, we will use checked_oop_disjoint_arraycopy,
  5053     // which performs a fast optimistic per-oop check, and backs off
  5054     // further to JVM_ArrayCopy on the first per-oop check that fails.
  5055     // (Actually, we don't move raw bits only; the GC requires card marks.)
  5057     // Get the Klass* for both src and dest
  5058     Node* src_klass  = load_object_klass(src);
  5059     Node* dest_klass = load_object_klass(dest);
  5061     // Generate the subtype check.
  5062     // This might fold up statically, or then again it might not.
  5063     //
  5064     // Non-static example:  Copying List<String>.elements to a new String[].
  5065     // The backing store for a List<String> is always an Object[],
  5066     // but its elements are always type String, if the generic types
  5067     // are correct at the source level.
  5068     //
  5069     // Test S[] against D[], not S against D, because (probably)
  5070     // the secondary supertype cache is less busy for S[] than S.
  5071     // This usually only matters when D is an interface.
  5072     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
  5073     // Plug failing path into checked_oop_disjoint_arraycopy
  5074     if (not_subtype_ctrl != top()) {
  5075       PreserveJVMState pjvms(this);
  5076       set_control(not_subtype_ctrl);
  5077       // (At this point we can assume disjoint_bases, since types differ.)
  5078       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
  5079       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
  5080       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
  5081       Node* dest_elem_klass = _gvn.transform(n1);
  5082       Node* cv = generate_checkcast_arraycopy(adr_type,
  5083                                               dest_elem_klass,
  5084                                               src, src_offset, dest, dest_offset,
  5085                                               ConvI2X(copy_length), dest_uninitialized);
  5086       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
  5087       checked_control = control();
  5088       checked_i_o     = i_o();
  5089       checked_mem     = memory(adr_type);
  5090       checked_value   = cv;
  5092     // At this point we know we do not need type checks on oop stores.
  5094     // Let's see if we need card marks:
  5095     if (alloc != NULL && use_ReduceInitialCardMarks()) {
  5096       // If we do not need card marks, copy using the jint or jlong stub.
  5097       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
  5098       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
  5099              "sizes agree");
  5103   if (!stopped()) {
  5104     // Generate the fast path, if possible.
  5105     PreserveJVMState pjvms(this);
  5106     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
  5107                                  src, src_offset, dest, dest_offset,
  5108                                  ConvI2X(copy_length), dest_uninitialized);
  5110     // Present the results of the fast call.
  5111     result_region->init_req(fast_path, control());
  5112     result_i_o   ->init_req(fast_path, i_o());
  5113     result_memory->init_req(fast_path, memory(adr_type));
  5116   // Here are all the slow paths up to this point, in one bundle:
  5117   slow_control = top();
  5118   if (slow_region != NULL)
  5119     slow_control = _gvn.transform(slow_region);
  5120   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
  5122   set_control(checked_control);
  5123   if (!stopped()) {
  5124     // Clean up after the checked call.
  5125     // The returned value is either 0 or -1^K,
  5126     // where K = number of partially transferred array elements.
  5127     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
  5128     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
  5129     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
  5131     // If it is 0, we are done, so transfer to the end.
  5132     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
  5133     result_region->init_req(checked_path, checks_done);
  5134     result_i_o   ->init_req(checked_path, checked_i_o);
  5135     result_memory->init_req(checked_path, checked_mem);
  5137     // If it is not zero, merge into the slow call.
  5138     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
  5139     RegionNode* slow_reg2 = new(C) RegionNode(3);
  5140     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
  5141     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
  5142     record_for_igvn(slow_reg2);
  5143     slow_reg2  ->init_req(1, slow_control);
  5144     slow_i_o2  ->init_req(1, slow_i_o);
  5145     slow_mem2  ->init_req(1, slow_mem);
  5146     slow_reg2  ->init_req(2, control());
  5147     slow_i_o2  ->init_req(2, checked_i_o);
  5148     slow_mem2  ->init_req(2, checked_mem);
  5150     slow_control = _gvn.transform(slow_reg2);
  5151     slow_i_o     = _gvn.transform(slow_i_o2);
  5152     slow_mem     = _gvn.transform(slow_mem2);
  5154     if (alloc != NULL) {
  5155       // We'll restart from the very beginning, after zeroing the whole thing.
  5156       // This can cause double writes, but that's OK since dest is brand new.
  5157       // So we ignore the low 31 bits of the value returned from the stub.
  5158     } else {
  5159       // We must continue the copy exactly where it failed, or else
  5160       // another thread might see the wrong number of writes to dest.
  5161       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
  5162       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
  5163       slow_offset->init_req(1, intcon(0));
  5164       slow_offset->init_req(2, checked_offset);
  5165       slow_offset  = _gvn.transform(slow_offset);
  5167       // Adjust the arguments by the conditionally incoming offset.
  5168       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
  5169       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
  5170       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
  5172       // Tweak the node variables to adjust the code produced below:
  5173       src_offset  = src_off_plus;
  5174       dest_offset = dest_off_plus;
  5175       copy_length = length_minus;
  5179   set_control(slow_control);
  5180   if (!stopped()) {
  5181     // Generate the slow path, if needed.
  5182     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
  5184     set_memory(slow_mem, adr_type);
  5185     set_i_o(slow_i_o);
  5187     if (dest_uninitialized) {
  5188       generate_clear_array(adr_type, dest, basic_elem_type,
  5189                            intcon(0), NULL,
  5190                            alloc->in(AllocateNode::AllocSize));
  5193     generate_slow_arraycopy(adr_type,
  5194                             src, src_offset, dest, dest_offset,
  5195                             copy_length, /*dest_uninitialized*/false);
  5197     result_region->init_req(slow_call_path, control());
  5198     result_i_o   ->init_req(slow_call_path, i_o());
  5199     result_memory->init_req(slow_call_path, memory(adr_type));
  5202   // Remove unused edges.
  5203   for (uint i = 1; i < result_region->req(); i++) {
  5204     if (result_region->in(i) == NULL)
  5205       result_region->init_req(i, top());
  5208   // Finished; return the combined state.
  5209   set_control( _gvn.transform(result_region));
  5210   set_i_o(     _gvn.transform(result_i_o)    );
  5211   set_memory(  _gvn.transform(result_memory), adr_type );
  5213   // The memory edges above are precise in order to model effects around
  5214   // array copies accurately to allow value numbering of field loads around
  5215   // arraycopy.  Such field loads, both before and after, are common in Java
  5216   // collections and similar classes involving header/array data structures.
  5217   //
  5218   // But with low number of register or when some registers are used or killed
  5219   // by arraycopy calls it causes registers spilling on stack. See 6544710.
  5220   // The next memory barrier is added to avoid it. If the arraycopy can be
  5221   // optimized away (which it can, sometimes) then we can manually remove
  5222   // the membar also.
  5223   //
  5224   // Do not let reads from the cloned object float above the arraycopy.
  5225   if (alloc != NULL) {
  5226     // Do not let stores that initialize this object be reordered with
  5227     // a subsequent store that would make this object accessible by
  5228     // other threads.
  5229     // Record what AllocateNode this StoreStore protects so that
  5230     // escape analysis can go from the MemBarStoreStoreNode to the
  5231     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
  5232     // based on the escape status of the AllocateNode.
  5233     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
  5234   } else if (InsertMemBarAfterArraycopy)
  5235     insert_mem_bar(Op_MemBarCPUOrder);
  5239 // Helper function which determines if an arraycopy immediately follows
  5240 // an allocation, with no intervening tests or other escapes for the object.
  5241 AllocateArrayNode*
  5242 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
  5243                                            RegionNode* slow_region) {
  5244   if (stopped())             return NULL;  // no fast path
  5245   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
  5247   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
  5248   if (alloc == NULL)  return NULL;
  5250   Node* rawmem = memory(Compile::AliasIdxRaw);
  5251   // Is the allocation's memory state untouched?
  5252   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
  5253     // Bail out if there have been raw-memory effects since the allocation.
  5254     // (Example:  There might have been a call or safepoint.)
  5255     return NULL;
  5257   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
  5258   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
  5259     return NULL;
  5262   // There must be no unexpected observers of this allocation.
  5263   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
  5264     Node* obs = ptr->fast_out(i);
  5265     if (obs != this->map()) {
  5266       return NULL;
  5270   // This arraycopy must unconditionally follow the allocation of the ptr.
  5271   Node* alloc_ctl = ptr->in(0);
  5272   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
  5274   Node* ctl = control();
  5275   while (ctl != alloc_ctl) {
  5276     // There may be guards which feed into the slow_region.
  5277     // Any other control flow means that we might not get a chance
  5278     // to finish initializing the allocated object.
  5279     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
  5280       IfNode* iff = ctl->in(0)->as_If();
  5281       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
  5282       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
  5283       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
  5284         ctl = iff->in(0);       // This test feeds the known slow_region.
  5285         continue;
  5287       // One more try:  Various low-level checks bottom out in
  5288       // uncommon traps.  If the debug-info of the trap omits
  5289       // any reference to the allocation, as we've already
  5290       // observed, then there can be no objection to the trap.
  5291       bool found_trap = false;
  5292       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
  5293         Node* obs = not_ctl->fast_out(j);
  5294         if (obs->in(0) == not_ctl && obs->is_Call() &&
  5295             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
  5296           found_trap = true; break;
  5299       if (found_trap) {
  5300         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
  5301         continue;
  5304     return NULL;
  5307   // If we get this far, we have an allocation which immediately
  5308   // precedes the arraycopy, and we can take over zeroing the new object.
  5309   // The arraycopy will finish the initialization, and provide
  5310   // a new control state to which we will anchor the destination pointer.
  5312   return alloc;
  5315 // Helper for initialization of arrays, creating a ClearArray.
  5316 // It writes zero bits in [start..end), within the body of an array object.
  5317 // The memory effects are all chained onto the 'adr_type' alias category.
  5318 //
  5319 // Since the object is otherwise uninitialized, we are free
  5320 // to put a little "slop" around the edges of the cleared area,
  5321 // as long as it does not go back into the array's header,
  5322 // or beyond the array end within the heap.
  5323 //
  5324 // The lower edge can be rounded down to the nearest jint and the
  5325 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
  5326 //
  5327 // Arguments:
  5328 //   adr_type           memory slice where writes are generated
  5329 //   dest               oop of the destination array
  5330 //   basic_elem_type    element type of the destination
  5331 //   slice_idx          array index of first element to store
  5332 //   slice_len          number of elements to store (or NULL)
  5333 //   dest_size          total size in bytes of the array object
  5334 //
  5335 // Exactly one of slice_len or dest_size must be non-NULL.
  5336 // If dest_size is non-NULL, zeroing extends to the end of the object.
  5337 // If slice_len is non-NULL, the slice_idx value must be a constant.
  5338 void
  5339 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
  5340                                      Node* dest,
  5341                                      BasicType basic_elem_type,
  5342                                      Node* slice_idx,
  5343                                      Node* slice_len,
  5344                                      Node* dest_size) {
  5345   // one or the other but not both of slice_len and dest_size:
  5346   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
  5347   if (slice_len == NULL)  slice_len = top();
  5348   if (dest_size == NULL)  dest_size = top();
  5350   // operate on this memory slice:
  5351   Node* mem = memory(adr_type); // memory slice to operate on
  5353   // scaling and rounding of indexes:
  5354   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5355   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5356   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
  5357   int bump_bit  = (-1 << scale) & BytesPerInt;
  5359   // determine constant starts and ends
  5360   const intptr_t BIG_NEG = -128;
  5361   assert(BIG_NEG + 2*abase < 0, "neg enough");
  5362   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
  5363   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
  5364   if (slice_len_con == 0) {
  5365     return;                     // nothing to do here
  5367   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
  5368   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
  5369   if (slice_idx_con >= 0 && slice_len_con >= 0) {
  5370     assert(end_con < 0, "not two cons");
  5371     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
  5372                        BytesPerLong);
  5375   if (start_con >= 0 && end_con >= 0) {
  5376     // Constant start and end.  Simple.
  5377     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5378                                        start_con, end_con, &_gvn);
  5379   } else if (start_con >= 0 && dest_size != top()) {
  5380     // Constant start, pre-rounded end after the tail of the array.
  5381     Node* end = dest_size;
  5382     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5383                                        start_con, end, &_gvn);
  5384   } else if (start_con >= 0 && slice_len != top()) {
  5385     // Constant start, non-constant end.  End needs rounding up.
  5386     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
  5387     intptr_t end_base  = abase + (slice_idx_con << scale);
  5388     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
  5389     Node*    end       = ConvI2X(slice_len);
  5390     if (scale != 0)
  5391       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
  5392     end_base += end_round;
  5393     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
  5394     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
  5395     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5396                                        start_con, end, &_gvn);
  5397   } else if (start_con < 0 && dest_size != top()) {
  5398     // Non-constant start, pre-rounded end after the tail of the array.
  5399     // This is almost certainly a "round-to-end" operation.
  5400     Node* start = slice_idx;
  5401     start = ConvI2X(start);
  5402     if (scale != 0)
  5403       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
  5404     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
  5405     if ((bump_bit | clear_low) != 0) {
  5406       int to_clear = (bump_bit | clear_low);
  5407       // Align up mod 8, then store a jint zero unconditionally
  5408       // just before the mod-8 boundary.
  5409       if (((abase + bump_bit) & ~to_clear) - bump_bit
  5410           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
  5411         bump_bit = 0;
  5412         assert((abase & to_clear) == 0, "array base must be long-aligned");
  5413       } else {
  5414         // Bump 'start' up to (or past) the next jint boundary:
  5415         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
  5416         assert((abase & clear_low) == 0, "array base must be int-aligned");
  5418       // Round bumped 'start' down to jlong boundary in body of array.
  5419       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
  5420       if (bump_bit != 0) {
  5421         // Store a zero to the immediately preceding jint:
  5422         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
  5423         Node* p1 = basic_plus_adr(dest, x1);
  5424         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
  5425         mem = _gvn.transform(mem);
  5428     Node* end = dest_size; // pre-rounded
  5429     mem = ClearArrayNode::clear_memory(control(), mem, dest,
  5430                                        start, end, &_gvn);
  5431   } else {
  5432     // Non-constant start, unrounded non-constant end.
  5433     // (Nobody zeroes a random midsection of an array using this routine.)
  5434     ShouldNotReachHere();       // fix caller
  5437   // Done.
  5438   set_memory(mem, adr_type);
  5442 bool
  5443 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
  5444                                          BasicType basic_elem_type,
  5445                                          AllocateNode* alloc,
  5446                                          Node* src,  Node* src_offset,
  5447                                          Node* dest, Node* dest_offset,
  5448                                          Node* dest_size, bool dest_uninitialized) {
  5449   // See if there is an advantage from block transfer.
  5450   int scale = exact_log2(type2aelembytes(basic_elem_type));
  5451   if (scale >= LogBytesPerLong)
  5452     return false;               // it is already a block transfer
  5454   // Look at the alignment of the starting offsets.
  5455   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
  5457   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
  5458   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
  5459   if (src_off_con < 0 || dest_off_con < 0)
  5460     // At present, we can only understand constants.
  5461     return false;
  5463   intptr_t src_off  = abase + (src_off_con  << scale);
  5464   intptr_t dest_off = abase + (dest_off_con << scale);
  5466   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
  5467     // Non-aligned; too bad.
  5468     // One more chance:  Pick off an initial 32-bit word.
  5469     // This is a common case, since abase can be odd mod 8.
  5470     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
  5471         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
  5472       Node* sptr = basic_plus_adr(src,  src_off);
  5473       Node* dptr = basic_plus_adr(dest, dest_off);
  5474       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
  5475       store_to_memory(control(), dptr, sval, T_INT, adr_type);
  5476       src_off += BytesPerInt;
  5477       dest_off += BytesPerInt;
  5478     } else {
  5479       return false;
  5482   assert(src_off % BytesPerLong == 0, "");
  5483   assert(dest_off % BytesPerLong == 0, "");
  5485   // Do this copy by giant steps.
  5486   Node* sptr  = basic_plus_adr(src,  src_off);
  5487   Node* dptr  = basic_plus_adr(dest, dest_off);
  5488   Node* countx = dest_size;
  5489   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
  5490   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
  5492   bool disjoint_bases = true;   // since alloc != NULL
  5493   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
  5494                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
  5496   return true;
  5500 // Helper function; generates code for the slow case.
  5501 // We make a call to a runtime method which emulates the native method,
  5502 // but without the native wrapper overhead.
  5503 void
  5504 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
  5505                                         Node* src,  Node* src_offset,
  5506                                         Node* dest, Node* dest_offset,
  5507                                         Node* copy_length, bool dest_uninitialized) {
  5508   assert(!dest_uninitialized, "Invariant");
  5509   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
  5510                                  OptoRuntime::slow_arraycopy_Type(),
  5511                                  OptoRuntime::slow_arraycopy_Java(),
  5512                                  "slow_arraycopy", adr_type,
  5513                                  src, src_offset, dest, dest_offset,
  5514                                  copy_length);
  5516   // Handle exceptions thrown by this fellow:
  5517   make_slow_call_ex(call, env()->Throwable_klass(), false);
  5520 // Helper function; generates code for cases requiring runtime checks.
  5521 Node*
  5522 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
  5523                                              Node* dest_elem_klass,
  5524                                              Node* src,  Node* src_offset,
  5525                                              Node* dest, Node* dest_offset,
  5526                                              Node* copy_length, bool dest_uninitialized) {
  5527   if (stopped())  return NULL;
  5529   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
  5530   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5531     return NULL;
  5534   // Pick out the parameters required to perform a store-check
  5535   // for the target array.  This is an optimistic check.  It will
  5536   // look in each non-null element's class, at the desired klass's
  5537   // super_check_offset, for the desired klass.
  5538   int sco_offset = in_bytes(Klass::super_check_offset_offset());
  5539   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
  5540   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
  5541   Node* check_offset = ConvI2X(_gvn.transform(n3));
  5542   Node* check_value  = dest_elem_klass;
  5544   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
  5545   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
  5547   // (We know the arrays are never conjoint, because their types differ.)
  5548   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5549                                  OptoRuntime::checkcast_arraycopy_Type(),
  5550                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
  5551                                  // five arguments, of which two are
  5552                                  // intptr_t (jlong in LP64)
  5553                                  src_start, dest_start,
  5554                                  copy_length XTOP,
  5555                                  check_offset XTOP,
  5556                                  check_value);
  5558   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5562 // Helper function; generates code for cases requiring runtime checks.
  5563 Node*
  5564 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
  5565                                            Node* src,  Node* src_offset,
  5566                                            Node* dest, Node* dest_offset,
  5567                                            Node* copy_length, bool dest_uninitialized) {
  5568   assert(!dest_uninitialized, "Invariant");
  5569   if (stopped())  return NULL;
  5570   address copyfunc_addr = StubRoutines::generic_arraycopy();
  5571   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
  5572     return NULL;
  5575   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
  5576                     OptoRuntime::generic_arraycopy_Type(),
  5577                     copyfunc_addr, "generic_arraycopy", adr_type,
  5578                     src, src_offset, dest, dest_offset, copy_length);
  5580   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5583 // Helper function; generates the fast out-of-line call to an arraycopy stub.
  5584 void
  5585 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
  5586                                              BasicType basic_elem_type,
  5587                                              bool disjoint_bases,
  5588                                              Node* src,  Node* src_offset,
  5589                                              Node* dest, Node* dest_offset,
  5590                                              Node* copy_length, bool dest_uninitialized) {
  5591   if (stopped())  return;               // nothing to do
  5593   Node* src_start  = src;
  5594   Node* dest_start = dest;
  5595   if (src_offset != NULL || dest_offset != NULL) {
  5596     assert(src_offset != NULL && dest_offset != NULL, "");
  5597     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
  5598     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
  5601   // Figure out which arraycopy runtime method to call.
  5602   const char* copyfunc_name = "arraycopy";
  5603   address     copyfunc_addr =
  5604       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
  5605                           disjoint_bases, copyfunc_name, dest_uninitialized);
  5607   // Call it.  Note that the count_ix value is not scaled to a byte-size.
  5608   make_runtime_call(RC_LEAF|RC_NO_FP,
  5609                     OptoRuntime::fast_arraycopy_Type(),
  5610                     copyfunc_addr, copyfunc_name, adr_type,
  5611                     src_start, dest_start, copy_length XTOP);
  5614 //-------------inline_encodeISOArray-----------------------------------
  5615 // encode char[] to byte[] in ISO_8859_1
  5616 bool LibraryCallKit::inline_encodeISOArray() {
  5617   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
  5618   // no receiver since it is static method
  5619   Node *src         = argument(0);
  5620   Node *src_offset  = argument(1);
  5621   Node *dst         = argument(2);
  5622   Node *dst_offset  = argument(3);
  5623   Node *length      = argument(4);
  5625   const Type* src_type = src->Value(&_gvn);
  5626   const Type* dst_type = dst->Value(&_gvn);
  5627   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5628   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
  5629   if (top_src  == NULL || top_src->klass()  == NULL ||
  5630       top_dest == NULL || top_dest->klass() == NULL) {
  5631     // failed array check
  5632     return false;
  5635   // Figure out the size and type of the elements we will be copying.
  5636   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5637   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5638   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
  5639     return false;
  5641   Node* src_start = array_element_address(src, src_offset, src_elem);
  5642   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
  5643   // 'src_start' points to src array + scaled offset
  5644   // 'dst_start' points to dst array + scaled offset
  5646   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
  5647   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
  5648   enc = _gvn.transform(enc);
  5649   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
  5650   set_memory(res_mem, mtype);
  5651   set_result(enc);
  5652   return true;
  5655 /**
  5656  * Calculate CRC32 for byte.
  5657  * int java.util.zip.CRC32.update(int crc, int b)
  5658  */
  5659 bool LibraryCallKit::inline_updateCRC32() {
  5660   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5661   assert(callee()->signature()->size() == 2, "update has 2 parameters");
  5662   // no receiver since it is static method
  5663   Node* crc  = argument(0); // type: int
  5664   Node* b    = argument(1); // type: int
  5666   /*
  5667    *    int c = ~ crc;
  5668    *    b = timesXtoThe32[(b ^ c) & 0xFF];
  5669    *    b = b ^ (c >>> 8);
  5670    *    crc = ~b;
  5671    */
  5673   Node* M1 = intcon(-1);
  5674   crc = _gvn.transform(new (C) XorINode(crc, M1));
  5675   Node* result = _gvn.transform(new (C) XorINode(crc, b));
  5676   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
  5678   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
  5679   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
  5680   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
  5681   result = make_load(control(), adr, TypeInt::INT, T_INT);
  5683   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
  5684   result = _gvn.transform(new (C) XorINode(crc, result));
  5685   result = _gvn.transform(new (C) XorINode(result, M1));
  5686   set_result(result);
  5687   return true;
  5690 /**
  5691  * Calculate CRC32 for byte[] array.
  5692  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
  5693  */
  5694 bool LibraryCallKit::inline_updateBytesCRC32() {
  5695   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5696   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
  5697   // no receiver since it is static method
  5698   Node* crc     = argument(0); // type: int
  5699   Node* src     = argument(1); // type: oop
  5700   Node* offset  = argument(2); // type: int
  5701   Node* length  = argument(3); // type: int
  5703   const Type* src_type = src->Value(&_gvn);
  5704   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5705   if (top_src  == NULL || top_src->klass()  == NULL) {
  5706     // failed array check
  5707     return false;
  5710   // Figure out the size and type of the elements we will be copying.
  5711   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
  5712   if (src_elem != T_BYTE) {
  5713     return false;
  5716   // 'src_start' points to src array + scaled offset
  5717   Node* src_start = array_element_address(src, offset, src_elem);
  5719   // We assume that range check is done by caller.
  5720   // TODO: generate range check (offset+length < src.length) in debug VM.
  5722   // Call the stub.
  5723   address stubAddr = StubRoutines::updateBytesCRC32();
  5724   const char *stubName = "updateBytesCRC32";
  5726   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5727                                  stubAddr, stubName, TypePtr::BOTTOM,
  5728                                  crc, src_start, length);
  5729   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5730   set_result(result);
  5731   return true;
  5734 /**
  5735  * Calculate CRC32 for ByteBuffer.
  5736  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
  5737  */
  5738 bool LibraryCallKit::inline_updateByteBufferCRC32() {
  5739   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
  5740   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
  5741   // no receiver since it is static method
  5742   Node* crc     = argument(0); // type: int
  5743   Node* src     = argument(1); // type: long
  5744   Node* offset  = argument(3); // type: int
  5745   Node* length  = argument(4); // type: int
  5747   src = ConvL2X(src);  // adjust Java long to machine word
  5748   Node* base = _gvn.transform(new (C) CastX2PNode(src));
  5749   offset = ConvI2X(offset);
  5751   // 'src_start' points to src array + scaled offset
  5752   Node* src_start = basic_plus_adr(top(), base, offset);
  5754   // Call the stub.
  5755   address stubAddr = StubRoutines::updateBytesCRC32();
  5756   const char *stubName = "updateBytesCRC32";
  5758   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
  5759                                  stubAddr, stubName, TypePtr::BOTTOM,
  5760                                  crc, src_start, length);
  5761   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
  5762   set_result(result);
  5763   return true;
  5766 //----------------------------inline_reference_get----------------------------
  5767 // public T java.lang.ref.Reference.get();
  5768 bool LibraryCallKit::inline_reference_get() {
  5769   const int referent_offset = java_lang_ref_Reference::referent_offset;
  5770   guarantee(referent_offset > 0, "should have already been set");
  5772   // Get the argument:
  5773   Node* reference_obj = null_check_receiver();
  5774   if (stopped()) return true;
  5776   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
  5778   ciInstanceKlass* klass = env()->Object_klass();
  5779   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
  5781   Node* no_ctrl = NULL;
  5782   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
  5784   // Use the pre-barrier to record the value in the referent field
  5785   pre_barrier(false /* do_load */,
  5786               control(),
  5787               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
  5788               result /* pre_val */,
  5789               T_OBJECT);
  5791   // Add memory barrier to prevent commoning reads from this field
  5792   // across safepoint since GC can change its value.
  5793   insert_mem_bar(Op_MemBarCPUOrder);
  5795   set_result(result);
  5796   return true;
  5800 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
  5801                                               bool is_exact=true, bool is_static=false) {
  5803   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
  5804   assert(tinst != NULL, "obj is null");
  5805   assert(tinst->klass()->is_loaded(), "obj is not loaded");
  5806   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
  5808   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
  5809                                                                           ciSymbol::make(fieldTypeString),
  5810                                                                           is_static);
  5811   if (field == NULL) return (Node *) NULL;
  5812   assert (field != NULL, "undefined field");
  5814   // Next code  copied from Parse::do_get_xxx():
  5816   // Compute address and memory type.
  5817   int offset  = field->offset_in_bytes();
  5818   bool is_vol = field->is_volatile();
  5819   ciType* field_klass = field->type();
  5820   assert(field_klass->is_loaded(), "should be loaded");
  5821   const TypePtr* adr_type = C->alias_type(field)->adr_type();
  5822   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
  5823   BasicType bt = field->layout_type();
  5825   // Build the resultant type of the load
  5826   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
  5828   // Build the load.
  5829   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
  5830   return loadedField;
  5834 //------------------------------inline_aescrypt_Block-----------------------
  5835 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
  5836   address stubAddr;
  5837   const char *stubName;
  5838   assert(UseAES, "need AES instruction support");
  5840   switch(id) {
  5841   case vmIntrinsics::_aescrypt_encryptBlock:
  5842     stubAddr = StubRoutines::aescrypt_encryptBlock();
  5843     stubName = "aescrypt_encryptBlock";
  5844     break;
  5845   case vmIntrinsics::_aescrypt_decryptBlock:
  5846     stubAddr = StubRoutines::aescrypt_decryptBlock();
  5847     stubName = "aescrypt_decryptBlock";
  5848     break;
  5850   if (stubAddr == NULL) return false;
  5852   Node* aescrypt_object = argument(0);
  5853   Node* src             = argument(1);
  5854   Node* src_offset      = argument(2);
  5855   Node* dest            = argument(3);
  5856   Node* dest_offset     = argument(4);
  5858   // (1) src and dest are arrays.
  5859   const Type* src_type = src->Value(&_gvn);
  5860   const Type* dest_type = dest->Value(&_gvn);
  5861   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5862   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5863   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5865   // for the quick and dirty code we will skip all the checks.
  5866   // we are just trying to get the call to be generated.
  5867   Node* src_start  = src;
  5868   Node* dest_start = dest;
  5869   if (src_offset != NULL || dest_offset != NULL) {
  5870     assert(src_offset != NULL && dest_offset != NULL, "");
  5871     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5872     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5875   // now need to get the start of its expanded key array
  5876   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5877   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5878   if (k_start == NULL) return false;
  5880   if (Matcher::pass_original_key_for_aes()) {
  5881     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
  5882     // compatibility issues between Java key expansion and SPARC crypto instructions
  5883     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
  5884     if (original_k_start == NULL) return false;
  5886     // Call the stub.
  5887     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  5888                       stubAddr, stubName, TypePtr::BOTTOM,
  5889                       src_start, dest_start, k_start, original_k_start);
  5890   } else {
  5891     // Call the stub.
  5892     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
  5893                       stubAddr, stubName, TypePtr::BOTTOM,
  5894                       src_start, dest_start, k_start);
  5897   return true;
  5900 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
  5901 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
  5902   address stubAddr;
  5903   const char *stubName;
  5905   assert(UseAES, "need AES instruction support");
  5907   switch(id) {
  5908   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
  5909     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
  5910     stubName = "cipherBlockChaining_encryptAESCrypt";
  5911     break;
  5912   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
  5913     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
  5914     stubName = "cipherBlockChaining_decryptAESCrypt";
  5915     break;
  5917   if (stubAddr == NULL) return false;
  5919   Node* cipherBlockChaining_object = argument(0);
  5920   Node* src                        = argument(1);
  5921   Node* src_offset                 = argument(2);
  5922   Node* len                        = argument(3);
  5923   Node* dest                       = argument(4);
  5924   Node* dest_offset                = argument(5);
  5926   // (1) src and dest are arrays.
  5927   const Type* src_type = src->Value(&_gvn);
  5928   const Type* dest_type = dest->Value(&_gvn);
  5929   const TypeAryPtr* top_src = src_type->isa_aryptr();
  5930   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
  5931   assert (top_src  != NULL && top_src->klass()  != NULL
  5932           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
  5934   // checks are the responsibility of the caller
  5935   Node* src_start  = src;
  5936   Node* dest_start = dest;
  5937   if (src_offset != NULL || dest_offset != NULL) {
  5938     assert(src_offset != NULL && dest_offset != NULL, "");
  5939     src_start  = array_element_address(src,  src_offset,  T_BYTE);
  5940     dest_start = array_element_address(dest, dest_offset, T_BYTE);
  5943   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
  5944   // (because of the predicated logic executed earlier).
  5945   // so we cast it here safely.
  5946   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
  5948   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  5949   if (embeddedCipherObj == NULL) return false;
  5951   // cast it to what we know it will be at runtime
  5952   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
  5953   assert(tinst != NULL, "CBC obj is null");
  5954   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
  5955   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  5956   if (!klass_AESCrypt->is_loaded()) return false;
  5958   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  5959   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
  5960   const TypeOopPtr* xtype = aklass->as_instance_type();
  5961   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
  5962   aescrypt_object = _gvn.transform(aescrypt_object);
  5964   // we need to get the start of the aescrypt_object's expanded key array
  5965   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
  5966   if (k_start == NULL) return false;
  5968   // similarly, get the start address of the r vector
  5969   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
  5970   if (objRvec == NULL) return false;
  5971   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
  5973   Node* cbcCrypt;
  5974   if (Matcher::pass_original_key_for_aes()) {
  5975     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
  5976     // compatibility issues between Java key expansion and SPARC crypto instructions
  5977     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
  5978     if (original_k_start == NULL) return false;
  5980     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
  5981     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
  5982                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  5983                                  stubAddr, stubName, TypePtr::BOTTOM,
  5984                                  src_start, dest_start, k_start, r_start, len, original_k_start);
  5985   } else {
  5986     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
  5987     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
  5988                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
  5989                                  stubAddr, stubName, TypePtr::BOTTOM,
  5990                                  src_start, dest_start, k_start, r_start, len);
  5993   // return cipher length (int)
  5994   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
  5995   set_result(retvalue);
  5996   return true;
  5999 //------------------------------get_key_start_from_aescrypt_object-----------------------
  6000 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
  6001   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
  6002   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  6003   if (objAESCryptKey == NULL) return (Node *) NULL;
  6005   // now have the array, need to get the start address of the K array
  6006   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
  6007   return k_start;
  6010 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
  6011 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
  6012   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
  6013   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
  6014   if (objAESCryptKey == NULL) return (Node *) NULL;
  6016   // now have the array, need to get the start address of the lastKey array
  6017   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
  6018   return original_k_start;
  6021 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
  6022 // Return node representing slow path of predicate check.
  6023 // the pseudo code we want to emulate with this predicate is:
  6024 // for encryption:
  6025 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
  6026 // for decryption:
  6027 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
  6028 //    note cipher==plain is more conservative than the original java code but that's OK
  6029 //
  6030 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
  6031   // First, check receiver for NULL since it is virtual method.
  6032   Node* objCBC = argument(0);
  6033   objCBC = null_check(objCBC);
  6035   if (stopped()) return NULL; // Always NULL
  6037   // Load embeddedCipher field of CipherBlockChaining object.
  6038   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
  6040   // get AESCrypt klass for instanceOf check
  6041   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
  6042   // will have same classloader as CipherBlockChaining object
  6043   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
  6044   assert(tinst != NULL, "CBCobj is null");
  6045   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
  6047   // we want to do an instanceof comparison against the AESCrypt class
  6048   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
  6049   if (!klass_AESCrypt->is_loaded()) {
  6050     // if AESCrypt is not even loaded, we never take the intrinsic fast path
  6051     Node* ctrl = control();
  6052     set_control(top()); // no regular fast path
  6053     return ctrl;
  6055   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
  6057   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
  6058   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
  6059   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
  6061   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
  6063   // for encryption, we are done
  6064   if (!decrypting)
  6065     return instof_false;  // even if it is NULL
  6067   // for decryption, we need to add a further check to avoid
  6068   // taking the intrinsic path when cipher and plain are the same
  6069   // see the original java code for why.
  6070   RegionNode* region = new(C) RegionNode(3);
  6071   region->init_req(1, instof_false);
  6072   Node* src = argument(1);
  6073   Node* dest = argument(4);
  6074   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
  6075   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
  6076   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
  6077   region->init_req(2, src_dest_conjoint);
  6079   record_for_igvn(region);
  6080   return _gvn.transform(region);

mercurial